

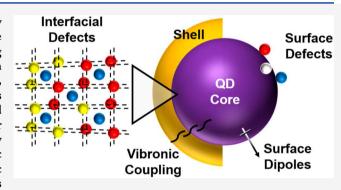
http://pubs.acs.org/journal/aelccp

Surface Chemistry and Quantum Dot Luminescence: Shell Growth, Atomistic Modification, and Beyond

Forrest W. Eagle, * Nayon Park, * Melanie Cash, and Brandi M. Cossairt*

Downloaded via UNIV OF WASHINGTON on March 15, 2021 at 19:20:03 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Cite This: ACS Energy Lett. 2021, 6, 977-984



ACCESS I

III Metrics & More

Article Recommendations

ABSTRACT: Quantum dots are used in the research laboratory and in commercial applications for their bright, size-tunable luminescence. While empirical synthesis and processing optimization have led to many quantum dot systems with photoluminescence quantum yields at or approaching 100%, our understanding of the chemical principles that underlie this performance and our ability to access such materials on demand have lagged. In this Perspective, we present the status of our understanding of the connections between surface chemistry and quantum dot luminescence. We follow the historical arc that began with shell growth, which then led to an atomistic description of surface-derived charge trapping, and finally has brought us to a more nuanced picture of the role of surface chemistry in luminescence properties, including emerging concepts like surface dipoles and vibronic coupling.

I ollowing more than three decades of constant development, today quantum dots are widely used in displays, solid-state lighting, and biological imaging for their bright, tunable luminescence characteristics and ease of processing.^{1,2} For some compositions, including CdSe and InP, photoluminescence quantum yields (PLQYs) in the visible approaching 100% are now achievable, if not routine. While bright emission can sometimes be a coincidental byproduct of synthesis or the result of empirical optimization, a deep understanding of the underlying structural and electronic properties that control luminescence is critical to the design of bright, color-pure quantum dot emitters. Today it is appreciated that many properties of quantum dots are controlled not only by the quantum confined nature of the semiconductor core but also in large part by their surface chemistry. The question we want to address in this Perspective

The question we want to address in this Perspective is: How does surface chemistry impact quantum dot luminescence?

is: How does surface chemistry impact quantum dot luminescence? A primary answer to this question relates to under-passivated atoms or defects at the surface that serve as sites for charge carrier trapping.³⁻⁵ An early synthetic strategy developed to eliminate these trap sites was shelling, which aimed to separate the quantum dot core and its charge carriers from the surrounding environment using a wider bandgap semiconductor layer that is structurally well-matched to minimize strain at the core/shell interface. $^{6-10}$ Our understanding of the atomistic details that underlie luminescence enhancement in shelled quantum dots has been advanced by detailed spectroscopic and structural investigations, as well as by targeted ionic and molecular chemical treatments of the quantum dot surface. Taken together, these studies are revealing a picture that is more complex and nuanced than previously appreciated. Factors including alloying (or doping), surface dipoles and (more generally) ligand electronegativity, and vibronic coupling are emerging as critical factors in understanding the origins of quantum dot luminescence and consequently our ability to control it. In this Perspective, we

Received: December 30, 2020 Accepted: February 4, 2021 Published: February 15, 2021

seek to piece this knowledge together to reveal the current state of how surface chemistry impacts luminescence in quantum dots and how this knowledge can be used to advance the synthesis of perfect luminophores of diverse compositions for next-generation technologies.

SHELLING

To reliably increase the quantum yield of colloidal quantum dots, a shell of a wider bandgap semiconducting material is grown on the surface (Figure 1).^{6–9} This serves a two-fold

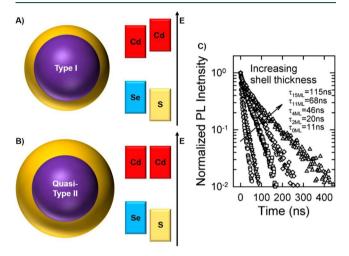


Figure 1. Quantum dot shelling and classification by relative band edge alignment into type I (A) and quasi-type II systems (B). (C) Representative TRPL data for CdSe/CdS QDs as a function of shell thickness showing increasing lifetimes. Reprinted in part from ref 16. Copyright 2011 American Chemical Society.

purpose: to localize the photoexcited electron/hole pair to the core of the material and to help passivate surface defects that are largely responsible for the loss of luminescence in these materials. The traditional type I architecture has been explored in depth, with quantum yields exceeding 75% for materials such as CdSe/ZnS. 11,12 Alloying at the CdSe/ZnS interface can allow for a better lattice match and result in even higher quantum yields, especially with the addition of a ZnS outer shell layer. 13 Additionally, there have been many reports of remarkable increases in PLQY when CdSe was shelled with CdS. 6-10 When thicker CdS shells are applied, further redshifts with increasing shell thickness are observed along with lengthened exciton lifetimes, features indicative of a shift to a quasi-type II electronic structure (Figure 1). In quasi-type II systems, the conduction band edge energies of the core and shell materials are aligned, allowing the electron to be delocalized to the shell where it could encounter an electron trap. However, the confinement of the photogenerated hole to the core of the material leads to the suppression of nonradiative recombination as the carriers are spatially separated. In such cases, interaction of the trapped electron with a thermal vibration can allow the electron to repopulate the internal excitonic energy level and radiatively recombine. One such thick-shelled, quasi-type II CdSe/CdS system was described by Bawendi et al. with reported PLQY reaching up to 98%.8 This was accomplished by an alternating deposition of cadmium and sulfur onto the surface of the CdSe nanocrystal using a successive ionic layer adsorption and reaction (SILAR) approach.8 Further development of these thick-shelled CdSe/

