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We develop a theory of conductivity of type-II superconductors in the flux flow regime taking into account ran-

dom spatial fluctuations of the system parameters, such as the gap magnitude �(r) and the diffusion coefficient

D(r). We find a contribution to the conductivity that is proportional to the inelastic relaxation time τin, which

is much longer than the elastic relaxation time. This contribution is due to Debye-type relaxation, and it can

be much larger than the conventional flux flow conductivity due to Bardeen and Stephen. The new contribution

is expected to dominate in clean superconductors at low temperatures and in magnetic fields much smaller

than Hc2.
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When a type-II superconductor is subject to a magnetic

field H in the mixed state interval, Hc1 < H < Hc2, the mag-

netic field penetrates into the sample in the form of vortices

[1]. Here, H = nv�0 is the average magnetic field, with

nv being the flux line density and �0 = π h̄c/e the flux

quantum. Typically, defects and the intrinsic disorder of the

underlying crystalline lattice induce inhomogeneities in the

superconducting order parameter. As a result, the vortex lat-

tice becomes pinned to the crystalline lattice. For current

densities j below some critical value jc the vortices remain

pinned, and the current in this metastable state is dissipation-

less. However, at j > jc, or if the flux lattice is melted by

thermal fluctuations, the vortices begin to move, generating

dissipation, and the system acquires a finite conductivity σ .

This phenomenon has been extensively studied both exper-

imentally and theoretically (see, for example, Refs. [2–13],

and references therein.).

Near the critical current density jc this motion proceeds

by creep [14], but as the current density is increased the

system enters the flux flow regime, in which the vortices move

with a macroscopic velocity V. The latter is related to the

macroscopic electric field E by the Josephson relation [15]

E = −
1

c
[V × H], (1)

which implies that in the reference frame moving with the

vortex lattice the electric field vanishes. The nonlinear con-

ductivity σ in the flux flow regime can be expressed in terms

of the energy dissipation rate as

σE2 = nvW, (2)

where W is the energy dissipation rate per unit length of the

vortex.

At relatively weak magnetic fields, H � Hc2, the de-

pendence of the conductivity on the magnetic field can be

established from rather general considerations. The energy

dissipation in this case occurs in the vortex cores. In the ohmic

regime the dissipation rate in each vortex is quadratic in V.

From here, using Eqs. (1) and (2) one arrives at the conclusion

that the conductivity is inversely proportional to the magnetic

field, σ = C/H . Evaluation of the coefficient C requires a

microscopic theory.

The problem of flux flow conductivity in superconductors

has been studied for a long time. It is generally accepted

that in the regime where the temperature is not too close to

the critical temperature Tc and the magnetic field is not too

close to Hc2, the longitudinal conductivity in the flux flow

regime is given by the Bardeen-Stephen relation [2] (see also

reviews [6,8])

σBS = ζσn

Hc2

H
, Hc2 =

�0

2πξ 2
. (3)

Here, ζ is a number of order unity, ξ is the superconduct-

ing coherence length, and σn = e2νnDn is the conductivity

of normal metal, with νn being the density of states at the

Fermi energy, and Dn the electron diffusion coefficient. The

latter can be expressed in terms of the Fermi velocity vF and

the elastic momentum relaxation time τel as Dn = v
2
Fτel/3.

Equation (3) reflects the fact that the core region of a vortex

(of area πξ 2) may be considered, with respect to its electronic

properties, as a normal metal. It is important that the Bardeen-

Stephen expression for the conductivity is proportional to the

elastic relaxation time τel, and is independent of the energy

relaxation time. This means that at T � Tc the flux flow

conductivity Eq. (3) is temperature independent.

In the dirty limit, Tcτel � 1, the Bardeen-Stephen re-

lation (3) was confirmed by microscopic calculations in

Refs. [4,5,7,8] in the approximation neglecting the pinning

of vortices, which is valid at the current density j � jc. It

was also found [7] that up to a factor of order unity, the same

formulas describe the flux flow conductivity of superconduc-

tors in the clean limit, Tcτel � 1.

