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Abstract

Let
{

X1
k

}∞

k=1
,
{

X2
k

}∞

k=1
, . . . ,

{
Xd

k

}∞

k=1
be d independent sequences of Bernoulli random variables

with success-parameters p1, p2, . . . , pd respectively, where d ≥ 2 is a positive integer, and 0 < p j < 1
for all j = 1, 2, . . . , d. Let

S j (n) =

n∑
i=1

X j
i = X j

1 + X j
2 + · · · + X j

n , n = 1, 2, . . . .

We declare a “rencontre” at time n, or, equivalently, say that n is a “rencontre time,” if

S1(n) = S2(n) = · · · = Sd (n).

We motivate and study the distribution of the first (provided it is finite) rencontre time.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Consider
{

X1
k

}∞

k=1 ,
{

X2
k

}∞

k=1 , . . . ,
{

Xd
k

}∞

k=1 to be d independent sequences of Bernoulli
random variables with success-parameters p1, p2, . . . , pd respectively, where d ≥ 2 is a
positive integer, and 0 < p j < 1 for all j = 1, 2, . . . , d . Let

S j (n) =

n∑
i=1

X j
i = X j

1 + X j
2 + · · · + X j

n , n = 1, 2, . . . .
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e declare a “rencontre” at time n, or equivalently, say that n is a “rencontre time”, if n ≥ 1
nd

S1(n) = S2(n) = · · · = Sd (n).

n plain English, the event that there is a rencontre at time n ≥ 1 is exactly the event
S1(n) = S2(n) = · · · = Sd (n)}. The first rencontre time is given as

J d
:= J d (p1, p2, . . . , pd ) = inf{n ∈ {1, 2, . . .} : n a rencontre time},

hat is, J d is the first time the random walk
{(

S1
n , . . . , Sd

n

)
: n ≥ 1

}
intersects with the line

(x1, . . . , xd ) : x1 = · · · = xd}. Further, let q j = 1 − p j , j = 1, 2, . . . , d . In order to exclude
rivialities, or evident remarks about possible reduction of dimension d , we shall suppose
hat all parameters p1, p2, . . . , pd are strictly between 0 and 1. The present work studies the
istribution of the first rencontre time J d (provided such a time exists).

We shall see that the case d = 2 is special in the sense that, when p1 = p2, P(J 2 < ∞) = 1
nd, for all values of p1 and p2, E(J 2) = ∞. By a simple projection argument we may
onclude without any further calculations that E(J d ) = ∞ for d ≥ 2. Indeed, in order to have
rencontre at some time t it is necessary to have a rencontre in all

(d
2

)
different pairs of the

efined Bernoulli processes, so that

E(J d ) ≥ max{E(J 2
k,ℓ) : 1 ≤ k < ℓ ≤ d} = ∞,

here J 2
k,ℓ denotes the corresponding first rencontre time for the kth and ℓth subprocess. This

s why our main interest shall be on the distribution. We also remark that although the general
roblem can be converted to the problem of first intersection to the origin of (d−1)-dimensional
andom walks by considering S̃n =

(
S1

n − Sd
n , . . . , Sd−1

n − Sd
n

)
, this formulation proves more

nwieldy.
The literature most closely related to this problem studies the number of intersections of

independent simple random walks. For two processes {Sn} and {Tn}, Refs. [1,5,7] consider
he cardinality of the set {k ∈ N : k = Sn = Tm for any m, n}. Our paper departs from these
revious works in that we are only interested in the first time of intersection.

We now offer two practical motivations for the problem we consider:

1. Consider d independent sequences of Bernoulli random variables with success-parameter
p1, p2, . . . , pd respectively, for d ≥ 2 a positive integer. Suppose that the sequences
model strands of genes and that a zero is assigned to a gene which is not activated and
a one is assigned to a gene which is activated. We may be interested in the first time
when the number of activated genes coincides across these sequences.

