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ABSTRACT: The authors report on the effect of manganese (Mn) substitution on the
crystal chemistry, morphology, particle size distribution characteristics, chemical
bonding, structure, and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles
(NPs) synthesized by a simple, cost-effective, and eco-friendly one-pot aqueous
hydrothermal method. Crystal structure analyses indicate that the Mn(II)-substituted
cobalt ferrites, Co1−xMnxFe2O4 (CMFO, x = 0.0−0.5), were crystalline with a cubic
inverse spinel structure (space group Fd3m). The average crystallite size increases from
8 to 14 nm with increasing Mn(II) content; the crystal growth follows an exponential
growth function while the lattice parameters follow Vegard’s law. Chemical bonding
analyses made using Raman spectroscopic studies further confirm the cubic inverse
spinel phase. The relative changes in specific vibrational modes related to octahedral
sites as a function of Mn content suggest a gradual change of measure of inversion of
the ferrite lattice at nanoscale dimensions. Small-angle X-ray scattering and electron
microscopy revealed a narrow particle size distribution with the spherical shape morphology of the CMFO NPs. The zero-field-
cooled and field-cooled magnetic measurements revealed the superparamagnetic behavior of CMFO NPs at room temperature. The
sample with x = 0.3 indicates a lower value of blocking temperature (9.16 K) with the improved (maximum) value of saturation
magnetization. The results and the structure-composition−property correlation suggest that the economic, eco-friendly
hydrothermal approach can be adopted to process superparamagnetic nanostructured magnetic materials at a relatively lower
temperature for practical electronic and electromagnetic device applications.

■ INTRODUCTION

Spinel ferrites, which belong to the characteristic group of
inorganic magnetic materials, have attracted a great deal of
interest in view of their potential applications in various fields
such as cell sorting, catalysis, ferrofluid applications, bio-
sensors, magnetic resonance imaging (MRI), drug delivery,
cellular signaling, hyperthermia, electronics, and biomedi-
cine.1−15 During the development of new technologies, spinel
oxide-type materials are considered as competent materials due
to their extraordinary physical, chemical, electronic, and
magnetic properties.11 Magnetic nanoparticles (MNPs),
especially nanoferrites with the chemical formula MFe2O4
(M = Co, Zn, Ni, Mn, etc.), exhibit remarkable properties,
which contrast to their bulk behavior. Among different spinel-
type ferrite systems, manganese ferrite (MnFe2O4) and cobalt
ferrite (CoFe2O4; CFO) NPs received special consideration as
alternatives to magnetite (Fe3O4) NPs due to their chemical
inertness to oxidation and inherent magnetic properties.16

Specifically, inverse spinel CFO is one of the most industrially
important members of the magnetic ferrite class for device
applications.17 CoFe2O4 is the preferred choice for large data
storage and usage in physical (stress) sensors because of higher
coercive field and magnetocrystalline anisotropy.17,18 On the

other hand, CFO and MnFe2O4 are becoming important for
biomedical applications (magnetic resonance imaging, bio-
molecule detection, and magnetic hyperthermia) due to their
increased degree of magnetization compared to other nano-
ferrites.18−24 The requirements of these applications are
achieved by tailoring of the NPs’ magnetic properties, which
are known to radically depend on several chemical and physical
characteristics, such as particle size, chemical composition,
cation distribution, preparation method, surface properties,
and interparticle interactions. In this context, the possibility of
changing the characteristics of the M(II) cation within the
spinel ferrite is a key to modify magnetic properties. Recently,
partial M(II) substitution within these nanoferrites
(CoxM1−xFe2O4 with x = 0−1) has become prominent to
improve their performance.11 The potential of this strategy has
been highlighted to improve the structure and magnetic
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properties for the preparation of other ferrites, for example,
ZnxMn1−xFe2O4, ZnxFe1−xFe2O4,

23 Ni1−xZnxFe2O4,
25 etc.

It is important to note that, among the many applications of
nanoferrites, biomedical applications are particularly interest-
ing and widespread. Essentially, for the biomedical applica-
tions, superparamagnetic behavior at room temperature, high
saturation magnetization, and size within the 1−50 nm range
are desirable.26 Nevertheless, developing superparamagnetic
Co(II)- and Mn(II)-based ferrite NPs with required properties
(structure, magnetic, and electrical) to meet the given
application is challenging. Various synthesis methods have
been reported for obtaining CoxMn1−xFe2O4 mixed ferrites,
such as the co-precipitation process,11 ceramic processing,27

heating of layered double-hydroxide precursors,28 thermal
decomposition,29 sol−gel method,30 chemical autocombus-
tion,31 the polyol method,32 and the hydrothermal route.3,34

However, most of these synthetic routes require special
processing and/or unusual inputs (high temperatures, organic
solvents, and postsynthesis treatments), which often results in
Co−Mn ferrites with considerably higher particle size and
ferromagnetic properties. Thus, the synthesis of super-
paramagnetic monodisperse MNPs at a lower temperature to
avoid particle growth becomes the most compelling and
challenging task. Additionally, the design and development of
efficient methods for the synthesis of high-quality
CoxMn1−xFe2O4 for a broad range of electronic, magnetic,
and electromagnetic applications continue to be an active area
of research. Therefore, motivated by these scientific challenges,
in the present work, an attempt has been made to synthesize
Co1−xMnxFe2O4 (x = 0.0−0.5; CMFO) NPs through an
innovative, simple, economic, and eco-friendly one-pot
aqueous hydrothermal route. Notably, compared to other
conventional methods, the hydrothermal synthesis route is a
simple one with a high rate of reaction while maintaining a low
operating temperature, resulting in uniform size distribution.
This method is easily scalable to industrial applications.
Furthermore, as reported in this paper, synthesis of CMFO
NPs without any surfactant or capping agent by the well-
recognized green approach, which is based on an aqueous
medium that is easier to conduct, is interesting for fundamental
scientific reasons. To the best of our knowledge, while only
limited or few studies exist on the CoxMn1−xFe2O4 mixed
ferrites prepared by the hydrothermal process, control over
nanoparticle dimensions and maintaining the crystal chemistry
are still major limitations to overcome. Also, in most of the
cases, the nanostructured CMFO is characterized by the
agglomerated morphology and ferromagnetic behavior. In this
context, our approach to control the microstructure, magnet-
ism, and the degree of inversion of nanoferrites through a
progressive variation of Mn(II) cation in the CMFO system
may have numerous scientific and technological benefits,
specifically since MNPs with superparamagnetic behavior at
room temperature are preferred for MRI,35 hyperthermia,36

and drug-delivery37 applications. Thus, chemical engineering of
the CMFO NPs through the chemical substitution allows
designing materials with controlled structure, morphology, and
magnetism for integration into technological applications.