In this Rapid Communication we take into account random

spatial fluctuations of the system parameters, which were ne-

glected in Refs. [4–8], and show that they lead to an additional
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[to the Bardeen-Stephen value of Eq. (3)] contribution to the

conductivity, which is proportional to the inelastic relaxation

time τin. Since typically τin is orders of magnitude larger

than the elastic relaxation time [16], this contribution can

significantly exceed the one given by Eq. (3). At low tem-

peratures this contribution is strongly temperature dependent.

The physical mechanism that gives rise to this contribution

is similar to the Debye mechanism of microwave absorption

in gases [17], superconductors [18,19], and the Mandelstam-

Leontovich mechanism of second viscosity in liquids [20].

Here, we will assume the inequality τel � kFξ/� to be satis-

fied and not consider the opposite, so-called superclean limit,

which was discussed in a number of papers starting from

Ref. [21], since in this case special attention should be paid

to a large Hall angle.

Below we will adopt a model where, in the absence of

a magnetic field, both the modulus of the order parame-

ter �(r) = �̄ + δ�(r) and the diffusion coefficient Dn(r) =
D̄n + δDn(r) exhibit random spatial variations. For brevity

we introduce a parameter α(r) ≡ [�(r), Dn(r)] which de-

notes both the above parameters. We assume that the spatial

variations are small, δα � ᾱ, and denote their correlation

function by

〈δα(r)δα(r′)〉 = 〈(δα)2〉g
(

|r − r′|
Lc

)

, (4)

where 〈· · · 〉 denotes averaging over random realizations of

α(r). For simplicity we assume the correlation radius to be

large, Lc > ξ .

We begin with the simplest case of a thin film of an

s-wave superconductor at H � Hc2, where the distance be-

tween vortices exceeds the coherence length ξ , while the

film thickness d � ξ . In this case the modulus of the order

parameter changes from zero at the center of a vortex, to its

maximal value �0 at |r| of order of the intervortex distance.

Below we assume that the temperature exceeds the mean level

spacing in the core. We therefore neglect discreteness of the

quasiparticle energy spectrum, and introduce the density of

states ν(ε) per vortex at ε < �0. At low energies, ε � �0,

the density of states is ν(ε) ∼ νnξ
2d . It changes by a factor of

order unity at ε ∼ �0, and dramatically increases as ε → �0.

In the flux flow regime the vortices pass through sample

regions with different values of α(r), which changes the spa-

tial profile and amplitude of the order parameter �(r) near

the vortex cores. As a result, the density of states in the vortex

core, ν(ε, α), changes in time. Since the number of energy

levels is conserved, the time evolution of the density of states

is described by the continuity equation

∂ν(ε, α)

∂t
+

∂[vν (ε, α)ν(ε, α)]

∂ε
= 0, (5)

where vν (ε, α) is the level “velocity” in energy space. Inte-

grating this equation over energy and bearing in mind that the

spectral flow vanishes at ε = 0 we can express vν (ε, α) in

the form vν (ε, t ) = − α̇(t )

ν(ε,α(t ))

∫ ε

0
d ε̃∂αν(ε̃, α(t )), where α̇(t )

denotes the time derivative of α along the trajectory of the

vortex motion. To leading order in inhomogeneity we have

vν (ε, t ) = A(ε)α̇, (6)

where

A(ε) = −
1

ν(ε, ᾱ)

∫ ε

0

d ε̃ ∂αν(ε̃, α)|α=ᾱ (7)

characterizes the sensitivity of the density of states in the vor-

tex cores to local variations of α. The level velocities vν (ε, t )

oscillate in time as the vortices move. The typical frequency

of these oscillations is ωE ∼ cE/HLc.

At T > 0 the quasiparticle states in the vortex cores are

populated. As a result, the time dependence of the density of

states ν(ε, t ) caused by the vortex motion creates a nonequi-

librium quasiparticle distribution. At low vortex velocities V ,

the quasiparticle distribution function n(ε, t ) depends only

on the energy ε. In the absence of inelastic scattering its

time evolution due to the spectral flow is described by the

continuity equation ∂t(νn) + ∂ε (vννn) = 0. Combining this

equation with the continuity equation (5) for ν(ε, t ), allowing

for inelastic collisions, and working to lowest order in inho-

mogeneity, we obtain the following kinetic equation,

∂tδn(ε, t ) + vν (ε, t )
dnF(ε)

dε
= Iin{n}. (8)

Here, nF(ε) = (eε/T + 1)−1 is the Fermi function, δn(ε) =
n(ε) − nF(ε) is the nonequilibrium part of the distribution

function, and Iin{n} is the linearized inelastic collision inte-

gral, which we write in the relaxation time approximation,

Iin{n} = −δn(ε, t )/τin.

