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ABSTRACT. Motivated by results of Thurston, we prove that any autoequivalence of a
triangulated category induces a filtration by triangulated subcategories, provided the exis-
tence of Bridgeland stability conditions. The filtration is given by the exponential growth
rate of masses under iterates of the autoequivalence, and only depends on the choice
of a connected component of the stability manifold. We then propose a new definition
of pseudo-Anosov autoequivalences, and prove that our definition is more general than
the one previously proposed by Dimitrov, Haiden, Katzarkov, and Kontsevich. We con-
struct new examples of pseudo- Anosov autoequivalences on the derived categories of quintic
Calabi—Yau threefolds and quiver Calabi—Yau categories. Finally, we prove that certain
pseudo-Anosov autoequivalences on quiver 3-Calabi—Yau categories act hyperbolically on

the space of Bridgeland stability conditions.

1. INTRODUCTION

Let X, be a closed orientable surface of genus g > 2. The mapping class group
Mod(%,) is the group of isotopy classes of orientation-preserving diffeomorphisms of ¥, .
Thurston proved a far-reaching classification theorem for elements of Mod(%,), showing
that each must be either periodic, reducible, or pseudo-Anosov [41]. Among these three
types, pseudo-Anosov maps are dynamically the most interesting ones. Moreover, a generic
element in Mod(X,) is pseudo-Anosov [38]. Pseudo-Anosov maps are pervasive through-
out low-dimensional topology, geometry, and dynamics. For instance, a classical theorem of
Thurston [40] says that the mapping torus constructed from a diffeomorphism f: ¥, — X
has a hyperbolic structure if and only if f is isotopic to a pseudo-Anosov map.

More recently, a striking series of papers by Gaiotto-Moore—Neitzke [19], Bridgeland—
Smith [13], Haiden—Katzarkov—Kontsevich [22], and Dimitrov—Haiden-Katzarkov—Kontsevich
[14], established connections between Teichmiiller theory and the theory of Bridgeland sta-
bility conditions on triangulated categories. A series of analogies emerged, such as the one
between geodesics (for flat metrics) and stable objects, with lengths of the former giving
the masses of the later. Further correspondences are summarized in Table 1. Based on
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these connections, the categorical analogue of the notion of systoles on Riemann surfaces
has been studied in [18, 21].

Surface Triangulated category
diffeomorphisms autoequivalences
closed curve C object
intersections C7 N Cy | morphisms Hom®(Ey, Es)
flat metrics stability conditions
geodesics stable objects
length(C) mass(F)
slope(C) phase(E)

TABLE 1. Analogies between smooth surfaces and triangulated categories.

Since generic elements in mapping class groups are of pseudo-Anosov type, it is then

natural to ask, under the correspondence described in Table 1,
What is the categorical analogue of pseudo-Anosov maps?
In other words,
What properties are satisfied by generic autoequivalences on triangulated categories?

We study the categorifications of several different characterizations of pseudo-Anosov
maps in this article. Recall that a map f: X, — X, is called pseudo-Anosov if there
exists a pair of transverse measured foliations on Y, and a real number A > 1 such that
the foliations are preserved by f and their transverse measures are multiplied by A and
1/X respectively. The number A is called the stretch factor of the pseudo-Anosov map.

Thurston gives another characterization of pseudo-Anosov maps:

Theorem 1.1 (Thurston [41], Theorem 5). For any diffeomorphism f of a surface 3, there
is a finite set of algebraic integers 1 < Ay < Ao < .-+ < A\ such that for any homotopically
nontrivial simple closed curve o, there is a A; such that for any Riemannian metric g on
X,

Tim (I (")t = N
Here 1, denotes the length of a shortest representative in the homotopy class. Moreover, f
is isotopic to a pseudo-Anosov map if and only if k =1 and A\ > 1. In this case, A\ is

the stretch factor of the pseudo-Anosov map.
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There is yet another characterization of pseudo-Anosov maps. Let (X,d) be a metric

space and f: X — X be an isometry. The translation length of f is defined by
7(f) = inf {d(z, f(2))}.

The isometry f is said to be hyperbolic if 7(f) > 0 and 7(f) = d(z, f(z)) for some
z € X. Now let f € Mod(X,) and recall that f acts on Teichmiiller space Teich(X,) as
an isometry for the Teichmiiller metric. Moreover, f is pseudo-Anosov if and only if f
acts hyperbolically on Teich(3,) . In this case, the translation length and the stretch factor
are related by 7(f) = log A(f).

Motivated by the definition of pseudo-Anosov maps and the correspondence in Table 1,
Dimitrov, Haiden, Katzarkov, and Kontsevich [14] proposed a definition of “pseudo-Anosov
autoequivalence” of a triangulated category. We recall their definition in Section 2.3 and will
refer to such autoequivalences as “DHKK pseudo-Anosov autoequivalences” throughout this
article. Some properties of these autoequivalences are studied in a recent work of Kikuta
[28]. In particular, it was proved in [28] that DHKK pseudo-Anosov autoequivalences
act hyperbolically on Stab'(D)/C, and also satisfy the relation 7(f) = log A(f) between
translation lengths and stretch factors.

However, a drawback of the definition of DHKK pseudo-Anosov autoequivalences, which
we will discuss in Section 3.1, is that it is too restrictive in some cases. For instance, the set
of DHKK pseudo-Anosov autoequivalences does not contain the autoequivalences induced
by certain pseudo-Anosov maps constructed by Thurston [41] which act trivially on the
homology of X, .

We propose a new definition of pseudo-Anosov autoequivalences on triangulated cate-
gories. Our definition is motivated by the characterization given by Theorem 1.1. We show
in Section 2.2 that any autoequivalence on a triangulated category D induces a filtration
by triangulated subcategories, provided the following two assumptions on D:
Assumption (A): There exists a Bridgeland stability condition on D.

Assumption (B): Under Assumption (A), a connected component Stab'(D) C Stab(D)
is fixed once and for all.

Throughout the article, we consider triangulated categories satisfying these two assump-
tions. The filtration of D that we associated to an autoequivalence is the categorical
analogue of the growth rates of lengths 1 < A\; < Ay < -+- < A; in Theorem 1.1. We then

make the following definition.

Definition 1.2 (see Definition 2.13). Let D be a triangulated category satisfying As-
sumptions (A) and (B). An autoequivalence ®: D — D is said to be pseudo-Anosov if its
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associated growth filtration has only one step:
0CDy=Dand X >1.

We prove that this new definition is more general than the definition of DHKK pseudo-

Anosov autoequivalences.

Theorem 1.3 (see Theorem 2.17). Let D be a triangulated category satisfying Assumptions
(A) and (B), and let ® € Aut(D) be an autoequivalence. If ® is DHKK pseudo-Anosov,

then it is pseudo-Anosov.

Note that there is a distinguished choice of connected component of Stab(D) for several
examples of triangulated categories D that admit Bridgeland stability conditions. In this
case, we choose Stab!(D) in Assumption (B) to be the distinguished connected component.

FExamples of such categories D include:

e The bounded derived category of coherent sheaves on a smooth complex projective
variety X, where X is a curve, surface, abelian threefold, Fano threefold, or a
quintic threefold [9, 34, 10, 3, 6, 5, 32, 7, 31]. For these triangulated categories,
there is a distinguished connected component of Stab(D*Coh(X)) which contains
geometric stability conditions.

e D(I'yQ), the finite dimensional derived category of the N -Calabi—Yau Ginzburg
dg algebra I'ny() associated to an acyclic quiver ), where N > 2 is an inte-
ger [20, 25, 26]. For these triangulated categories, there is a distinguished con-
nected component of Stab(D(I'y(Q)) which contains stability conditions whose
heart P((0,1[) coincides with the canonical heart Hr,q C D(I'nvQ) associated

to the quiver. See Section 3.1 for more details in the case of As-quiver.

We construct new examples of pseudo-Anosov autoequivalences on the derived categories
of coherent sheaves on quintic threefolds and on certain quiver Calabi—Yau categories. Note
that it is not known whether there exists any DHKK pseudo-Anosov autoequivalence on a

Calabi—Yau category of dimension greater than one.

Theorem 1.4 (see Theorem 3.2 and Proposition 3.7). Let D(I'yAz) be the N -Calabi-Yau

category associated to the Ag -quiver, where N > 3 is an odd integer. Then

o Any composition of spherical twists T7 and T2_1 that is neither T{" nor TQ_b s a
pseudo-Anosov autoequivalence of D(T'nA3) .

e There is no DHKK pseudo-Anosov autoequivalence of D(I'nAs) .

We also prove that certain “palindromic” pseudo-Anosov autoequivalences of D(I'yAs)
act hyperbolically on Stab!(D(I'yAs2))/C and satisfy the relation between translation

lengths and stretch factors (see Theorem 3.8 for the precise statement).
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Theorem 1.5 (see Theorem 3.10). Let X be a quintic Calabi—Yau hypersurface in CP*.
Then

O :=Tpo(—®0O(-1))
18 a pseudo-Anosov autoequivalence on Db(X) . Here T denotes the spherical twist with

respect to the structure sheaf Ox .

