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The double fertilization of the female gametophyte initiates embryogenesis  and 
endosp erm development in seeds via the activation of genes involved in cell 
differentia t ion, organ patterning, and growth. A subset of genes expressed in 
endosperm exhibit imprinted expression, and the correct balance of gene expression 
between parental alleles is critical for proper endosperm and seed development. Weusea 
transcriptionaltime series analysis to identify genes that are associated with key shifts in 
seed development, including genes associated with secondary cell wall synthesis, mitotic 
cell cycle, chromatin organization, auxin synthesis, fatty acid metabolism, and seed 
maturation. We relate these genes to morphological changes in Mimulus seeds. We 
also identify four endosperm-expressed transcripts that display imprinted (paternal) 
expression bias. The imprinted status of these four genes is conserved in other 
flowering plants, suggestin g that they are func tionally important in endosperm 
development. Our study explores gene regulatory dynamics in a species with ab initio 
cellular endosperm development, broadening the taxonomic focus of the literature on 
gene expression in seeds. Moreover, it is the first to validate genes with imprinted 
endosperm expression in Mimu/us guttatus, and will inform future studies on the 
genetic causes of seed fail,ure in this model system. 

Keywords: seed development, ribonucleic acid sequencing, developmental time course analysis, endospenn, 
genomic imprinting, K-means clustering, MADS-box  genes, Mimu/us guttatus 
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INTRODUCTION 
Upon their emergence in the Early Cretaceous, seed-bearingplants 
diversified rapidly, displacing older plant lineages and colonizing 
nearly every terrestrial habitat{Lidgard and Crane, 1988; Crane and 
Lidgard, 1989; Magallon and Castillo, 2009). Among the many 
factors enabling their swift rise to dominance was the emergence of 
seeds, a major evolutionary and reproductive innovation that frees 
vascular plants from a dependence on water for gametophytic 
dispersal and enables the next sporophytic generation to delay 
germination until conditions are favorable for growth and 
reproduction. Angiosperm seeds are formed by a unique process 
called double fertilization, wherein two haploid sperm nuclei 
contained within a pollen  grain  act  separately  to  fuse  with 
the  haploid  egg  cell  and  the   homo-diploid  central  cell  of 
the female megagametophyte to form a diploid embryo and 
triploid endosperm 
Following double fertilization, angiosperm seeds undergo 

processes of cell differentiation, patterning, and growth. Early 
embryogenesis establishes the basic shoot -root body plan, after 
which the embryonic tissue and major organs of the embryo are 
formed  by  morphogenesis  (West  and  Harada,  1993; Jurgens 
et al., 1994). Endosperm development in modern plants can be 
characterized by three major types: ab initio cellular, where each 
nuclear division isaccompanied by cell division; nuclear, where a 
syncytial phase offree nuclear division isfollowed bycellular wall 
formation; and helobial, where an initial division of the primary 
endosperm cell results in two regions, at least one of which will 
exhibit free nuclear development (Friedman, 1994; Friedman, 
2001). Cellular endosperm development is found in several basal 
angiosperm lineages (Friedman, 2001) and many diverse groups 
of asterids, and has likely evolved multiple times independently 
(Geeta, 2003). As the seed matures the endosperm will 
accumulate storage reserves for nutritional support  of  the 
mature embryo. Once fully formed, the mature  embryo  will 
enter   a   period   of   developmental   arrest    in    preparation 
for  dormancy. 
Coordinated development between seed tissues is critical to 

ensuring normal development and plays a major role in 
determining the size of mature seeds (Garcia et al., 2003; 
Ingouff et al., 2006; Sechet et al., 2018), and recent 
improvements in transcriptomics have greatly improved our 
knowledge of the gene expression dynamics involved 
(Belmonte et al., 2013). In Arabidopsis, many genes are seed 
specific, including transcription factors (TFs) that regulate gene 
networks involved in cell differentiation and nutrient storage (Le 
et al., 2010; Chen et al., 2014; Yi et al., 2019). A subset of genes 
expressed in endosperm exhibit imprinted expression, an 
epigenetic phenomenon whereby alleles are differentially 
expressed depending upon their parent-of-origin (Grossniklaus 
et al., 1998; Hsieh et al., 2011; Luo et al., 2011; Waters et al., 2013; 
Florez-Rueda et al., 2016; Zhang et  al., 2016;  Lafon-Placette 
et al., 2018). 
To date, most studies on gene expression in seeds have 

focused on a taxonomically narrow group of species with 
nuclear endosperm, such as Arabidopsis and crops from the 
family Poaceae. There exists a lack of studies illustrating the 

transcriptional dynamics of seeds with cellular endosperm 
development despite the prevalence of this developmental 
phenotype. We fill this gap by characterizing the gene 
expression dynamics associated with seed development in 
Mimulus, an asterid which exhibits ab initio cellular 
endosperm development. We perform a time series RNA 
sequencing experiment to illustrate the major transcriptional 
events associated with early seed development. Our work has two 
major goals: first, by focusing on a phylogenetically divergent 
species with cellular endosperm development it will serve as a 
data resource enabling comparative studies of gene expression in 
seed plants. Second, because hybrid seed inviability is a common 
outcome of hybridization and may be a major cause of speciation 
in plants, including Mimulus, characterizing the transcriptional 
dynamics of normally developing seeds will provide context for 
future studies on gene expressoi n changes associated with hybrid 
seed lethality. Imprinted loci may play key roles in the proper 
development of endosperm (Grossniklaus et al., 1998) and 
divergence in the imprinting status of genes has been linked to 
the rapid emergence of reproductive barriers between even 
closely related species (Florez-Ruedaet al., 2016; Lafon-Placette 
et al., 2018) including Mimulus (Kinser et al., 2018). Thus, 
although our study design prohibits a systematic screening for 
imprinted loci, we examine our data for genes exhibiting 
paternally imprinted expression in endosperm, as such genes 
have been implicated in the emergence of hybrid seed inviability. 
We identify genes whose expression exhibits significant temporal 
changes associated with key developmental shifts and 
characterize their patterns of co-expression and biological 
functions using K- means clustering and gene ontology 
enrichment analyses. We also identify and validate four genes 
(ATRXS, MBD13, DnaJ, BGALll) that are paternally imprinted 
and whose homologues are imprinted in other plants, but which 
are not linked to hybrid endosperm failure in Mimulus {Kinser 
et al., 2018) or other taxa (Hatorangan et al., 2016; Florez-Rueda 
et al, 2016; Lafon-Placette et al., 2018). Our study represents an 
important first step in illustrating the gene regulatory dynamics 
of Mimulus seeds, is the first to identify and validate genes with 
imprinted endosperm expression in Mimulus guttatus, and will 
inform future studies on the genetic causes of seed failure in this 
model system. 
 
 
MATERIALS AND METHODS 
We examined hybrid seed from a compatible cross between two 
members of the M. guttatus complex: a serpentine-adapted 
annual M. guttatus and Mimulus pardalis, a  facultatively 
selfing annual that is fully interfertile with the outcrossing M. 
guttat us. M. pardalis seed was collected in 2005 near the Star- 
Excelsior Mine in Copperopolis, CA (- 120.856W, 38.153N). M. 
guttatus seed was collected in 2008 from the Donald and Sylvia 
McLaughlin Natural Reserve in Lake County, CA (- 122.41SW, 
38.861N). Inbred lines from each population were formed by a 
minimum offive generations of selfing and are named SEC39 (M. 
pardalis) and CSS4 (M. guttatus), leading to an expectation of a 
maximum of 3% genomic-wide heterozygosity in each line. All 
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individuals used here for morphological analyses as well as DNA 
and RNA sequencing are from these inbred lines. We chose these 
two populations because they are interfertile (based on our prior 
unpublished work and Macnair and Cumbes (1989)) but 
sufficiently genetically distinct to allow us to distinguish the 
allelic origin of genie SNPs, and thus search for genes that 
potentially exhibit M. guttatus-bias. All seeds were cold- 
stratified for 10 days at 4°C before being transferred to a 
growth chamber at 18-h days, 21°C, and 30% relative 
humidity. Crosses and self-pollinations were performed as 
described previously (Oneal et al., 2016). 