The rate of energy absorption per unit length due to the

quasiparticles in the vortex core in Eq. (2) is given by [18,19]

W = 1
d

∫ ∞
0

dε ν(ε, t )n(ε, t )vν (ε, t ), where · · · denotes time

averaging along the vortex trajectory. If one replaces the

quasiparticle distribution function here by the equilibrium

distribution nF(ε), the energy dissipation rate vanishes as the

integrand becomes a total derivative. Therefore, to lowest

order in inhomogeneity we have

W =
1

d

∫ ∞

0

dε ν(ε, ᾱ) δn(ε, t )vν (ε, t ). (9)

Substituting here the solution of the linearized kinetic equa-

tion (8), and using Eqs. (6) and (7), we get

W =
1

d

∫ ∞

0

dε

(

−
dnF(ε)

dε

)

ν(ε, ᾱ)A2(ε)C(E ), (10)

where the dependence on the electric field is described by the

quantity C(E ) defined as

C(E ) =
∫ ∞

0

e
− τ

τin dτ α̇(t )α̇(t − τ ). (11)

The correlator of α̇ in the integrand must be averaged over

the trajectories of the vortex motion at a given electric field

E . Substituting Eq. (10) into (2) we obtain for the Debye

contribution to the nonlinear conductivity

σ =
nv

d

C(E )

E2

∫ ∞

0

dε

4T

ν(ε, ᾱ)A2(ε)

cosh2
(

ε
2T

) . (12)

This expression, with C(E ) in the form (11), explicitly de-

pends on the inelastic relaxation time τin. However, the

correlator in the integrand of Eq. (11) depends on the statisti-

cal properties of vortex trajectories in the presence of disorder.
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As a result, its dependence on τin and the electric field E is

difficult to establish in the general case.

The situation simplifies dramatically in the flux flow

regime. In this case the vortices move with the velocity V =
c [E × H]/H2 along straight lines, and thus α(t ) = α(r0 +
Vt ), where r0 is the initial position of the vortex. As a result,

C(E ) in Eq. (11) can be expressed in terms of the disorder

correlation function in Eq. (4). Passing to the Fourier rep-

resentation (see Supplemental Material [22] for a detailed

derivation) we obtain

C(E ) =
〈(δα)2〉

τin

∫

dω̃

2π

ω̃2 g̃(ω̃)
(

E∗

E

)2 + ω̃2
, E∗ =

HLc

cτin

. (13)

Here, g̃(ω̃) =
∫

dxg(x)eiω̃x denotes the Fourier transform of

the function g(x) in Eq. (4), and E∗ is the characteristic

electric field of the onset of nonlinearity for the Debye con-

tribution to the conductivity.

At small electric fields, E < E∗, which corresponds to low

flow velocities, V τin < Lc, C(E ) in Eq. (13) may be estimated

as C(E ) ∼ (cE/H )2τin〈(∇α)2〉. Substituting this into Eq. (12)

we obtain the following estimate for the Debye contribution

to the linear flux flow conductivity,

σDB ∼
1

d

e2

h̄2
τin

Hc2

H
〈(∇α)2〉ξ 2

∫ ∞

0

dε

T

ν(ε, ᾱ)A2(ε)

cosh2
(

ε
2T

) . (14)

This expression applies at an arbitrary value of the parameter

Tcτel. In the clean (Tcτel � 1) and dirty (Tcτel � 1) limits

the coherence length ξ here is given by, respectively, ξ =
h̄vF/π� and ξ =

√
h̄Dn/2�.

