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A B S T R A C T

The electronic properties of the interface between Al and black phosphorus were studied by photoemission
spectroscopy (PES). We observed that the growth pattern of Al deposited onto the BP film is Stranski-Krastanov
mode. There is a reaction between Al atoms and P atoms at the interface and forming Al-P compounds, which
changes the interface barriers and impedes carrier transfer. It is suggested that an inert buffer layer is necessary
to protect BP and lower the carrier barriers to develop Al/BP-based device with high performance.

Introduction

2D materials are extensively studied because of their special geo-
metric structures and physicochemical properties. Graphene is the
forefather of 2D materials, which has high carrier mobility and out-
standing physical properties [1–6]. However, its potential functional-
ities and applications are limited due to the zero-band gap character-
istics of graphene [7]. As a fast emerging 2D material, black phosphorus
(BP) has become a research hotspot due to its remarkable photoelectric
properties [8–14]. Like graphite, BP has a layered structure and stack
by weak van der Waals interactions. The most significant difference
between BP and graphene is that BP has a band gap and its value can be
adjusted with the thickness [15–17]. BP has good electrical properties
at room temperature, the application potential of BP has been greatly
developed [18]. BP as a 2D monoelemental materials, doping a certain
VA group element in it, tuning the monoelemental crystals into biele-
mental, can preserve the advantages of BP's unique structures, mod-
ulate its properties, and further expand its multifunctional applications
[19]. Optoelectronic devices fabricated from 2D semiconductors such
as BP exhibit many‐body complexes which determine the materials
optical and electrical properties. Characterization and manipulation of
these complexes have become a reality, further improving the perfor-
mance of BP-based optoelectronic devices [20]. A variety of equipment
based on BP such as the field-effect transistor, solar cells, photodetector,
pulsed lasers, have proven to be viable [21–28].

One significant challenge facing BP applications is its environmental
stability. The peeled BP films will degrade in the atmosphere, lead to
the carrier mobility and on/off current ratio of BP decrease significantly

[22,29]. Thus, in order to maintain the inherent structure and property
of BP, an efficient and reliable isolation/passivation layer is needed.
AlOx overlayer protection is an effective method to passivate BP flakes
from atmospheric degradation, Wood et al. reported that the BP FETs
encapsulated by deposition of Al can maintain high mobilities for more
than two weeks in the atmosphere [29]. Furthermore, Al2O3 can be
used as barrier layers. Liu et al. fabricated an ambipolar BP transistor
using an Al2O3 capping layer and the ambipolarity is obtained by re-
duced the Schottky barrier heights [30]. Generally, the protective and
barrier layers are prepared by depositing Al on BP films and then per-
forming thermal oxidation. Perello et al. reported a high-performance
n-type BP transistor with Al contacts, the electron mobilities ranging
from 102 to 103 cm2 V−1 s−1 and Ion/Ioff > 105 at room temperature.
Due to the existence of a Schottky barrier at the Al-BP contact, a flake
thickness dependence of dominant carrier type was also observed [31].
Liu et al. showed theoretically and experimentally the effectiveness of
Al atoms as electron donors to transform the undoped p-type BP into n-
type conductance [32]. Despite the fascinating device characteristics,
the interface electronic structure between Al and BP is still not very
clear, to better understand the behavior of the device, it is necessary to
further study it.

Here, the electronic structure of the Al/BP interface was studied by
PES. In our study we found that the growth pattern of Al deposited onto
the BP film was in the Stranski-Krastanov mode. The Al-P compound
formed at the initial deposition of Al and its amount increased gradually
with increasing the Al thickness from 0 to 8 Å. Angle-resolved X-ray
photoemission spectroscopy (AR-XPS) data shows that the Al-P com-
pounds only exist at the interface and change the interface barriers,
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which is harmful to carriers transport. Our study is helpful to under-

stand the behavior of the Al/BP interface.

Materials and methods

In situ photoemission experiments were carried out in an ultrahigh

vacuum system. Before the experiment, the evaporation source was

degassed at appropriate temperatures. The manufacturer of BP single

crystal is HQ Graphene, and it is mechanically peeled with scotch tape

in the preparation room. Then, the obtained freshly cleaved bulk BP

crystal was immediately transferred to the analysis chamber and the

surface composition and crystal structure have been verified. Al films

were grown layer by layer in MBE chamber whose pressure is about

2 × 10−10 mbar and its thickness was monitored by a quartz crystal

microbalance. X-ray photoemission spectroscopy (XPS) measurement

was operated with 100 meV scanning step [33]. In order to measure the

secondary electrons cutoff, a − 5 V bias was applied to the sample

during ultraviolet photoemission spectroscopy (UPS) measurement

[34,35].

