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A B S T R A C T   

The interface between organic semiconductors and Co thin film has been studied by spin-resolved photoemission 
spectroscopy. We found that the spin-polarized states of cobalt still exist when 1.0 nm rubrene or 0.7 nm C60 or 
1.0 nm DBBA molecules deposited on Co, while 0.4 nm C8-BTBT eliminates the highly spin-polarized states of 
cobalt due to the desulfurization reaction occurred at the interface. The mode and strength of the interfacial 
interaction between organic semiconductors and magnetic electrode affect the spin-polarized states of magnetic 
electrode greatly. Our observations provide assistance in device design, fabrication and performance improve
ment in Co-based organic spintronic devices.   

1. Introduction 

Organic semiconductors have caused widely research interest and 
developed rapidly due to their strong flexibility, lightweight and good 
machinability [1,2]. Interfacial properties and phenomena play an 
important role in improving the performance of organic semiconductor 
devices [3,4]. Due to weak spin-orbit coupling, organic molecules are 
more suitable for spin transport media than inorganic substances [5]. 
The concept of “spinterface” was first proposed in 2010 to represent the 
hybrid interface between ferromagnetic and organic semiconductors 
[6–8]. This field is one of the hotspots in organic spintronics research 
and the performance of organic spin devices can be improved by 
obtaining well-defined contact interface [9,10]. Barraud et al. developed 
a spin transport model that describes the role of interfacial 
spin-dependent metal/molecule hybridization on the effective polari
zation allowing enhancement and even sign reversal of injected spins 
[8]. Djeghloul et al. reported a strong spin polarized interface between 
ferromagnetic cobalt and an amorphous carbon layer. It is shown that 
the highly spin-polarized organic spinterfaces at room temperature 
constitute a generic effect that isn’t specific to a particular molecule 
[11]. Urbain et al. measured the prototypical system Co(001)/Cu/MnPc 

by spin-resolved photoemission spectroscopy. The results show that a 
high spin polarization of the Cu/MnPc spinterface atop ferromagnetic 
Co at room temperature [12]. Brambilla et al. introduced a 
two-dimensional oxide layer at the interface between an organic semi
conductor and a ferromagnetic metal and found that the C60/Cr4O5/Fe 
(001) spinterface is characterized by the formation of a well-ordered 
fullerene layer and of strongly hybridized interface states [13]. Luque 
et al. investigated the adsorption of chiral organic molecules on a 
ferromagnetic substrate by synchrotron-radiation-based electron spec
troscopies [14]. The observations show that some enantiosensitivity 
may appear when bonding chiral molecules to a substrate with an initial 
asymmetry in the population of the different spin orientations. St€ockl 
et al. revisit the hybrid interface formed between the prototypical 
molecule Alq3 and the Co surface using spin- and angle-resolved 
photoemission. It is shown that the elastic scattering of the Co photo
electrons at the disordered Alq3 overlayer leading to a redistribution of 
the spin-dependent spectral intensity in momentum space [15]. 

Rubrene (5,6,11,12-tetraphenylnaphthacene) is a π-conjugated mo
lecular semiconductor with relatively high charge carrier mobility (~20 
cm2/V) and has potential applications as spin transport layer in spin
tronic systems [16]. Shim et al. reported rubrene/Co-based device have 
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intensity of rubrene/Co decreases slowly with increasing rubrene 
thickness. 

In addition, we also performed spin-resolved photoemission spec
troscopy measurements on C60/Co and DBBA/Co interfaces (not shown, 
see the Supporting Information). The results are similar to that of 
rubrene/Co, which also displayed decreased spin polarization with the 
organic film thickness and after 0.7 nm C60 or 1 nm DBBA deposition 
highly spin-polarized states still exist in these interfaces. 

However, spin-polarized photoemission spectra of C8-BTBT/Co 
(001) and its variation with film thickness is quite different from those 
of C60, rubrene and DBBA on Co, as shown in Fig. 3. The highly spin- 
polarized states near the EF for clean Co, shown in Fig. 3(a) is greatly 
depressed by the 0.4 nm C8-BTBT deposition. The photoemission 

intensity of C8-BTBT/Co decreases sharply with increasing C8-BTBT 
thickness in an exponential manner (see Fig. 3(b) and (c)). Very low 
C8-BTBT coverage strongly modifies the interfacial electronic structure 
and leads to the disappearance of the spin-polarized states of Co film. 