At low temperatures, T � �, the integral in Eq. (14) is

dominated by energies ε ∼ T . In this energy range A(ε) in

Eq. (7) may be estimated as A(ε ∼ T ) � T/ᾱ. Taking into

account that ∇α ∼ δα/Lc and ν(ε, ᾱ) ∼ νnξ
2d , we find the

Debye-type contribution to the flux flow conductivity:

σDB ∼ e2νnτin

Hc2

H

〈(δα)2〉
ᾱ2

ξ 2

L2
c

(

ξT

h̄

)2

, T � Tc. (15)

The ratio between the Debye contribution to the conductivity,

Eq. (15), and the Bardeen-Stephen expression in Eq. (3) is of

the order of

σDB

σBS

∼
τin

τel

〈(δα)2〉
ᾱ2

ξ 2

L2
c

(

T ξ

h̄vF

)2

, T � Tc. (16)

This ratio is proportional to a product of a very large factor

(τin/τel) � 1 and other factors which are moderately small.

Since τin/τel may reach many orders of magnitude at low

temperatures (some estimates are provided below), the whole

ratio (16) may become large. Then the Debye contribution to

the conductivity (14) is the dominant one. In this case the flux

flow conductivity will exhibit strong temperature dependence.

The estimates (14)–(16) are obtained under the condition

ωEτin � 1, which corresponds to low electric fields E < E∗.

The maximal current density attainable in the linear regime

jmax ∼ σDBE∗ is independent of τin,

jmax ∼ e2νn

�0

cLc

〈(δα)2〉
ᾱ2

(

ξT

h̄

)2

. (17)

The linear regime in the current-voltage characteristic (CVC)

that is dominated by the Debye conductivity (15) exists pro-

vided jmax exceeds the critical current density jc � jmax,

which is determined by the strength of vortex pinning.

If E � E∗ the CVC becomes nonlinear. From Eqs. (13),

(10), and (2) it follows that at E � E∗ the Debye contribution

to the current density is j(E ) ∝ σDB (E∗)2/E . At arbitrary

electric fields the current density can be described by an

interpolation formula

jDB(E ) =
σDB E

1 + a(E/E∗)2
, (18)

where a is a number of order unity. The denominator in

Eq. (18) can be rewritten in the form [1 + (ωEτin )2], which

is characteristic of the Debye absorption mechanism.

Since at E > E∗ the current density is a decreasing func-

tion of the electric field, in this regime spatially uniform flow

becomes unstable. A similar scenario based on a thermal

instability of the Bardeen-Stephen flux flow was proposed

in Ref. [23], with the characteristic electric field ELO ∼
H
c

√
Dn/τin. The ratio E∗/ELO = Lc/

√
Dnτin is typically small

due to the large value of τin.

If jmax < jc, then upon depinning at j > jc the system

would jump into the unstable branch of the CVC with the neg-

ative differential conductance, −d j/dE ∝ 1/E2. However,

the depinning electric field may exceed the field E1 at which

the Debye contribution becomes of order σBS; σDB/[1 +
(E1/E∗)2] ∼ σBS. In this case the instability develops at E ∼
ELO. The interval E1 < E < ELO exists if

E1/ELO ∼
〈(δα)2〉

ᾱ2

ξ 2

(vFτel)2

(

T ξ

h̄vF

)2

� 1. (19)

Consideration of the nonlinear regime is beyond the scope of

this Rapid Communication.

The inelastic relaxation rate 1/τin, which controls the value

of the Debye contribution to the conductivity [Eq. (14)], may

be dominated by electron-electron or electron-phonon scat-

tering. In bulk metals the rate of electron-electron collisions

typically exceeds the rate of electron-phonon scattering at

temperatures below a few degrees Kelvin. We are not aware of

systematic studies of these rate for quasiparticles in the vor-

tex cores. At low temperatures, where the wavelength λph of

thermal phonons exceeds the core size ξ the electron-phonon

contribution to the inelastic relaxation rate is expected to be

smaller than that in bulk metals in the parameter ξ/λph. In this

temperature interval the energy relaxation rate is dominated

by electron-electron scattering, 1/τin = 1/τ(ee). At T ∼ � this

rate is roughly the same as the electron-electron scattering rate

in normal metals.