2. Suppose that two players, A and B, play a sequence of independent games with each
other. Let pA be the win probability for player A in any given game, pB be the win
probability for player B in any given game, each independently of each other. Let SA(n)
and SB(n) be the respective scores of players A and B after n rounds. Now suppose that
both players A and B can quit the game without cost at a rencontre time, that is at the
time t such that SA(t) = SB(t). Further suppose that the current loser at time t ′ would
have to pay

⏐⏐SA(t ′) − SB(t ′)
⏐⏐. It now becomes of interest to know the distribution of the

waiting time until the next rencontre time.

The remainder of this manuscript is organized as follows. Section 2 derives and discusses
the distribution of J d (the first rencontre time). In Section 3, we introduce the probability

d
generating function of J and present a link between the latter and the generating function of

2
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robabilities of having a rencontre at any given time. In Section 4, we derive an explicit form of
robability generating function of J d and use characteristic functions in order to provide an ex-
ression for P(J d

= ∞). In Section 5, we give an alternative proof (Theorem 4) that the expec-
ation of J d is infinite for d ≥ 3. This is clear from our preceding result for d = 2 and the pro-

jection argument given above. However this alternative proof of Theorem 5 offers a clear benefit
providing estimates which are useful for estimating the conditional expectations E(J d

|J d <

∞) and E(J d
|b < J d < ∞) for some upper bound b. We pursue this task in Section 6.

. Distribution of the first rencontre time

We say that a rencontre happens at time n in state k if(
S1(n), S2(n), . . . , Sd (n)

)
= (k, k, . . . , k).

Note that this definition implies that k ∈ {0, 1, 2, . . . , n}. Since the i.i.d. random walks are
ndependent of each other, we have that

P(rencontre at time n in state k) =

d∏
j=1

P
(
S j (n) = k

)
=

d∏
j=1

(
n
k

)
pk

j q
n−k
j .

Let Rd
n , n = 1, 2 . . . denote the event that a rencontre happens at time n for these d random

walks. Thus, Rd
n may be written as union of disjoint events as

Rd
n =

n⋃
k=0

{rencontre at time n in state k}.

It then follows that

P(Rd
n ) =

n∑
k=0

P(rencontre at time n in state k) =

n∑
k=0

d∏
j=1

(
n
k

)
pk

j q
n−k
j . (1)

e now proceed with Theorem 1, which indeed is an instance of “first-occurrence decompo-
ition” in Feller’s theory of recurrent events [4].

heorem 1. For n ∈ N+, we have

P(J d
= n) =

n∑
s=1

(−1)s−1
∑

j1+···+ js=n

P(Rd
j1

) · · · P(Rd
js ). (2)

roof.

{J d
= n} = {no rencontre up to time n − 1, rencontre at time n}

= Rd
n \

n−1⋃
s=1

Rd
s = Rd

n \

n−1⋃
s=1

(
Rd

s ∩ Rd
n

)
.

he probability of the event J d
= n is

P(J d
= n) = P

(
Rd

n \

n−1⋃
s=1

(
Rd

s ∩ Rd
n

))

= P(Rd
n ) − P

(
n−1⋃(

Rd
s ∩ Rd

n

))
. (3)
s=1

3
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y inclusion–exclusion, we have

P

(
n−1⋃
s=1

(
Rd

s ∩ Rd
n

))

=

n−1∑
s=1

(−1)s−1
∑

1≤ j1<···< js≤n−1

P
((

Rd
j1

∩ Rd
n

)
∩ · · · ∩

(
Rd

js ∩ Rd
n

))

=

n−1∑
s=1

(−1)s−1
∑

1≤ j1<···< js≤n−1

P
(

Rd
j1

∩ · · · ∩ Rd
js ∩ Rd

n

)
. (4)

We shall use recursive arguments to simplify the probability of intersection of events in (4).
For example, for j1 < j2,

P
(

Rd
j1

∩ Rd
j2

)
= P

(
Rd

j1

)
P
(

Rd
j2− j1

)
.