CdS heterostructures was achieved through altering the shell precursor composition, with octanethiol replacing $S(SiMe_3)_2$ as the chalcogen precursor. This change in chemistry allowed quantum yields to be maintained at or above 97% and reduced the fluorescence intermittency (*i.e.*, blinking) of the material, resulting in average on-times increasing from 60% to 90%, creating more reliably emissive ensembles. Alivisatos *et al.* reported that omitting oleylamine results in reduced desorption of $Cd(oleate)_2$ surface ligands and thus higher ligand coverage, along with reduced charge trapping. By first controlling the surface stoichiometry of the core and inner shells, then performing additional shelling reactions, the quantum yield can reach 100% for thick-shelled CdSe/CdS.

While it is not expected that the nature of trap states in II-VI and III-V QDs would be fundamentally distinct, II-VI QDs have relied on the aforementioned quasi-type II architectures to achieve the highest PLQY while III-V QDs have predominantly relied on the type I architecture to achieve high PLQY.¹⁷ This focus on type I zinc chalcogenide shells in the III-V family may be a byproduct of considering InP as a replacement for Cd-containing materials, ^{18,19} as well as the ease of Cd alloying in InP lattices. ^{20–22} However, because of lattice strain between the InP core and the typical ZnS shell layer, new approaches using gradient shells have risen in popularity as a way to manage lattice mismatch and improve quantum yield further. 23,24 Although gradient shells have dominated research for the past decade, a recent shift in synthesis approach has occurred, with treatment/tuning of the native core's surface before shelling emerging as a highly important factor. For example, Peng et al. demonstrated that control over the surface stoichiometry of the native nanocrystals resulted in PLQYs as high as 93% for III-V-based emitters.²⁵ By removing excess indium at the surface of the core, indium atoms were prevented from incorporating into the shell, allowing the pristine shell layer to effectively serve as an energetic barrier to confine the photogenerated carriers to the core. This fine surface control has been further developed by surface etching using HF prior to shelling InP QDs. This process removes both excess indium on the surface and phosphates that result from surface oxidation. The removal of these species, followed by the growth of gradient ZnSeS shell, led to near unity PLQY, with high stability maintained for \sim 4300 h. 18

■ ATOMISTIC CHEMICAL MODIFICATION

Taken together, the historical development of shelling chemistry and the assessment of its impact on PLQY have revealed the importance of control of the core/shell interface in achieving unity quantum yields. Pushing our understanding

Pushing our understanding beyond these empirically determined design principles, however, necessitates an atomistic description of QD surface chemistry.

beyond these empirically determined design principles, however, necessitates an atomistic description of QD surface chemistry. A wide variety of chemical treatments have led to enhancement of PLQYs without the growth of a full shell, prompting more in-depth investigations to interrogate the

ACS Energy Letters http://pubs.acs.org/journal/aelccp Perspective

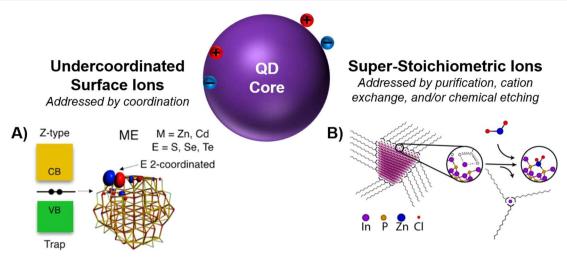


Figure 2. Electronic trap sites in binary QDs arising from undercoordinated surface ions and superstoichiometric ions. (A) A 2-coordinate chalcogenide ion resulting from Z-type ligand displacement at the surface of a II–VI QD acting as a site for hole trapping. Reprinted from ref 4. Copyright 2017 American Chemical Society. (B) Exchange of indium carboxylate for zinc chloride results in an enhanced quantum yield in InP QDs. Reprinted from ref 33. Copyright 2020 American Chemical Society.

origin of these effects. This atomistic approach, in contrast with shelling, has allowed for examining cationic or anionic surface sites separately, revealing the critical role of stoichiometry and the presence of undercoordinated surface sites in QD luminescence (Figure 2). A variety of both shallow and deep trap states have been identified and implicated spectroscopically for II–VI and III–V quantum dots. ^{3,26–29} Eliminating these surface traps is a crucial step in obtaining bright QDs, because these traps act as local energy minima that can prevent or delay electron—hole recombination. ³⁰

Theoretical models have provided guiding principles for the chemical identity of surface traps that can be experimentally verified. For example, for II-VI QDs with a zinc blende structure, it has been concluded that a primary source of surface hole traps are stable two-coordinate chalcogenide ions at the QD surface that arise from the displacement of, or a synthesis-specific lack of termination by metal complexes, or so-called "Z-type" ligands (Figure 2A).^{3,4} Adapting Green's formulation, ligands that coordinate the nanocrystal surface are commonly classified as L, X, and Z-type for datively bound neutral donors (Lewis bases), anionic one-electron donors, and neutral acceptors (Lewis acids), respectively. 31,32 Intriguingly, two- and three-coordinate metal ions at the QD surface did not show a propensity to form midgap trap states. Because of this, the addition of neutral L-type ligands to the undercoordinated cation sites was expected to not dramatically impact the luminescence properties in these systems.⁴ Furthermore, it has been shown that depending on the relative positions of the valence and conduction band edges of a QD material, chemical oxidation (i.e., by air) or n-type doping during synthesis can result in surface speciation that also introduces midgap traps.³