In Section 4, we discuss two ways in which a pseudo-Anosov map in the classical sense
induces a pseudo-Anosov autoequivalence on the Fukaya category of a surface.

In the last section, we propose several interesting open questions on categorical dynamical
systems that are related to pseudo-Anosov autoequivalences. In particular, we discuss other
possible ways to define the notion of pseudo-Anosov autoequivalences without Assumptions
(A) and (B). We also introduce the notion of irreducible autoequivalence of a category in
Definition 5.5. It is then a formal consequence that if an autoequivalence is irreducible and
has positive mass growth for a nonzero object, then it is pseudo-Anosov in the sense of
Definition 1.2.

In Appendix A, we show that the mass growth rates with respect to the complexity
function (Example 2.3) and to stability conditions (Example 2.5) on the derived category

of coherent sheaves on elliptic curves coincide.
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2. GROWTH FILTRATIONS AND PSEUDO-ANOSOV AUTOEQUIVALENCES

In this section, we develop the notion of growth filtration associated to any autoequiv-
alence of a triangulated category D which satisfies Assumptions (A) and (B) in the in-
troduction. We then use it to define the notion of pseudo-Anosov autoequivalences. Some

examples will be worked out in Section 3.

2.1. Mass functions on triangulated categories. In order to define the mass growth
of an object with respect to an autoequivalence, one needs to impose a mass function on

the underlying triangulated category D .

Definition 2.1. Let D be a triangulated category. A mass function on D is a non-negative
function on the objects
p: Ob(D) — R

such that
(1) w(A)+ p(C) > u(B) for any exact triangle A — B — C — A[l] in D.
w(E) = p(E[l]) for any E € D.

(E) <u(Ea®F) forany E,F €D.

(

One can find several natural examples of mass functions on triangulated categories.

Example 2.2. Suppose D is k-linear and of finite type, i.e. for any pair of objects E, F' €
D the sum ), ., dimy Homp(E, F[i]) is finite. Then for any nonzero object E € D,
pp(F) = dim; Homp(E, F[i])
1E€EL
defines a mass function on D. Note that in this example we may have pug(F) =0 for a

nonzero object F'€D.

Example 2.3. Let G be a split generator of a triangulated category D . Then the com-
plexity function considered in [14] defined as

05

dg(E) =inf{ ke N N

* *

FE @

S
AN
N N
Gni] - Glng]
defines a mass function on D.
The main examples of mass functions that we will consider are the ones given by Bridge-

land stability conditions. We recall the definition and some basic facts about Bridgeland

stability conditions.
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Definition 2.4 (Bridgeland [9]). Fix a triangulated category D and a group homomor-
phism cl: Ko(D) — T' to a finite rank abelian group I'. A Bridgeland stability condition
o= (Z,P) on D consists of:
e a group homomorphism Z:I' — C, and
e a collection of full additive subcategories P = {P(¢)}4ecr of D,
such that:
1) Z(E) = Z(cl([E])) € Rsg - €™ for any 0 # E € P(¢);
2) P(p+1)=P)];
3) If ¢1 > ¢ and A; € P(¢;) then Hom(A;, Ay) =0;
)

4) For any 0 # E € D, there exists a (unique) collection of exact triangles

o~ o~ o~ o~

B, E

0 FE FEs .
» N *
N / N / N /
AN N N
N N N
Aq Ay

Ap

such that A; € P(¢;) and ¢1 > ¢3 > -+ > ¢,. Denote ¢F(E) = ¢ and
o5 (E) = ¢y, . The mass of E with respect to o is defined to be

mo(E) = 3" |7 (4]
1=1

(5) (Support property [30]) There exists a constant C' > 0 and a norm ||-|| on '®zR
such that
Il([ED] < C|Z(E)]
for any E € P(¢) and any ¢ € R.

The group homomorphism Z: ' — C is called the central charge. Nonzero objects
in P(¢) are called o -semistable object of phase ¢. The sequence in (4) is called the
Harder—Narasimhan filtration of £ and Aq,...,A, are called the semistable factors of FE .

Denote by Stab(D) (or more precisely Stabr(D)) the set of Bridgeland stability con-
ditions on D with respect to cl: Ko(D) — I'. There is a useful topology on Stab(D)
introduced by Bridgeland, which is induced by the generalized metric [9, Proposition 8.1]:

ior,02) = sup {105, () = 65, (B). o () = 03, (). o 25 | € 0.
The forgetful map
Stab(D) — Hom(I',C), o= (Z,P)— Z
is a local homeomorphism [9, Theorem 7.1]. Hence Stab(D) is naturally a finite dimensional

complex manifold.
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There are two natural group actions by Aut(D) and GLT(2,R) on the space of Bridge-
land stability conditions which commute with each other [9, Lemma 8.2]. The group of
autoequivalences Aut(D) acts on Stab(D) by isometries with respect to the generalized

metric. To describe the action explicitly, let ® € Aut(D) be an autoequivalence and define
0=(Z,P)—®.0:=(Zod ! P,

where P'(¢) = ®(P(¢)).

Let m: GL/JF_(\2/,R) — GLT(2,R) be the universal cover. Recall that GLT(2,R) is iso-
morphic to the group of pairs (7, f) where f: R — R is an increasing map with f(¢p+1) =
f(#)+1,and T € GL™(2,R) such that the induced maps on S = R/2Z = (R*\{0})/R~
coincide. Given g = (T, f) € GLT(2,R), define its action on Stab(D) as

c=(Z,P)—o-g=(T""o2ZP"),

where P"(¢) = P(f(¢)). Note that the subgroup C C GL*(2,R) acts freely and isomet-
rically on Stab(D). For z € C, its action on Stab(D) is given by

o= (Z P)r oz = (exp(—irz)Z,P"),
where P"(¢) = P(¢ + Rez).

Each Bridgeland stability condition on D defines a mass function on D.

Example 2.5. Let o be a Bridgeland stability condition on D . By Ikeda [24, Proposition
3.3], we have

me(B) < my(A) + my(C)
for any exact triangle A — B — C — A[l] in D. Hence the mass m, defines a mass

function on D in the sense of Def. 2.1.

Remark 2.6. The three examples of mass functions above are all analogues of classical
objects in Teichmiiller theory. Example 2.2 is an analogue of the geometric intersection
number between two curves, see [14, Lemma 2.19]. Example 2.3 is an analogue of word

length of a curve, and Example 2.5 is an analogue of Riemannian length of a curve.

Let D' be a thick triangulated subcategory of D, i.e. D’ is closed under shifts, mapping

cones, and direct summands. We denote the space of relative mass functions by
M(D,D’) := {§ mass function on D | u(E) =0 < E € D'},

and denote M(D) := M(D,0) the space of mass functions that vanish only at the zero
object. This is the analogue of the space of length functions on Riemann surfaces in Te-
ichmiiller theory. We define a generalized metric on M(D,D’) in a similar way as [9,

Proposition 8.1].
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Definition 2.7. Let M(D,D’) be the space of mass functions on D that vanish on D’.
Then

d(pu, p2) = ;;g {( log Z;Eg ‘} € [0, oc]

defines a generalized metric on M(D,D’).

We will only use M(D) in the main text of this article. In Appendix B we discuss some
basic properties of mass functions: functoriality and induced relative mass functions.

Observe that Aut(D) and R act isometrically on the space of mass functions M(D),
and the actions by R are free. We also consider the quotient spaces Stab(D)/C and
M(D)/Rs . Note that the orbits of the C-action (resp. Rsg-action) in Stab(D) (resp. M(D) )
are closed. Hence the quotient (generalized) metrics on Stab(D)/C and M(D)/Rsq are
given by

d(71,52) = inf d(o1,09 - 2) and d(fiy, ) == inf d(u1,po 7).

zeC reRso
Lemma 2.8. The map Stab(D) — M(D) which sends o to its mass m, descends to a
map Stab(D)/C — M(D)/Rsqo. Moreover, both maps are contractions between (general-

ized) metric spaces, therefore continuous.

Proof. This follows easily from the definitions of the (generalized) metrics on Stab(D) and
M(D). O

We denote the image of these two maps by Mgiap(D) and Msian (D) /R respectively.
Note that the map Stab(D)/C — M(D)/Rsq is not injective in general. For instance,
let D be the derived category of C-linear representations of the As-quiver. Let FEj
and FEs be the simple representations with dimension vectors (1,0) and (0,1). Choose
any Bridgeland stability condition o € Stab(D) such that 0 < ¢(E1) < ¢(E2) < 1 and
|Z(E1)| = |Z(E2)| = 1. Such Bridgeland stability conditions induce the same mass function

on D, but they are not in the same C -orbit.

2.2. Growth filtrations of autoequivalences. In this section, we define the growth
filtration associated to an autoequivalence on a triangulated category D which satisfies

Assumptions (A) and (B) in the introduction.