■ EXPERIMENTAL SECTION
Synthesis. Materials and Reagents.Manganese(II) nitrate

tetrahydrate (≥99%, Mn(NO3)2·4H2O), cobalt nitrate hex-
ahydrate (≥99%, Co(NO3)2·6H2O), and ferric nitrate non-
ahydrate (≥99%, Fe(NO3)3·9H2O) were used as the

manganese, cobalt, and iron precursors, respectively, while an
ammonia solution (25%) was employed as a precipitant agent.
All of the analytical grade reagents were used as received from
Sigma-Aldrich without further purification.

Processing of CMFO Nanoparticles. The CMFO (x = 0.00,
0.15, 0.25, 0.30, 0.40, and 0.50) samples were prepared by a
simple hydrothermal approach. During the preparation,
stoichiometric (mixture) amounts of metal salts ((Co +
Mn): Fe as 1:2) were added to deionized (DI) water and
stirred well. Then, the pH of the solution was adjusted to 12 by
adding the ammonia solution drop by drop to make the total
solution volume 2/3 of the total volume of the autoclave (250
mL). After that, the solution mixture was treated under
hydrothermal conditions at 130 °C for 24 h. The prepared
particles were separated by centrifuging the final solution with
DI water and ethanol several times. The resulting black
precipitates were dried in an oven at 100 °C overnight. The
CMFO NPs with x values of 0.00, 0.15, 0.25, 0.30, 0.40, and
0.50 were denoted as CF, CMF15, CMF25, CMF30, CMF40,
and CMF50, respectively. Finally, the as-prepared powder was
used for further characterization without subsequent sintering.

Characterization. X-ray Diffraction (XRD). Crystallo-
graphic studies of CMFO NPs were carried out using an X-
ray powder diffractometer (D8-Advanced Bruker) with Cu Kα
radiation (λ = 1.5406 Å). The powder sample was scanned
slowly over a 2θ range of 20−80° at a scanning rate of 4°
min−1. The detailed structural characterization was performed
with the Rietveld method. To generate theoretical X-ray
diffraction patterns, we have used the ICSD data with
collection code as: 109044. Finally, the crystal structure is
modeled using VESTA software to represent the bond angle,
bond length, and interaction between the octahedral and
tetrahedral sites for CMFO NPs, as derived from the XRD
refinement data.

Raman Spectroscopy. Raman studies were performed on
an InVia Micro-Raman (Renishaw) spectrophotometer with
532 nm laser excitation.

Field Emission Scanning Electron Microscopy (FE-SEM).
Field emission scanning electron microscopy (FE-SEM, Karl
ZEISS JEOL) was used to analyze the surface morphology and
particle size distribution. The size distribution of NPs was
estimated by the image analysis of micrographs using ImageJ
software. Energy-dispersive X-ray spectrometry (EDS) meas-
urements were used for the compositional analysis of pristine
NPs.

Small-Angle X-ray Scattering (SAXS). The SAXS measure-
ments were carried out using a Rigaku small-angle goniometer
mounted on a rotating anode X-ray generator. The scattered X-
ray intensity I(q) was recorded using a scintillation counter
with a pulse height analyzer by varying the scattering angle 2θ,
where q is the scattering vector given by 4π sin(θ)/λ, where λ
is the wavelength of incident (Cu Kα) X-rays. The intensities
were corrected for sample absorption and smearing effects of
collimating slits.

Magnetic Measurements.Magnetization was measured as a
function of temperature (from 5 to 300 K) and magnetic field
(−50 to +50 kOe) using a superconducting quantum
interference device magnetometer. The zero-field-cooling
(ZFC) and field-cooling (FC) measurements were carried
out in the temperature range of 5−300 K at a 100 Oe magnetic
field.
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■ RESULTS AND DISCUSSION

Crystal Chemistry and Chemical Bonding. X-ray
Diffraction. Figure 1 shows the X-ray diffraction patterns
and the Rietveld refinement data for CMFO samples. The
Bragg reflections match with both the peak positions and
relative intensities of those reported for bulk ferrite stand-
ards,11,27,33 confirming the expected cubic spinel structure
(JCPDS Card No. 22-1086 space group: Fd3m (227)).
However, the CMF15 sample consists of an additional, weak
peak at 2θ = 33.40°, which corresponds to the hematite phase,
Fe2O3 (JCPDS card no. 33-0664). No secondary peaks are
detected in the XRD data for other samples, indicating the
single-phase formation. Hence, replacing Mn(II) by Co(II) or

the lower synthesis temperature (130 °C) changes the crystal
symmetry of CMFO NPs. The structural parameters obtained
from the refinement are listed in Table 1. The diffraction
maxima observed for each sample are broadly intense, which
implies the highly nanocrystalline nature of the CMFO
samples. Moreover, it is observed that the lattice parameter
“a” of the CFMO sample increases with increasing Mn(II)
concentration. This is similar to the behavior reported for their
bulk counterparts (8.499 Å for MnFe2O4, JCPDS card no. 10-
0319 and 8.392 Å for CoFe2O4, JCPDS card no. 22-1086).
The variation of a with x (Mn), as shown in Figure 2a, exhibits
a linear behavior following Vegard’s law.38 This linear trend
following Vegard’s law can be assigned to the gradual
replacement of Mn(II) ions having a larger ionic radius

Figure 1. Experimental XRD patterns of (a) CF, (b) CMF15, (c) CMF25, (d) CMF30, (e) CMF40, and (f) CMF50 NPs. Rietveld refinement data
are also shown.

Table 1. Structural and Refined Parameters of CMFO Obtained from Rietveld Refinement of XRD Data

sample
average crystallite size

(nm) (±0.15)
lattice parameter (a,

Å) (±0.015)
volume of unit cell

(V, nm3)
oxygen positional
parameter (u, Å)

weighted
pattern Rwp (%)

expected factor
Rexp (%)

goodness of fit
(GoF) (χ2)

CF 08.02 8.3546 0.583 0.2582 32.10 31.66 1.03
CMF15 08.19 8.3644 0.585 0.2430 31.00 28.66 1.17
CMF25 10.54 8.3761 0.588 0.2597 15.90 15.06 1.12
CMF30 09.91 8.3816 0.589 0.2589 19.80 18.86 1.11
CMF40 11.64 8.3776 0.588 0.2598 43.20 41.52 1.08
CMF50 13.74 8.3949 0.592 0.2598 36.20 34.58 1.09
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(0.83 Å) by the smaller Co(II) cations (0.78 Å).39−41 Notably,
it is seen that the most intense (311) peak position shifts
systematically to the lower 2θ value except for the sample
CMF15. Thus, for a lower value of x ≤ 0.15, although the Mn
expected to occupy the octahedral site, some of the Co from
the octahedral site are migrated to the tetrahedral site, resulting
in the positive (311) peak shift for the CMF15 sample. The
peak shift is also noted for the (422) and (511) peaks (Figure
2c).
The average crystallite size (DXRD) values (Table 1 and