At T � � the electron-electron relaxation processes are

characterized by two relaxation times. The shorter time τee

corresponds to relaxation processes involving only quasiparti-

cles with typical thermal energies. Such relaxation processes

conserve the total energy of quasiparticles in the vortex core

and lead to the establishment of a local electron temperature

in the vortex core. Subsequent relaxation to equilibrium char-

acterized by a global electron temperature requires an energy

exchange between different cores and must involve quasipar-

ticles with energies ε > �0, which can propagate between

different vortices. As a result, the relaxation time associated
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with such processes is much longer, τee1 > τee. The Debye

contribution to the linear kinetic coefficient is proportional

to the longest relaxation time in the system [20]. Therefore,

at T � � we must set τin ∼ τee1 in Eq. (14). We also note

that at T � � there are two nonlinear electric field thresh-

olds corresponding to the two relaxation times. The above

estimates of relaxation times assumed that quasiparticles with

energies ε < � are confined to the vortex cores. However, in

disordered superconductors the density of states in this energy

range can be nonzero even outside the vortex cores. In this

case the value of τin in Eqs. (14) and (15) will be decreased.

The above results apply to the case of thin films where

the quasiparticles with ε < � are confined in the cores of

the pancake vortices. In bulk superconductors nonequilibrium

quasiparticles can diffuse along vortex lines, which effectively

shortens the energy relaxation time. To account for this effect

we allow for the dependence of the quasiparticle distribution

function on the coordinate z along the vortex, δn(ε, z, t ), and

modify the kinetic equation Eq. (8) as follows,
[

∂t − Dv∂
2
z +

1

τin

]

δn(ε, z, t ) = −
dnF(ε)

dε
vν (ε, α, z), (20)

where Dv(ε) is the diffusion coefficient of quasiparticles

inside the vortex core. In this case the z-dependent level

velocity vν (ε, α, z) is still described by Eqs. (6) and (7),

but ν(ε) should be understood as the density of states

per unit length of the vortex. Finally, Eq. (9) for the en-

ergy absorption rate should be modified as follows, W =
1
L

∫

dz
∫ ∞

0
dε ν(ε, ᾱ) δn(ε, z, t )vν (ε, z, t ), where L is the

length of the vortex line. Using Eq. (20) and following the

arguments that lead to Eq. (13), we obtain (see Supplemental

Material for the details)

W = Re

∫

dqdω

(2π )2

∫ ∞

0

dεν(ε, ᾱ)A2(ε)

4T cosh2
(

ε
2T

)

τin〈(δα)2〉ω2g̃(q, ω)

1 + Dvq2τin − iωτin

,

(21)

where g̃(q, ω) =
∫

dzdteiωt−iqzg(
√

z2+V 2t2

Lc
).

If Dvτin < L2
c diffusion along the vortex is irrelevant, and

the energy dissipation per unit length, and thus the conduc-

tivity are the same as those for thin films, which are given by

Eqs. (12) and (13).

In the opposite limit,
√

Dvτin � Lc, one finds for the Debye

contribution to the conductivity

σ
(3D)
DB ∼ e2νn

√

τin

Dv

Lc

Hc2

H

〈(δα)2〉
ᾱ2

ξ 2

L2
c

(

ξT

h̄

)2

, (22)

which is smaller than the two-dimensional (2D) result in

Eq. (15) by a factor of order Lc/
√

Dvτin � 1. The physical

reason for this is that the fluctuations δα(x) are effectively av-

eraged over a segment of the vortex with length ∼
√

Dvτin �
Lc. In this case the Debye contribution may still exceed the

Bardeen-Stephen result, σDB > σBS. However, since j (3D)
max ∼

1/
√

τin the range of current densities corresponding to the

stable branch of the CVC ( j (3D)
max > jc) turns out to be much

smaller than in the 2D case.
The value of the diffusion coefficient Dv depends on the

value of the parameter �τel. In isotropic dirty superconduc-
tors, �τel � 1, it can be shown [24] with the aid of the

Usadel equation that Dv ≈ Dn. In clean superconductors the
value of Dv can be significantly smaller. In this case quasi-
particle states inside a vortex are described by the Caroli–de
Gennes–Matricon (CdGM) solution [25] with energy dis-

persion εμ(pz) ≈ μω∗/
√

1 − p2
z/p2

F, where μ + 1/2 is an

integer, and ω∗ = �/(kFξ0). At small energies, ε � �, the
quasiparticle velocities along the vortex are greatly reduced
in comparison to the Fermi velocity, and may be estimated
as vv ∼ vF