Seed Histology 
We characterized the morphology and developmental ontogeny 
of selfed and hybrid seeds of M . pardalis andM . guttatus in order 
to provide a developmental framework for our time series 
analysis of gene expression. All fruits were collected from 
flowers that had been emasculated 1- 3 days prior  to 
fertilization. We used LR-white embedding to visualize and 
categorize the morphological progression of seed development. 
Ovaries and fruits were harvested at 0, 2, 4, 6, and 8 days after 
pollination (DAP) and vacuum-fixed in a solution of 2% 
paraformaldehyde, 2.5% glutaraldehyde, and 0.001% Tween 20 
in 0.025 M PBS (pH 7), then incubated overnight at 4°C. Tissue 
was washed with 0.025 M PBS for 20 min, then dehydrated in an 
ethanol series (25%, 35%, 50%, 70%, 80%, 90%, and 3x 100%). 
LR-white (London Resin Company Ltd, London, UK) 
impregnation was performed by incubation for 12 h  in 
increasing concentration of resin (10%, 25%, 50%, 75%, 90%, 
and 2x 100%). Samples were transferred to gelatin capsules and 
allowed to polymerize for 48 h in a 56°C oven. The 2-micron 
sections were obtained with a Leica EM UC7 Ultramicrotome, 
placed on glass slides, and stained with 1% toluidine blue 
followed by 1% safranin. 

Preparation of Libraries and Messenger 
RNA Sequencing 

free Dnase I Kit (Ambion) for removal of contaminated DNA. 
The mixed solution was then spun at 10,000g for 1.5 min to 
collect the top layer of RNA. We note that this method of hand 
separation of ovules/seeds from the longitudinal-sectionedfruits 
may have inadvertently resulted in a small amount of placental- 
contributed tissue into our samples. 
We generated and sequenced a total of 20 RNA sequencing 

libraries (see Table 1 for details). We used four maternal plants 
(SEC39) and five pollen donors (CSS4) to generate hybrid seeds 
aged 2, 4, 6, and 8 days after pollination (DAP). Because of the 
difficulty of isolating sufficient RNA for sequencing, ovules were 
derived from seven maternal plants. Hybrid seed pools generated 
by one maternal plant constituted one biological replicate. 
Because our parental plants were highly inbred, allelic 
differences between replicates should be minimal. This 
expectation is confirmed by the genomic sequence data (see 
below), which indicates that in CSS4, 0.115% of covered exonic 
sites are heterozygous, while in SEC39, 0.04% covered exonic 
sites are heterozygous. The RNA integrity number (RIN) for all 
samples > 7.8, as determined by an Agilent 2100 Bioanalyzer. 
Twenty strand-specific complementary DNA (cDNA) libraries 
were prepared from approximately 100 ng of total RNA by the 
North Carolina State University Genomic Science Laboratory 
using a NEB Ultra Directional Library Prep Kit for Illumina then 
sequenced on an Illumina NextSeq 500. Average size of the 
cDNA fragments was approximately 380 bp. 

 
RNA Sequence Alignment Strategy 
Known pairwise polymorphism in the M. guttatus complex 
ranges  from  0.033  to  0.065  (Brandvain  et  al.,  2014;  Gould 
et al., 2017), raising the prospect of bias from mapping RNA 
reads to the M. guttatus reference genome, which is likely to be 
different from the lines utilized here. To reduce the number of 
reads discarded  during  mapping,  we  used  a pseudo-reference 

 

TABLE 1 I Biological replicatesof SEC39 ovules and SEC39 x CSS4 hybrid 
seeds. 

For  the  purpose of transcriptomic analysis,  total  RNA was    
extracted from ovules and developing hybrid seeds from the 
SEC39 x CSS4 cross (throughout this paper, the maternal parent 
is listed first in cross notations). We only prepared a single 
direction of this cross for transcriptornics analysis due to a 
significant level of pre-zygotic infertility in the CSS4 x SEC39 
crossing   direction,   which   limited    the   RNA   available for 
 
gently shaking into microcentrifuge tubes containing 300 µl of 
ice-coldisolation buffer [lX First-Strandbuffer Invitrogen, 1 mM 
dithiothreitol (DTT), and 4% RNaseOUT]. TRizol was then 
added (3:1 ratio of TRizol:isolation buffer). We used the Pure 
Link RNA Mini Kit (Invitrogen), modifying it as follows: 
collected ovules and seeds in solution were ground gently with 
pellet pestles in Eppendorf tubes for 2-4 min then mixed with 
240 µI of chloroform. The solution was shaken vigorously by 
hand for 15 s, then incubated for 3 min at room temperature 
followed by centrifugation at 12,000g for 15 min at 4°C to 
separate phases. Total RNA was isolated according to the 
manufacturer's instructions,  then  treated  with  TURBO DNA- 

Time Biological No.  No. Sample names 
point repticates   maternal pollen 
(OAP) plants       donors 

 
0 5 8 N.A.       Od_BR1_81, Od_BR4_S10, 

Od_BR5 _S15 Od_BR6 _S17, 
Od_BR7_819 

 
2d_BR3_S18 2d_BR4_S20 

4 3 3 5          4d_BR2_S4, 4d_BR3_S7, 
4d_BR4_S12 

6 4 4 5         6d_BR1_S2, 6d_BR2_S5, 
6d_BR3_S8, 6d_BR4_S13 

8 4 4 5        8d_BR1_S3, 8d_BR2_S6, 
8d_BR3_S9,  8d_BR4_S14 

 
 

Altogether; we used eightmaternalplantsandfivepollendonors.Maternalplants #1and 4 
wereused to generate two ovulesamples Pd_BR1_S1 and0d_BR4_S1)0,and maternal 
plEnts 1-4 were used to gmerate al hybrid seeds rolected from 2 to 8 days after 
pol/nation (Dl>P. Because of the difficulty of isolating sufficimt RNA for sequencing of 
unfertilized ovules, we poded samples de-ived from mate-na/ plants 2 and 3 withsampes 
fromthreeadditional maternal plants notusedelsewhere inthisstudy to generate sampes 
Od_BRS_S15, Od_BR6_S17, End 0d_BR 7 _S19. Thesamefivepo/lendonorswereused 
to generate all hyb-id seeds. 

sequencing.  Ovules/seeds were released from the ovary/fmit by 2
 4 4 5 2d_BR1_S11, 2d_BR2_S16, 
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genome mapping approach, mapping our RNA reads to parental 
pseudo -reference genomes that we generated from whole- 
genome DNA sequence data from each parental inbred line. 
Sequence data was obtained from DNA extracted from bud 
tissue from one maternal parent and one pollen donor using 
the GeneJET Plant Genomic DNA Purification Kit (Thermo 
Fisher Scientific). Illumina libraries were prepared by the Duke 
University Genome Sequencing Facility using the lllumina 
TruSeq DNA Nano library prep kit, then sequenced on an 
Illumina HiSeq 4000 machine, generating 150 bp paired-end 
reads. We removed adaptors and low quality reads with 
Trimmomatic (Bolger et al., 2014) and mapped the remaining 
reads using bwa mem (http://bio-bwasourceforge.net), retaining 
only properly paired reads. Mean coverage was 38x and 32x for 
CSS4 and SEC39, respectively. Variants were called using 
GATK3.7 and hard-filtered by quality-by-depth (< 2.0), strand 
bias(> 60.0), mapping quality(< 20.0), mapping quality rank 
sum(< 12.5),and the read position rank sum test(< - 8.0).We 
also removed variants with low coverage (< 4) and high coverage 
(> 2 SD from the mean). We generated parental pseudo- 
reference genomes that incorporated our filtered variants using 
the package ModTools (Huang et al., 2014). We used bedops 
(Neph et al., 2012) to calculate pairwise coding sequence 
divergence between SEC39 and CSS4. 
We mapped RNA reads to each parental pseudo-reference 

using the default settings of the splice-aware aligner STAR, 
allowing a maximum number of mismatches relative to read 
length of 0.04 (Dobin et al., 2013). We then used the lapels/ 
suspenders pipeline (Huanget al., 2014; Crowley et al., 2015) to 
filter reads by mapping position and quality. For each read, lapels 
determines its mapping location in the maternal and paternal 
pseudo-reference,compares their mapping qualities in each (as 
determined by the number of mismatches), and then selects the 
mapping position with the highest quality. For our study, reads 
that mapped uniquely to only one parental genome were 
retained, while reads that mapped to both parental genomes 
were assigned the coordinates with the highest mapping quality. 
Only properly paired, uniquely mapped reads were retained for 
downstream analyses. 
 