Figure 2b) confirm that the size variation follows an
exponential growth with x(Mn). The DXRD−x(Mn) data
were modeled (Figure 2b) using an exponential growth
function42

= ′ +D x D A( ) expx x/ c (1)

where D′ is the smaller crystallite size, which can be achieved,
in the present study, up to ∼6 nm, and the initial value is
represented by “A”. The growth profile can be expressed by the
magnitude of growth rate (xc) (here, xc ∼ 0.33), which
represents the influence of the Co(II)/Mn(II) molar ratio on
the size of CMFO NPs. This finding is interesting and helps to
decide that the Co(II)/Mn(II) molar ratio is inherently
responsible for change of average crystallite size, irrespective of
the preparation methods and parameters. Thus, the identi-
fication of D (D′, A, xc) depending on the function of “x”
allows accurate management of particle size experimentally, by
selecting the optimum Co(II)/Mn(II) combination during the
hydrothermal process.
To better understand the effect of Mn(II) substitution with

Co(II) in CMFO and the role of Mn(II) ions, the bond angle
and bond lengths are determined using the Rietveld method.
While performing the Rietveld refinement on the samples, we
have considered the following points: (i) All possible cation

arrangements with 0.001 stoichiometry sensitivity that Co, Fe
ions can occupy both the tetrahedral and octahedral sites and
Mn ions occupy only octahedral site are considered, (ii) the
oxygen positional parameter was chosen initially to be 0.25 and
then refined, (iii) for the agreement of calculated and
experimental intensity ratios, the differences of calculated
and experimental intensities for all of the distribution cases are
considered and the sum of these differences is minimized and
refined until convergence is reached. Note that the refinement
of diffraction data predicts deviation from the ideal inverse
cation distribution by transferring some of Co+2 from
octahedral (B) site to tetrahedral (A) site for all of the
samples. A close view of the structure around the tetrahedral
and octahedral sites along with the observed bond angles and
bond length is presented in Figure S1. It is evident from the
observed angles at the tetrahedral and octahedral sites that
each CMFO NP is stabilized in the cubic structure with almost
no local distortion at the tetrahedral site although a local
distortion at the octahedral site is observed compared to the
standard bond angle values for the spinel structure. Figure S1
shows the O−Co2−O (O−Fe2−O) angles, which match with
the angle of the ideal spinel value 109.47° for all of the CMFO
NPs. However, there is a slight local distortion observed at the
octahedral site for CMFO NPs; the O−Co1−O bond angle
(ideal value, 90°) deviates to 86.43, 86.81, 85.78, 86.13, 85.78,
and 85.78°, which are opposed to the O−Fe1−O bond angles
of 93.57, 93.19, 94.22, 93.87, 94.22, and 94.22° for the CF,
CMF15, CMF25, CMF30, CMF40, and CMF50 samples,
respectively. In addition, the most important Co1−O−Fe2
(Co1−O−Co2, Fe1−O−Co2, Fe1−O−Fe2) bond angles
(ideal value, 125°) are critically analyzed for all of the samples
and the values are found to be 127.83, 123.04, 128.31, 128.05,
128.31, and 128.31°, respectively, for CMFO samples. It shows
a deviation of about ∼2.83, −1.96, 3.31, 3.05, 3.31, and 3.31°,

Figure 2. Effect of Mn concentration on (a) lattice parameter and (b) average crystallite size of Co1−xMnxFe2O4NPs. (c) XRD patterns of
Co1−xMnxFe2O4 nanoparticles in the 2θ range of 34−40° and 50−75°. The data highlight the shift of (311), (422), and (511) Bragg reflections to
lower 2θ with increasing Mn(II) content.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.9b02492
ACS Omega 2020, 5, 19315−19330

19318

http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b02492/suppl_file/ao9b02492_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b02492/suppl_file/ao9b02492_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b02492?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b02492?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b02492?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b02492?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.9b02492?ref=pdf


respectively, for the CF, CMF15, CMF25, CMF30, CMF40,
and CMF50 samples as the ideal value is 125°. Thus, a
deviation in bond angle indicates buckling of the FeO6 and
CoO6 octahedra as the size increases with increasing x (Mn) in
CMFO. Note that, with increasing Mn content, all of the
samples (except CMF15) show an increase in the Co1−O−
Fe2 and Fe1−O−Fe2 bond angle values. This clearly indicates
that the substitution of Co with Mn enhances the well-known
A−B interaction. Table 2 and Figure S1 show the bond lengths
observed for octahedral and tetrahedral sites, intercation
distances, and (cation)oct−oxygen−(cation)tet distances. It is
observed that the value of the Co1−O bond length increases at
the octahedral site, whereas the value of the O−Co2 bond
length decreases at the tetrahedral site with an increase of Mn
substitution compared to the pure CF sample. It has been
reported that the theory of superexchange does not give a
dependence of the strength of interaction on the distances.
Therefore, the dumbbell shape of the 2p orbital makes it a
reasonable assumption that the interaction for a given ionic
separation will be larger when the angle of metal ion−oxygen−
metal ion is 180° and will be very small when this angle is 90°.
With these two assumptions, an examination of the ionic
distribution in the ferrite lattice leads to the conclusion that the
A−B interaction is relatively strong, the A−A interaction is
very weak, and the B−B interaction is probably intermediate
between these two extremes.43 The experimentally observed
variation of magnetic moment with x(Mn) is thus qualitatively
understood by the assumption that the Mn cation occupies
only the octahedral site, and as the Mn content increases, the
slight or relative number of Co ions are expected to migrate
from the octahedral to tetrahedral site. This migration is more
dominant in CMF15, thus causing the A−B interaction to be
reduced. In addition, the number of Co cations migrated from
the octahedral to tetrahedral site is relatively controlled or
observed to be less when x = 0.25 and 0.30. Thus, the

enhanced value of magnetization is observed for CMF25 and
CMF30 and is in agreement with the bulk ferrite. Cation
distribution for these ferrites has been proposed on the basis of
saturation magnetization measurements. In the present study,
the occupancy of cobalt ions at the tetrahedral site has been
chosen so as to provide the better possible cationic distribution
agreeable to the experimentally observed value of magnet-
ization. Table 3 shows the possible cation distribution obtained
from the refinement, which well agreed with the experimental
magnetic moment. Therefore, (i) an exponential increase in
the average crystallite size, (ii) a linear increase in the lattice
parameter, (iii) the absence of local distortion at the
tetrahedral site, (iv) the presence of local octahedral distortion
at the octahedral site, and (v) the enhanced value of
(cation)oct−oxygen−(cation)tet bond angles are the structural
characteristic results of the Mn substitution in CMFO MNPs.