Results and discussion

Fig. 1(a) is the crystal structure of BP, Fig. 1(b) is the growth

schematic representation of metals films and Fig. 1(c) is the XPS full

spectra. As shown in Fig. 1(c), the peak of P 2p is located at ca.

130.24 eV, and no other peak has been detected at high binding energy,

indicating that the BP has not been oxidized during mechanical ex-

foliation in high vacuum [36]. A clear low energy electron diffraction

(LEED) pattern has been presented as shown in the inset of Fig. 1(c).

Combining with the XPS and LEED data, it is found that the BP surface

was successfully prepared by mechanically peeled off in the preparation

chamber.

As shown in Fig. 2(a) and (b), UPS spectra of the cut-off region and

the VB edge region evolve with the thickness of Al deposited on BP. For

clarity of vision, all the spectra have been normalized. For the intrinsic

BP, its Work Function (WF) is 4.24 eV which is consistent basically with

the previous report [35]. The WF is 4.14 eV when the thickness of Al is

1 Å and decreases with the subsequent deposition, approach to the

minimum 3.81 eV after the deposition of 8 Å Al. Then WF increases

slowly with further increase the Al thickness and it is 4.03 eV at 60 Å.

As shown in Fig. 2(b), the valence band maximum (VBM) of intrinsic BP

is about 0.1 eV. When the thickness of Al reaches 30 Å, the metallic

Fermi level cutoff begins to appear. Fig. 2(c) display the evolution of

WF with the Al film thickness, a gradual shift was observed with the

subsequent Al deposition, indicating that the interface barriers have

been changed. According to the band gap (Egap) of bulk BP is 0.3 eV, the

conduction band minimum (CBM) of intrinsic BP calculated by formula

ECBM = Egap − EVBM is 0.2 eV [8].

XPS was used to study the chemical properties of samples and in-

vestigate the reasons for the change of WF with increasing Al thickness.

Shown in Fig. 3(a), (b) are P 2p and Al 2p spectra at Al film thickness

from 0 to 60 Å and all the spectra have been normalized. The core level

of P 2p is a doublet consisting of P 2p3/2 and P 2p1/2, and in this paper,

only the P 2p3/2 peak is analyzed in detail for simplicity [36]. The

translucent blue peak corresponds to the P 2p3/2 peak of intrinsic BP,

the position is at 130.24 eV. With the increase of Al thickness, it re-

mains basically unchanged. At the initial deposition of Al, a translucent

red peak appeared, corresponding to Al atoms at the interface reaction

with P atoms and forming Al-P compounds, the position is at 129.24 eV.

Similar results were obtained by several controlled experiments. In the

first controlled experiment, the surface of the bulk BP has a small

amount of absorbed oxygen and the Al films were thermally evaporated

in the molecular beam epitaxy chamber whose pressure is better than

1.5 × 10−10 mbar. Due to the oxygen molecules are adsorbed on the BP

surface, Al ions are more easily oxidized, so the AlOx content is greater

at the initial deposition of Al, as shown in supporting information Fig.

S1. It is found that the Al-P compounds content obviously increased at 4

Å and decreased at 15 Å. It indicated that the Al preferentially react
with the absorbed oxygen and the formation of Al-P compounds also

exist at interface region. To eliminate the interference of the equipment,

we repeated the experiment using a new Al evaporation source in an-

other evaporation chamber whose pressure is superior to

5 × 10−8 mbar, and also found the formation of Al-P compounds, as

shown in Fig. S2. Results from experiments under different conditions

indicate that the Al-P compounds appear at the Al/BP interface when Al

is deposited on BP.

