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Our work reports on the fundamental details of the crystal structure and phase transformations in Ba(Feq ;Tag 3)
O35, the best known temperature-independent oxygen-sensing ceramic material for applications in extreme
environments. Ba(Feq;Tag 3)035 ceramics were synthesized using conventional solid-state ceramic reaction
under variable sintering temperatures (T, = 1200-1350 °C). Combined X-ray diffraction (XRD) and high-re-
solution transmission electron microscopy (TEM) measurements revealed the Ts-induced phase transformations
and their origin in Ba(Fe, ;Tag 3)O3.5. Associated with phase transformations, pseudo-cubic (PC) reflections, such
as {200}pc, {211}pc, and {220}p, exhibited distinct anomalies with increasing Ts. At T, = 1200 °C, Ba
(Feo.7Tag.3)03.5 stabilized in mixed orthorhombic + rhombohedral phases (Amm2 + R3m). With increasing T
(=1250 °C), Ba(Feq 7Tag 3)03.5 ceramics stabilized in tetragonal/rhombohedral [P4mm + R3m] mixed phases,
while variations in the quantity of the respective phases were observed. Because both structure and crystal
chemistry play key roles in achieving enhanced performance in chemical sensing and catalytic converters, de-
tailed understanding of the phase transformations and crystal structure of Ba(Fe, ;Tag 3)03.5 ceramics, as derived
in this work, will be useful to develop chemical sensors with optimum performance for high-temperature and

corrosive environments.

Advanced ceramic materials are used in a wide variety of optical,
electrical, electro-optic, mechanical, magnetic, and magneto-electronic
applications. One particular area of rapidly growing interest in ad-
vanced ceramics is green-energy and smart-transportation industrial
technologies. Here, oxide ceramics are used for process optimization,
resulting in enhanced efficiency and complete elimination of process-
related environmental pollution [1-3]. In order to eliminate undesir-
able emissions that negatively affect air quality, reliable and rapid-re-
sponse sensors are required. Simple and multi-component oxide cera-
mics are key functional components of these sensors used to monitor
and control a wide variety of hazardous chemicals [1-4]. In recent
years, the demand for fast and reliable sensors based on relatively in-
expensive oxide ceramics that are robust, lightweight, highly sensitive,
selective, and exhibit long-term shelf lives has been rising exponentially
[1,2,5-8].

Intrinsic and doped oxides based on Sn, Ti, Ce, W, In and Ga have
been thoroughly investigated [1-12] for the design and development of
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various sensors for direct integration into energy, electronics, and
transportation related industrial applications. These oxides respond to
variations in oxygen partial pressure by maintaining the equilibrium
between surrounding oxygen and ionic and/or electronic defects pre-
sent in these oxides [2,6,9,11]. Sensors fabricated using oxide ceramics
take a simple design, are inexpensive, and exhibit very good sensing
performance. However, significant interference of temperature while
operating in exhaust emissions is a major drawback of most oxide
ceramics [13]. Perovskite oxide ceramics, such as doped Sr, Ba, and Ca-
based materials (SrTiO3, BaTiO3, CaTiO3), have been considered as new
materials for oxygen sensor applications [14-19]. Because of their high
melting point and decomposition temperature, perovskite oxide cera-
mics are particularly attractive for high-temperature sensor applica-
tions [14-19]. Perovskite oxide ceramics — with a general formula of
ABO;3; - contain two differently sized cations at sites A and B, which
allows doping of different cations. The ability to use different dopants
facilitates tuning of structure and defect chemistry, which in turn offers
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control of electrical transport and catalytic properties [17-21]. Thus,
manipulating the structure-property relationship by means of A, B ca-
tion doping readily allows optimization of sensor performance for de-
sired technological application.