Raman Spectroscopy. To gain deeper insights into the
crystal structure and chemical bonding, Raman spectroscopy is
used to characterize CMFO NPs. It helps to identify the
features of all of the CMFO NPs and is an important tool to
get the details of NPs’ internal structure and chemical bonding.
Furthermore, Raman spectroscopy is one of the effective and
nondestructive techniques to differentiate spinel compounds
according to their type (normal, inverse and mixed).15,44

Moreover, when the corresponding XRD patterns are similar,
Raman spectroscopy and/or Mössbauer spectroscopy can be
used for the structural characterization of spinel-type nano-
materials.45 In the current study, we have used Raman
spectroscopy to check the presence of noncrystalline secondary
phases, which may not be identified in XRD studies (as the
nanoferrites are synthesized at lower temperatures). Figure 3
shows the Raman spectra of CMFO MNPs. Due to the smaller
size, some weak Raman modes and peak broadening are
observed. Hence, to perform an accurate analysis, all of the
spectra were deconvoluted, and the results are presented in

Table 2. Bond Angle and Bond Length Extracted from Rietveld Refinement

bond angle (°) bond length (Å)

bond angle
type CF CMF15 CMF25 CMF30 CMF40 CMF50 bond type CF CMF15 CMF25 CMF30 CMF40 CMF50

CoI−O−Co2 127.83 123.04 128.31 128.05 128.31 128.31 d12 = Col−O 2.160 2.037 2 178 2.173 2 179 2.184

d23 = O−Fe2 1.691 1.908 1 672 1.685 1 672 1.676

d13 =
Col−Fe2

3.466 3.468 3 473 3.475 3 473 3.480

O−Co2−O 109.47 109.47 109.47 109.47 109.47 109.47 d12 = O−Co2 1.691 1.908 1 672 1.685 1 672 1.676

d23 = Co2−O 1.691 1.908 1 672 1.685 1 672 1.676

d13 = O−O 2.762 3.116 2.730 2.752 2.731 2.736

O−Col−O 86.43 86.81 85.78 86.13 85.78 85.78 d12 = O−Col 2.160 2.037 2.179 2.173 2.179 2.184

d23 = Col−O 2.160 2.037 2.179 2.173 2.179 2.184

d13 = O−O 2.959 2.799 2.965 2.967 2.966 2.973

O−Col-O 93.57 94.22 94.22 93.87 94.22 94.22 d12 = O−Col 2.160 2.037 2.179 2.173 2.179 2.184

d23 = Col−O 2.160 2.037 2.179 2.173 2.179 2.184

d13 = O−O 3.149 2.9593 3.193 3.175 3.193 3.200

Table 3. Cation Distribution Obtained from the Refinement of X-ray Diffraction Data

sample code sample formula cation distribution

CF CoFe2O4 (Co0.08
2+Fe1

3+)tet [Co0.92
2+Fe1

3+]octO4
2−

CMF15 Co0.85Mn0.15Fe2O4 (Co0.15
2+Fe1

3+)tet[Co0.70
2+Mn0.15

2+Fe31
+]octO4

2−

CMF25 Co0.75Mn0.25Fe2O4 (Co0.08
2+Fe1

3+)tet[Co0.67
2+Mn0.25

2+Fe31
+]octO4

2−

CMF30 Co0.70Mn0.30Fe2O4 (Co0.09
2+Fe1

3+)tet[Co0.61
2+Mn0.30

2+Fe31
+]octO4

2−

CMF40 Co0.60Mn0.40Fe2O4 (Co0.2
2+Fe1

3+)tet[Co0.40
2+Mn0.40

2+Fe31
+]octO4

2−

CMF50 Co0.50Mn0.50Fe2O4 (Co0.19
2+Fe1

3+)tet[Co0.31
2+Mn0.50

2+Fe31
+]octO4

2−
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Table S1 (Supporting Information). All of the spectra exhibit
five Raman-active phonon modes, which are characteristic of
ferrites15 with a spinel (Fd3m) structure: A1g(1) (666−677
cm−1), A1g(2) (595−599 cm−1), 3T2g (520−546, 454−460,
and 151−188 cm−1), and Eg (271−373 cm−1).44,46 It has been
reported that the cubic spinel compounds exhibit five Raman-
active modes, namely, A1g, 3T2g, and Eg.

47 Moreover, in the
Raman spectra of cubic spinel ferrites, an additional A1g active
mode (designated as the A1g(2) mode) is observed as a
shoulder at a lower wavenumber, which is a typical feature of
inverse as well as mixed spinels. The order of observed energies
of these Raman-active modes is: A1g(1) > A1g(2) > T2g(1) >
T2g(2) > Eg > T2g(3).

48 According to the literature, for
CoFe2O4, peaks to the Eg and 3T2g modes observed below 600
cm−1 are usually attributed to the symmetric and anti-
symmetric bending of oxygen ion in the M−O bond at
octahedral sites.1,9,15,48 And, peaks observed for >600 cm−1 are
assigned to the A1g mode reflecting the vibrations within
tetrahedral sites.1,9,15,49 From the spectral deconvolution,
besides the above-mentioned five Raman-active modes, two
additional weakly intense peaks are detected around 115−120
cm−1 and (213.36, 216.48) cm−1. The first additional peak
positioned at 115−120 cm−1 is due to quantum size effects.9

There is an appearance of extra phonon modes because the
particle dimensions are significantly smaller than the exciting
radiation wavelength, which leads to breakdown of the

momentum conservation law. The second additional peaks
positioned at ∼(213.36, 216.48) cm−1 are ascribed to the T2g
mode of α-Fe3O4 NPs.50,51 Fe2O3 is the most common
impurity or secondary phase that is typically formed during the
synthesis of spinel ferrites. It gives sharp signals at 200−240
cm−1 with a high intensity. In the present study, this appears
with a low intensity until x = 0.3 (that could be neglected) and
becomes intense only for x ≥ 0.4. This observation suggests
that the CMFO NPs are highly crystalline (free of noncrystal-
line secondary phase) up to x(Mn) = 0. For a higher value of
x(Mn), ≥0.4, the secondary phase may become evident.
However, it is important to recognize that the secondary phase
is not at all detected in XRD.
The A1g mode is assigned to a shoulder peak positioned

around 594−599 cm−1 for each sample (labeled as A1g(2)). It
is remarkable that, with increasing x (Mn), the intensities of
T2g(1) and A1g(1) decrease, while that of the A1g(2) peak
increases. These observations may be a sign of alteration in
cation distribution with Mn substitution. A reduction in the
intensity of the peak due to FeO4 (A1g(1)), and an increase in
the intensity of the peak due to CoO4 (A1g(2)) with the degree
of Mn substitution suggest specifically the redistribution of
Co2+ and Fe3+ ions in the tetrahedral and octahedral sites of
the spinel lattice. It may be noted that the presence of the
A1g(2) mode is a characteristic feature of cobalt ferrite,
irrespective of the microstructure. Furthermore, the A1g(2)