Time Series Analysis of Gene Expression 
Changes With Development 
We generated gene counts on our lapels/suspenders filtered 
alignments using featureCounts (Liao et al., 2014). We 
performed a principle component analysis (PCA) of 
normalized gene expression estimates from the 20 RNA 
libraries using the PlotPCA function of DESeq2, using the 500 
most highly variable genes (Love et al., 2014). We took two 
approaches to discovering genes that were differentially 
expressed over the course of seed development. First, we 
combined multiple pairwise comparisons (O vs. 2 DAP, 2 vs. 4 
DAP, 4 vs. 6 DAP, and 6 vs. 8 DAP) into a generalized linear 
model in edgeR, performing a likelihood ratio test to determine 
significance with a false discovery rate (FDR) of 0.01. Count data 
were trimmed mean of M values (TMM)-normalizedand only 
genes with  greater  than  1 count-per-million in at least three 

samples were retained (Chen et al., 2016). Second, we used Next 
maSigPro, a program which employs a least-squared polynomial 
regression and log-likelihoodratio test to detect genes exhibiting 
significant changes in expression over time (Conesaet al., 2006; 
Nueda et al., 2014). Next maSigPro selects the best model by 
goodness-of-fit  using a correlational  cutoff  (i.e., R2   value) 
supplied by the user. Such time series models are an 
improvement over performing multiple pairwise comparisons 
(Spies et al., 2019), especially when several time points are 
sampled. Next maSigPro includes batch effects in its regression 
model; we considered each maternal parent to be a batch, giving 
us seven total batches: four maternal  parents distributed across 
0- 8 DAP and three additional batches corresponding to the three 
pooled samples from O DAP. We performed a polynomial 
regression with an R2 of  0.6  and  Ben jamini-Hochberg 
corrected FDR of 0.01. We took the  overlap  between  edgeR 
and the Next maSigPro time series analysis to be the set of genes 
that were differentially expressed over the course of seed 
development. All further downstream analyses were performed 
on these differentiallyexpressed genes (DEGs). We validated our 
RNA isolation, mapping, and normalization of gene expression 
by performing quantitative real-time PCR (qRT-PCR) with 
independently - collected, triplicate RNA samples from 
unfertilized ovules and whole hybrid seeds from a new set of 
three maternal plants and three pollen donors on a subset of six 
genes (see Figure Sl for details) and comparing  their trends to 
the transcriptomics analysis. The qRT-PCR temporal expression 
patterns of all six genes closely matched the RNA-seq based 
expression patterns. 
To uncover trends in the gene ontology (GO) terms ofDEGs, 

we performed the Hartigan and Wong K-means clustering 
algorithm (Hartigan and Wong, 1979) on the fragments per 
kilobase of transcript per million (FPKM)values of all DEGs. We 
used 20 clusters (as determined by the gap statistic), with 100 
random starts and 25 iterations. We performed a GO-term 
enrichment analysis of resulting clusters in ThaleMine (https:// 
apps.araport.org/thalemine/begin.do) using the most similar 
Arabidopsis thaliana homologues, then used REVIGO (http:// 
revigo.irb.hr/) to filter out redundant GO-terms, using a 
similarity cutoff index of 0.7. While we used the reference 
annotation (Phytozome v2.0) to calculate Mimulus gene 
abundances, we established homology of genes relative to 
Arabidopsis using BLASTx (Camachoet al., 2009) with a cutoff 
of E 0.001, designating the hit with the highest bitscore as the 
most similar A. thaliana homolog. There were few differences 
between the BLASTx results and the phytozome annotation 
(Goodstein et al., 2012). Here and elsewhere in this paper, we 
present the gene name and gene designation for the most similar 
homologue from Arabidopsis thaliana for the M. guttatus gene 
number. We used plantTFDB4.0 (http://planttfdb.cbi.pku.edu. 
en/) to annotate transcription factors in M. guttatus, tomato 
(Solanum lycopersicum),A. thaliana, and rice (Oryza sativa) (Jin 
et al., 2015; Jin et al., 2017). We aligned protein sequences of type 
I MADS-box genes from these species, and estimated and 
bootstrapped a neighbor joining (NJ) tree (1000 reps) using 
clustalW2.l (Larkin et al., 2007). 
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We  compared our expression data with previously published 

M. guttatus transcription data collected from calyx, leaves, petals, 
and stem tissue (Edger et al., 2017) to determine which genes and 
transcription factors are expressed exclusively in ovules or seeds. 
We blasted the transcripts in Edger et al. (2017) to the M. 
guttatus reference genome to obtain their gene identity, selecting 
the hit with the highest bitscore and using a cutoff of Es; 0.001. 
We note that both our data and that ofEdgeret al. (2017) include 
transcripts that do not correspond to the current M. guttatus 
genome annotation; we chose not to pursue these unannotated 
transcripts further. We considered a gene to be expressed in our 
data if it had a mean FPKM;::: 1.0 in at least one time point. We 
categorized as stage-specificthose genes whose expression in our 
samples had a mean FPKM ;::: 5.0 at that stage but s; 1.0 at all 
other stages. Finally, we categorize genes as exclusive to ovules or 
seeds if their expression levels as reported in Edger et al. (2017) 
was an FPKM < LO and they had a minimum mean expression of 
FPKM;::: 5 in ovules or 2- 8 DAP seeds. We compare our data to 
seed transcriptomes of A. thaliana (Belmonte et al., 2013), maize 
(Chen et al., 2014; Yi et al., 2019), and domesticated tomato and a 
near wild relative (Solanum pimpinellifolium) (Pattison et al., 
2015; Shinozaki et al., 2018) to look for overlapping sets of seed- 
exclusive genes in these taxa 