These theoretical studies suggest that the stoichiometry of QD surfaces should play a dominant role in QD PLQY and our ability to tune it. While as-synthesized QDs are typically cation-rich, the surface can be post synthetically modified to tune the cation-to-anion ratio.³⁴ Sfeir *et al.* reported on the carrier dynamics of CdSe QDs whose surface composition was controlled from cation-rich (\sim 80% surface cadmium) to stoichiometric (\sim 50% surface cadmium) using $N_iN_iN'_iN'_i$ tetramethylethylenediamine (TMEDA).³⁵ Tuning the QD stoichiometry in this way requires consideration of the number

and type of ligands to maintain charge neutrality, which was achieved through the displacement of the metal-ligand complex, i.e., cadmium carboxylate. It was observed that the reduced surface cadmium fraction led to a nonlinear decrease in the PLQY and an increase in the PL decay rate due to hole trapping at the newly exposed surface selenium atoms. From these results, surface coverage by cadmium carboxylate and the rate of hole trapping were correlated, noting the heterogeneity in the chemical and electronic structure of the surface selenium sites, which was corroborated by an independent study examining cadmium carboxylate displacement isotherms consistent with considerable surface heterogeneity.³⁶ In terms of the surface structure, it was hypothesized that this heterogeneity may arise from the facet-dependent orbital interactions of adjacent undercoordinated Se atoms.³⁵ Specifically, interactions between adjacent selenide ions, which are dominated by σ -type bonding in the (100) plane and π -type bonding in the (111) plane, can translate into different hole-trapping efficiencies.

This effect of stoichiometry modulation has been extended to other surface treatments, with a focus on Lewis acids to passivate undercoordinated anion sites and thereby eliminate hole traps as discussed above. For example, it was demonstrated that QD surface treatment with Z-type ligands (i.e., metal halides and carboxylates) leads to an increase in the PLQY to varying degrees depending on the identity of the Ztype ligand. While the highest PLQYs (>70%) were achieved with InCl₃ and CdCl₂ on phosphonate-capped CdTe QDs, the effects were also generalized to CdSe, CdS, InP, and Zn-doped InP QDs. Moderate increases in PLQY were attributed to weaker binding and steric repulsion based on the observation that smaller halide ions and shorter carboxylate chain lengths trend toward higher PLQY. It was also noted that ligands such as amines and alkylammonium chloride that are not Z-type ligands give rise to a smaller increase in PLQY, consistent with previous suggestions of cation vacancies as sites of nonradiative recombination.^{37,38} While theoretical models predicted only anion-related trap states upon removal of Z-type ligands, these experimental results drew attention to cation-related trap states, adding to the complexity of addressable QD surface states, especially outside the II-VI family of compounds where ACS Energy Letters http://pubs.acs.org/journal/aelccp Perspective

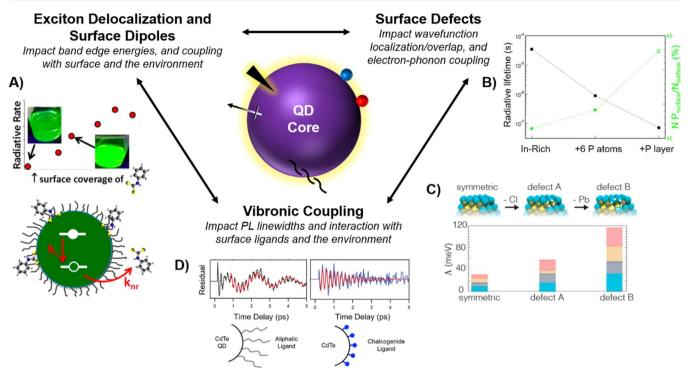


Figure 3. Exciton delocalization, surface dipoles, surface defects, and vibronic coupling impact quantum dot optical properties and are often coupled phenomena. (A) Phenyldithiocarbamate ligands increase the apparent excitonic radius and enhance the probability of band-edge recombination in CdSe QDs. Reprinted from ref 44. Copyright 2014 American Chemical Society. (B) The radiative lifetime of InP QDs is tuned by surface stoichiometry. Reprinted from ref 46. Copyright 2020 American Chemical Society. (C) Reorganization energy computed for three distinct QDs demonstrating increased electron—phonon coupling strengths, without any noticeable change in ground state electronic structure, for defect-containing QDs. Reprinted from ref 47. Copyright 2020 American Chemical Society. (D) Oscillatory components of transient absorption kinetics show that inorganic surface ligands enhance vibrational coupling of QDs with their environment. Reprinted from ref 48. Copyright 2018 American Chemical Society.

increased covalency could render superstoichiometric cations sites for electron trapping.