Figure 3. Deconvoluted Raman spectra for (a) CF, (b) CMF15, (c) CMF25, (d) CMF30, (e) CMF40, and (f) CMF50 NPs.
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mode is attributed to the local distortion in the coordination
environment due to inhomogeneous distribution of cations
among the A and B sites in the mixed spinel structure.52 The
magnetic measurements indicate the distribution of Co, Mn,
and Fe in the tetrahedral and octahedral sites. Note that the
doublet-like shape of A1g is well observed up to x = 0.3, at
which point both the peaks become relatively broad with a
further increase in x. Relative area and height ratio (Table S1)
of Raman-active modes of octahedral to tetrahedral sites
indicate that the A1g(1) and A1g(2) modes are highly affected,
suggesting the fact that the tetrahedral as well as octahedral
sites are significantly manipulated with the Mn substitution.
This fact is mostly ascribed to the collective effect of: (i) the
existence of Mn2+, Co2+, and Fe3+ at the octahedral site and (ii)
migration of some of the Co2+ ions from the octahedral to
tetrahedral site. This fact can be supported by the magnetic
characteristics and refinement data. In addition, the intensity
change of the A1g(2) mode with the Mn content can be
associated with the modification of bond lengths and bond
angles (see Table 2), as extracted from the refinement of XRD
data. Furthermore, it is reported that the bulk MnFe2O4 and
CoFe2O4, even if resembling a spinel structure, they do not
have a similar cation distribution among the octahedral and
tetrahedral sites.53 Bulk MnFe2O4 results in a partially inverted
spinel structure with Mn(II) cations mostly preferring the
tetrahedral sites, causing a low inversion degree (0.2, i.e., 20%
of Mn(II) cations in octahedral sites). On the other hand,
CoFe2O4 has a significantly higher inversion degree (0.8), with

Co(II) cations preferring the octahedral positions and Fe(III)
cations being shared between the octahedral and tetrahedral
sites. A gradual shift of the degree of inversion of spinel lattice
at nanoscale can be seen with change in x from 0.0 to 0.5; this
can be ascribed to the variation in area and intensity of the
band associated with the octahedral sites relative to the band
associated with the tetrahedral sites. This means that a
different distribution of the divalent and trivalent cations
between the tetrahedral and octahedral sites occurs even at
nanoscale dimensions. When Mn varies from 0.0 to 0.5, we
observe A1g splitting, which means the cation migration within
both types of sites. A similar behavior is reported in the
literature.54−56

Note that T2g(3) and A1g(2) modes show shifts toward the
lower wavenumber with increase of the Mn content compared
to CF NPs. The position of T2g(3) is found to be at 188.48,
168.86, 169.99, 167.65, 167.98, and 158.30 cm−1 for the CF,
CMF15, CMF25, CMF30, CMF40, and CMF50 samples,
respectively, which implies that red shifts of 19.62, 18.49,
20.83, 20.50, and 30.18 cm−1 are observed for the CMF15,
CMF25, CMF30, CMF40, and CMF50 samples, respectively,
compared to the CF sample. Similarly, the A1g(2) mode is
observed at 599.34, 595.50, 595.00, 596.79, 597.95, and 597.33
cm−1 for the CF, CMF15, CMF25, CMF30, CMF40, and
CMF50 samples, respectively, which shows red shifts of 3.84,
4.34, 2.55, 1.39, and 2.01 cm−1 for the CMF15, CMF25,
CMF30, CMF40, and CMF50 samples, respectively, compared
to the CF sample. In the present study, the shift toward the

Figure 4. FE-SEM images of (a) CF, (b) CMF15, (c) CMF25, (d) CMF30, (e) CMF40, and (f) CMF50 NPs (the inset shows the size histogram
with lognormal fitting curve (solid line)).
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lower wavenumber is attributed to the homogeneous strain
developed in the lattice compared to the bulk compound,57

confinement effects, and inhomogeneous strain due to the
distribution in particle size.58 The substitution of larger-ionic-
radius Mn(II) ions (0.83 Å) forces the lattice to expand, which
can develop strain in the lattice. The development of strain in
the lattice is also seen in the XRD spectrum shown in Figure 2
as a shift of the diffraction peaks and expansion of lattice
constant given in Table 1. A similar behavior of red shift due to
the expansion of lattice parameter is observed for indium-
substituted CFO NPs,,59 60 which are prepared with different
concentrations of oleic acid, zinc ferrite,61 and NiFe2O4NPs.

58

However, Chandramohan et al.47 accounted that the decrease
in grain size results in a red shift with broadening of peak. In
nanocrystals, due to lack of long-range order, both the
phonons, one having q = 0 and the other q > 0, take part in
the scattering process, which can show the broadening and
shift of peak position in the Raman spectra. Furthermore,
Singh et al.60 reported that the shift toward lower wavenumber
is ascribed to the crystalline disorder and the presence of grain
boundaries, which are large in small nanomaterials. Further-
more, the bandwidth of the Raman signal shows broadening
for small nanomaterials (∼20 nm), which also supports the
crystalline disorder. The Raman shift toward a lower
wavenumber and line broadening are observed in polycrystal-
line materials and are attributed to the confinement of optical

phonons in small crystalline particles. On the other hand, the
T2g(2) mode is positioned at 454.37, 459.14, 457.72, 457.62,
460.00, and 460.77 cm−1 for the CF, CMF15, CMF25,
CMF30, CMF40, and CMF50 samples, respectively, which
shows blue shifts of 4.77, 3.35, 3.25, 5.63, and 6.40 cm−1 for
the CMF15, CMF25, CMF30, CMF40 and CMF50 samples,
respectively, compared to the CF sample. It is interesting to
note that the red shift of the T2g(3) mode and the blue shift of
the T2g(2) mode increase linearly with the Mn content. The Eg
and A1g(1) modes of the CMF25 and CMF30 samples exhibit
a blue shift (see Table S1), which is attributed to the size-
dependent compressive stress in the NPs.62

Morphology and Size Distribution Characteristics.
Field Emission Scanning Electron Microscopy (FE-SEM).
High-magnification FE-SEM images of the CMFO NPs are
shown in Figure 4.
The size distribution is also shown in the inset. The

parameters obtained from the analyses are listed in Table S2.
The images confirm the presence of nanosize particles, which
are uniformly distributed. The size distribution data of NPs are
fitted with a lognormal function. The lognormal distribution of
the particle size is observed to be symmetrical for all of the
samples. The estimated size values are ∼10.86, 13.96, 13.58,
11.70, 14.41, and 16.10 nm for the CF, CMF15, CMF25,
CMF30, CMF40, and CMF50 samples, respectively. Fur-
thermore, it is observed that the polydispersity index (σ) of