Detecting and Validating Genes With 
Mimulus guttatus-Biased Expression 
We used GATK's ASEReadCounter to assemble M. guttatus and 
M. pardalis allele counts at SNP positions distinguishing our 
inbred lines, CSS4 and SEC39, for each library of 2- 8 DAP seeds. 
We confined our allele counts to sites that were homozygous in 
the 5Ginbred lines used to generate the parental pseudo-references. 
At each time point, we assembled lists of genes that either 1) 
exhibited no maternal expression at any SNP in any biological 
replicate, or 2) exhibited significant paternal bias for one or more 
SNPs within a gene for two or more replicates. For the former we 
eliminated genes exhibiting either little overall expression (< 2 
counts averaged across replicates) or whose expression across 
replicates within a time point was highly variable (i.e., standard 
deviation in expression> mean expression). For the second group, 
ateachSNP wecalculated the ratioo fM.guttatusalleliccounts toM. 
pardalis allelic counts (Mg/Mp) for each replicate, then calculated 
the mean Mg/Mp ratio across replicates. We retained only those 
genes where a majority ofSNPs within the geneexhibited Mg/Mp > 
2 and where variance in Mg/Mp was low (i.e., where the standard 
deviation of Mg/Mp among SNPs was less than the mean across all 
SNPswithin a gene).Onlygenesexpressed in twoor more replicates 
were considered for future validation Because our search for M . 
guttatus -biased expression was performed on whole-seed 
transcriptomes, we cannot apply any a priori hypothesis for the 
ratioofMg/Mp expression at any given gene,since that gene maybe 
expressed in oneor moretissuetypes(i.e.,seed coat, embryo,and/or 
endosperm). Thus, our findings do not constitute a screening for 
imprinted genes in Mimulus. 
Transcripts that displayan expression biastoward the M.guttatus 

allele could originate from a parent-of-origin bias, an allele-of-origin 
bias or be false positives. To both validate the expression bias and 
distinguish  between these possibilities we hand-isolated endosperm 

from both SEC39 x CSS4 and CSS4 x SEC39 Fl seed at 8 DAP. RNA 
was converted to  cDNA and  used in semi-quantitative PCR assays. 
We identified seven candidate genes containing known allele- 
distinguishing SNPs due to the creation or elimination  of  a 
restriction enzyme cutting site. We created pairs of  oligos  (Table 
SI) to amplify the SNP-containing fragments. Relative expression of 
maternal and paternal alleles was assayed by agarose-gel 
electrophoresisand  bySanger sequencing. 
 
 
RESULTS 
We generated 20 RNAseq libraries with a total of 3.85 x 108 raw 
reads, averaging 1.93 x 107 reads per library (see Table S2 for 
alignment statistics). Pairwise sequence divergence (1t) between 
SEC39 and CSS4 in coding regions is 0.028 ± 0.022 S.D. Mapping 
to the SEC39 pseudoreference produced a mean of 75.3% ± 4.25 
S.D. properly paired, uniquely mapped reads, while mapping to 
the CSS4 pseudoreference produced a mean of70.0% ± 2.34 S.D. 
properly paired, uniquely mapped reads. Mapping to the SEC39 
(i.e., maternal) pseudoreference genome was more efficient since 
our samples contain reads from seed coat (all maternal), embryo 
(1:1 maternal:paternal), and endosperm (2:1 maternal:paternal). 
Altogether, our merged alignments have an average of 75.5% ± 
3.98 S.D. paired, uniquely mapped reads. This represents a 
significant improvement over mapping to the IM62 reference 
genome, which produced 67.7% ± 4.0 S.D. uniquely mapped 
reads (t19=   68.97, p  < 0.0001) for an increased mapping rate of 
-8%, similar to that found byothers (Huang et al., 2014; Crowley 
et al., 2015). 
 
Developmental Progression of Mimulus 
parda/is x Mimulus guttatus Seeds 
As expected, seed set, outer morphology, and germination rates 
among mature seeds from M. pardalis x M. guttatus (SEC39 x 
CSS4) confirms a lack of postzygotic isolation between these 
inbred lines (Oneal, Munger and Willis, unpublished; Macnair 
and Cumbes (1989)) (see Figure 1, Figure S2). Selfed M. pardalis, 
selfed M. guttatus, and reciprocal M. pardalis x M. guttatus fruits 
contained mostly round, viable seeds with a small minority of 
shriveled or flat seeds (Figure I A, Figure S2), with no significant 
difference in the distribution of seed types between the selfed fruits 
and hybrid fruits (MANOVA F9,45 = 1.09, p > 0.1). Germination 
rates were generally high (57.9- 89.74%)( Figure lB ). 
At 2 DAP, most seeds contain four-cell embryos, progressing 

to eight-cell and dermatogen embryos by 4 DAP (Figure 2A). By 
6 and 8 DAP, seeds contain late globular- and heart-stage 
embryos, respectively. Endosperm development is ab initio 
cellular (Arekal, 1965; Oneal et al., 2016). There is regular 
proliferation of endosperm between 4 and 8 DAP, and limited 
variation in the distribution of embryonic stages at each time 
point (Figure 2B), which may result from differences in the rate 
of pollen tube growth and timing of fertilization. A PCA of 
normalized gene expression values from the 20  libraries 
produced well-defined clusters corresponding to the five 
different developmental time points assayed (Figure 2C), with 
the exception of some overlap between 2 and 4 DAP, indicating 
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that these stages exhibit similar transcriptional states. The first 
axis explains 66% of the variation, and reflects the effect of time, 
while the second axis explains 22% of the variation. 
 
Correlations Between Gene Expression 
and the Progression of Mimulus guttatus 
Seed Development 
We detected the expression of 18,836 annotated genes in ovules 
and seeds, representing 67% of all currently annotated M. 
guttatus genes,  including  1,011 transcription  factors  (TFs),   of 

which 40 are MADS-box genes. The number of genes expressed 
in any stage was highest in ovules (16,681) and lowest in heart- 
stage seeds (8 DAP: 14,784), but we found no relationship 
between gene expression diversity and collection time point 
(ANOVA F4,15 = 2.522, p = 0.085) (Fig ure S3). A generalized 
linear model incorporating multiple, progressive pairwise 
comparisons in edgeR identified  12,384  DEGs  (FDR $ 0.01), 
while a time series analysis in Next maSigPro identified 6,613 
DEGs (R2 = 0.6, FDR$ 0.01) (Tables S3 and S4). We focus on 
the overlappingsets ofDEGs between edgeR and Next maSigPro. 
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FIGURE 2 I (A) Mo rph ology of MimuAJs parda/is x Mimulus guttatus developing seeds collected 2, 4, 6, and 8 days after pollination(DAP). Sections wereobtained 
from LR-white embedded seeds (see Methods). (Bl Frequencydistribution of embr)Onic stages of seeds collected at 2, 4, 6, and 8 DAP. (C) Principle component 
analysis (PCA) plot  of RNA libraries. 
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These consisted of 6,233 DEGs (Figure S4), including 388 
transcription factors (TFs) from 49 families, of which 16  are 
type I MADS and 4 are MIKC-type MADS-box genes. 

 
Clustering Reveals Co-Expression 
Patterns Enriched for Functional Pathways 
To further correlate patterns of gene expression with developmental 
changes in seeds,we used a Hartigan and Wong K-means clustering 
algorithm (Hartigan and Wong, 1979) on the 6,233 DEGs identified 
byedgeR and Next maSigPro. Of20 K-clusters, 13 were significantly 
enriched for GO-terms, including several enriched for GO-terms 
known to play a role in seed development in Arabidopsis (see 
Figure 3, Figure S5, Tables S5 and S6). Several of these clusters 
are of note and mirror what is known about gene expression patterns 
in developing seedsin other taxa For example, genes thatexhibit peak 
expression in ovules are enriched for regulation of RNA metabolic 
process, regulation of gene expression and transcription, and 
regulation of multicellular organismal development (cluster 5). In 
maize, genes that are highly expressed in the female gametophyte 
include transcription factorsinvolved in RNAregulation (Chenet al., 
2014). In Arabidopsis, epigenetic regulatory pathways established in 
the eggand centralcell of the femalegametophyte setthestagefor the 
production of embryo-targetingsmall interfering RNAs (siRNAs) in 
the endosperm (Wuest et al, 2010). Development at 6 DAP is 
characterized by the emergence of the late globular-stage embryo 
(Figure 2A) and the acceleration of endosperm proliferation (Oneal 
et al, 2016). A group of co-expressed genes which peaks in both 
ovules and in globular (6 DAP) seeds is enriched for GO-terms 
related to cell cycle processes, DNA replication, and chromatin 
organization (duster 17) as it is in Arabidopsis (Le et al., 2010; 
Belmonte etal,2013).Another duster that peaksat 6 DAP(duster 2) 