Definition 2.9. Let p be a mass function on a triangulated category D, and ® be an
autoequivalence on D . The mass growth of an object E with respect to both p and ®
is defined to be )

hye(E) = limsup - log u(®"E).

n—oo

The following lemma follows directly from the definition of mass functions.
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Lemma 2.10. Let v and ® be as above. Then

Dy :={E:h,s(E) <log\}
is a ® -invariant thick triangulated subcategory of D .

We now restrict our attention to the mass functions given by Bridgeland stability con-
ditions. The following proposition is a special case of Ikeda [24, Proposition 3.10]. It can
also be deduced from a result of Bridgeland [9, Proposition 8.1] stating that if a stability
condition 7 € Be(o) is in a neighborhood of another stability condition o for small enough

€ > 0, then there are constants C7,C% > 0 such that
Cim,(E) < me(E) < Com,(E)
for any nonzero object £ € D.

Proposition 2.11. If o and 7 lie in the same connected component of Stab(D), then

hmg.o(E) = hp, o(E) for any autoequivalence ® and any object E € D .

Definition 2.12. Let D be a triangulated category such that Stab(D) # 0. We fix a
choice of a connected component Stab'(D) of Stab(D), and define the growth filtration
associated to an autoequivalence ® € Aut(D) to be the filtration {D)} by & -invariant
thick triangulated subcategories of D with respect to the mass functions given by the
stability conditions in Stabf (D).

The possible mass growth rates A are the categorical analogue of the growth rates of
lengths 1 < A; < Ay < -+ < Ag in Thurston’s theorem (Theorem 1.1). However, we do not
know whether there are only finitely many possible mass growth rates for an autoequivalence
in general. The algebraicity of A is unclear in general as well. The problem of algebraicity
of categorical entropy was also raised in [14, Question 4.1].

Note that one can also define the growth filtration (therefore define the notion of pseudo-
Anosov autoequivalences as in the next section) using other mass functions, for instance
the complexity functions in Example 2.3 or the Ext-distance functions in Example 2.2. See
Section 5 and Appendix A for more discussions on these alternative definitions. In the main
text, we will stick with the growth filtration defined in Definition 2.12.

2.3. Pseudo-Anosov autoequivalences. From now on, we consider triangulated cate-
gories D satisfying

Assumption (A): Stab(D) # (0, and

Assumption (B): we fix a connected component Stab'(D) C Stab(D) .
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Then any autoequivalence ® € Aut(D) has an associated growth filtration {D)} of
D as in Definition 2.12. Motivated by Thurston’s Theorem 1.1, we propose the following

definition of pseudo-Anosov autoequivalences.

Definition 2.13. An autoequivalence ® is said to be pseudo-Anosov if the associated

growth filtration has only one step:
0CcDy=D

with A > 1. In other words, the mass growth of any nonzero object is the same positive
constant log A. We call A the stretch factor of ®.

In a previous work of Dimitrov, Haiden, Katzarkov, and Kontsevich [14], another def-
inition of pseudo-Anosov autoequivalences was proposed. We call such autoequivalences
“DHKK pseudo-Anosov” in this article.

Definition 2.14 ([14], Definition 4.1 and [28], Definition 4.6). An autoequivalence ® €
Aut(D) is said to be DHKK pseudo-Anosov if there exists a Bridgeland stability condition
o € Stab’(D) and an element g € GL*(2,R) such that

o b.g=0-g.
-1
0 0
o 7(g) = " or [ € GL*(2,R) for some |r| > 1.
0 r 0 rt
Here X\ :=|r| > 1 is called the DHKK stretch factor of .

Remark 2.15. We use the slightly modified definition of DHKK pseudo-Anosov by Kikuta
[28, Definition 4.6]. The only difference from the definition in [14] is that we require the

stability condition ¢ to lie in the distinguished connected component Stab'(D).

The definition of DHKK pseudo-Anosov autoequivalences is motivated by the original
definition of pseudo-Anosov maps on Riemann surfaces — there exists a pair of trans-
verse measured foliations that are preserved by the map and the transverse measures are
stretched /contracted by the map. In Definition 2.14, the Bridgeland stability condition o
plays the role of a pair of measured foliations, and the two conditions on (®, 0, g) correspond

to the preservation and stretching/contracting of the foliations by the map.

Remark 2.16. A DHKK pseudo-Anosov autoequivalence will preserve the set of semistable
objects associated to the corresponding Bridgeland stability condition. On the other hand, it
should act on the Grothendieck group of the category in a non-trivial stretching/contracting
manner. These two requirements make it difficult to find DHKK pseudo-Anosov maps and

indeed very few examples are known, see for instance [14, 28].
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We show that the definition of pseudo-Anosov in Definition 2.13 is more general than
DHKK pseudo-Anosov. In the next section, we provide examples of pseudo-Anosov autoe-

quivalences that are not DHKK pseudo-Anosov.

Theorem 2.17. Let D be a triangulated category and ® € Aut(D) an autoequivalence.
If ® is DHKK pseudo-Anosov, then it is pseudo-Anosov. Moreover, the stretch factor and
the DHKK stretch factor coincide.

Proof. Let ® be a DHKK pseudo-Anosov autoequivalence on D . By deﬁgigign, there exists
a Bridgeland stability condition ¢ € Stabf(D) and an element g € GLT(2,R) satisfying
the conditions in Definition 2.14.

We claim that the mass growth of any nonzero object E € D with respect to ® and o
is log A > 0 where A > 1 is the DHKK stretch factor. Let Ai, As,..., A be the Harder—
Narasimhan semistable factors of E with respect to the stability condition o € Stab!(D) .
Since ® -0 = o - g, the set of o-semistable objects and the order of their phases are
preserved by ®. Hence the Harder—Narasimhan semistable factors of ®"E are given by
O A, P Ag, ..., P AL, SO

k
Mo (B"E) =3 [ Z,(®"Ay)|.
i=1
Thus, to prove the claim, it suffices to show that

1
lim —log|Z,(®"A)| = log A

n—oo n
for any o -semistable object A € D.

By the conditions in Definition 2.14, the limit lim, o = log |Z,(®"A)| is either logA or
—log A. If there were a o -semistable object A € D such that lim,_, 1 log|Z,(@"A)| =
—log X\, then the central charges of the semistable objects A, ®A, ®2A4, ... would tend to
zero, which contradicts with the support property of stability conditions (Definition 2.4).
This concludes the proof. O

We conclude this section by recalling the definition and some properties of categorical
entropy of an autoequivalence introduced by Dimitrov—Haiden—Katzarkov—Kontsevich [14].

This will be useful for the discussions in the next section.

Definition 2.18 ([14], Definition 2.5). Let D be a triangulated category with a split
generator G and let ®: D — D be an endofunctor. The categorical entropy of @ is
defined to be

hea(®) = lim L log36(#"G) € [00,00),

where g is the complexity function considered in Example 2.3.
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The relation between categorical entropy and mass growth with respect to Bridgeland
stability conditions has been studied by Ikeda [24].

Theorem 2.19 ([24], Theorem 3.5). Let ®: D — D be an endofunctor and o be a Bridge-
land stability condition on D . Assume that D has a split generator G € D. Then
1 1
sup {lim sup — log mo(CD”E)} = limsup — log my, (" G) < heat (D).

FEeD n—oo N n—soo N

In particular, if ® € Aut(D) is pseudo-Anosov, then its categorical entropy is positive
since )
heat (@) > limsup — log m,(®"G) = log A > 0.
n

n—o0

3. EXAMPLES

In this section, we construct examples of pseudo-Anosov autoequivalences on certain
quiver Calabi—Yau categories as well as the derived category of coherent sheaves on quintic
Calabi—Yau threefolds.

3.1. Examples from A;-quivers. We study the pseudo-Anosovness of autoequivalences

on the Calabi-Yau category D(I'yAz) of dimension N > 3 associated to an A -quiver:

® > 9

The category D(I'yAsz) is defined to be the derived category of finite dimensional dg-
modules over the Ginzburg N -Calabi—Yau dg-algebra of the As-quiver. We recall some
basic properties of D(I'yAz2) and refer to [20, 25, 26, 29] for the definition. By [25, Theo-
rem 6.3], D(I'yAy) is an N -Calabi—Yau triangulated category, i.e. for any pair of objects
E,F € D(I'yA3), there are natural isomorphisms

Hom*(E, F) = Hom®(F, E[N])".

The Ginzburg dg algebra I'y Ao is concentrated in negative degrees, therefore its derived
category has a canonical t-structure given by the standard truncation functors. This in-

duces a canonical t-structure on D(I'yAz) .

Proposition 3.1 ([2, Section 2],[27, Section 5.1]). There is a canonical bounded t-structure
on D(I'nAg) with the heart Hry 4, such that the zeroth homology functor Hy: D(I'yAg) —

mod-kAs induces an equivalence of abelian categories:
HQZ HFNAz 1) mOd—kAg.