To better understand the different spin-dependent properties of 
rubrene, C60 and C8-BTBT with Co interfaces, we investigated the 
chemical characteristics using XPS. As shown in Fig. 4, we plotted the C 
1s core level peak as a function of rubrene, C60 and C8-BTBT coverage. In 
order to facilitate the interface hybridization analysis, we fit all of the C 
1s spectra with three peaks. Translucent blue peak corresponds to the C 
1s in cobalt carbides [42], which confirms that a small amount of C 
atoms binds to Co atoms at the interface. Translucent red peak and 
translucent green correspond to of graphite-like sp2 and C–O bonds [43, 

Fig. 2. Spin-polarized photoemission spectra and corresponding spin polarization of rubrene/Co(001) for 0.2 nm, 0.5 nm, and 1.0 nm rubrene thickness. The insets 
show the rubrene molecules. 

Fig. 3. Spin-polarized photoemission spectra and corresponding spin polarization of C8-BTBT/Co (001) for 0, 0.4 nm, and 0.8 nm C8-BTBT thickness. The insets 
show the C8-BTBT molecules. 

B. Liu et al.                                                                                                                                                                                                                                       



–

� �

– –

–

’

– –

–

–

–

–

–

– –

–

–

–

–

–



Organic Electronics 78 (2020) 105567

5

and the spin polarization. 
Furthermore, we check the crystal structure and surface morphology 

of organic molecules deposition on Co film by using LEED and atomic 
force microscope (AFM). As shown in Fig. S6~S9, we find that the LEED 
pattern disappear at the initial organic molecules deposition and there is 
no new LEED pattern appear as the increasing of organic molecules 
thickness. It is indicated that the organic molecules does not crystallize. 
Meanwhile, The AFM measurement shows that the surface morphol
ogies on the Co film is different for different organic molecules. The 
growth mode of Rubrene deposition on Co film is Volmer-Weber and 
there is isolated island when the Rubrene thickness reaches 1.0 nm, as 
shown in Fig. 5(a). The 0.8 nm C8-BTBT is partial coverage on Co film 
(Fig. 5(b)) and 1.0 nm DBBA is almost completely coverage (Fig. 5(c)). 
For 0.7 nm C60 (Fig. 5(d)), it is almost invisible from the AFM topog
raphy image and the possible reason is that the C60 desorption occurs in 
ambient air. We find that the Rubrene and DBBA show a different sur
face topography, but they have a same decay trend of the spin polari
zation. Meanwhile, the topography of DBBA and C8-BTBT on Co film is 
similar to each other, but they show an entirely different decay of the 
spin polarization. Combined with the result of upper experiment, we 
suspect that the interface interaction between Co and organic molecules 
is dominated on the decay of the spin polarization. 

4. Conclusions 

In conclusion, the spin polarization of rubrene, C60, DBBA, and C8- 
BTBT film covered cobalt were studied by SRUPS. The results show 
that the reduced spin polarization of Co film when the rubrene, C60, or 
DBBA deposited on Co film, which can be attributed to the interface 
hybridization forms of C–Co bonds. Very low C8-BTBT coverage (<0.4 
nm) strongly depress the spin polarization of Co film due to the desul
furization reaction occurred at the C8-BTBT/Co interface. Weak hy
bridization can modify and depress the polarization gradually within a 
subnanometer, while desulfurization reaction can eliminate the polari
zation by a low organic film coverage <0.4 nm. Our research is helpful 
for the design, fabrication and performance improvement of Co-based 
organic spintronic devices. 

Supplementary Material 

See supplementary material for the spin-polarized photoemission 
spectra of C60/Co(001) and DBBA/Co(001), O 1s spectra of C60 depos
ited on Co, C 1s spectra of DBBA deposited on Co, Co 2p spectra of 

rubrene and C8-BTBT deposited on Co, LEED and AFM image of 
Rubrene, C8-BTBT, C60, and DBBA deposited on Co (001). 
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