Phenomenologically similar effects of Lewis acids on the PLQY of carboxylate-capped InP QDs have been previously reported by our group. We observed that the surface treatment of InP QDs with zinc or cadmium carboxylate leads to increases in the PLQY of up to $\sim 50\%$ and confirmed that zinc and cadmium carboxylate displaces the native surface indium carboxylate (Figure 2B) based on elemental analysis and the eventual formation of independent $\rm In_2O_3$ particles from decomposition of the displaced indium carboxylate. Further, extended X-ray absorption fine structure (EXAFS) analysis corroborated that the divalent metal cations were mostly on the surface rather than incorporated into the InP core. This surface treatment is reversible with the use of TMEDA, which cleaves the metal carboxylate from the surface and results in a consistent decrease in PLQY upon titration.

In a study that followed, ultrafast TA and TRPL spectroscopy were used in tandem to probe the charge carrier dynamics of the surface-treated InP QDs. ^{39,40} Interestingly, it was revealed that of both electron and hole traps that exist in InP QDs, it is the electron traps that are eliminated as a result of the surface treatment by the divalent Lewis acids. A similar effect was also observed for treatments with fluoride. Taken together, this elimination of electron traps points to indium dangling bonds as a possible culprit in the low PLQY. Coordination by small, hard anions like fluoride, or replacing undercoordinated indium with cadmium or zinc carboxylate eliminates these sources of electron trapping. This mechanism

of trivalent indium carboxylate displacement by divalent Lewis acids was recently given further support from thermodynamic measurements by Alivisatos *et al.* (Figure 2B). In these studies, isothermal titration calorimetry was used to show that metal halides displace indium carboxylates, enhancing the luminescence, and revealing the importance of interligand interactions at QD surfaces.³³

■ THINKING BEYOND TRAP STATES

Atomistic surface modifications can do more than simply passivate or introduce electronic trap states (Figure 3). Fluorination of an InP QD surface is a facile method for PLQY enhancement that has been known for as long as the synthesis of colloidal InP QDs has existed.⁴¹ Recently, Alivisatos et al. revisited the surface passivation of InP with fluoride and offered new hypotheses regarding the structural and electronic modifications that influence the PL properties.⁴² The observation that surface fluoride ions, when used at low concentrations before etching effects dominate, cause a redshift in both absorption and emission was attributed to greater delocalization of electrons in the conduction band, along with the decrease of the optical oscillator strength due to the highly electronegative fluoride layer. The oscillator strength of QDs, which is dependent on the QD ligand environment and is influenced by the shape and symmetry of the charge carrier wave functions, was calculated to show a decrease with fluoride passivation of surface indium sites. 42 This agrees with the longer radiative PL decay time (i.e., lower radiative recombination rate) that was measured, as oscillator strength is proportional to the radiative recombination rate. The strong electron-withdrawing property of fluorides, combined with their small size and high binding affinity, makes the optical properties of InP/F distinct from as-synthesized or shelled InP QDs. Upon further investigation of metal halide passivation on InP QD surfaces, it was proposed that PLQY enhancement is influenced by the electron-withdrawing effects of the surface ligands that withdraw the negative charge from the surface and reduce hole trapping.³³

The above study of fluoride on InP QDs highlights the ability of surface ligands to independently modulate electron and hole wave functions. 42 The effects of surface ligands that are "exciton-delocalizing" have also been reported by Weiss et al. in the case of CdSe QDs capped with phenyldithiocarbamate (PTC) by ligand exchange (Figure 3A). 43,44 To achieve mixing with the exciton wave function, the ligand orbitals must have a suitable match in both energy and symmetry. Successful electronic coupling of QD exciton and ligand orbitals in the case of PTC was demonstrated by a characteristic redshift, along with an increase in the PLQY and the oscillator strength of emissive transitions, due to the delocalization of the charge carrier wave functions. Similarly, Dukovic et al. showed that inorganic chalcogenide ligands, such as Se²⁻, on CdTe QDs behave as if they are a passivating shell layer. 45 Significant delocalization of the carrier wave functions beyond the QD surface itself was observed.

If chalcogenide ligands can couple strongly to exciton wave functions in II-VI QDs, this naturally leads to a question about the role of pnictides on III-V QDs. As discussed previously, Peng et al. have recently demonstrated experimentally that stoichiometry control of InP cores to increase the relative ratio of P:In is a viable strategy to enhance QY in these materials.²⁵ Their hypothesis focused on reducing indium alloying in the shell as the mechanism for PLQY enhancement, but recent computational work may suggest an additional factor. Califano et al. modeled atomistically ideal and fully passivated InP QDs and found that these structures may still exhibit undesirable PL properties. The long radiative lifetimes, broad line widths, and low PLQY were attributed to a relative displacement between the electron and hole wave functions and therefore reduced coupling between them. 46 The addition of a few P atoms on the In-rich surface, however, was shown to reduce the radiative lifetime (Figure 3B) and the Stokes shift, suggesting a path forward to increasing QY by controlling the core stoichiometry.

The role of ligand coupling through orbital mixing, phonon interactions, and surface dipole modulation has created a vast new parameter space for system design.