contains genes involved in cell wall biogenesis and organization. 
Finally, genes that remain unexpressed until 8 DAP are enriched for 
carbohydrate and lipid metabolic processes, seed oil bodybiogenesis, 
and lipid localization (cluster 18). In Arabidopsis and maize these 
biological processesareenriched inendosperm (Belmonte et al, 2013; 
Li et al., 2014 ), suggesting they may perform similar roles in species 
with ab initio cellular endosperm development 
We identified a subset of genes whose expression was stage- 

specific in our data (see Methods), with 72 genes  specific  to 
ovules, and 3, 29, and 77 genes specific to 2, 6, and 8 DAP seeds, 
respectively (Table S7). There were no genes specific to 4 DAP 
seeds from.  A comparison of our  data  with  expression  data from 
M. guttatus calyx, petal, leaf, and stem tissue (Edger et al., 2017) 
revealed 30 genes whose expression was exclusive to ovules (i.e., 
FPKM 5 in ovules and $ 1 in any other tissue), including 4 
transcription factors (TFs) (Table S7). There were 478 genes 
exclusively expressed in seeds, including 35 TFs from multiple 
families and 6 type I MADS-box genes encoding transcription 
factors, with 2, 20, and 48 genes exclusive to the 2, 6, and 8 DAP 
stages of seed development, respectively (Tables S8 and S9). A 
heatmap of expression of seed-exclusive transcription factors in 
M. guttatus shows the majority are not constitutively expressed, 
but rather, are chiefly expressed in 6 or 8 DAP seeds (Figure S6). 

 
Overlap Between Seed-Exclusive Mimulus 
guttatus Genes and Seed-Exclusive Genes 
in Other Taxa 
K-means clustering of genes expressed in seeds reveals that a large 
fraction (N=l20, or 25%) of seed-exclusive genes segregate into 
cluster 18.Another 101 (21.1%) of seed-exclusive genes cersegregate 
into cluster 2. Comparing  seed-exclusive genes in  M. guttatus to 
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other taxa, including A thaliana, maize, and tomato reveals some 
overlap. In A thaliana, there are 43 seed-exclusive genes whose 
nearest homologs are also seed exclusive in M. guttatus (Table S7); 
one of these genes is enriched in the A. thaliana seed coat 
(At5g39130) (Belmonte et al., 2013). Also among the M. guttatus 
seed-exclusivegenes are two that are not exclusive to A thaliana 
seeds but do exhibit enriched expression in A. thaliana endosperm: 
AtAGL62 (At5G60440) and AtCYSS (At5g47550), a putative 
phytocystatin expressed in seedlings (Song et al., 2017). AtAGL62 
suppresses endosperm cellularization in A. thaliana and is a key 
regulator of endosperm development The seed-exclusive expression 
pattern of 2 M. guttatus homologues of AGL62 (Migut.B00708 and 
MigutD01476) suggests that they play an important role during 
Mimulus seed development; however, without RNA sequencing of 
isolated seed tissues and additional functional analyses, we cannot 
yet determine the role of M. guttatus AGL62 homologues. Finally, 
there are 25 genes enriched in A thaliana endosperm that are not 
expressed in M guttatus seeds, including three transcription factors 
(AtAGL87,  AtFIS2, and AtFWA). 
In maize, there are 23 seed exclusive genes whose nearest 

homologs are also seed exclusive in M. guttatus (Table S7), 11 
enriched in endosperm, and 2 enriched in the embryo (Chen et al., 
2014; Yi et al., 2019). Of the seed-exclusivegenes in M. guttatus,54 
genes have homologs that are not seed-exclusivebut were found to 
exhibit enriched expression in the maize embryo, endosperm, or 
both.relative to other seed tissues (Chen etal., 2014). There are 250 
genes enriched in maize endosperm whose homologs are not 
expressed at all in M. guttatus seeds, including 39 transcription 
factors such as transcription factors activating maize ABI3 (VPl), 
AUX/IAA, and two maize type I MADS genes (MADS25 and 
MADS21). Another gene enriched in maize endosperm but which 
is not expressed in M. guttatus seeds is the maize FIEl, which is 
maternally imprinted and peaksin expression during the transition 
from mitotic cell division to endoreduplication in the endosperm 
(Hermon et al., 2007). Twenty M. guttatus genes have nearest 
homologs that are exclusively expressed in both A. thaliana and 
maize seeds (Table S7). There is, however, no overlap between 
genes unexpressed in M. guttatus seeds but enriched in A. thaliana 
or maize endosperm. 
Finally, in domesticated tomato there are 8 seed-exclusivegenes 

whose nearest homologs(25genes)are seed exclusive in M.guttatus 
(Zuluaga et al., 2016; Sbinozaki et al , 2018), one of which (CYSS) is 
enriched in the embryo of a wild relative of domesticated tomato 
(Pattison et al., 2015) (Solyc04g014780). Of the 25 seed-exclusive 
genes M. guttatus with homologs in tomato, 22 do not have seed- 
exclusive homo logs in A. thaliana or maize. These include M. 
guttatus and tomato homologs of LIPID TRANSFER PROTEINS 4 
and 12 (LPT4 and LPT12: Migut.M01356/Migut.M01355/ 
Migut.M01350/Solyc05g053530), PECTIN METHYLESTERASE 
INHIBITOR 2 (PMEI2: Migut.A00l19/Migut.I00331/Solyc09 
g072950), and VACUOLAR INHIBITOR OF FRUCTOSIDASE 1 
(VIF l : Migut.M00087/Solyc09g072950). A GO-term enrichment 
analysis of these genes finds two overrepresented biological 
processes: negative regulation of catalytic activity, and negative 
regulation of molecular function (adjusted p-values 0.003  and 
0.004, respectively). 

Type I MADS-Box Gene Expression 
Because of their known role in female gametophyte and seed 
development across a range of plant taxa (Colombo et al., 1997; 
Busi et al., 2003; Kohler et al., 2003; Arora et al., 2007; Colombo 
et al., 2008; Kang et al., 2008; Steffen et al., 2008; Zhang et al., 
2018), we further examined the temporal expression patterns of 
differentially expressed type I MADS-box genes using a 
hierarchical clustering analysis. This analysis identified co- 
expressed sets, or hierarchical expression clusters of type I MADS 
box genes, a familythat includes theArabidopsisAGAMOUS-LIKE 
genes AGL26, AGL62, and AGLl04. Two Mimulus type I MADS- 
box DEGs were expressed in ovules but unexpressed after 
fertilization (Figure 4, cluster VI); other MADS-box DEGs were 
either expressed primarily in four-cell to dermatogen-stageseeds 
(2-4 DAP, clusters N and V), or in globular- and heart-stageseeds 
(6- 8 DAP, clusters I and II) (Figure4). A neighbor joining (NJ)tree 
of typeI MADSgenesfromM.guttatus,S.lycopersicum, A. thaliana, 
and 0 . sativa suggests that in some cases, genes with similar 
temporal expression patterns are each other's nearest relatives 
(Figure 5). 
 
Four Imprinted Endosperm-Expressed 
Genes Display Strong Paternal Expression 
Bias 
We assembled a list of 163 genes that demonstrated expression bias 
in favor oftheM. guttatus allele as described above (Tables S8 and 
S9). M. guttatus-bias could be the result of cis-regulatory allele- 
specific expression bias or imprinting (Stupar and Springer, 2006; 
Zhang andBorevitz, 2009); the former would beM.gu ttatus-biased 
regardless of the crossing direction. We validated 7 of these 
putatively M . guttatus-biased genes as above and all are expressed 
in endosperm. Four genes were imprinted, exhibiting paternally- 
biased expression in isolated endosperm regardless of the direction 
of the cross (Table 2, Figure 6). Intriguingly, only one of the 
validated genes exhibits temporally significant expression changes: 
Migut.EOll17 is unexpressed until 6 DAP then declines at 8 DAP; 
the remaining were not identified as DEGs by our time series 
analysis. Allfour genes haveimprinted homologues in otherspecies 
(Table 2). The remaining three putative M. guttatus-biased genes 
exhibited allele-specific expression (Table 2). 
 