Knowledge of a rencontre at time j1 allows the d processes to be in the same state (and, for
simplicity, we may consider them all as starting again from (0, 0, . . . , 0)). By induction, the
terms in (4) split into the corresponding product

P
(

Rd
j1

∩ · · · ∩ Rd
js ∩ Rd

n

)
= P

(
Rd

j1

)
P
(

Rd
j2− j1

)
· · · P

(
Rd

js− js−1

)
P
(
Rd

n− js

)
. (5)

Plugging (5) into (4) gives

P

(
n−1⋃
s=1

(
Rd

s ∩ Rd
n

))

=

n−1∑
s=1

(−1)s−1
∑

1≤ j1<···< js≤n−1

P(Rd
j1

)P(Rd
j2− j1

) · · · P(Rd
n− js ). (6)

et lu = ju − ju−1, u ≤ s and ls+1 = n − js , where by convention j0 = 0. The right-hand side
f Eq. (6) simplifies to

n−1∑
s=1

(−1)s−1
∑

l1+···+ls+1=n

P(Rd
l1

)P(Rd
l2

) · · · P(Rd
ls+1

). (7)

e now perform a change of variables s̃ = s + 1. The right-hand side now simplifies to
n∑

s=2

(−1)s
∑

l1+···+ls=n

P(Rd
l1

)P(Rd
l2

) · · · P(Rd
ls ). (8)

ombining (3) and (8) completes the proof. □

. Probability generating function of J d

Theorem 1 provides an expression for P(J d
= n) but does not allow us to compute

P(J d
= ∞) (i.e., the probability of no rencontre). We hence turn to generating functions.

et us define

φd (x) := φd (x; p1, . . . , pd ) =

∞∑
P
(
J d

= n
)

xn, (9)

n=1

4
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ϕd (x) := ϕd (x; p1, . . . , pd ) =

∞∑
n=1

P
(
Rd

n

)
xn. (10)

ote that since
∑

∞

n=1 P
(
J d

= n
)

≤ 1, the power series in (9) converges if x ∈ [0, 1]. For
P
(
Rd

n

)
≤ 1, the power series in (10) converges if x ∈ [0, 1). Recursive arguments enable us

to show that φd (x) is related to ϕd (x) as follows:

Lemma 1. For x ∈ [0, 1), we have

1 − φd (x) =
1

1 + ϕd (x)
.

roof. This Lemma is an instance of the “Feller relation” and is proven in Theorem 1 in
hapter 13.3 of Feller [4]. Note that Feller’s F is our φd and Feller’s U is our 1 + ϕd . □

. An expression for P( J d = ∞)

Note that the coefficients in the power series in (9) are non-negative. By Abel’s theorem for
ower series, we have

∞∑
n=1

P
(
J d

= n
)

= lim
x→1−

∞∑
n=1

P
(
J d

= n
)

xn
= lim

x→1−

φd (x),

ince by definition
∑

∞

n=1 P
(
J d

= n
)

≤ 1. Similarly,

∞∑
n=1

P
(
Rd

n

)
= lim

x→1−

∞∑
n=1

P
(
Rd

n

)
xn

= lim
x→1−

ϕd (x) = ϕd (1−). (11)

pplying Lemma 1 gives

P(J d
= ∞) = 1 −

∞∑
n=1

P(J d
= n) = 1 − lim

x→1−

φd (x)

= lim
x→1−

1
1 + ϕd (x)

=
1

1 + ϕd (1−)
. (12)

his allows us to convert the problem of calculating P(J d
= ∞) into the problem of calculating

+ ϕd (1−).