Figure 5. SAXS data of (a) CF, (b) CMF15, (c) CMF25, (d) CMF30, (e) CMF40, and (f) CMF50 samples (the inset shows the size distribution
as estimated from SAXS data). The solid line represents fit of the model to the experimental data.
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CMFO NPs slightly decreases from ∼0.33 to 0.21 when x
varies from 0.00 to 0.30, and after that, the σ value again
slightly increases up to 0.25. It implies that the Mn(II)
substitution controls the polydispersity index (NP size
distribution). The smaller value of polydispersity index (σ ≤
0.33) of particle distribution indicates that the Mn-substituted
NPs are well confined to a limited diameter range.
Small-Angle X-ray Scattering (SAXS). The CMFO samples

were probed by the SAXS technique to further probe the
details of particle morphology and size. As shown in Figure 5,
the scattering profiles indicate a more or less similar tendency
or behavior for all of the samples. The mesoscopic density
fluctuation in each MNPs is represented by scattered intensity
I(q), where q is the scattering vector.63 In the present case, the
scattering profiles of all of the samples have been analyzed
based on the polydisperse spherical particle model under
monodispersed approximation.64 The scattering intensity I(q)
can be written as

∫=
∞

I q C P q R S q R R D R R( ) ( , ) ( , ) ( )d
0

6
(2)

Here, C is the scale factor, and P(q, R) and S(q, R) signify the
form factor and interparticle structure factor, respectively.
Assuming the spherical shape of particles with radius R, the
form factor P(q, R) is expressed as64
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D(R) represents the size distribution and is assumed to be
normalized lognormal distribution.65
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where N is the normalization factor, and R0 and σ represent the
median radius and polydispersity index, respectively. In the
whole accessible “q” range of SAXS profiles, the power law
dependence of I(q) on q, i.e., the linear relation between
double-logarithmic scale and the noninteger exponent of
power law, indicates a fractal-like structure factor for each
sample, irrespective of assembling of NPs and aggregation.
Thus, the fractal structure factor66,67 is given as
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where D is the fractal dimension (1 < D < 3), ro is the radius of
monomer, h(r,ξ) is the cutoff function, and x is the cutoff
length for fractal correlation. The structural parameters
obtained from SAXS analysis are listed in Table 4. The inset
of Figure 6 shows the size distribution profiles of basic NPs,
which are almost corroborating with the same information
obtained from XRD. It is notable that, with an increase of the
Mn content, the median radius (R) value also increases. In
addition, the scattering intensity increases slightly toward the
low-q region, which implies that the agglomeration of particles
increases slightly as is also noted in FE-SEM. It is observed that
the characteristic dimension of the individual scatter also

increases with the Mn content along with the increase in fractal
aggregate (xi), as observed from the FE-SEM images. Thus, it
should also be pointed out that the concentration of Mn
effectively affects the NP size distribution and agglomeration.
Thus, using the present approach, one can tune the NPs size
according to the targeted application. However, the slight
dissimilarities in the trend of size distribution and polydisper-
sity index can be attributed to the fact that the applied
scattering tools are believed to give the overall structural
information about the system, while FE-SEM provides the
selective information based on the region of interest.

Chemical Composition. Energy-Dispersive X-ray Spec-
trometry (EDS). The EDS measurements indicate that the
pristine CMFO nanomaterials are stoichiometric and homoge-
neous with a uniform distribution. The characteristic peaks of
Co, Fe, Mn, and O are evident in the EDS of CMFO shown in
Figure S2. X-ray energy is a characteristic of generating atom
and, therefore, detection of X-rays emitted provides the
signature of atoms present.68 Therefore, EDS measurements
can be used to qualitatively discuss the chemical quality of the

Table 4. Structural Parameters Obtained from SAXS

samples

parameters CF CMF15 CMF25 CMF30 CMF40 CMF50

median radius
(R, nm)

3.29 3.50 3.74 4.08 4.32 4.34

polydispersity
index (σ, nm)

0.31 0.35 0.38 0.35 0.37 0.39

radius of
monomer (ro,
nm)

2.84 3.64 5.00 5.49 5.92 6.00

size of aggregate
(xi, nm)

8.00 8.25 8.54 9.00 9.54 15.97

fractal
dimension
(D)

2.91 2.50 2.50 2.50 2.50 2.50

Figure 6. EDS spectra of CMFO nanoparticles in the range of (a) 0−
1.0 keV and (b) 5.5−8.0 keV, where Mn the (kα1) peak region is
marked. An evolution of intensity of the Mn peak confirms the Mn
incorporation into CFO.
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CMFO samples. The observed lines in the EDS spectra are
identified, and they belong to Co (Lα1, kα1, kβ1), Fe (Lα1, kα1,
kβ1), Mn (kα1, kβ1), and O kα1 at their respective energy
positions. This confirms that the X-rays are only due to Co, Fe,
Mn, and O present in the CMFO samples. Thus, it is evident
from the data that pristine CMFO NPs are chemically
homogeneous without any impurities and/or contaminating
elements from reagents. Such chemical homogeneity coupled
with narrow size distribution of the particles is quite important
for utilizing CFO NPs for biomedical and health science
applications. An effective incorporation of Mn into the CFO
lattice can be seen from the peak region of Mn shown in Figure
6b, where the evolution of the Mn kα1 peak is seen only in Mn-
substituted samples. As we have used carbon tape while

making samples for EDS measurements, X-ray lines from the
carbon tape (C kα1) can also be seen (Figure 6a). The
presence of only peaks of Co, Fe, Mn, and O and the absence
of any other peaks confirm the purity and chemical quality of
the synthesized CMFO nanomaterials. Furthermore, the
increase of peak intensity is attributed to the increase of Mn
incorporation into CFO, which is as expected.

Magnetic Properties. Magnetic data of CMFO samples
are presented in Figure 7, while Table 5 covers the magnetic
parameters, namely, maximum saturation magnetization (MS),
remnant magnetization (Mr), coercivity (HC), and squareness
ratio (Mr/MS). At room temperature (300 K), the M−(H)
curves of CMFO reveal the lower value of coercivity (<10 Oe)
with a negligibleMr value, indicating that all of the CMFO NPs

Figure 7. (M)−H hysteresis loops for (a) CF, (b) CMF15, (c) CMF25, (d) CMF30, (e) CMF40, and (f) CMF50 NPs measured under an applied
field ±50 kOe.