A complex relationship between photoluminescence and vibrational lattice modes (phonons) is also emerging. Electron—phonon coupling has been shown to be large in colloidal QDs and can promote high rates of nonradiative recombination and dramatically impact luminescence line widths, especially in single-particle spectra. Recent work from Wood *et al.* posits, in fact, that the primary impact of surface passivation is not the elimination of electronic defect states, but rather mechanical stabilization of the QD surface. In

contrast to the approaches discussed above, which aim to remove electronic trap states at QD surfaces, this work suggests that nonradiative rates might be better controlled by engineering mechanical stability and electron-phonon coupling at the NC surface. 52 Bawendi et al. have also demonstrated the interplay between luminescence broadening and the shell composition of CdSe/CdS QDs. 51 They found that the most drastic broadening occurs when the photoexcited electron wave function spreads into the shell, while the hole stays localized in the core. An interesting consequence of this decreased wave function overlap is polarization of the nanocrystal excited state, which enhances electron coupling to longitudinal optical phonons. Alternatively, through increased Fröhlich coupling in the CdS shell compared to the CdSe core, the photoexcited electron can also interact with shell phonons more than it does with the core. These findings were reinforced by studies from Wood et al. which showed that exciton coupling to localized vibrations arising from undercoordinated surface atoms broaden PL line widths, consistent with the observations that homogeneous PL line widths decrease with increasing QD size.47

Phonons have also been noted to play a critical role in the emission of InP core/shell structures, with recombination processes involving both optical and acoustic phonons of the core and shell materials. ⁵³ As the shell composition changes and allows for more electron wave function delocalization, slight polarization of the exciton occurs and the electron—phonon coupling is increased, resulting in decreased lifetimes observed *via* low-temperature TRPL spectroscopy. Notably, at low temperatures, the dark state of InP is dominant, requiring electron—phonon coupling to become emissive. Phonons also broaden the dark state emission spectrum of InP, suggesting another potential avenue for tuning the emission line width, although the impacts for room-temperature applications in ensemble samples remain unknown.

Beyond shelling, phonon interactions can also be tuned by altering the capping ligands of the material.⁴⁸ By tuning the capping groups from aliphatic ligands to inorganic chalcogenides, for example, it is possible to critically damp the acoustic phonons present in the material, ascribed to energy dissipation once phonons reach the surface and dissipate into the surroundings (Figure 3D). In other studies, an exciton-induced electron density shift in InP clusters has been demonstrated to directly affect the vibrational motion of the carboxylate ligands on the surface using transient IR spectroscopy. 54 These results raise many questions regarding the extent of vibronic coupling to surface ligands and how to use this property to direct exciton relaxation pathways, a topic we expect will become highly relevant to future quantum dot design as the application space continues to broaden beyond the realm of displays, lighting, and biological imaging.

In conclusion, chemists, materials scientists, and engineers have contributed to significant advances in our understanding of how surface chemistry impacts QD luminescence by combining synthesis, spectroscopy, and experimentally verifiable theoretical models. This work has moved us from empirical optimization of shelling chemistry, to the ability to atomistically tailor the surface chemistry and specifically address relevant defect or trap sites, ultimately resulting in improved optical properties through rational design. In addition, the role of ligand coupling through orbital mixing, phonon interactions, and surface dipole modulation has created a vast new parameter space for system design. Whereas

early high-performing QD emitters relied on thick, insulating shell layers, thereby restricting applications to passive down-conversion, more modern approaches that focus on atomistic interfacial tuning generate core/shell QDs with high quantum yields that can still be modulated through electrical injection, paving the way for electroluminescent systems on the horizon.

As our sophistication to take advantage of trap passivation and ligand coupling advances, future generations of QDs with perfect quantum yields without shell layers may be possible, opening new opportunities in areas like catalysis and quantum information.

As our sophistication to take advantage of trap passivation and ligand coupling advances, future generations of QDs with perfect quantum yields without shell layers may be possible, opening new opportunities in areas like catalysis and quantum information. All in all, the future of QDs is bright!

AUTHOR INFORMATION

Corresponding Author

Brandi M. Cossairt — University of Washington, Department of Chemistry, Seattle, Washington 98195-1700, United States; orcid.org/0000-0002-9891-3259; Email: cossairt@uw.edu

Authors

Forrest W. Eagle — University of Washington, Department of Chemistry, Seattle, Washington 98195-1700, United States Nayon Park — University of Washington, Department of Chemistry, Seattle, Washington 98195-1700, United States Melanie Cash — University of Washington, Department of Chemistry, Seattle, Washington 98195-1700, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsenergylett.0c02697

Author Contributions

[‡]F.W.E. and N.P. contributed equally to this work.

Notes

The authors declare no competing financial interest.

Biographies

Forrest Eagle is a graduate student at the University of Washington in the lab of Prof. Brandi Cossairt where he studies the photophysical effects of surface chemistry and dopants in quantum dots and quantum dot assemblies. He received his B.S. in chemistry from Fort Lewis College in 2017.

Nayon Park is a Ph.D. candidate at the University of Washington in the lab of Prof. Brandi Cossairt, where she studies the effects of surface chemistry on the photoluminescence and photophysical properties of III—V quantum dots. She received her B.A. in chemistry from Carleton College in 2017.

Melanie Cash is a junior at the University of Washington, where she is majoring in chemistry with a concentration in mathematics. After graduating with her B.S. degree, she plans to pursue a Ph.D. with a focus in inorganic chemistry.