Al 2p is more complex to analyze. In Fig. 3(b), at the initial Al de-

position, the Al 2p-related peaks are located at 74.24 eV and 75.72 eV,

respectively. The 74.24 eV one is Al-P compounds and it gradually at-

tenuated as the Al overlayer thickness increases. The 75.72 eV peak is

from AlOx, [37] as it has the proper separation from the metallic Al

peak. With the subsequent deposition, a new peak located at 73.24 eV

Fig. 1. (a) Crystal structure of BP. (b) Metal growth schematics. (c) XPS measurement of BP. Inset: LEED image of BP at 37 eV electron energy.
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appears at 8 Å, which can be attributed to metallic aluminum. The

coverage agrees with the emergence of the Al Fermi edge in the UPS

spectrum. Based on the UPS data, the most logical assumption is that

the formation of aluminum oxides and Al reacts with BP at the interface

which causes changes in VL. Fig. 3(c) shows the atomic concentration of

all components as a function of Al thickness. To distinguish different

components, the Al 2p-related peaks located at ca. 73.24 eV, 74.24 eV,

and 75.72 eV is assigned to metallic Al, Al-BP compounds, and AlOx
respectively. The amount of BP decreases monotonically as the Al

thickness increases. The AlOx and O behave differently from BP, their

intensities increase first and then decrease gradually with the Al

thickness increase. The amount of metallic Al gradual increases as the

Al thickness increases. Al-BP compounds intensities decrease obviously

after 8 Å, indicating that the reaction only occurs at 0–8 Å. The Al-P

compounds exists at the Al/BP interface, in which should change the

optical properties at the interface region. However, it should be noted

that this region is limited to a few nanometers in thickness, as the

unreacted BP is still dominant. Combine with the UPS spectra (Fig. 2c),

we find that the interface barrier has been changed by the reaction,

which is not conducive to carrier transport. To eliminate the reaction

and suppress the interface barrier, the buffer layer is needed between Al

and BP.

To further study the growth process of Al on BP film, we analyzed

the attenuation of XPS intensity by Al overlayer (IAl) [38].

= ×I I exp d[1 ( / )]Al Al60 (1)

or BP substrate (IBP)

= ×I I exp d( / )BP BP0 (2)

I0 is the photoelectron intensities from intrinsic BP, I60 is from 60 Å

Al overlayer. d is the thickness of the Al film deposition, λAl (λBP) is the

mean free path (MFP) of photoexcited electrons in Al (P) [35]. The

growth pattern of Al deposited on the BP substrate can be obtained by

the attenuation of the XPS peaks, which calculated by the Eqs. (1) and

(2) [39]. As shown in Fig. 3 (d), between 1 and 8 Å, the curve of P 2p

peak attenuation is linear, 8–60 Å, linear has slightly different slopes.

This date derives an electron escape depth of ~20 Å, which is in good

agreement with the expected value [40]. It is suggesting that as Al is

deposited onto the BP film, the growth pattern is Stranski-Krastanov

mode.

To analyze the distribution of all components, AR-XPS is used for

Fig. 2. UPS spectra of (a) the cut-off region, (b) the VB edge region at Al film thickness from 0 to 60 Å. (c) The evolution of work function with the Al film thickness.

Fig. 3. (a) P 2p, (b) Al 2p spectra at Al film thickness from 0 to 60 Å. (c) Atomic concentration and (d) photoelectron intensity at Al film thickness from 0 to 60 Å.
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the 60 Å Al deposition on the BP substrate. In Fig. 4(a), the atomic

concentration of all components is plotted at different takeoff angle.

The inset of Fig. 4(b) illustrates the AR-XPS measurement geometry

[41]. As shown in Fig. 4(a), with the takeoff angle, increased from 0 to

70°, metallic Al increased, indicates that more metallic Al is distributed

at the surface than in the bulk, while BP shows an inverse distribution,

agree well with the XPS results as mentioned above. O shows a homo-

geneous distribution in the sample. Fig. 4(b) uses the relative sensitivity

of each chemical component relative to the takeoff angle to obtain an

ordering of the components by depth [42]. It is observed that the BP

and Al-P compounds have a greater relative depth, the O and AlOx have

moderate relative depths, and the metallic Al have the smaller relative

depth for the Al/BP film. These depth observations support our asser-

tion that Al-P compounds only exists at the interface region, which

suggests that the Al react with the top layers of BP. Thus, we speculate

that a monolayer BP may show a similar behavior as the bulk BP and be

damaged by the reaction although it may deserve further investiga-

tions.

Conclusions

We investigated the electronic properties of the Al/BP interface and

found that there is a reaction between Al and BP. Al-P compounds were

formed at the initial Al deposition and it only exists at the interface

region. The interface interaction would change the interface barrier and

against the carriers transport. It is suggested that a buffer layer inset

into the Al/BP interface is necessary. The process of the growth of Al on

the BP substrate is Stranski-Krastanov mode. These observations are

helpful for the performance improvement of Al/BP-based devices.
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