The emergence of two selected material systems (both based on Fe-
doped oxides, SrTi,.\Fe,O3 (STF) and BaFe; ,Ta,O3 (BFT)) [17-19,22]
drove the development of temperature independent oxygen sensors
based on perovskite oxide ceramics [19,22]. While there were some
concerns and debate about the temperature independence of the sensor
behavior of STF [17], Ba(Fe;4Ta,)03.5 (BFTO) has been confirmed as a
temperature-independent oxygen sensor material that functions over a
broad ranges in temperature and oxygen partial pressure [19,22]. In
particular, it has been demonstrated that the specific composition Ba
(Fep.,Tap 3)03 5 exhibits rapid and stable response to very high tem-
perature (~900 °C) [19,22,23]. However, no major efforts have been
made to understand the fundamental scientific aspects of the effect of
temperature on crystal structure and phase transformation in BFTO.

The performance of oxide ceramics is determined by a number of
material characteristics, including purity, homogeneity, particle size
and shape, and chemistry, which in turn depend on the starting in-
gredients and their respective purity and synthetic conditions. The
crystal structure and the phase of the resulting oxide ceramic materials
in particular depend on processing conditions and method of prepara-
tion. Optimizing the structure and phase of a given oxide ceramic can
significantly improve the sensing parameters, such as sensitivity, sta-
bility, and selectivity [9,24]. In this context, our work focused on de-
riving a comprehensive understanding of phase transformations, phase
coexistence (if any), and crystal structure of Ba(Fe, ;Tag 3)O3 5 ceramics
made by the standard high-temperature, solid-state ceramic method.
Interestingly, as presented and described in this communication, we
demonstrated for the first time that the sintering temperature induces
phase transformations in Ba(Feg ;Tag 3)O3.5 ceramics and that optimi-
zation of a specific phase and crystal structure is possible by tuning the
ceramic processing conditions.

Ba(Feq ;Tap.3)03.5 [BFTO30] compounds were synthesized using the
conventional high-temperature, solid-state chemical reaction method.
High purity precursor materials, namely BaCO3; (99.9%, Sigma
Aldrich), Fe;O3 (99.9%, Sigma Aldrich), and Ta;Os (99.9%, Sigma
Aldrich), were weighed in stoichiometric proportions to achieve the
desired compound. Stoichiometrically weighed precursors were
homogeneously ground in an agate mortar using acetone as wetting
medium. Homogeneously ground powders were calcined at different
temperatures (1000 °C, 1050 °C, 1100 °C, and 1150 °C) with inter-
mediate grinding to achieve phase purity. Calcined powders were re-
ground to decrease particle size; fine powder was pelletized using a die
and uniaxial hydraulic press by applying a load of 1.5 ton in the form of
circular disc (8 mm diameter and 1 mm thickness). Pellets were sintered
in a muffle furnace at different sintering temperatures (Ts) of 1200 °C,
1250 °C, 1300 °C, and 1350 °C.

X-ray diffraction (XRD) measurements were made using a Rigaku X-
ray diffractometer (Mini Flex II). Both calcined and sintered compounds
were analyzed at room temperature. The XRD parameters employed
were: 10°-80° (20 range), step size 0.02°, and scan rate O.é/min.
Measurements were made so as to obtain appreciable intensities that
are useful to refine the XRD patterns using the well-known Rietveld
method, which was also useful to estimate the specific compound. The
transmission electron microscopy measurements (JEOL JEM-2100F
TEM equipped with Oxford AZtec energy dispersive X-ray spectrometer
and Gatan Tridiem GIF electron energy loss spectrometer) were made to
analyze the surface morphology and crystal symmetry of the BFTO
samples. Bright field images and selected area electron diffraction
(SAED) patterns were recorded. In order to prepare TEM samples, a
small amount of sintered powder was diluted with ethanol, the sus-
pension was sonicated, and a single drop of the resulting suspension
was placed on a carbon-coated copper grid and allowed to dry in air.

Fig. 1 shows the XRD patterns of Ba(Feq,Tag3)O3s sintered at
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Fig. 1. X-ray diffraction patterns of Ba(Fe,Tag 3)O3.s compounds sintered at
different temperatures. The peaks identified are as indexed.

different temperatures. The BFTO samples stabilized in perovskite
phase without any phase separation, even at high temperatures. The
crystallite sizes for BFTO samples sintered at different temperatures was
estimated using the Debye Scherrer relation [25]:

0.91
B cos 6 @

where D is the crystallite size, A (Cug,) - 1.5406 A, B is the full width at
half maximum, and 6 is the diffraction angle. The crystallite size in-
creased from ~24 nm to ~80 nm with sintering temperatures in-
creasing from 1200 °C to 1350 °C.