Here mod-kAs denotes the category of finite dimensional kAs -modules, where kAs is the
path algebra of the As -quiver.
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Therefore, the heart Hr, 4, is generated by the simple I'yAs-modules Si,S2 which
correspond to the two vertices of the Aj-quiver; and D(I'yAsz) also is generated by St
Sy (and their shifts). By [25, Lemma 4.4], both Si,S; are spherical objects in the N -
Calabi—Yau category D(I'yAz), namely, they satisfy

Hom*®(S1, 52) = C[—1] and Hom?®(S;,S;) = C @ C[—N] for : = 1, 2.

For any spherical object S, one can associate to it an autoequivalence called the (Seidel—
Thomas) spherical twist Ts [39]:

Ts(E) = Cone(Hom*(S,E) ® S — E).

We denote the spherical twist associated to S; by T;.

The space of Bridgeland stability conditions on D(I'yAz) has been studied in [12, 13,
23]. There is a distinguished connected component of Stab(D(I'yAz)) which contains all
stability conditions whose heart P((0,1]) coincides with the canonical heart Hr, 4, (see for
instance [23, Section 5] and references therein). We choose Stab'(D(I'yA3)) in Assumption
(B) to be the distinguished connected component.

We prove a large class of autoequivalences on D(I'y As) are pseudo-Anosov.

Theorem 3.2. Let N >3 be an odd integer. Let ® € Aut(D(I'yAs2)) be any composition
of Ty and Ty' (e.g. TflTQ_bleZTQ_bz-u for a;,b; > 0) that is neither T{" nor TQ_b

Then ® is pseudo-Anosov.
For the ease of notations, we make the following definition.

Definition 3.3. Let D be a triangulated category and FE, A;,...,A, be objects in D.
We write

FE e {Al,Ag,...,An}

if there exists a sequence of exact triangles

0 * *
S S S
AN AN AN
AN AN AN
AN AN AN
Ay Ay

A

Lemma 3.4. Let N > 3 be an integer. In D(I'nAs), we have:
(51) 51[1—N] and Tl(SQ) € {52,51}.
(51) 6{51,52[2— ]} and TQ(SQ):SQ[l—N]
1(51) [ — 1] and Tl (52) S {Sl[N — 2],52} .
(

° T2 ! Sl) S {52,51} and T2 (52) = SQ[N— 1] .
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Proof. The lemma follows directly from the definition of spherical objects, spherical twists,
and the fact that Hom®(Sy, S3) = C[—1]. For instance, T, *(S;) € {Sa, 51} can be obtained
by applying T2_1 to the exact triangle Hom®(Ss,51) ® Sy — S1 — T(S1) — . O

The following lemma will be useful throughout this section.

Lemma 3.5. Let N >3 be an integer. Let o € Stab!(D(I'yAs)) be a stability condition
such that S1,S9 and their shifts are the only indecomposable semistable objects of o, and

their phases (with respect to o ) satisfy
0 < (S1) <9(S2) <1

Suppose that E € {S@ql[ 10,822y for some iy,ia € {1,2}, q1,q2 € Zso, and ji,j2 €

Y 12

Z.. Moreover, suppose that

6(Si) + 1 = S [71]) < S5 [2]) = B(Sis) + -
Then
(a) If i1 # iy or jo—j1#1, then F € {S@%[ ] S@tn[ ]}

) 11
(b) If iy =1i9 and jo —j1 =1, then E € {Seaq2 "y ],Siaq1 “j1]} for some t>0.
In other words, one can exchange the order of Sffql [71] and Sg‘“ [72] so that the phases are
in decreasing order, with the caveat that some of the factors might disappear when i1 = io

andjg—jlzl.

Proof. 1f gb(Sffql [71]) < gb(quz [j2]), then {Sffql [j1], SE%[j5]} is of one of the following

) 12

three types:
o {SPU[51],57%j; 4 n]} for some i€ {1,2} and n >0,
o {S59[51],57%[j1 +n]} for some n >0,

o {S7Y"[51],55%j1 +n]} for some n >0.
Observe that Hom(quQ[ 2], Sf?ql [71 +1]) = 0 holds for all three types, except for i; = iy
and jo —j; = 1. Hence if iy # iy or jo —j; # 1, then E Sffql[ 1] ® SEqu[jg] This
proves part (a).

If i :=1d1 =i9 and j:= j; = jo — 1, then there is an exact triangle

Sfaq1 [i] » E— Sfaq2 [1+1] —
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Recall that any object E in D has a unique filtration with respect to the heart of a bounded
t-structure A = Hrya, = (51,592)¢ o0 D:

* > ... > % E,

*
A AN
/ N / . /
N N
N

0 A8
H M (B)[k] H " (E)[k] H " (B)[k]

where ki > kg > -+ >k, and H;‘kl(E) € A for each i. The objects HE'“(E) are
sometimes called the cohomological objects of E with respect to A. Any exact triangle
induces a long exact sequence of cohomological objects. Hence the exact triangle SZ-EB T4 —

E — S7%[j +1] — induces an exact sequence in A:
0— HJTHE) = 822 = §P — H/(E) — 0.
Therefore we have
H77N(E) =82 and H,(E) = 8P"
for some t > 0, since S; is a simple object in A. Thus there is an exact triangle
Dqga2—tr . ®q1—tr -
SYETj+1] = E— ST — .
This proves part (b). O
We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Since Hrya, = mod-kAy is a finite length abelian category with
finitely many simple objects {S1,S2} (see Proposition 3.1), any pair of points (21, z9) € H?
in the upper half-plane gives a Bridgeland stability condition on D(I'yAs), such that the
central charges of S; and Sy are z; and zy, respectively ([11, Lemma 5.2]). We choose
21,20 € H such that 2z, = €™ and 2o = €™, where 0 < ¢1 < ¢ < 1, and let
o = (Z,P) € Stab"(D(I'yA3)) denotes the corresponding stability condition. Then we
have
0 < p(S1) =1 < P(S2) =¢a <1 and |Z(S1)| =|Z(S2)| = 1.

The only indecomposable objects in Hr, 4, = mod-kAy are the simple objects S1, 52, and

an object F given by the extension between these two objects:
0—Sy,—F—5 —0.

Since we choose z1,z2 so that 0 < @¢(S1) < ¢(S2) < 1, the object E is not semistable
with respect to o. Therefore, the only indecomposable o -semistable objects are Sy, 5o,
and their shifts.
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Let us compute the mass growth of the split generator S; @ Sy of D(I'yAsz) with
respect to the autoequivalence ® and the stability condition ¢. By Lemma 3.4, since ®

is a composition of positive powers of T and T L' for any n € N we have
O™ (S1 @ S) € {5, (N = V)], SN = 1)jal, -, SN — 1)j]}

for some iy,...,i, € {1,2}, j1,...,jk € Z, and ¢q1, - ,qx € N. By Lemma 3.5, one can
reorder the sequence so that the objects are of decreasing phases (since N > 3, so case
(b) in Lemma 3.5 does not happen in the sequence). This gives the Harder-Narasimhan
filtration of ®™(S1@®S2) . By the choice of the stability condition o, the mass of ®"(S;1®.S55)
is simply the sum of the powers g1 + --- + ¢ in the sequence. Hence in order to compute
the mass growth of ®"(S; @ S2), one only needs to compute the increment of the number
of S1’s and Sy’s when ® acts on S; and Ss.

The spherical twist 17 corresponds to the matrix

o)

i.e. if there is a sequence with x7 S7’s and xo Ss’s (Squ counts as ¢ S;’s), then after
applying 77, the new sequence will have (z; + x2) Si’s and xa S3’s. This follows from
the fact that 71(S1) = Si[l — N] and Ty(S2) € {S,S1}. Similarly, 75! corresponds to

the matrix
10
1 1)

Let & = Tf”Tz_ble”QTQ_bQ"'TlapTQ_b” for some a;,b; > 0. Then the corresponding

matrix of ® is

1 1\ /1 o\" 1 1\ (1 o0\”
0 1 11 0 1 11

Since @ is neither 77" nor TQ_b, the corresponding matrix Mg has trace t > 3 and

eigenvalues V=4 V2tz_4 ¢ Q. Since (1,1)T is not an eigenvector of the eigenvalue = 52_4,

one can conclude that the mass growth of S; @ Sy is

t+Vit2 -4
2

1
lim — logm,(®"(S1 & S2)) = log =:log A > 0.

n—oo N
To prove that & is pseudo-Anosov, one needs to show that the mass growth of any
nonzero object E is also log A. By Theorem 2.19, we have

1 1 1
lim sup - log | Z5(®"E)| < limsup —logmy(®"E) < lim — logm,(®"(S1 & S2)) = log .

n—00 n—oo N n—oo n
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On the other hand, since N is an odd number, the actions of 77 and T2_1 on the

11 10
Grothendieck group Ko(D(I'yAs2)) is given by the same matrices 01 and ) 1) ,

with respect to the basis {[S1],[S2]} € Ko(D(I'yAs2)) (cf. Lemma 3.4).- By [9], one can
deform o if necessary so that the kernel of Z, does not contain any eigenvector of Mg .
Hence the (exponential) growth of |Z,(®"E)| is logA unless [E] € Ko(D(I'yA2)) is an
eigenvector of the smaller eigenvalue

t—V2—14

2

which is impossible since [E] is an integral vector. Hence

N =

1 1
lim sup " log | Z,(®"E)| = limsup - logms(®"E) = log A

n—oo n—oo
for any nonzero object E, therefore ® is a pseudo-Anosov autoequivalence. O
Remark 3.6. The same argument also works for compositions of 17,75 L Ton, Tz_n1

on the N -Calabi-Yau category associated to the Ag,-quiver (N >3 odd):

°, ®, o, e -1 ®ons

provided there is no integral vector in the span of the eigenvectors of eigenvalues other
than the spectral radius. The reason is that the action of 77,7, Lo ,Tgn_l,Tz_nl on the
Grothendieck group Ko(D(I'yAs2y,)) is represented by non-negative matrices. For instance,
one can show that 117, ngT4_1 on Dflv is pseudo-Anosov. This autoequivalence has a
geometric interpretation as the total monodromy acting on the Fukaya category of the fiber

of a Lefschetz fibration whose vanishing cycles are the 2n spherical objects Si,...,S2, .