Brandi M. Cossairt is a Professor in the Department of Chemistry at the University of Washington. She received her B.S. in chemistry from

the California Institute of Technology in 2006 and her Ph.D. from the Massachusetts Institute of Technology in 2010. She then trained as an NIH NRSA Postdoctoral Fellow at Columbia University before joining UW in 2012. Her research group examines the nucleation, growth, surface chemistry, and reactivity of nanoscale materials to enable next-generation technologies in the diverse areas of displays, lighting, catalysis, quantum information, and hybrid matter. Website: https://brandicossairt.wixsite.com/cossairtlab

■ ACKNOWLEDGMENTS

We gratefully acknowledge support from the National Science Foundation under Grants CHE-1552164, DMR-1719797, and OMA-1936100 for support of the science that inspired this Perspective. We also thank the National Science Foundation under Grants DMR-1719797 (FWE) and OMA-1936100 (NP) for research support during the period of writing.

REFERENCES

- (1) Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J.; Guyot-Sionnnest, P.; Konstantatos, G.; Parak, W. J.; Hyeon, T.; Korgel, B. A.; Murray, C. B.; Heiss, W. Prospects of Nanoscience with Nanocrystals. *ACS Nano* **2015**, *9* (2), 1012–1057.
- (2) Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of Colloidal Quantum-Dot Light-Emitting Technologies. *Nat. Photonics* **2013**, *7*, 13–23.
- (3) Giansante, C.; Infante, I. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective. *J. Phys. Chem. Lett.* **2017**, 8 (20), 5209–5215.
- (4) Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals. *Chem. Mater.* **2017**, 29 (2), 752–761.
- (5) Kirkwood, N.; Monchen, J. O. V.; Crisp, R. W.; Grimaldi, G.; Bergstein, H. A. C.; du Fossé, I.; van der Stam, W.; Infante, I.; Houtepen, A. J. Finding and Fixing Traps in II–VI and III–V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation. J. Am. Chem. Soc. 2018, 140 (46), 15712–15723.
- (6) Li, J. J.; Wang, Y. A.; Guo, W.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. *J. Am. Chem. Soc.* 2003, 125 (41), 12567–12575.
- (7) Chen, Y.; Vela, J.; Htoon, H.; Casson, J. L.; Werder, D. J.; Bussian, D. A.; Klimov, V. I.; Hollingsworth, J. A. Giant" Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking. *J. Am. Chem. Soc.* **2008**, *130* (15), 5026–5027.
- (8) Greytak, A. B.; Allen, P. M.; Liu, W.; Zhao, J.; Young, E. R.; Popović, Z.; Walker, B. J.; Nocera, D. G.; Bawendi, M. G. Alternating Layer Addition Approach to CdSe/CdS Core/Shell Quantum Dots with near-Unity Quantum Yield and High on-Time Fractions. *Chem. Sci.* 2012, 3, 2028–2034.
- (9) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. *J. Am. Chem. Soc.* **1997**, *119* (30), 7019–7029.
- (10) Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J.-P.; Dubertret, B. Towards Non-Blinking Colloidal Quantum Dots. *Nat. Mater.* **2008**, *7* (8), 659–664.
- (11) Hao, J.; Liu, H.; Miao, J.; Lu, R.; Zhou, Z.; Zhao, B.; Xie, B.; Cheng, J.; Wang, K.; Delville, M.-H. A Facile Route to Synthesize CdSe/ZnS Thick-Shell Quantum Dots with Precisely Controlled Green Emission Properties: Towards QDs Based LED Applications. *Sci. Rep.* **2019**, *9* (1), 12048.
- (12) Hao, J.; Zhou, J.; Zhang, C. A Tri-n-Octylphosphine-Assisted Successive Ionic Layer Adsorption and Reaction Method to Synthesize Multilayered Core-Shell CdSe-ZnS Quantum Dots