.1. Characteristic function representation

We shall now use characteristic functions to give an expression for 1 +ϕd (x). Let θd be the
ector (θ1, . . . , θd) and let Sd

n the vector
(
S1(n), . . . , Sd (n)

)
. For simplicity, we will write θd

s θ and Sd
n as Sn . Let

ψ
(
θ
)

:= ψ
(
θ; p , . . . , p

)

d d 1 d

5
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b
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e the characteristic function of S1 (i.e.
(
X1

1, . . . , Xd
1

)
). Direct calculation gives

ψd
(
θ
)

= E
(

ei θ
(

S1

)T)
= E

(
e
∑d

j=1 i θ j X j
1

)
=

d∏
j=1

E
(

ei θ j X j
1

)
=

d∏
j=1

(
p j ei θ j + q j

)
.

Let

ψd,n
(
θ
)

:= ψd,n
(
θ; p1, . . . , pd

)
e the characteristic function of Sn . Since

{
X1

k

}∞

k=1 ,
{

X2
k

}∞

k=1 , . . . ,
{

Xd
k

}∞

k=1 are independent,
nd {X j

k } is a sequence of i.i.d. Bernoulli random variables, we have

ψd,n
(
θ
)

= E
(

ei θ(Sn)
T )

=

(
E
(

ei θ
(

S1

)T))n

= (ψd
(
θ
)
)n.

he inversion formula for the characteristic function ψd,n
(
θ
)

is

P
(
Sn = (x1, . . . , xd )

)
=

1
(2π )d

∫
· · ·

∫
[−π,π]d

e−i (x1,...,xd ) (θ)
T

· ψd,n
(
θ
)

dθ

=
1

(2π )d

∫
· · ·

∫
[−π,π]d

e−i
∑d

j=1 x j θ j · ψd,n
(
θ
)

dθ.

his formula gives us an additional expression for the probability of a rencontre at time n, i.e.

P(Rd
n ) =

n∑
k=0

P(Sn = (k, . . . , k))

=

n∑
k=0

1
(2π )d

∫
· · ·

∫
[−π,π]d

e−i
∑d

j=1 k θ j · ψd,n
(
θ
)

dθ

=
1

(2π )d

∫
· · ·

∫
[−π,π]d

n∑
k=0

e−ik
∑d

j=1 θ j ·
(
ψd
(
θ
))n dθ.

Note that |p j eiθ j + q j | ≤ p j |eiθ j |+q j = 1, and thus |ψd
(
θ
)
| ≤ 1. For x ∈ [0, 1), by dominated

onvergence, we have

1 + ϕd (x) = 1 +

∞∑
n=1

P(Rd
n )xn

= 1 +

∞∑
n=1

xn 1
(2π )d

∫
· · ·

∫
[−π,π ]d

n∑
k=0

e−ik
∑d

j=1 θ j ·
(
ψd
(
θ
))n dθ

= 1 +

∞∑
n=1

1
(2π )d

∫
· · ·

∫
[−π,π ]d

n∑
k=0

e−ik
∑d

j=1 θ j ·
(
x ψd

(
θ
))n dθ

=

∞∑
n=0

1
(2π )d

∫
· · ·

∫
[−π,π ]d

n∑
k=0

e−ik
∑d

j=1 θ j ·
(
x ψd

(
θ
))n dθ

=
1

(2π )d

∫
· · ·

∫
d

∞∑ n∑
e−ik

∑d
j=1 θ j ·

(
x ψd

(
θ
))n dθ
[−π,π] n=0 k=0

6
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H

I

=
1

(2π )d

∫
· · ·

∫
[−π,π]d

∞∑
k=0

∞∑
n=k

e−ik
∑d

j=1 θ j ·
(
x ψd

(
θ
))n dθ

=
1

(2π )d

∫
· · ·

∫
[−π,π]d

∞∑
k=0

e−ik
∑d

j=1 θ j ·

(
x ψd

(
θ
))k

1 − x ψd
(
θ
) dθ

=
1

(2π )d

∫
· · ·

∫
[−π,π]d

1
1 − x ψd

(
θ
) ∞∑

k=0

(
x ψd

(
θ
)

e−i
∑d

j=1 θ j
)k

dθ

=
1

(2π )d

∫
· · ·

∫
[−π,π]d

1(
1 − x ψd

(
θ
)) (

1 − x ψd
(
θ
)

e−i
∑d

j=1 θ j
) dθ. (13)