On the other hand, the pseudo-Anosov autoequivalences we find in Theorem 3.2 are not

DHKK pseudo-Anosov. In fact, we prove the following stronger statement.

Proposition 3.7. Let D be a triangulated category. If for any o € StabT(D) there are
only finitely many o -stable objects (up to shifts), then D does not possess any DHKK

pseudo-Anosov autoequivalence.

Proof. Let ® € Aut(D) be a DHKK pseudo-Anosov autoequivalence and assume the triple
(®,0,9) satisfies the conditions in Definition 2.14. Then @ preserves the set of all o -
stable objects. Since there are only finitely many o -stable objects up to shifts, there exists
some N > 0 such that ®V preserves all o-stable objects up to shifts by even integers.
Note that the classes of o-stable objects generate Ko(D). Therefore ®V acts trivially
on Ky(D). This contradicts with the stretching/contracting condition of DHKK pseudo-

Anosov autoequivalences. O
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Recall that an isometry f of a metric space (X,d) is called hyperbolic if its translation
length 7(f) = infyex{d(x, f(z))} is positive and the infimum is achieved by some x €
X . It is proved by Kikuta [28] that any DHKK pseudo-Anosov autoequivalence ® acts
hyperbolically on (Stab!(D)/C,d), and 7(®) = log A. We note that it is more interesting to
study the hyperbolicity on the quotient space Stab'(D)/C rather than Stab'(D), because
trivial examples like the shift functors [k] on any triangulated category act hyperbolically
on Stabf(D).

We prove the hyperbolicity of the “palindromic” (see the statement of Theorem 3.8 for
the definition) pseudo-Anosov autoequivalences constructed in Theorem 3.2 for the case
N = 3. Note that the proof is less straightforward than it is for the DHKK pseudo-Anosov
autoequivalences in [28]. One of the key ingredients in the proof, which is also used in the
classical theory of pseudo-Anosov maps, is the Perron—Frobenius theorem. It states that
a real square matrix with positive entries has a unique largest real eigenvalue A and that
its corresponding eigenvector can be chosen to have positive components. Moreover, the

absolute value of any other eigenvalue is strictly less than .

Theorem 3.8. Let N > 3 be an odd integer. Let ® € Aut(D(I'yA2)) be a palindromic
composition of T\ and T2_1 (i.e. TflTQ_ble2T2_b2---T1a” for a;,b; > 0 such that the
sequences (a1,bi,...,ap) and (ap,bp—1,ap—1,...,b1,a1) coincide) that is neither T nor
Ty®. Then ® acts hyperbolically on Mgt (D(CnA2))/RT . If N = 3, then ® also
acts hyperbolically on Stab'(D(I'yAs2))/C. Moreover, in both cases the translation length
7(®) =log A, where X\ is the stretch factor of ® .

We prove the following lemma before proving Theorem 3.8.

Lemma 3.9. Let o € Stab! (D(I'yAs)) be a stability condition such that Sy, So and their

shifts are the only indecomposable semistable objects of o, and their phases satisfy

0 < p(S1) < p(52) <1

Suppose that
E e {Sy" ], Sl S5 [k},

where i1,..., ik € {1,2}, j1,...,jk €Z, and q1,...,qx € N. Then
min {je + ¢(Si,)} < &5 (E) < 65 (E) < max {jo + &(S;,)}

1<<k

and

k
<Y @l Z(S
=1
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Proof. Firstly, if j1 + ¢(Si,) > ... > jk + &(S;,) , then {Sffql [71], quz [72], - - Siq’“ [7k]}

gives the Harder—Narasimhan filtration of F, hence we have

¢y (E) = ji + ¢(Si,) = lglgigk{je + ¢(Si,)}, o5 (E) = j1 + ¢(Si,) = max {je + ¢(Si,)},

1<e<k

and i
me(E) = Z | Z5(Si,)|.
/=1

Now suppose jz+¢(S;,) < jey1+¢(Si,,,) for some £. By Lemma 3.5, one can exchange

the order of {qul[jg],silji+l[]g+1]} unless @ =iy = ip11 and j = jy = je41 — 1:

A B C.

S A
) / o /
N ~
N ~

SZ-Equ []] S?(IPA [] + 1]

In this case, by part (b) of Lemma 3.5 and the Octahedral Axiom of triangulated categories,

there are exact triangles

A * C.

S@(Qeﬂ—t) [je + 1] S@(Qz—t) [je]

for some ¢t > 0. In other words, one can still exchange the order of these two terms to make
the phases decreasing, but the number of factors of S;[j,] and S;[jy + 1] might decrease.

In conclusion, one can exchange the order of the factors in {Sffql [71], Sg‘“ [72]s -+, Sfiqk [7x]}
so that the phases are in the decreasing order to get the Harder—Narasimhan filtration of
FE, with the caveat that some of the factors might disappear during the process when
exchanging two terms of the type {SP%[j], SF%1[j + 1]} . Hence

lgigk{je +6(8i,)} < 65 (E) < ¢5 (E) < lrgggk{je + ¢(Si,)}

and i
mo(B) <> aulZs(Si,)

(=1
as desired. ]

Now we prove Theorem 3.8.
Proof of Theorem 3.8. Recall the stable translation length of an isometry f on a metric
space (X,d) is defined as

7(f) == lim

n—oo

(e, f(2))
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One can check by the triangle inequality that 7(f) is independent of the choice of = € X ,
and 7(f) > 7(f). The idea of proof is to find a Bridgeland stability condition o €
Stab(D(I'yAs)) such that

(a) log A > d(a,®a), and
(b) lim,_eo ~+d(7, ®"7) > log \.

Here d is the metric on Stab(D(I'yA2))/C or Mg, 1(D(I'nAs))/RT defined in Section

2.1. Assuming that one can find such a stability condition o, then we have

log A > d(5,®5) > 7(B) > F(®) = lim ~d(&,3"5) > log A

n—oo M

Therefore 7(®) = 7(®) = log A > 0 and the infimum 7(®) is achieved by d(¢,®s). Hence
the action is hyperbolic.

We choose the stability condition o as follows. Let Mg be the corresponding matrix of
® we defined in the proof of Theorem 3.2:

a1 b1 ap
1 1 1 0 11
Mg = .. )
0 1 1 1 0 1

Since @ is neither 77" nor 7. 2_1’, the matrix Mg is a positive matrix. By Perron—Frobenius
theorem, the eigenvector v = [v1,v2]” of the larger eigenvalue of Mg can be chosen to
have positive components v1,v9 > 0. We choose a Bridgeland stability condition o €
Stab(D(I'yAz)) such that Sy, Sy and their shifts are the only indecomposable semistable

objects of o, and their phases and central charges satisfy
0< @(Sl) < ¢(52) <1, |Z(51)| =wv; and |Z(Sg)| = V9.

We claim that o chosen in this way satisfies conditions (a) and (b) above for the metric
space Mg, .+ (D(T'nA2))/RY, and for Stab'(D(I'yA3))/C when N = 3.

Proof of (a): We first consider the metric space (Stab'(D(I'yAs3))/C,d). Recall that

d(o,®5) = ;Ielé d(o,®o - 2)

B ) B ymey(PFE)
) iréﬂfé%i%{l% (B) = 6, (®B) + 21, 167 (B) = 67 (2F) +al, [ log = 7 -2 .