- with Extremely High Quantum Yield. Chem. Commun. 2013, 49 (56), 6346–6348.
- (13) Bae, W. K.; Kwak, J.; Park, J. W.; Char, K.; Lee, C.; Lee, S. Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient. *Adv. Mater.* **2009**, *21* (17), 1690–1694.
- (14) Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Compact High-Quality CdSe—CdS Core—Shell Nanocrystals with Narrow Emission Linewidths and Suppressed Blinking. *Nat. Mater.* **2013**, *12* (5), 445–451.
- (15) Hanifi, D. A.; Bronstein, N. D.; Koscher, B. A.; Nett, Z.; Swabeck, J. K.; Takano, K.; Schwartzberg, A. M.; Maserati, L.; Vandewal, K.; van de Burgt, Y.; Salleo, A.; Alivisatos, A. P. Redefining Near-Unity Luminescence in Quantum Dots with Photothermal Threshold Quantum Yield. *Science* 2019, 363 (6432), 1199–1202.
- (16) García-Santamaría, F.; Brovelli, S.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Crooker, S. A.; Klimov, V. I. Breakdown of Volume Scaling in Auger Recombination in CdSe/CdS Heteronanocrystals: The Role of the Core—Shell Interface. *Nano Lett.* **2011**, *11* (2), 687–693.
- (17) Li, L.; Reiss, P. One-Pot Synthesis of Highly Luminescent InP/ZnS Nanocrystals without Precursor Injection. *J. Am. Chem. Soc.* **2008**, *130*, 11588–11589.
- (18) Won, Y.-H.; Cho, O.; Kim, T.; Chung, D.-Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly Efficient and Stable InP/ZnSe/ZnS Quantum Dot Light-Emitting Diodes. *Nature* **2019**, 575 (7784), 634–638.
- (19) Kim, Y.; Ham, S.; Jang, H.; Min, J. H.; Chung, H.; Lee, J.; Kim, D.; Jang, E. Bright and Uniform Green Light Emitting InP/ZnSe/ZnS Quantum Dots for Wide Color Gamut Displays. *ACS Appl. Nano Mater.* **2019**, *2*, 1496.
- (20) Hanrahan, M. P.; Stein, J. L.; Park, N.; Cossairt, B. M.; Rossini, A. J. Elucidating the Location of Cd2+ in Post-Synthetically Treated InP Quantum Dots Using Dynamic Nuclear Polarization 31P and 113Cd Solid-State NMR Spectroscopy. *J. Phys. Chem. C* **2021**, DOI: 10.1021/acs.jpcc.0c09601.
- (21) Stein, J. L.; Mader, E. A.; Cossairt, B. M. Luminescent InP Quantum Dots with Tunable Emission by Post-Synthetic Modification with Lewis Acids. *J. Phys. Chem. Lett.* **2016**, *7* (7), 1315–1320.
- (22) Stein, J. L.; Steimle, M. I.; Terban, M. W.; Petrone, A.; Billinge, S. J. L.; Li, X.; Cossairt, B. M. Cation Exchange Induced Transformation of InP Magic-Sized Clusters. *Chem. Mater.* **2017**, 29 (18), 7984–7992.
- (23) Mulder, J. T.; Kirkwood, N.; De Trizio, L.; Li, C.; Bals, S.; Manna, L.; Houtepen, A. J. Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applications. *ACS Appl. Nano Mater.* **2020**, *3* (4), 3859–3867.
- (24) Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S. InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability. *Chem. Mater.* **2011**, 23 (20), 4459–4463.
- (25) Li, Y.; Hou, X.; Dai, X.; Yao, Z.; Lv, L.; Jin, Y.; Peng, X. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. *J. Am. Chem. Soc.* **2019**, *141* (16), 6448–6452.
- (26) Mićić, O. I.; Nozik, A. J.; Lifshitz, E.; Rajh, T.; Poluektov, O. G.; Thurnauer, M. C. Electron and Hole Adducts Formed in Illuminated InP Colloidal Quantum Dots Studied by Electron Paramagnetic Resonance. *J. Phys. Chem. B* **2002**, *106* (17), 4390–4395.
- (27) Chestnoy, N.; Harris, T. D.; Hull, R.; Brus, L. E. Luminescence and Photophysics of CdS Semiconductor Clusters: The Nature of the Emitting Electronic State. *J. Phys. Chem.* **1986**, *90*, 3393–3399.
- (28) Veamatahau, A.; Jiang, B.; Seifert, T.; Makuta, S.; Latham, K.; Kanehara, M.; Teranishi, T.; Tachibana, Y. Origin of Surface Trap States in CdS Quantum Dots: Relationship between Size Dependent Photoluminescence and Sulfur Vacancy Trap States. *Phys. Chem. Chem. Phys.* **2015**, *17* (4), 2850–2858.