The stability and symmetry of the perovskite structure was de-
termined by Goldschmidt's tolerance factor (t) [26] based on the che-
mical formula given by:

f= _Rat Ro
V2 Rz + Ro) (2

Dy =

where R, and Rg are the ionic radii of A-site and B-site cations, and R
is the ionic radius of oxygen. The Shannon ionic radii [27] of the
constituent elements are: 1.61 A (Ba®*), 0.64 A (Ta®™"), 0.645 A (Fe3*,
high-spin state), 0.55 A (Fe®™, low-spin state), and 1.4 A (0%7). The
estimated tolerance factor values for Fe>* high-spin and low-spin states
are 1.07 and 1.11, respectively. The estimated tolerance factor value
shows that the synthesized BFTO compound stabilized in either hex-
agonal or tetragonal phase as a result of the significant difference be-
tween A-site and B-site ionic radii.

Interestingly, clear peak splitting (as indicated by orange dotted
lines in Fig. 1) is evident in samples sintered at 1200 °C and 1250 °C;
however, such peak splitting almost vanished in BFTO samples sintered
at 1350 °C. Fig. 2 represents the magnified profiles of pseudo-cubic
{200}pc, {211}pc, and {220}pc reflections; subscript PC indicates dif-
fraction peaks are indexed using pseudo-cubic symmetry. As can be
seen in Fig. 2, increasing T resulted in variation of splitting feature and
their intensity ratio, both clear evidence of the structural transforma-
tions in BFTO30 with varying sintering temperature. All reflections of
BFTO samples sintered at 1200 °C exhibited doublet characteristics. The
splitting behavior of the {200}pc reflection revealed tetragonal crystal
symmetry; however, for pure tetragonal phase the intensity ratio of
I002)/Ic200) = 0.5 (the (002) reflection corresponded to a lower Bragg
angle while the (200) reflection corresponded to a higher Bragg angle)
[28]. The observed intensity ratio between lower and higher Bragg
angle peaks of {200}pc for BFTO sintered at 1200 °C was = 1.6, which
indicated a lack of tetragonal phase stability of these BFTO samples.
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Fig. 2. Magnified pseudo-cubic reflections of samples sintered at different temperatures (a) {200}pc, (b) {211}pc, and (c) {220}.
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Fig. 3. HRTEM images of samples sintered at different temperatures. The images shown are for samples sintered at: (a) 1200 °C and (b) 1350 °C.

Moreover, for the pure rhombohedral phase, the (200) peak should
have been a singlet; however, the observed doublet characteristics re-
vealed an absence of the rhombohedral phase. The observed features of
the (200) reflection, such as clear splitting and an intensity ratio of
I022)/I200) = 1.6 were very similar to the orthorhombic phase [28].
The broadening of {211}pc and {220}pc was attributed to the presence
of more than two peaks, which resulted from orthorhombic symmetry.
Similar characteristic features of pseudo-cubic reflections were also
reported in doped-BaTiO; compounds and confirmed that the features
were associated with the resultant of mixed phases, such as orthor-
hombic + rhombohedral or orthorhombic + tetragonal [28-31]. Pre-
liminary peak analysis showed that BFTO samples sintered at 1200 °C
may have stabilized in orthorhombic or mixed phase.

BFTO samples sintered at 1250 °C showed marked differences
compared to those sintered at 1200 °C, in particular in their XRD peak
behavior. The pseudo-cubic profiles {200}pc, {211}pc, and {220}pc
exhibited a reversal in the intensity of split peaks (indicated by red
ovals in Fig. 2). In addition to this intensity reversal, the {200}pc