Let E € D(I'yA2) be any nonzero object. We claim the following inequalities hold:
(1) ¢5(T1(E)) < ¢5 (E) < d5 (T1(E)) + (N —1).
(2) 67 (I;1(E) — (N —1) < ¢5(B) < ¢7 (T (E)) -
We will only prove (1) as the proof of (2) is similar. Suppose the Harder—Narasimhan
filtration of F is:
Sz'efql [j1]7 51'629% [j2]7 SRR Szeiqk []k]v
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where i1,...,1; € {172}7 Jir--sJk €2, qu,---,qr €N, and
¢;—(E) =i+ ¢(Sll) > > g+ ¢(Slk) = ¢;(E)
Then
Ty (E) € {Ty(Si,)* ™ [jl;, - - -, Ta (i, )% [jk] }-
Recall from Lemma 3.4 that 71(S1) = Si[1 — N] and T1(S2) € {S2,S51}. Combining with
Lemma 3.9, we have

+ : VL — gt
SHTLE)) < max (e + 6(Si,)} = 63 ()
and
67 (T(E)) = min {je + 6(Si))} — (N — 1) = ¢ (E) - (N — D).
Similarly, one can apply 7} Lon E:
T H(E) € {T7H(Si)® U [, - T (Si ) P [k }-
Again by Lemma 3.4 and 3.9, we have

63 (17 (B)) < miwx e+ 9(5:,)} + (N — 1) = 63 () + (N = 1)

and
67 (7 (E)) 2 min, Ui+ 6(5,)} = 67 (B).
By applying 77 to both inequalities, one gets
¢g (T1(E)) < ¢5 (E) < ¢4 (E) < ¢5 (T1(E)) + (N = 1).
This proves the inequalities in (1). The proof of inequalities in (2) is similar. Hence
62 (8) — ot () - 2| < Tt ana oz - syt + LA < XA

2 2 -2
for any nonzero object £ € D.
Let & = Tf“T;blTlazT;b2 _ Tlap for some a;,b; > 0. Define

1
and

D p—1 p—1 p
S = Zai—l—Zbi and x = Zbi —Zai.
i=1 i=1 i=1 i=1

By the above inequalities, we have

6= (E) — £ (OE) + =

(N—l)‘<s(N—1)
2 - 2

for any nonzero object E. Since @ is neither 77" nor T. 2_1’, the trace of Mg is at least

s+1+4/(s+1)2—-4
log A > :
og A > 5

s+ 1. Hence
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Therefore if N =3, we have

ot (E) - orom) + WU WD) o LV DT

sup{
E#0

Hence in order to prove statement (a), i.e. that d(z,®5) < log\, it remains to show
that
Mme(PE) < My (E) and my(® 1 E) < Amg(E)

for any nonzero object E. Suppose the Harder—Narasimhan filtration of E has x; Si’s

and w3 Sz’s (up to shifts). Write = (z1 x2)7 as a vector. Then the mass of E is given

by my(E) = vlz since |Z,(S1)| =v1 and |Z,(S2)| = vo. By Lemma 3.9, we have
me(®E) < vT Mpx = Wwlz = Am,(E).
To show that my(®~1E) < Am,(E), recall from Lemma 3.4 that
T1(S1) = S1[N — 1] and T, '(Ss) € {S1[N — 2], S},
T»(S1) € {S1,52[2 — N]} and T5(S2) = Sa[1 — NJ.

11
Hence Tl_1 corresponds to the matrix <O 1> in the sense that if

Fe{5®q1[ ] S@qz[ ] S@qkbk]}

where there are z7 S1’s and x9 Sy ’s among {S@ql[ 1], S@qz[ ol t,y Sfiqk[jk]} (here S

counts as ¢ S;’s), then Tl_l(F) can be written as

CHF) e {SEPda], SEP2ldal, ..., SEP[dil},
where there are z; 4+ zp Si’s and xp Sy’s among {S&P'[d1], SeF?[dy],..., SeP[d]}.
Similarly, 75 corresponds to the matrix 1) Hence the corresponding matrix of

_ - bp— - .
Ol =T T T s

ap b1 al
y 11 10 11 y
1 = =
® 0 1 11 01 @

which coincides with Mg since ® is assumed to be palindromic. Hence by Lemma 3.9,
me(®1E) < vl Mgz = T Mez = 'z = Amq(E).

This concludes the proof of (a) for the metric space (Stab'(D(I'yA43))/C,d) for N = 3.
The proof for (Mg, (D(I'nyA2))/RT,d) is even simpler because we only need to deal with

the mass term.
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Proof of (b): We claim that
me(P"S1) = N'my(S1) = me(®7"51)
for any n € N. By Lemma 3.4,
©"(S1) € {S (N = 1)), SR [N = 1)), -, SE (N — 1)}

» M9 ) Mg
for some iy,...,i, € {1,2}, j1,...,jk € Z, and q1, - ,qx € N. By Lemma 3.5, one can
reorder the sequence to get the Harder-Narasimhan filtration of ®"(S;) since N > 3.

Therefore
1 1
My (®"S)) = vl ME <0> =\l <0> = A"my(S1).
On the other hand, again by Lemma 3.4, we have
®"(51) € (SN = Din], S5 [(N = 1)ga + 1, ., STV = 1)ig], Sy ™ [(N = 1)j, + 1]}

for some p1,q1,...,Pk,qx > 0 and j1,...,jk € Z. (The degree shifts of S;’s are divisible
by N — 1, while the degree shifts of Ss’s are equal to 1 modulo N —1.) By Lemma 3.5,
one can reorder the sequence to get the Harder-Narasimhan filtration of ®7"(S;) since

N > 3. Using the assumption that ® is palindromic, we have

1 1 1
Mo (®"S1) = vl M}, <0) = o M} <0> =\l <0> = N"'my(S7).

This proves the claim that my(®"S1) = \"my(S1) = me(®~"S1) . Therefore

- o(O"E
d(,®"5) > inf sup {] log M!}

y>0 g0 mO’(E)
. me(CI)”Sl) me(Sl)
> inf 1 I = nlog \.
_;I;Omax{] og o (S1) |, | log ma(q)_nsl)‘} nlog
Hence we have lim,,_, o %J(&, O"5) > log \. O

3.2. An example from quintic Calabi—Yau threefolds. We prove that the autoequiv-
alence on the derived category of quintic Calabi—Yau threefolds X considered by the first
author in [17] and Ouchi in [36] is pseudo-Anosov. The existence of Bridgeland stability
conditions on D’(X) has been established by Li [31] recently. There is a distinguished
connected component of Stab(D’(X)) containing geometric stability conditions for which
skyscraper sheaves are stable and of the same phase. We choose StabT(D) in Assumption

(B) to be the distinguished connected component.

Theorem 3.10. Let X be a quintic Calabi-Yau hypersurface in CP*. Then

®:=Tpo(—0(-1))
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is a pseudo-Anosov autoequivalence on DY(X). Here To denotes the spherical twist with

respect to the structure sheaf Ox .

Proof. Take any o € Stab'(D?(X)). Let G € D*(X) be a split generator and E € Db(X)
be any nonzero object. By Theorem 2.19, we have

1 1 1
limsup —log |Z,(®"E)| < limsup — log m,(®"F) < limsup - log My (P"G) < heat (D).

n—oo N n—oo N n—00

Here heat(®) denotes the categorical entropy of ® € Aut(DY(X)). By [17, Remark 4.3],
we have
heat (P) = log p([®]).

Let A1, A2, Az, As be the eigenvalues of [®] € Aut(H®(X;C)) in which A\ = p([®]) > 1,
and let vy, vy, v3,v4 € H®(X;C) be the corresponding eigenvectors. By [9], one can deform
the stability condition o if needed so that Z,(v1) # 0. Then we have

lim sup % log |Z5(®"E)| =log p([®]) < [E] ¢ Span{ve,vs,v4}.

n—oo
One can check by brute force computations that the span of v, v3,v4 does not contain any
rational vectors, see Appendix C. This proves that the mass growth
1
lim sup — log m,(®"E) = log A\; = 2.04 > 0
n—oo N
for any nonzero object E is the same positive number. Hence ® = Tp o (— ® O(—1)) is

pseudo-Anosov. O

Note that the same argument can be used to show that the autoequivalence ® = Tpo(—®
O(—1)) is pseudo-Anosov on D’(X) for any Calabi-Yau manifold X of odd dimension,
assuming the existence of Bridgeland stability conditions on D?(X), and assuming that
there is no integral vector in the span of the eigenvectors of eigenvalues other than the

largest one.

3.3. Other examples. We show that on the derived category of curves, the notion of

pseudo-Anosov autoequivalences coincides with DHKK pseudo-Anosov autoequivalences.

Proposition 3.11. Let D = D?(C) be the derived category of a smooth projective curve C
over C. Then ® € Aut(D) is pseudo-Anosov if and only if it is DHKK pseudo-Anosov.