Together with (12), the above allows us to give an expression for P(J d
= ∞) as follows:

P
(
J d

= ∞
)

= lim
x→1−

⎛⎝ 1
(2π )d

∫
· · ·

∫
[−π,π ]d

1(
1 − x ψd

(
θ
)) (

1 − x ψd
(
θ
)

e−i
∑d

j=1 θ j
) dθ

⎞⎠−1

.

(14)

n Appendix A, we show in the case d = 2, the function 1 +ϕ2(x) can be calculated explicitly
s

1 + ϕ2(x) =
1√

1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2
. (15)

etting

Q(x) = 1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2, (16)

y Lemma 1, we then have

φ2(x) = 1 −

√
Q(x). (17)

n the case d = 2, our model can be converted to one-dimensional random walk with a stay
i.e. the values of increment are −1, 0, 1) by letting S̃n = S1

n − S2
n =

∑n
i=1

(
X1

i − X2
i

)
. Then

he problem of a first rencontre is equivalent to problem of first return to 0. The authors of Dua
t al. [3] considered the one-dimensional random walk with a stay in the presence of partially
eflecting barriers a and −b. Indeed, (15) is a special case of the results of Dua et al. [3].

Recall from (9) that φ2(1) =
∑

∞

n=1 P(J 2
= n) = P(J 2 < ∞) so that P(J 2

= ∞) =

− φ2(1). Direct calculation from (16) gives

Q(1) = (p1 − p2)2.

ence,

P(J 2
= ∞) = 1 − φ2(1) =

√
Q(1) = |p1 − p2|.

t is immediate that if P(J 2
= ∞) > 0 then E[J 2] = ∞. However, in the case that

P(J 2
= ∞) = 0, namely, p1 = p2, differentiating (9) gives

E[J d ] = φ′ (1−),
d

7
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hile differentiating (17) gives

φ′c2(1−) = −
Q′(1−)

2
√

Q(1−)
= ∞.

e thus obtain Theorem 2.

heorem 2. In the case d = 2, i.e. two i.i.d. random walks which are independent of each
ther, the probability of no rencontre is P

(
J 2

= ∞
)

= |p1 − p2|. For all p1 and p2, the
xpectation of J 2 is E

(
J 2
)

= ∞.

. Some estimation results

In Eq. (14) of Section 4, we gave an expression for P
(
J d

= ∞
)
. However, the integral

annot be calculated explicitly. This makes it difficult to answer questions such as whether
P
(
J d

= ∞
)

(the probability of no rencontre) is zero or non-zero. The present section develops
ools to answer this question. Note that by (12), we have

P
(
J d

= ∞
)

=
1

1 + ϕd (1−)
,

hich implies that P
(
J d

= ∞
)

= 0 if and only if ϕd (1−) = ∞. Combining Eqs. (1) and (10)
ives

ϕd (x) =

∞∑
n=1

P
(
Rd

n

)
xn

=

∞∑
n=1

xn
n∑

k=0

d∏
j=1

(
n
k

)
pk

j q
n−k
j

=

∞∑
n=1

xn

⎛⎝ d∏
j=1

q j

⎞⎠n
n∑

k=0

(
n
k

)d
⎛⎝ d∏

j=1

p j q−1
j

⎞⎠k

.