DISCUSSION 
Seed development can be partitioned into stages: early embryo 
patterning and endosperm proliferation, embryo organ initiation 
and morphogenesis, and the onset of maturation, during which 
the endosperm accumulates seed storage proteins and the 
embryo enters dormancy (Agarwal et al., 2011).  In  Mimulus, as 
in Arabidopsis, the majority of genes expressed in ovules and 
seeds are expressed across all stages of ovule and seed 
development and comparatively few  genes  are stage-specific 
with an even smaller number exclusive to ovules or seed 
development from 2 to 8 DAP (Table S7), suggesting that the 
majority of genes fulfill multiple developmental and biological 
roles (Le et al., 2010; Belmonte et al., 2013; Chen et al., 2014). 
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TABLE  2 I Genes exhibiting Mmulus guttatus allele specific bias selected for validation. 
 

M. guttatus 
gene name 

A. thaliana 
homologue 

Gene name Description Imprinted Imprinted homologues 

Migut.E01117 AT5G52230    MBD13 Methyl-CpG binding transcription regulator Yes Capse//a. rLbe//a. (MEG andPEG), maize (PEG), 
    castor (MEG) 
Migut.H00744 AT5m 9790   Trtthorax-related 5 

(A7XR5) 
Histone-lysine  N-methyltransferase: targets H3K27 
for epigenetic silencing of repetttive and 

Yes Maize (PEG), So/anum dlilense (PEG), andS. 
peruvianum (PEG) 

  transposon elements   

Migut.!00545 AT5G53150   DnaJ DnaJ heat shock N-terminal domain chaperone Yes Capse//a. grand/flora  (PEG), Arabidopsis 
  protein  tha/iam (PEG), S. peruvianum, S. dliense 
    (MEG) andS. arcamm (PEG), maize (MEG), 
    sorghum (MEG), castor (PEG) 
Migut.!00995 AT1G51730  RWDdomain- Ubiquttin-oonjugaitng enzyme family protein No NA 
 contairing protein    

Migut.M00083 AT5m 8650  WD-repeat protein RanBPM protein, function LJ1known No NA 
Migut.N01317 AT2G16730   Beta-galactosidase 11• Catalysis of the hydrolysis of terminal, non- Yes Rioe (MEG), S. crilense (MEG and PEG) 
 related (fJGAL11) reducing beta-D-galactoseresidues in beta-D-   
  galactosides.   

Migut.l.01896 AT3005860 AGL45 MADS-box transcription factor No N.A. 

Imprinted e>pression wasconfrrred byrt-PCR, enzymaticd ;gestion, ard Sanger s9:1uercing. Refe'ences:Capsella: (HalorEng8!1et al , 2016;Lafon.Placetleet cl., 2018);maize: j\1\/ates Elal , 
2013); IWJidopsis thaliana: (Pignatta et al , 2014); Somt.m: (Fbrez-Rueda et al., 2016; Rothet cl., 2018); sorght.m: (Zhang et al, 2016);oce(Lw et al , 2011; C/-en et al , 2018); castnr(Xu 
et al, 2014.) ASE, allele specific expression. We havedesignated as NA geres that we-enot irrprinted inMimulus; we did not sea-ch for homoloflJ('S of these genes inother taxa. 

 

 
A question of particular interest is "what is the set of genes 

that regulate the ab initio cellular type of  endosperm 
development and furthermore, are the expression of these key 
regulators  uniquely  expressed   in  cellular   endosperms"? We 

observe some overlap between the set of genes expressed in a 
seed-exclusive manner in M. guttatus and seed-exclusive genes 
detected in other species (i.e., A thaliana, maize, and tomato). 
Additionally,there are 8 seed-exclusive tomato genes (associated 
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FIGURE 6 I Validation of four paternally expressed imprinted genes: Migut.E01117 (MB0/3), Migut.H00744 (ATRX5), Migut.!00545 (f)naJ), andMigut.N01317 
(BGAL11) via semi-quantttative PCR and Sanger sequencing. (A) Allele-specific real- time (RT)-PCR analyses of each gene in the endosperm of selfed and reciprocal 
crosses of MimuAJs parda/is (Mp) and Mimuus gutta/us (Mg) is g iven. For each gene, gel shows the sizes of restriction fragments after RT-PCR amp lification and 
digestionwith restrictionendonucleases. (B) Paternal expression was oonfi!Tll8d by real-time (RT)-PCRsequencing chromatographs at selected SNP regions 
measuring allele-specific expression in reciprocal crosses. 
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with 25 seed-exclusive Mimulus homologues) that are not 
expressed in a seed exclusive fashion in maize or Arabidopsis. 
These genes might be good candidates for future functional 
analyses that aim to identify regulatory differences between ab 
initio cellular and syncytial endosperm developmental strategies. 
However, it remains possible that the difference between ab initio 
and syncytial endosperm development is determined by 
differences in structural aspects of encoded proteins or in other 
changes (e.g., post -transcriptional) that are not reflected in the 
transcriptional patterns that we have identified in  this work. 
Only future functional analyses can address this question. We do 
note a lack of overlap between A. thaliana seed-exclusive and 
maize seed-ex clusive genes enriched in endosperm but 
unexpressed in M. guttatus seeds. This suggests a significant 
degree of transcriptional divergence between these two taxa that 
both display syncytial development and may reflect the fact that 
these species are highly genetically and evolutionarily divergent 
and show marked differences in seed development overall (A. 
thaliana  is a dicot and maize is a monocot). 
Most expressed genes do not exhibit significant changes 

associated with fertilization and major developmental events 
within seeds. A substantial portion, however, are differentially 
expressed and segregate into clusters that are suggestive of their 
roles in development. Three co-expression gene clusters (clusters 
2, 17, and 18) deserve further discussion here due to their 
associated functional GO-terms and the presence of  stage- 
specific gene expression patterns. 
 
Cluster 17: Genes Enriched for Mitotic Cell 
Cycle and Chromatin Organization 
Genes within cluster 17 are highly expressed in ovules, decline in 
expression and then increase in globular- and heart-stage seeds 
(Figure 3). Overrepresented GO-terms indicate functional roles 
in the regulation of chromatin organization, DNA replication 
and the cell cycle. A Mimulus homologue of TOPOISOMERASE 
II (TOPI!), which functions to ensure proper chromosome 
movement during cell division in A. thaliana (Martinez-Garcia 
et al., 2018) is also contained within cluster 17. Other genes 
within this cluster have homologues associated with chromatin 
organization including AtCMT3 and AtMETl, which act to 
maintain methylation of CHH and CG sites, respectively, 
during DNA replication (Lindroth et al., 2001; Kankel et al., 
2003). In A. thaliana, seed development is accompanied by 
extensive gain of CHH methylation, especially within 
transposable elements, and CMT3 and METl transcription is 
largely confined to the embryo (Hsieh et al., 2009; Kawakatsu 
et al., 2017). By contrast, multiple homologues of CMT3 are 
expressed in tomato endosperm at the globular-stage(Roth et al., 
2019), raising the possibility that the function of CMT3 in 
Mimulus is more similar to tomato than A. thaliana.  Also 
within this cluster is a Mimulus homologue of AtHMGB3, a 
family of proteins with an HMG-box DNA-binding domain that 
act as global modulators of chromatin structure through the 
assembly of nucleoprotein assemblies (Pedersen and Grasser, 
2010). We also find a homologue of MINICHROMOSOME 
MAINTENANCE 7 (MCM7), and the timing of its expression 

mirrors its expression pattern in A. thaliana. AtMCM7 is part of 
a complex which unwinds DNA prior to replication, and is 
maternally expressed in the egg and central cells of the ovule, 
then biparentally expressed the proliferating embryo and 
endosperm (Herridgeet al., 2014). 
 