Proof. By Kikuta [28, Proposition 4.13, 4.14], in the case when D is the derived category
of a curve, ® € Aut(D) is DHKK pseudo-Anosov if and only if its categorical entropy
heat (@) > 0. On other hand, by Theorem 2.19 an autoequivalence ® is pseudo-Anosov
implies heat () > 0. The proposition then follows from Theorem 2.17. ([l
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4. PSEUDO-ANOSOV MAPS AS PSEUDO-ANOSOV AUTOEQUIVALENCES

In this section we discuss two ways in which a pseudo-Anosov map can induce a pseudo-
Anosov autoequivalence on the Fukaya category of the surface. The first is based on the
Z-graded Fukaya category and stability conditions constructed from quadratic differentials,
while the second is based on the Z/2-graded Fukaya category and the mass function de-
fined as complexity with respect to a generator. In the second case we cannot quite prove
that the induced autoequivalence is pseudo-Anosov, but provide strong evidence for this.

Throughout, we assume that surfaces are oriented and maps orientation preserving.

4.1. Z-graded Fukaya category. Let S be a closed surface with a finite set M C S
of marked points and suppose f: S\ M — S\ M is pseudo-Anosov. By definition this
means that there is a complex structure on S, a meromorphic quadratic differential ¢ on
S (not identically zero) with at worst simple poles at each point p € M and holomorphic
on S\ M, and a stretch factor A > 1 such that f acts on ¢ by scaling Re(,/@) by A
and Im(,/¢) by 1/A. Thus, if F* is the horizontal measured foliation of ¢ and F* is
the vertical measured foliation of ¢, then F" and F* are a pair of transverse measured
foliations such that the underlying foliations are preserved by f and the measure for F™“
(resp. F*) is scaled by a factor A (resp. 1/XA) under the action of f. The definition
in terms of a quadratic differential is particularly natural from Bers’ point of view of the
Thurston classification [8].

Let Z C S be the set of zeros and poles of ¢. Note that M C Z and Z is non-empty
unless S is the torus and ¢ is constant. In order to avoid having to deal with this special
case, we assume Z # () from now on, though this is not essential. Fix an arbitrary ground
field k, then there is a triangulated A, -category F = F(S\ Z, F“, k) over k, the Z-
graded wrapped Fukaya category of the punctured surface S\ Z with grading foliation F™“
and coefficients in k, see e.g. [22] for the construction. Moreover, according to the main
theorem in [22], the quadratic differential ¢ gives a stability condition o on F such that
stable objects correspond to saddle connections and closed geodesic loops (with grading and

k -linear local system) on the flat surface (S, |p|). The central charge is given by

which is well-defined for
[v] € Hi(S, Z;Z+/p) = Ko(F)
where Z,/p denotes the local system of integer multiples of choices of /.
Since the pseudo-Anosov map f preserves the subset Z and the grading foliation F™

it induces an autoequivalence f. of F . From the description of the action of f on ¢ and
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the correspondence between quadratic differentials and stability conditions is clear that f
acts on o like the element diag(\,1/A) € GLT(2,R), i.e. f. is DHKK pseudo-Anosov.
This example was the motivation for the definition of pseudo-Anosov autoequivalence in

14].

4.2. 7./2-graded Fukaya category. The construction above has the perhaps unwanted
feature that the category F depends on the choice of f in the mapping class group. An-
other approach is to consider a version of the Fukaya category of S which does not depend
on a grading foliation and is thus only Z/2-graded. Such categories do not admit stability
conditions, so we need to use the more general notion of pseudo-Anosov autoequivalence
introduced here where the mass function on the triangulated category is the complexity
with respect to a generator.

Let S be a closed surface of genus g > 1 and choose a symplectic form w on S. The
Fukaya category F = F(S,w) of the surface S is an A -category over the Novikov field
k((t®)) where k is some coefficient field of characteristic zero. Objects of F can be taken
to be immersed oriented curves L which do not bound an immersed one-gon (teardrop)
together with a unitary rank one local system over k((#*)). A self-contained elementary
definition of F can be found in [1]. We assume that F has been formally completed so
that its homotopy category HC(F) is triangulated and all idempotents split.

The mapping class group MCG(S) of S does not act naturally on F, at least not
without making additional choices. Instead one considers the symplectic mapping class
group of S which is the quotient Symp(S)/Ham(S) of the group of symplectomorphisms
by the normal subgroup of hamiltonian symplectomorphisms. This group surjects onto
MCG(S), i.e. every element of MCG(S) is realized by some symplectomorphism.

While F does not admit a stability condition, we can still use mass functions of the form
w(E) = 0(G,E) where G is a generator, e.g. a direct sum of certain 2g simple closed
curves, and 0(G, E) denotes the complexity of E with respect to G as in [14]. These mass
functions are all equivalent up to some constant and moreover equivalent to mass functions

of the form
w(E) = dim Ext*(G, F) = dim Ext’(G, E) + dim Ext'(G, E)
since F is smooth and proper.

Conjecture 4.1. Let f be a pseudo-Anosov symplectomorphism of a closed symplectic
surface (S,w). Then the induced autoequivalence ® = f, of the Fukaya category F(S,w)
is pseudo-Anosov with respect to the mass function p(F) = dimExt®*(G, E) where G is
any generator of F(S,w). Moreover, the stretch factor A > 1 of f coincides with the

stretch factor of the autoequivalence f, .
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As in [14] one uses the fact from pseudo-Anosov theory that geometric intersection num-
bers i(S1, f"S2) grow exponentially with rate A to conclude that dim Ext®*(G, fI'E) has
exponential growth rate A, i.e. hy,o(E) =log A, for any object E € F which comes from
a simple closed curve. Here we take G to be a generator which is a direct sum of simple
closed curves. Since simple closed curves split-generate, we also know that h, o(E) < log A
for any E € F. The statement of the conjecture means precisely that equality holds for all
non-zero objects E of F.

The above discussion generalizes, with some changes, to the case of punctured surfaces
S'. In this case the symplectic form should be chosen to have infinite area, and in fact the
definition of the (wrapped) Fukaya category from [22] can be used, except for replacing Z -
gradings by Z/2-gradings. The category is smooth, but not proper, and the classification

of indecomposable objects in terms of immersed curves from [22] could be of use.

5. OPEN QUESTIONS

We propose several open questions related to the study of pseudo-Anosov autoequiva-

lences.

Alternative definitions of pseudo-Anosov autoequivalences. In Section 2 and 3,
we study pseudo-Anosov autoequivalences with respect to the mass functions given by the
Bridgeland stability conditions in a fixed connected component Stabf(D) C Stab(D). One
can use other mass functions, for instance the mass function §g given by the complexity
with respect to a split generator G (Example 2.3) to define the mass growth of an object in
a triangulated category, thereby defines another notion of “pseudo-Anosov autoequivalence”

(with respect to the complexity function) following the same idea as in Section 2.3.

Definition 5.1. Let D be a triangulated category with a split generator GG. We say an

autoequivalence ® € Aut(D) is pseudo-Anosov with respect to the complexity function if

there exists A > 1 such that for any nonzero object E in D,

plog dg(@"E)
n

lim su
n—oo

log A > 0.

Note that the mass growth with respect to the complexity function is independent of the
choice of the split generator: if G’ is another split generator of D, by [14, Proposition 2.3],
we have 6G(P"E) < 6¢(G')de/(P"E) . One can also use the mass function pg given by the
dimensions of Hom®*(G, —) in Example 2.2 to define yet another notion of pseudo-Anosov

autoequivalences.

Definition 5.2. Let D be a triangulated category with a split generator GG. We say an

autoequivalence ® € Aut(D) is pseudo-Anosov with respect to the Ext-distance function if
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there exists A > 1 such that for any nonzero object E in D,

" 1 oz dimH G,Eli
hmsupw Zlimsup 0og ZZGZ 1 OmD( ) [Z])

n—00 n n—00 n

=log A > 0.

It turns out that Definition 5.1 and 5.2 are equivalent, since there exist constants C7, Cy >
0 depending on G such that Ci6g(E) < pg(E) < C26G(E) holds for any nonzero object
E [14, proof of Theorem 2.7]. It is then important to determine whether the definition
via complexity function (or equivalently, Ext-distance function) coincides with our previous

definition via stability conditions. More precisely:

Question 5.3. Let D be a triangulated category with a split generator and Stab(D) # ().

e Is it true that the property of being a pseudo-Anosov autoequivalence does not
depend on the choice of a connected component of Stab(D)?

e Does the notion of “pseudo-Anosov autoequivalence” with respect to the complexity
function (or equivalently the Ext-distance function) coincide with our definition of

pseudo-Anosov autoequivalence (Definition 2.13)7

We prove in Appendix A that both questions have affirmative answers if D is the bounded
derived category of coherent sheaves on an elliptic curve (Theorem A.2). Note that it is
proved by Ikeda [24, Theorem 3.14] that if a connected component Stab®(D) C Stab(D)
contains an algebraic stability condition, then the mass growths with respect to m, and
dc coincide for any o € Stab°(D). Hence both questions above also have affirmative
answers for triangulated categories D with the property that each connected component of
Stab(D) contains an algebraic stability condition, e.g. D’Coh(P') [15, 34, 35]. Examples
of triangulated categories admitting algebraic stability conditions include derived categories
with full strong exceptional collections, see for instance [16, Remark 4.8, 4.9, 4.10], [33],
[37].

Genericity of pseudo-Anosov autoequivalences.