et Qd denote
∏d

j=1 q j and Pd denote
∏d

j=1 p j q−1
j . For ease of notation, we will write Qd as

Q and Pd as P . Then

ϕd (x) =

∞∑
n=1

xn Qn
n∑

k=0

(
n
k

)d

Pk . (18)

y Abel’s theorem for power series,

ϕd (1−) =

∞∑
n=1

Qn
n∑

k=0

(
n
k

)d

Pk . (19)

n order to study the finiteness of ϕd (1−), we need to estimate
∑n

k=0

(n
k

)d Pk . In the sequel, we
ill give upper bounds and lower bounds for

∑n
k=0

(n
k

)d Pk for sufficiently large n. To find such
ounds, we must provide a few propositions. The value of α in the forthcoming propositions
s always assumed positive.

roposition 1. Viewing
(n

k

)
αk as a function of k, k ∈ {0, 1, . . . , n}, then

(n
k

)
αk is non-

ecreasing if k ∈
{
0, 1, . . . ,

[
α(n+1)
α+1

]}
and non-increasing if k ∈

{[
α(n+1)
α+1

]
,
[
α(n+1)
α+1

]
+1, . . . , n

}
,

here [x] is the greatest integer less than or equal to x. As a result, when k =
[
α(n+1)
α+1

]
,
(n

k

)
αk

obtains its maximum, i.e.(
n
)
αk

≤

(
n[

α(n+1) ])α[ α(n+1)
α+1

]
, k ∈ {0, 1, . . . , n}.
k
α+1

8
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roof.( n
k+1

)
αk+1(n

k

)
αk

=
n − k
k + 1

α, (20)

hich is a decreasing function of k. We set the right-hand of (20) ≥ 1 and obtain

k ≤
α(n + 1)
α + 1

− 1.

his concludes the proof. □

roposition 2. For sufficiently large n, we have(
n[

α(n+1)
α+1

])α[ α(n+1)
α+1

]
=

(
α + 1
√

2π α
+ o(1)

)
n−

1
2 (1 + α)n. (21)

roof. Let β denote
[
α(n+1)
α+1

]
. It then follows that, for sufficient large n,

β =

(
α

α + 1
+ o(1)

)
n,

n − β =

(
1

α + 1
+ o(1)

)
n, (22)

y Stirling’s formula, we have(
n[

α(n+1)
α+1

])α[ α(n+1)
α+1

]
=

(
n
β

)
αβ =

n!

β!(n − β)!
αβ

∼

√
2πn

(
n
e

)n

√
2πβ

(
β

e

)β√
2π (n − β)

(
n−β

e

)n−β
αβ

∼
1

√
2π

√
n

β(n − β)

(
n
β

)β ( n
n − β

)n−β

αβ

∼
α + 1
√

2π α
n−

1
2

(
n
β

)β ( n
n − β

)n−β

αβ (by (22))

∼
α + 1
√

2π α
n−

1
2

(
n

α+1
α
β

)β (
n

(α + 1)(n − β)

)n−β

(1 + α)n

∼
α + 1
√

2π α
n−

1
2 (1 + α)n exp

(
β log

(
n

α+1
α
β

)

+ (n − β) log
(

n
(α + 1)(n − β)

))
. (23)

efore continuing, we pause to note that

n −
1
α
<
α + 1
α

β ≤ n + 1,

and thus (recalling the definition of β)

−1 ≤ n −
α + 1

β <
1
.

α α
9
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implifying the above yields

−α ≤ αn − (α + 1)β < 1.

hen

αn − (α + 1)β = O(1), (24)

r, equivalently,

n − (α + 1)(n − β) = O(1). (25)

y Taylor’s expansion, we have

β log

(
n

α+1
α
β

)
= β log

(
1 +

n −
α+1
α
β

α+1
α
β

)

= β

⎛⎝n −
α+1
α
β

α+1
α
β

−
1
2

(
n −

α+1
α
β

α+1
α
β

)2

+ o

⎛⎝(n −
α+1
α
β

α+1
α
β

)2
⎞⎠⎞⎠

=
αn − (α + 1)β

α + 1
−

1
2

(αn − (α + 1)β)2

(α + 1)2β
+ o

(
(αn − (α + 1)β)2

(α + 1)2β

)
=
αn − (α + 1)β

α + 1
−

1
2
O(1)
O(n)

+ o
(
O(1)
O(n)

)
by (25)

=
αn − (α + 1)β

α + 1
+ O(n−1).