ε
�

(kFξ0)−1, where ε = μω∗. Determination of the
elastic relaxation time in the core τ v

el requires a careful con-
sideration of quasiparticle wave functions in the core and
is beyond the scope of the present Rapid Communication.
Assuming no delicate cancellation of the scattering amplitude
for electron and hole components of the quasiparticle wave
functions occurs, τ v

el may be estimated using the density of
states in the core as τ v

el ∼ τel. The corresponding diffusion

coefficient, Dv ∼ Dn

k2
Fξ 2

0

ε2

�2
0

∼ Dn

k2
Fξ 2

0

T 2

�2
0

, may be several orders of

magnitude smaller than that in the normal state. In such a
situation diffusion of quasiparticles along the vortex line is in-
efficient and the 2D regime of inelastic relaxation is realized.

Finally, we mention a related effect. Microwave absorption

in type-II superconductors in a mixed state may be greatly

enhanced due to the Debye mechanism even without depin-

ning of vortices by a strong transport current. The microwave

field will exert a time-dependent Magnus force on the vortices,

which in turn causes them to oscillate about their equilibrium

positions. Because of the inhomogeneity of α(r) the density

of quasiparticle states in the vortex cores will vary in time.

Relaxation of quasiparticles to equilibrium will produce a

contribution to microwave absorption which is proportional

to the inelastic relaxation time τin at low frequencies. Thus

microwave absorption measurements in the mixed state could

be used to extract τin for quasiparticles in vortex cores. The

present mechanism relies on the inhomogeneity of the sample

parameters α(r) and produces a contribution to microwave

absorption proportional to τin even in the absence of a macro-

scopic supercurrent through the sample. In contrast, in the

absence of inhomogeneity of α(r) the linear microwave ab-

sorption coefficient depends on τin only in the presence of a

macroscopic supercurrent [18,19,26].

Conclusions. We developed a theory of the Debye dis-

sipation mechanism in the flux flow regime of type-II

superconductors. The energy dissipation rate due to this mech-

anism is controlled by the inelastic relaxation time τin, and

becomes nonlinear at rather weak electric fields E ∼ E∗ ∼
1/τin [see Eq. (13)]. At weak fields, E � E∗, the Debye con-

tribution to the conductivity [Eqs. (15) and (22)] increases as

τin increases, and greatly exceeds the Bardeen-Stephen result,

the enhancement being especially pronounced at low tempera-

tures, T � Tc. In such a case the flux flow resistivity ρxx(T ) ∝
1/τin(T ) is expected to be strongly temperature dependent;

the accompanying Hall resistance ρxy is small and scales as

ρxy(T ) ∝ ρ2
xx(T ) for the reasons outlined in Ref. [27]. Cur-

rently, we are not aware of experimental results indicating

a significant enhancement of the conductivity compared to

the Bardeen-Stephen value. We expect, however, that the pro-

posed mechanism may be observable at low temperatures in

clean two-dimensional or layered materials (such as NbSe2

and MoS2), and under magnetic fields H � Hc2 perpendicular

180507-4



CONDUCTIVITY OF SUPERCONDUCTORS IN THE FLUX … PHYSICAL REVIEW B 102, 180507(R) (2020)

to the layers. It is important to work under weak pinning

conditions, where the critical depinning current density jc is

much smaller than the pair-breaking current density j0. This

condition can be satisfied for H � Hc2 in clean superconduc-

tors in the regime of weak collective pinning [8,9], where jc is

proportional to a high power of the disorder parameter 〈δα2〉,
while the maximal dissipative current [Eq. (17)] is propor-

tional to 〈δα2〉. We expect that in such materials the crossover

to the unstable branch of the CVC should occur at very

weak electric fields E∗ ∼ 1/τin [see Eq. (13)]. In contrast,

in dirty superconductors (e.g., Refs. [28–30]), which exhibit

the Bardeen-Stephen flux flow resistance (3), the instability

occurs at a much higher field, ELO � E∗, predicted by Larkin

and Ovchinnikov [8,23]. Finally, we note that a similar Debye-

type mechanism may account for giant microwave absorption

in a pinned vortex state.
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