Question 5.4. Let D be a Calabi—Yau category satisfying Assumptions (A) and (B). Are

pseudo-Anosov autoequivalences “generic” in Aut(D) ?

Note that the statement is not true if one removes the Calabi—Yau condition. For instance,
the derived category D°(C) of coherent sheaves on a smooth projective curve C' with genus
g(C) # 1 does not have any pseudo-Anosov autoequivalences by Kikuta [28, Proposition
4.13] and Proposition 3.11.

Irreducible autoequivalences. In light of the Nielsen—Thurston classification of mapping

class group elements, it is natural to consider the following definition.



30 YU-WEI FAN, SIMION FILIP, FABIAN HAIDEN, LUDMIL KATZARKOV, AND YIJIA LIU

Definition 5.5. Let ®: D — D be an autoequivalence of a triangulated category D . We
say P is

e irreducible if it has no & -invariant proper thick triangulated subcategory;

e strongly irreducible if there is no finite collection of proper thick triangulated sub-

categories that are permuted under ®.

It follows from the definition that if an autoequivalence @ is irreducible and Ay, o(E) >
1 for some object F € D and o € StabT(D), then @ is pseudo-Anosov. Indeed, if @ is

irreducible, then the associated growth filtration of ® can only have one step:
0CcDy,=D.

The condition that there exists an object with positive mass growth Ay, o(£) > 1 implies
A > 1. Hence ® is pseudo-Anosov. Similarly, if an autoequivalence ® is irreducible and
has positive categorical entropy (Definition 2.18), then ® is pseudo-Anosov with respect
to the complexity function (Definition 5.1). An interesting question is whether the reverse

implication holds.
Question 5.6. Are (DHKK) pseudo-Anosov autoequivalences (strongly) irreducible?

Question 5.7. Do pseudo-Anosov autoequivalences or irreducible autoequivalences with
positive entropy on a triangulated category D act hyperbolically on the metric space
Stab'(D)/C or Mg, (D)/Rso?

Other examples of pseudo-Anosov autoequivalences. It would be interesting to find
pseudo-Anosov autoequivalences on triangulated categories that are not Calabi—Yau as well.
For instance, it is proved in [14, Theorem 2.17] that the Serre functor on the derived category
of quiver representations has positive entropy if the quiver is not of extended Dynkin type.
Moreover, the Serre functor on the derived category of representations of Kronecker quiver

with at least three arrows is DHKK pseudo-Anosov.

Question 5.8. Is the Serre functor on the derived category of quiver representations pseudo-

Anosov if the quiver is not of extended Dynkin type?

APPENDIX A. THE CASE OF ELLIPTIC CURVES

Let D = D’Coh(X) be the bounded derived category of coherent sheaves on an elliptic
curve X . We prove in this section that the notion of pseudo-Anosov autoequivalences with
respect to Bridgeland stability conditions (Definition 2.13), complexity function (Definition

5.1), and Ext-distance function (Definition 5.2) are all equivalent.
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Recall that Stab(D) = C x H is connected [9], hence the mass growth rates with respect
to any Bridgeland stability condition on D are the same (Proposition 2.11). We choose the
stability condition o € Stab(D) such that

o Z,(F)=—deg(E)+i-rank(FE).

e For 0 < ¢ <1, the (semi)stable objects P,(¢) are the slope-(semi)stable coherent
sheaves whose central charges lie in the ray Rsq - exp(im¢) .

e For other ¢ € R, define P,(¢) via the property P,(¢+ 1) = P,(¢)[1] .

Proposition A.1. Fiz an ample line bundle O(1) on the elliptic curve X and a split
generator G =0 @& O(1) of D. There exists a constant C >0 such that
p(E) = ZdimHomp(G, Eli]) < C-m,(E)
1€EZ
holds for any object E in D.

Proof. By the triangle inequality of ug (cf. Definition 2.1(1)), it suffices to show the inequal-
ity holds for slope-semistable coherent sheaves. By considering Jordan—Holder filtrations
of semistable coherent sheaves, one can further reduce to proving the inequality only for
stable vector bundles and indecomposable torsion sheaves.
Let E be an indecomposable torsion sheaf on X . Then E = Ox/Ox(—sxzg) for some
zo € X and s > 0. We have
pc(E) = dim H(E) + dim H'(E) + dim H°(E(-1)) + dim H*(E(-1))
=25 =2my(FE).
Let E be a stable vector bundle on the elliptic curve X of rank r and degree d. By
[4, Lemma 15] and Hirzebruch-Riemann—Roch theorem,
o if d>0, then dim H'(E) =d and dim HY(E) =0;
e if d=0, then dim H°(E) = dim H'(E) and both equal to 0 or 1;
e if d<0,then dimH°(E)=0 and dim H'(E) = —d.
Hence we have dim H(E) + dim H'(E) < |d| + 2 for any stable vector bundle E. Thus
pc(E) = dim H°(E) + dim H'(E) + dim H*(E(-1)) + dim H'(E(-1))
<|d+|d—r|+4
<V 24202 + &) + 4+
= (5+V2)mo(E).
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Theorem A.2. Let D = D’Coh(X) be the bounded derived category of coherent sheaves
on an elliptic curve X . Let G =0 @ O(1) be a split generator of D. Then
logms(®"E) . log dq(®"E) .. b log pa(®"E)

limsup ————= = limsup ———= = limsu
n—00 n n—00 n n—00

holds for any nonzero object E in D . Hence the notion of pseudo-Anosov autoequivalences

with respect to these three mass functions are equivalent.

Proof. By Ikeda [24, Proposition 3.4], we have m,(E) < m,(G)dg(E) for any nonzero
object E in D. Combining with [14, proof of Theorem 2.7] (cf. Section 5) and Proposition

A.1, we obtain

log ¢ (®"E 1 O"E 1 o(O"E log 0;(®"E

limsup 280G E) i 0B HG(RTE) i 108 (PN E) o 108 06(PE)
n—00 n n—00 n n—o00 n Nn—00

for any nonzero object E . This concludes the proof. O

APPENDIX B. BASIC PROPERTIES OF MASS FUNCTIONS

We defined the notion of mass functions on triangulated categories in Definition 2.1. A
nice property that mass functions have but Bridgeland stability conditions do not have is

that they are functorial.

Definition B.1. Let F': C — D be an exact functor between triangulated categories. Let
w: Ob(D) — R>( be a mass function on D . Then one can define the pullback of the mass
function via F':

F*1i:Ob(C) = Rso, Ew— u(F(E)),

which is clearly a mass function on C.

Another nice property of mass functions is that one can induce relative mass functions

from mass functions.

Definition B.2. Let D’ be a thick triangulated subcategory of D. Let p: Ob(D) — Rx>g
be a mass function on D . Define the induced mass function i2 i : Ob(D) — R>o by

| E—— *; E ®
@ )E) =it { 3wy v N4
% T N N
A;¢D’ 1 An

While it is not clear to us how to pushforward a mass function from D to a quotient
D/D’, the mass function i?’ 1 can serve as a replacement of this process. In particular,
one can see that the induced mass function 2y vanishes on D’. The proposition below
shows the compatibility between the pullback of mass functions via quotient maps and the

induced relative mass functions.
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Proposition B.3. Let D' be a thick triangulated subcategory of D, and qp : D — D/D’
be the quotient map. Let p: Ob(D/D’') — R>¢ be a mass function on D/D’. Then

i g = ghp.

Proof. Since ¢j,p vanishes on D', for any sequence of exact triangles
0 * * e
AN / » / »
\ \ N\ /
AN AN AN
AN AN AN
A1 A2

(ap)(E) <Y (apm)(Ai) = Y (apri)(Ai).

7 Ai¢D’

we have

APPENDIX C. COMPUTATION IN THE QUINTIC CALABI-YAU THREEFOLD CASE

We use the notations in Section 3.2. Let H = O(1) be the ample generator of Pic(X).
The powers 1, H, H? H3 form a basis of H®(X;Q). With respect to this basis, [®]

corresponds to the following matrix

Its eigenvalues and corresponding eigenvectors are:

1
M= <9+3\/5+ 110—1—54\/3)

Ay = i <9 —3V5+iy/—110 +54\/5>

1
A= <9—3\/5—z' —110+54\/5>
1
M= <9+3\f— \/110—1—54\/3)
and
5 (185 + 755 + V104150 + 47070V/5) i3 (185 + 75V/5 + i/~ 104150 + 470705 )
B & (60 + 54/5) B & (60 — 54v/5)
U1 = y U2 =
V575 4 426V/5 SV =575 + 4261/5

1 1
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35 (~185 + 75v/5 — i/=104150 + 470705 5 (185 + 75v/5 — /104150 + 4707015
(60 — 54+/5) . & (60 + 54+/5)
2V =575 + 42615 & V/575 + 4265
1 1

The following lemma follows from straightforward but tedious computations.

Lemma C.1. The span of {va,vs,vs} over compler numbers C does not contain any

rational vector.
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