Similarly,

(n − β) log
(

n
(α + 1)(n − β)

)
=

n − (α + 1)(n − β)
α + 1

+ O(n−1).

hus

β log

(
n

α+1
α
β

)
+ (n − β) log

(
n

(α + 1)(n − β)

)
=
αn − (α + 1)β

α + 1
+ O(n−1) +

n − (α + 1)(n − β)
α + 1

+ O(n−1)

= O(n−1).

he Proposition now follows by plugging in the above result into (23). □

roposition 3. For sufficiently large n, we have(
n[

α(n+1)
α+1 −

√
n
])α[ α(n+1)

α+1 −
√

n
]

=

(
α + 1
√

2π α
exp

(
−

(α + 1)2

2α

)
+ o(1)

)
n−

1
2 (1+α)n. (26)

Proof. Let γ denote
[
α(n+1)
α+1 −

√
n
]
, then it follows easily that, for sufficiently large n,

γ =

(
α

α + 1
+ o(1)

)
n,

n − γ =

(
1

+ o(1)
)

n.

α + 1

10
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B
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T

y Stirling’s formula, we have(
n[

α(n+1)
α+1 −

√
n
])α[ α(n+1)

α+1 −
√

n
]

=

(
n
γ

)
αγ =

n!

γ !(n − γ )!
αγ

∼

√
2πn

(
n
e

)n

√
2πγ

(
γ

e

)γ√
2π (n − γ )

(
n−γ

e

)n−γ
αγ

∼
1

√
2π

√
n

γ (n − γ )

(
n
γ

)γ ( n
n − γ

)n−γ

αγ

∼
α + 1
√

2π α
n−

1
2

(
n
γ

)γ ( n
n − γ

)n−γ

αγ

∼
α + 1
√

2π α
n−

1
2

(
n

α+1
α
γ

)γ (
n

(α + 1)(n − γ )

)n−γ

(1 + α)n

∼
α + 1
√

2π α
n−

1
2 (1 + α)n exp

(
γ log

(
n

α+1
α
γ

)

+ (n − γ ) log
(

n
(α + 1)(n − γ )

))
. (27)

y the definition of γ , we have

α(n + 1)
α + 1

−
√

n − 1 < γ ≤
α(n + 1)
α + 1

−
√

n.

ence,

(α + 1)
√

n − α ≤ αn − (α + 1)γ < (α + 1)
√

n + 1,

hich implies that

αn − (α + 1)γ = (α + 1 + o(1))
√

n.

o assess (27) we first note by Taylor’s expansion that

γ log

(
n

α+1
α
γ

)
= γ log

(
1 +

n −
α+1
α
γ

α+1
α
γ

)

= γ

⎛⎝n −
α+1
α
γ

α+1
α
γ

−
1
2

(
n −

α+1
α
γ

α+1
α
γ

)2

+ o

⎛⎝(n −
α+1
α
γ

α+1
α
γ

)2
⎞⎠⎞⎠

=
αn − (α + 1)γ

α + 1
−

1
2

(αn − (α + 1)γ )2

(α + 1)2γ
+ o

(
(αn − (α + 1)γ )2

(α + 1)2γ

)
=
αn − (α + 1)γ

α + 1
−

1
2

(
(α + 1 + o(1))

√
n
)2

(α + 1)2
(
α
α+1 + o(1)

)
n

+ o

( (
(α + 1 + o(1))

√
n
)2

(α + 1)2
(
α
α+1 + o(1)

)
n

)
=
αn − (α + 1)γ

−
1 α + 1

+ o(1).