Cluster 2: Genes Associated With the 
Recruitment of a Secondary Cell Wall 
Biosynthesis  Regulatory Module 
Cluster 2 is comprised of genes that are minimally expressed 
from O to 4 DAP, peak dramatically in globular-stage seeds (6 
DAP), and then again decline in heart-stage seeds (8 DAP) 
(Figure 3). These genes showa strong overrepresentation of GO- 
annotations associated with secondary cell wall biogenesis and 
cell wall remodeling activities (Table S5). Cluster 2 contains 
Mimulus homologues of the Arabidopsis IRREGULAR XYLEM 
(IRX) genes includingIRXl (At4gl8780), IRX3 (At5gl7420), and 
IRXS (At5g44030), all encoding cellulose synthase catalytic 
subunits required for secondary wall formation (Tayloret al., 
1999; Taylor et al., 2000; Taylor et al., 2004), as well as Mimulus 
homologues of IRX7 (At2g28110), IRX9 (At2g37090), IRXJO 
(Atlg27440),   IRX12   (At2g38080),  IRX14   (At5g67230), and 
IRX 15-L (At5g67210), which encode additiona l enzymes 
involved in secondary cell wall synthesis (Zhong and Ye, 
2015 ). Cluster 2 also contains transcription factors that 
constitute a key regulatory network of secondary cell wall 
formation. These include Mimulus homologues of 
SECONDARY W ALL-ASSOCIATED NAC DOMAIN PROTEIN 
2 (SND2) (At4g28500), KNATJ (Atlg62990), and five members 
of a MYB family of transcription factors that regulate secondary 
cell wall formation (At4g22680, At3g08500, At4g33450, 
Atlg73410, Atlg66230). Thus, a large portion of the regulatory 
machinery underlying secondary cell wall synthesis  in 
Arabidopsis appears to be conserved  in  Mimulus  and  is 
recruited to mediate some secondary cell wall events specific to 
this stage of development, which includes rapid proliferation of 
endosperm (Oneal et al., 2016). In addition  to the large number 
of genes with known functional annotations in  Arabidopsis, 
many other genes within the expression cluster would be 
expected to regulate and function  in  secondary  cell  wall 
biosyn thesis in Mimulus. As such, our analysis identifies 
additional Mimulus candidates for future functional studies of 
secondary cell wall regulation. 
 
Cluster 18: Genes Involved in Auxin 
Synthesis and the Accumulation of 
Nutrient Reservoirs in Endosperm 
The plant hormone auxin is associated with nearly every aspect 
of plant growth and development, including seed and fruit 
development (Zhao, 2010; Li et al., 2016; Figueiredo and 
Kohler, 2018). We detected the expression of several 
components of the auxin biosynthesis and signaling pathway 
in cluster 18 which peaks in 8 DAP seeds (Figure 3). Indeed, two 
such genes expressed in exclusively in heart-stage seeds are M. 
guttatus homologues of TRYPTOPHAN AMINOTRANSFERASE 
RELATED2  (TAR2;  Migut.D01989)   and   YUCCA4 (YUC4; 
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MigutA00287) which encode the TAR and YUCCA enzymes in 
the major auxin biosynthetic pathway (Brumos et al., 2014). 
Multiple AUXIN RESPONSE PACIOR (ARP) genes are also 
expressed, including three homologues of  the  transcription 
factor ARF19 (Migut.L01587, Migut.J00834, Migut.L01914), 
which  in  tomato  is  highly  expressed  in  seed  coat   (Pattison 
et al., 2015) and can play a major role in regulating seed size 
(Sun et al., 2017). 
Arabidopsis homologues of Mimulus genes found in this 

cluster are associated with seed oil biosynthesis, and display 
increasing expression within maturing A. thaliana seeds 
(At5g52920, At3g02630, and At5g63380) (Hajduch et al., 
2010). Thus, we suggest these Mimulus genes play a role in the 
metabolic processes which generate the energy stores required by 
the mature seed pheno type. One such group of major regulators 
of seed maturation includes the LEAFY COTYLEDON (LBC) 
group of genes. FUS3 is a component of this group and acts as a 
transcriptional activator (Keith et al., 1994; Luerl3en et al., 1998; 
Yamamoto et al., 2009; Wang and Perry, 2013); fas3 mutants lose 
embryo identity and fail to germinate (Harada, 2001). ABI3 is 
another transcriptional activator, and abi3 mutants exhibit 
impaired embryo maturation and germination (Parcy et al., 
1994).   Both   FUS3  (Migut. F00019/At3g26790)  and ABI3 
(Migut.D0051l/At3g24650) segregate into cluster 18, and are 
differentially expressed over the course of seed development: 
MgFUS3 is expressed solely in heart-stageseeds, while MgABI3 is 
expressed in globular- and heart-stage seeds. Similarly, the 
nearest homolog of LECl -like (AtLJL/At5g47670/Migut. 
M01289) is also contained with this cluster. These results 
suggest that MgABI3 and MgFUS3 may regulate the expression 
of this cluster of genes in a manner similar to what is seen in 
Arabidopsis, maize, barley, and tomato seeds ( McCarty et al., 
1991; Bassel et al., 2006; Abraham et al., 2016). 
 
Mimulus MADS-Box Genes Expressed 
During Seed Development 
MADS-box genes are transcription factors that play key roles in 
regulating developmental transitions involved in germination, root 
growth, flowering, and reproduction (Zhang and Forde, 1998; 
Saedler et al., 2001; Bemer et al., 2010). Swveys of type I MADS- 
box expression in A. thaliana have found that members of this gene 
family are expressed in multiple cell types within the female 
gametophyte and the developing seed (Bemer et al, 2010;  Zhang 
et al, 2018). The origin of type II MADS-box genes can be 
attributed largely to whole genome duplication events (Shan et al., 
2007), while type I MADS-box genes appear to have evolved via 
bothwhole genome duplication and smaller scale duplication events 
(Nam et al., 2004). Prior work has found widespread evidence of 
gene loss, subfunctionalization, and neofunctionalization of this 
important gene family (Vandenbussche et al., 2003; Kramer et al., 
2004; de Martino et al., 2006; Kater et al., 2006; Airoldi and 
Davies, 2012). 
It is intriguing that several temporally co-expressed type I 

MADS genes are each other's nearest relatives (Figure 5). For 
example, twogenes thatpeakin expression inovules(Migut.B00480 
and    Migut.N01504)   and   two  that   peak  in   2   DAP seeds 

(Migut.B00708 and Migut.D01476) are sister to each other in the 
NJ tree (Figure5) and fallintothesameexpression clusters (dusters 
5 and !,respectively).Together with Migut.B00479, these genes are 
contained within a clade that includes the MADS genes AtAGL23 
(Atlg65360), AtAGL28 (Atlg01530), and AtAGL62 (At5g60440). 
In A . thaliana, these genes function in regulatory networks in the 
female gametophyte and developing seed (Colombo et al., 2008; 
Kanget al, 2008; Steffen et al, 2008; Bemer et al., 2010; Figueiredo 
et al.,2015; Fiumeetal.,2017; Zhang etal.,2018). TwoMADSgenes 
that are differentiallyexpressed in 6 DAP seeds (Migut.B01089 and 
Migut.L01896) are contained within a clade that includes AtAGL% 
and AtAGL48, both expressed in the globular embryo (Bemeret al., 
2010 ), as is the closely related tomato MADS-box gene 
Solycl2g016150 (Pattison et al., 2015). Migut.K01032 and 
Migut.H0121l are also paired and peak in 6 DAP seeds. 
Several type I MADS-box genes exhibit temporal patterns of 