- (29) Greaney, M. J.; Couderc, E.; Zhao, J.; Nail, B. A.; Mecklenburg, M.; Thornbury, W.; Osterloh, F. E.; Bradforth, S. E.; Brutchey, R. L. Controlling the Trap State Landscape of Colloidal CdSe Nanocrystals with Cadmium Halide Ligands. *Chem. Mater.* **2015**, *27* (3), 744–756.
- (30) Singh, K.; Voznyy, O. It's a Trap! Fused Quantum Dots Are Undesired Defects in Thin-Film Solar Cells. *Chem.* **2019**, *5* (7), 1692–1694.
- (31) Owen, J. S. The Coordination Chemistry of Nanocrystal Surfaces. *Science* **2015**, 347 (6222), 615–616.
- (32) De Roo, J.; De Keukeleere, K.; Hens, Z.; Van Driessche, I. From Ligands to Binding Motifs and beyond; the Enhanced Versatility of Nanocrystal Surfaces. *Dalton Trans.* **2016**, *45* (34), 13277–13283.
- (33) Calvin, J. J.; Swabeck, J. K.; Sedlak, A. B.; Kim, Y.; Jang, E.; Alivisatos, A. P. Thermodynamic Investigation of Increased Luminescence in Indium Phosphide Quantum Dots by Treatment with Metal Halide Salts. *J. Am. Chem. Soc.* **2020**, *142* (44), 18897–18906.
- (34) Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding. *J. Am. Chem. Soc.* **2013**, *135* (49), 18536–18548.
- (35) Busby, E.; Anderson, N. C.; Owen, J. S.; Sfeir, M. Y. Effect of Surface Stoichiometry on Blinking and Hole Trapping Dynamics in CdSe Nanocrystals. *J. Phys. Chem. C* **2015**, *119* (49), 27797–27803.
- (36) Drijvers, E.; De Roo, J.; Martins, J. C.; Infante, I.; Hens, Z. Ligand Displacement Exposes Binding Site Heterogeneity on CdSe Nanocrystal Surfaces. *Chem. Mater.* **2018**, *30* (3), 1178–1186.
- (37) Bullen, C.; Mulvaney, P. The Effects of Chemisorption on the Luminescence of CdSe Quantum Dots. *Langmuir* **2006**, 22 (7), 3007–3013.
- (38) Kim, W.; Lim, S. J.; Jung, S.; Shin, S. K. Binary Amine-Phosphine Passivation of Surface Traps on CdSe Nanocrystals. *J. Phys. Chem. C* **2010**, *114*, 1539–1546.
- (39) Hughes, K. E.; Stein, J. L.; Friedfeld, M. R.; Cossairt, B. M.; Gamelin, D. R. Effects of Surface Chemistry on the Photophysics of Colloidal InP Nanocrystals. *ACS Nano* **2019**, *13* (12), 14198–14207.
- (40) Mundy, M. E.; Eagle, F. W.; Hughes, K. E.; Gamelin, D. R.; Cossairt, B. M. Synthesis and Spectroscopy of Emissive, Surface-Modified, Copper-Doped Indium Phosphide Nanocrystals. *ACS Materials Lett.* **2020**, 2 (6), 576–581.
- (41) Micic, O. I.; Sprague, J.; Lu, Z.; Nozik, A. J. Highly Efficient Band Edge Emission from InP Quantum Dots. *Appl. Phys. Lett.* **1996**, 68, 3150–3152.
- (42) Kim, T.-G.; Zherebetskyy, D.; Bekenstein, Y.; Oh, M. H.; Wang, L.-W.; Jang, E.; Alivisatos, A. P. Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications. *ACS Nano* **2018**, *12* (11), 11529–11540.
- (43) Frederick, M. T.; Weiss, E. A. Relaxation of Exciton Confinement in CdSe Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand. *ACS Nano* **2010**, *4* (6), 3195–3200.
- (44) Jin, S.; Harris, R. D.; Lau, B.; Aruda, K. O.; Amin, V. A.; Weiss, E. A. Enhanced Rate of Radiative Decay in CdSe Quantum Dots upon Adsorption of an Exciton-Delocalizing Ligand. *Nano Lett.* **2014**, *14* (9), 5323–5328.
- (45) Schnitzenbaumer, K. J.; Dukovic, G. Chalcogenide-Ligand Passivated CdTe Quantum Dots Can Be Treated as Core/Shell Semiconductor Nanostructures. *J. Phys. Chem. C* **2014**, *118* (48), 28170–28178.
- (46) Rodosthenous, P.; Gómez-Campos, F. M.; Califano, M. Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry. *J. Phys. Chem. Lett.* **2020**, *11* (23), 10124–10130.
- (47) Yazdani, N.; Volk, S.; Yarema, O.; Yarema, M.; Wood, V. Size, Ligand, and Defect-Dependent Electron—Phonon Coupling in Chalcogenide and Perovskite Nanocrystals and Its Impact on Luminescence Line Widths. ACS Photonics 2020, 7 (5), 1088–1095.

- (48) Schnitzenbaumer, K. J.; Dukovic, G. Comparison of Phonon Damping Behavior in Quantum Dots Capped with Organic and Inorganic Ligands. *Nano Lett.* **2018**, *18* (6), 3667–3674.
- (49) Han, P.; Bester, G. Carrier Relaxation in Colloidal Nanocrystals: Bridging Large Electronic Energy Gaps by Low-Energy Vibrations. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2015**, 91 (8), 085305.
- (50) Schaller, R. D.; Pietryga, J. M.; Goupalov, S. V.; Petruska, M. A.; Ivanov, S. A.; Klimov, V. I. Breaking the Phonon Bottleneck in Semiconductor Nanocrystals via Multiphonon Emission Induced by Intrinsic Nonadiabatic Interactions. *Phys. Rev. Lett.* **2005**, *95* (19), 196401.
- (51) Cui, J.; Beyler, A. P.; Coropceanu, I.; Cleary, L.; Avila, T. R.; Chen, Y.; Cordero, J. M.; Heathcote, S. L.; Harris, D. K.; Chen, O.; Cao, J.; Bawendi, M. G. Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton—Phonon Coupling and the Optimization of Spectral Linewidths. *Nano Lett.* **2016**, *16*, 289—296.
- (52) Bozyigit, D.; Yazdani, N.; Yarema, M.; Yarema, O.; Lin, W. M. M.; Volk, S.; Vuttivorakulchai, K.; Luisier, M.; Juranyi, F.; Wood, V. Soft Surfaces of Nanomaterials Enable Strong Phonon Interactions. *Nature* **2016**, 531 (7596), 618–622.
- (53) Brodu, A.; Ballottin, M. V.; Buhot, J.; Dupont, D.; Tessier, M.; Hens, Z.; Rabouw, F. T.; Christianen, P. C. M.; de Mello Donega, C.; Vanmaekelbergh, D. Exciton-Phonon Coupling in InP Quantum Dots with ZnS and (Zn, Cd) Se Shells. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2020**, *101* (12), 125413.
- (54) Leger, J. D.; Friedfeld, M. R.; Beck, R. A.; Gaynor, J. D.; Petrone, A.; Li, X.; Cossairt, B. M.; Khalil, M. Carboxylate Anchors Act as Exciton Reporters in 1.3 Nm Indium Phosphide Nanoclusters. *J. Phys. Chem. Lett.* **2019**, *10* (8), 1833–1839.