Table 5. Magnetic Parameters

parameters
maximum saturation

magnetization (MS, emu/gm) at
remanent magnetization (Mr,

emu/g) at coercivity (HC, Oe) at squareness ratio (Mr/MS) at

samples 300 K 5 K 300 K 5 K 300 K 5 K 300 K 5 K

CF 54.65 60.43 5.41 46.92 8.19 76.70 0.099 0.776
CMF-15 49.23 56.92 2.37 42.72 3.87 65.66 0.049 0.75
CMF-25 58.90 70.82 3.64 54.81 5.05 67.77 0.062 0.774
CMF-30 59.86 70.86 3.07 51.82 6.73 48.68 0.051 0.731
CMF-40 52.67 58.09 2.59 48.92 4.78 68.55 0.049 0.842
CMF-50 55.32 67.8 5.56 51.04 9.05 68.51 0.100 0.752

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.9b02492
ACS Omega 2020, 5, 19315−19330

19324

https://pubs.acs.org/doi/10.1021/acsomega.9b02492?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b02492?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b02492?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b02492?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.9b02492?ref=pdf


have superparamagnetic behavior at 300 K. Note that, for the
CF sample, theMS value is low (54.65 emu/g or 2.30 μB/FU at
300 K) compared to the theoretical value of an ideal inverse
CFO structure (∼3 μB/FU) as well as the bulk counterpart (80
emu/g).Here, a decrease in the MS value for CF may be
attributed to (i) the surface disorder or spin canting at the NP
surface.69 Note that the number of atoms on the surface is
maximum for NPs causing the reduction of magnetization. The
effective reduction in magnetization of NPs is, therefore, due to
the presence of randomized surface spins and the non-
stoichiometric cation distribution (Fe+3, Co+2) among the
octahedral and tetrahedral sites compared to the ideal spinel
structure [Fe+3]{Co+2Fe+3}O−2 as predicted by XRD refine-
ment and Raman spectroscopy. Thus, to provide a deeper and
thorough understanding of magnetic properties, and specifi-
cally the superparamagnetism at 300 K, M−(H) measurements
were performed at 5 K (Figure 7), where the contribution of
spin wave thermal fluctuations is negligible. In the present
study (Table 5), magnetization (MS) and remnant magnet-
ization (Mr) are observed to enhance with Mn2+ substitution
up to x = 0.3 and then decline. The observed behavior of the
results match well with the reported work on manganese-
substituted cobalt ferrite.70−72 The observed maximum

magnetization (for Mn = 0.3) is attributed to the replacement
of Co2+ (d7) (3 μB) by Mn2+ (d5) (5 μB). However, if the
manganese is substituted as Mn2+ (5 μB) and/or Mn3+ (4 μB)
at higher Mn (≥0.4) concentrations, then the magnetization is
expected to diminish due to (i) the conversion of equivalent
amounts of Fe3+ (5 μB) to Fe2+ (4 μB) and (ii) the
simultaneous shift of some of the Co from the octahedral to
tetrahedral site. This fact can be understood as: increasing the
valence of Mn ions from 2+, 3+, to 4+ would lower the overall
magnetization, and overoxidation of the Mn ions would
increase the chances of Mn ions occupying octahedral sites.73

This reduced magnetization may be good for magneto-
mechanical stress and torque sensors.74,75 In addition, for the
CMF15 sample, the MS value does not follow the trend as the
secondary phase is detected. Furthermore, it is known for the
ferrite system that the magnetic properties are strongly
influenced by the cation distribution among the tetrahedral
and octahedral sites, in addition to the exchange interactions
between the magnetic ions occupying the B and A sites.76 The
net magnetic moment is the difference in moments of B and A
sublattices, i.e., M = MB − MA. Essentially, magnetic properties
of ferrite depend on the chemical composition, which
determines the intrinsic properties, along with the micro-

Figure 8. ZFC−FC curves for (a) CF, (b) CMF15, (c) CMF25, (d) CMF30, (e) CMF40, and (f) CMF50 magnetic nanoparticles measured under
the applied field 100 Oe in the temperature of 5−300 K. The blocking temperature (TB) and irreversibility temperature (Tirr) values are highlighted
by arrows.
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structure. Thus, a change in magnetization with Mn
substitution in CFO can be attributed to the variation of
magnetic moment contribution from the tetrahedral and
octahedral sites and also to the decreased contribution from
the magnetocrystalline anisotropy of cobalt with manganese
substitution. This is supported by the cation distribution
obtained from the XRD data and Raman spectroscopy.
More importantly, parameters such as particle size, cation

distribution, exchange couple interaction, and surface area-to-
volume ratio drive the magnetic properties. Hence, the MS/
DXRD values should be compared while making a direct
comparison between the magnetic properties of nanostruc-
tured granules. While evaluating the performance of nanoma-
terials for biotechnological applications, in particular, the
relationship between the MS value (near room temperature)
and the particle size is of importance.77,78 In this connection,
the MS/DXRD value as a function of x (Mn content) was
determined at 300 K and is plotted in Figure S2. The results
follow similar trends, with CMF30 (Co0.7Mn0.3Fe2O4)
presenting the highest MS/DXRD values. We can find similar
results from Raman analysis for relative width, area, and
intensity ratio of the tetrahedral to octahedral site. More
importantly, the Co0.7Mn0.3Fe2O4 nanomaterial shows the
highest MS/DXRD values (Figure S3) and when normalizing the
MS values at 5 K to DXRD, we achieve a similar behavior to that
observed at 300 K.
Furthermore, as mentioned above, we can confirm the

superparamagnetic behavior for all of the CMFO NPs because
M−(H) curves (at 300 K) of the CMFO samples reveal the
lower value (<10 Oe) of coercivity with a negligible Mr. In
addition, a monotonic increase in coercivity (HC) is observed
at 5 K compared to the coercivity observed at 300 K for all
CMFO NPs (see Table 5). The reason for the increase in
coercivity with a decrease in temperature can be understood by
considering the effects of thermal fluctuations of the blocked
magnetic moment across the anisotropy barrier. It is to be
noted that when we are dealing with NPs at low temperatures,
the anisotropy may be a strong function of temperature.79

Thus, in the case of MNPs, other factors, apart from the
enhancement of anisotropy, like the structural properties that
are intrinsic to NPs, including volume distribution, random-
ness of anisotropy axes, and interparticle interactions, may also
influence the thermal dependence of coercivity.80 Moreover,
the squareness ratio (R = Mr/MS) was found in the range of
0.73−0.84 (at 5 K); the high R values suggest the tendency
toward cubic anisotropy. Furthermore, the R value at 5 K
suggests the dominance of exchange coupling (0.5 < R < 1)
and magnetostatic interactions (R < 0.5) at 300 K among the
MNPs.
Moreover, the ZFC−FC curves measured in the temper-