reflection exhibited more distinct characteristics, such as an absence of
clear splitting, and anomalous broadening with a small shoulder peak at
lower Bragg angle. These features are evidence of the structural trans-
formation in BFTO30 with increasing sintering temperature. The re-
versal in peak intensity with sintering temperature increasing from
1200 °C to 1250 °C may be attributed to the phase transition from a
orthorhombic to tetragonal structure [28,29]. In BFTO samples sintered
at 1300 °C, the splitting of pseudo-cubic reflections disappeared, and
peaks became highly asymmetric. The {200}pc reflection exhibited a
small shoulder at lower Bragg angle, while broader shoulders for
{211}pc & {220} pc reflections were observed. The noticeable changes
between 1250 °C and 1300 °C can only be attributed to either structural
transition or fraction of phase change. For samples sintered at 1350 °C,
the pseudo-cubic reflections represented in Fig. 2 exhibited singlet
features which indicated that the compound sintered at 1350 °C stabi-
lized in cubic phase. However, closer examination of the reflections
confirmed an asymmetry at lower Bragg angle along with singlet-like
features. These features can be attributed to stabilization of the

23259



B. Mallesham, et al.

Ceramics International 46 (2020) 23257-23261

(022)o /(202)g

® o0,
(111} {(110\p

20 1/nm

1200 °C =) Sintering Temperature =) 1350 °C

1/(202)g

Fig. 4. Selected area electron diffraction pattern of BFTO samples sintered at different temperatures. The images shown are for samples sintered at: (a) 1200 °C and

(b) 1350 °C.

compound in rhombohedral phase (closest structure to cubic phase).
Further analyses of the XRD data using theoretical considerations and
refinements (not shown) indicated that the tetragonal (P4mm) phase
decreases gradually from 34.5% to 12.6% with increasing sintering
temperature from 1200 to 1350 °C. Correspondingly, the rhombohedral
(R3m) phase increases gradually from 65.5% to 87.4% with increasing
sintering temperature from 1200 to 1350 °C. The substantial changes in
percentage of the different crystal symmetries in BFTO30 can only be
due to the effect of sintering temperature, which induces phase trans-
formations and a well-defined phase-transformation-sequence.

To further confirm and validate the phase coexistence and structural
transformation of BFTO compounds as a function of T,, HRTEM imaging
analysis of the samples was performed. Fig. 3 represents the HRTEM
images of the sintered BFTO samples. Distinct lattice fringes with dif-
ferent lattice spacing are evident in all samples. Lattice fringes of one
orientation are diffused into other, a clear lattice boundary layer was
absent. However, interplanar distances (d-spacing) calculated from the
HRTEM images are as represented in Fig. 3. The calculated interplanar
spacing values were corroborated satisfactorily by crystallographic
analysis made using XRD. It was evident that d-spacing values corre-
sponded to lattice fringes of two phases that were closely matched
because of very similar lattice parameters. However, lattice fringes
correspond to two different phases unambiguously, as represented
based on d-spacing values.

Fig. 4 shows the corresponding selected area electron diffraction
(SAED) patterns of samples sintered at different T;. The observed
multiple, random diffraction spots (rings) are evidence of the coex-
istence of two different phases. Few reflections were indexed based on
satisfactory crystallographic models Amm2 + R3m [1200 °C, Fig. 4 (a)
] and Amm2 + R3m [1350 °C; Fig. 4 (b), respectively]. However,
diffraction spots corresponded to two phases that were indistinguish-
able because of closely matched lattice spacing values.

1. Conclusions

Temperature-independent sensor materials based on Ba(Feq ;Tag 3)
O35 compounds were synthesized using the conventional solid state
reaction route and the effect of sintering temperature on crystal sym-
metry, phase coexistence, and phase transformations was determined.
X-ray diffraction analyses revealed the evidence of structural transfor-
mations with increasing sintering temperature. At 1200 °C, the BFTO
compounds stabilized in a mixed phase of orthorhombic (Amm?2) and
rhombohedral (R3m). Structural analyses confirmed the stabilization of
a tetragonal (P4mm) and rhombohedral (R3m) mixed phase in BFTO
compounds with sintering temperature increasing to 1250-1350 °C. As

the sintering temperature increased, the fraction of tetragonal phase
gradually decreased while the rhombohedral phase gradually increased.
HRTEM revealed that the estimated d-spacings corresponded well with
constituent phases of the respective compound.
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