expression in M. guttatus that mirror their expression in A. 
thaliana. Four MADS-box genes are expressed in the female 
gametophyte but not the fertilized seed of A. thaliana, including 
AtAGL49    (Atlg60040),     AtAGL60     (Atl  g72350),   AtAGL73 
(At5g38620), and AtAGL83 (At5g49490) (Bemer et al, 2010). 
M. guttatus homologues of these genes (AtAGL49: 
MigutB01668; AtAGL60, AGL73, and AGL83: Migut.N01504) 
are also expressed in M. guttatus ovules but not in  seeds 
(Table S7). Similarly, AtAGL102 (Atlg47760), AtAGL34 
(At5g26580), and AtAGL90 (At5g27960) are expressed in A. 
thaliana seeds but not prior to fertilization (Bemer et al., 2010; 
Zhang et al., 2018); the M. guttatus homologues of these genes 
(AtAGL102: Migut.K00930; AtAGL34 and AtAGL90: 
Migut.B01455) are also unexpressed in ovules, peaking 
dramatically in four-cell embryo M. guttatus seeds (2 DAP) 
(TableS7).Moreover, six of the seed-specific genes we identified 
are type I MADS-box genes, including one that is also seed- 
specific in A. thaliana (AtAGL45/At3g05860: Migut.B01089). 
Finally, AtAGL26 (At5g26880), AtAGL28 (Atlg01530), 
AtAGL40 (Atlg01530), and AtAGL62 (At4g36590) are 
expressed both in the A. thaliana female gametophyte and the 
seed, as are their M. guttatus homologues (AtAGL26: 
Migut.N01481; AtAGL28, AtAGL40, and AtAGL62: 
MigutB00480). While the history of duplication, retention and 
loss of type I MADS-box genes in Mimulus remains uncertain, 
these findings are suggestive of shared roles for these important 
transcription factors in gametophytic and seed development in 
A  thaliana and M. guttatus. 

Paternally Imprinted Genes in Mimulus 
Endosperm 
The prevailing hypothesis for the evolution of imprinted 
expression is the kinship theory, which posits that biases in the 
expression of maternally or paternally derived genes have 
evolved to maximize fitness of mothers vs. offspring with 
respect to offspring provisioning via endosperm (Haig and 
Westoby, 1989; Haig, 2004). Under this scenario, genomic 
conflict over maternal resources could lead to rapid evolution 
of imprinted loci, resulting in rapid sequence divergence and/or 
turnover in the imprinting status of genes among even closely 
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related species (Kohler et al., 2010; Kohler et al., 2012).  In 

general, surveys of imprinted genes have found little overlap in 
imprinting status of loci between closely related (Wolff et  al., 
2011) or distantly related taxa (Luo et al., 2011;  Waters et  al., 
2013; Yoshida et al., 2018), however, some loci are imprinted in 

several different species. Here we report the first validated 
imprinted genes in M. guttatus [(but see  (Kinser  et  al., 2018)]. 

We found that all four of  our  validated paternally  imprinted genes 
(PEGs) have homologues that are imprinted in  other species, 

including maize, sorghum,  and  rice  (Table 2).  Given our ad hoc 
method for validating  candidate PEGs,  which included as  a  
criterion  the  potential  for  imprinting in  other taxa, this is not 
surprising. Nevertheless, the fact  that these genes are imprinted in 
multiple species, including one with imprinted homologues in six 
other species (Migut.100545: Dnaf heat shock chaperone protein), 
suggests that proteins  encoded  by  these genes perform similar 

functions in endosperm across plant taxa. Previous work indicates 
that many PEGs are involved in epigenetic regulation (Waters et 
al, 2013; Pignatta et al., 2014) via DNA methylation or repressive 
histone modifications. Two M. guttatus genes we identified as 

exhibiting paternally- biased expression belong to these functional 
categories: a methyi-CpG binding transcription factor 

MigutE01117 (AtMBD13/At5g52230) and a chromatin remodeling 
protein, MigutH00744 (AtA TXRSI At5g09790). Methyl-CpG 
binding transcription factors mediate CpG methylation by 

coordinating the activities of histone deacetylases and histone 
methyitransferases (l.emach and Grafi, 2007). Likewise, AtATXRS 

promotes gene silencing at constitutive heterochromatin and 
repression of TEs by orchestrating mono- methylation at H3K27 
Oaoob et al, 2009). Homologues of both genes are imprinted in 

Capsella, maize, and castor (MBD13) and in maize and two species 
of Solanum (Waters et al., 2013; Xu et al., 2014; Hatorangan et al, 
2016; Roth et al., 2018). Homologues of Dnaf heat shock protein 

(Migut.100545) are imprinted in six other genera, including 
Solanum (Waters et al, 2013; Xu et al., 2014; Hatorangan et al, 2016; 
Roth et al., 2018), while homologues of BGALll  (Migut.N01317) 

are imprinted  in  rice and  Solanum (Luo 
et  al,  201l; Chen et al., 2018;  Roth et al., 2018). 
Disruption in the allelic dosage of paternally and maternally 

imprinted genes in endosperm can lead to dysfunctional 
endosperm development and ultimately, seed abortion, and is 
associated with hybrid seed failure (Haig and Westoby, 1989; 
Haig and Westoby, 1991; Scott et al, 1998; Kinser et al., 2018). 
Postzygotic isolation via such hybrid seed inviability is 
widespread in Solanum ( Baek et al., 2016), and imprinted loci 
have been implicated in this process (Florez-Rueda et al., 2016; 
Roth et al., 2018; Roth et al., 2019). It is striking that three of our 
validated PEGs have homologues that are imprinted in Solanum 
(Table 2), and is suggestive of shared patterns of imprinting in 
these taxa, which both exhibit a cellular endosperm development 
(Arekal, 1965; Oneal et al., 2016). Hybrid seed inviability is also 
common in the M. guttatus complex (Vickery, 1966; Vickery, 
1978) and is known in some cases to be caused by a failure of 
endosperm development (Oneal et al., 2016; Coughlan et al., 
2018). Moreover, the effects of some genomic loci contributing to 
hybrid  seed  inviability  is  dependent  upon whether  they were 

contributed by the maternal or paternal genome (Garner et al., 
2016). Future, systematic surveys of gene expression in isolated 
endosperm of reciprocally-crossed endosperms in  M.  guttatus 
and in closely related, diploid sister species (e.g., Mimulus 
nudatus, Mimulus tilingii, and Mimulus decorus), coupled with 
characterizations of their expression in incompatible hybrids 
could demonstrate whether genomic imprinting, which is 
thought to evolve via parental conflict over maternal resources, 
is a major factor driving hybrid incompatibilityand speciation in 
this rapidly evolving group. 
In conclusion, we used RNA sequencing to profile dynamic 

gene expression events in seeds across an 8-day time course and 
used gene ontology enrichment analyses to reveal statistically 
overrepresented biological functional categories of co-expressed 
clusters of genes. With respect to the regulation of a number of 
important biological events during seed development (e.g., 
secondary cell wall biosynthesis, seed maturation, auxin 
synthesis) the coexpressed gene clusters reported here provide 
valuable entry points for the investigation of novel molecular 
regulatory mechanisms during Mimulus seed development. 
Similarly, our analysis of the Mimulus MADS type I 
transcriptional regulators highlights the subset of the family 
expected to function during seed development and furthers our 
understanding of the evolution of this gene family. Furthermore, 
we detected and validated genes exhibiting paternally imprinted 
expression. The conservation of the imprinted status of 
homologous genes within other studied angiosperms strongly 
indicates they play a functional role during endosperm 
development in Mimulus, an area for future study. Our data 
broadens the taxonomic framework underlying studies of seed 
development generally and constitutes a valuable resource to 
other researchers exploring seed development and hybrid 
inviability in Mimulus, as well as future studies of comparative 
gene expression. 
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