ature range of 5−300 K at an applied field of 100 Oe are

shown in Figure 8. The irreversibility between the ZFC and FC
curves starts well below 300 K, which indicates that the
overcoming of superparamagnetic limit in all of the samples is
below 300 K. The bifurcation between the values of FC and
ZFC magnetization increases with decreasing temperature.
This behavior suggests the high anisotropic behavior of MNPs.
It is seen from the ZFC−FC curve that, as the temperature
increases (ZFC measurements), MZFC increases first and then
attains the maximum value at a specific temperature called
blocking temperature (TB). In the present study, TB is found to
be 80.92, 23.11, 29.09, 9.16, 17.14, and 39.07 K for CF,
CMF15, CMF25, CMF30, CMF40, and CMF50, respectively.
Above TB (in the unblocked region), MZFC monotonically
decreases with increasing temperature. Below TB, the magnetic
anisotropy energy is larger than the thermal energy and
therefore blocks the magnetic moments orienting in the
direction of a small magnetic field. Note that the TB values of
Mn-substituted CFO NPs are found to be decreased compared
to those of the pure CoFe2O4 NPs, and a considerably (Figure
8 and Table 6) lower value of TB is observed for CMF30 NPs
(TB = 9.16 K). This may be related to the lowering of
intersublattice exchange coupling between A and B sublattices.
As reported for bulk ferrites, the exchange integral
JAFe3+−BCo2+ between the Fe3+ ion in the “A” lattice and
Fe3+ in the “B” lattice is larger than JAFe3+−BMn2+ between the
Fe3+ ion in the A lattice and Mn2+ in the B lattice.81 In
addition, when the measurement temperature of magnetization
is less than TB, the magnetic grains showed the ferri/
ferromagnetic state. Therefore, in this context, a finite value
of coercivity is observed in the range of 48−76 Oe at 5 K for
CMFO NPs. Furthermore, the width of peak in the ZFC curve
is associated with particle size distribution.82 Generally,
nanoscale particles show superparamagnetic behavior and
larger particles show ferri/ferromagnetic behavior. For an
ensemble of MNPs with easy axis randomly distributed over
the entire space and with a certain size distribution, the total
anisotropy energy barrier is distributed over a certain range.
Therefore, since the blocking temperature is measured on the
entire nanoparticles ensemble, it has to be considered as a
mean value.83−86 Therefore, the relatively lower blocking
temperature observed for x = 0.3 may be related to the
superparamagnetic nature of manganese ferrite.
Now we turn our attention to Tirr, which is found to be

277.1, 291.4, 283.9, 291.2, 290.3, and 298.2 K for the CF,
CMF15, CMF25, CMF30, CMF40, and CMF50 samples,
respectively. The ZFC and FC curves split from each other
(Figure 8) and, in most of the cases, Tirr corresponds to the
blocking temperature of the largest NPs. The splitting between
the ZFC and FC magnetization curves is due to: (a) the
existence and distribution of energy barriers of magnetic
anisotropy and (b) the slow relaxation of MNPs below TB.

Table 6. Blocking Temperature (TB), Irreversibility Temperature (Tirr), Effective Anisotropy Constant (Keff), and Exchange
Bias Field (Hex) Obtained from the Magnetic Data

Hright (Oe) at Hleft (Oe) at Hex (Oe) at

sample TB (K) Tirr (K) Keff (erg/cm
3) 300 K 5 K 300 K 5 K 300 K 5 K

CF 80.91 277.1 1.03 × 106 9.33 80.93 −7.06 −72.47 1.14 4.23
CMF-15 23.11 291.4 2.77 × 105 3.80 67.55 −3.94 −63.77 −0.07 1.89
CMF-25 29.09 283.9 1.64 × 105 6.77 69.36 −3.33 −66.13 1.72 1.62
CMF-30 09.16 291.2 3.38 × 104 6.49 43.78 −6.97 −53.59 −0.24 −4.91
CMF-40 17.13 290.3 7.16 × 104 4.72 65.25 −4.78 −71.85 −0.03 −3.30
CMF-50 39.07 298.2 9.93 × 104 9.92 64.924 −8.17 −72.09 0.88 −3.58
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Here, the splitting of ZFC and FC magnetization curves occurs
at a higher temperature than the blocking temperature in the
ZFC curve, which may be due to the size distribution of
CMFO NPs. It can be clearly seen from Figure 8 that the MFC
monotonically increases with decreasing temperature and then
attains saturation below a certain temperature. For the CF
sample, MFC shows temperature-independent behavior around
74.85 K. This indicates that, in the low-temperature region, the
dipolar interaction is prevailing and thus excludes the presence
of long-range order or paramagnetic behavior.87 This temper-
ature-dependent ZFC and FC magnetization and the splitting
of ZFC and FC magnetizations are the characteristic features
of superparamagnetism. Furthermore, for ZFC/FC measure-
ments, the total effective magnetic anisotropy constant (Keff)
value can be deduced from the Stoner−Wohlfarth expression88

=K V k T25eff B B

where Keff is the effective anisotropy constant, “V” is the
volume of particles, kB is the Boltzmann constant, and TB is the
blocking temperature. Keff contains all of the different
contributions to the effective anisotropy given by magneto-
crystalline, shape, surface, and stress magnetic anisotropies.
Moreover, a further contribution to the effective magnetic
anisotropy can be given by the presence of dipolar and/or
exchange interactions among the particles.88,89 If one considers
the particle mean size “d”, as determined by XRD analysis, a
first rough determination of Keff is possible. The Keff is found to
be 1.03 × 106 erg/cm3 for CF NPs. This value is lower than the
reported value (1.8 × 106 erg/cm3) for the bulk CFO. This
value decreases with increasing Mn content in CMFO samples.
It is well documented in the literature that the surface
component (KS) plays a key role in regulating the magnetic
anisotropy of magnetic particles at nanoscale. Usually,
magnetic anisotropy decreases with increasing particle size
due to increasing KS. Thus, the size and composition of NPs
primarily control Keff. The calculated Keff values are tabulated
in Table 6, together with the parameters extracted from ZFC−
FC and M−H hysteresis loop measurements at 5 and 300 K. In
addition, the presence of the M−H loop shifting along the field
axis (higher for smaller particles) is also checked for each
composition at 300 and 5 K. The shift of loop, usually
quantified as the exchange bias field (Hex = −(Hright + Hleft)/2),
was already observed in ferromagnetic NPs and nanosized
ferrites. Table 6 shows that the Hex values are negligible, which
confirms the absence of oxide layer and exchange coupled with
a ferrimagnetically ordered core.

■ SUMMARY AND CONCLUSIONS
We can produce the CMFO MNPs with a simple, economic,
and eco-friendly one-pot hydrothermal chemical route at a
relatively lower temperature (130 °C), where particle size,
inversion degree, and saturation magnetization are tailored.
With Mn(II) substitution, one can control the nanoparticle
dimensions precisely in the range of 8−14 nm. The saturation
magnetization (MS) value is observed to increase from 60.43 to
70.86 emu/g (up to x(Mn) = 0.3), with the maximum value of
MS (70.86 emu/g) observed for Co0.7Mn0.3Fe2O4 NPs due to
the substitution of Co2+ (d7) (3 μB) by Mn2+ (d5) (5 μB). The
MS value decreases (both at 300 and 5 K) with further
increasing Mn content. Interestingly, the relative width, area,
and intensity ratio of the tetrahedral to octahedral site, from
Raman analysis, exhibited a similar character, which demon-
strates the cation migration between A and B sites due to Mn

substitution. Significantly, along with controlled size and
morphology, superparamagnetic behavior is obtained for
CMFO MNPs at room temperature, which is a required
feature for biomedical applications such as MRI and hyper-
thermia treatment. Such behavior can minimize the required
nanoprobe dosage level while preventing the MNP aggregation
in the dispersion resulting from magnetic dipolar interactions.
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