α + 1 2 α

11
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imilarly,

(n − γ ) log
(

n
(α + 1)(n − γ )

)
=

n − (α + 1)(n − γ )
α + 1

−
1
2

(α + 1) + o(1).

hus

γ log

(
n

α+1
α
γ

)
+ (n − γ ) log

(
n

(α + 1)(n − γ )

)
=
αn − (α + 1)γ

α + 1
−

1
2
α + 1
α

+ o(1) +
n − (α + 1)(n − γ )

α + 1
−

1
2

(α + 1) + o(1)

= −
1
2

(α + 1)2

α
+ o(1).

lugging in the above result into (27), Proposition 3 follows. □

With the above propositions in hand, we now turn towards the finiteness of ϕd (1−).

Proposition 4. Let d be integer satisfying d ≥ 3. For sufficiently large n, we have

n∑
k=0

(
n
k

)d

Pk
≤

⎛⎝ P
1
d + 1√

2π P
1
d

+ o(1)

⎞⎠d−1

n−
d−1

2

(
1 + P

1
d

)dn
, (28)

n∑
k=0

(
n
k

)d

Pk
≥

⎛⎜⎝ P
1
d + 1√

2π P
1
d

exp

⎛⎜⎝−

(
P

1
d + 1

)2

2P
1
d

⎞⎟⎠+ o(1)

⎞⎟⎠
d

n−
d−1

2

(
1 + P

1
d

)dn
. (29)

roof. Set

β =

[
P

1
d (n + 1)

P
1
d + 1

]
, and γ =

[
P

1
d (n + 1)

P
1
d + 1

−
√

n

]
.

y Proposition 1, we have(
n
k

)(
P

1
d

)k
≤

(
n
β

)(
P

1
d

)β
, k ∈ {0, 1, . . . , n},(

n
k

)(
P

1
d

)k
≥

(
n
γ

)(
P

1
d

)γ
, k ∈ {γ, γ + 1, . . . , β}.

ence,
n∑

k=0

(
n
k

)d

Pk
=

n∑
k=0

((
n
k

)(
P

1
d

)k
)d−1 (n

k

)(
P

1
d

)k

≤

n∑
k=0

((
n
β

)(
P

1
d

)β)d−1 (n
k

)(
P

1
d

)k

=

((
n
β

)(
P

1
d

)β)d−1 n∑
k=0

(
n
k

)(
P

1
d

)k

=

((
n
)(

P
1
d

)β)d−1 (
1 + P

1
d

)n
. (30)
β

12
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y Proposition 2, we have(
n
β

)(
P

1
d

)β
=

⎛⎝ P
1
d + 1√

2π P
1
d

+ o(1)

⎞⎠ n−
1
2

(
1 + P

1
d

)n
.

The inequality in (28) now follows by plugging the above result into (30). Further,
n∑

k=0

(
n
k

)d

Pk
=

n∑
k=0

((
n
k

)(
P

1
d

)k
)d

≥

β∑
k=γ

((
n
k

)(
P

1
d

)k
)d

≥

β∑
k=γ

((
n
γ

)(
P

1
d

)γ)d

= (β − γ + 1)
((

n
γ

)(
P

1
d

)γ)d

. (31)

y Proposition 3, we have(
n
γ

)(
P

1
d

)γ
=

⎛⎜⎝ P
1
d + 1√

2π P
1
d

exp

⎛⎜⎝−

(
P

1
d + 1

)2

2P
1
d

⎞⎟⎠+ o(1)

⎞⎟⎠ n−
1
2

(
1 + P

1
d

)n
.

ogether with (31) and the fact that

β − γ + 1 =

[
P

1
d (n + 1)

P
1
d + 1

]
−

[
P

1
d (n + 1)

P
1
d + 1

−
√

n

]
+ 1

>
P

1
d (n + 1)

P
1
d + 1

− 1 −

(
P

1
d (n + 1)

P
1
d + 1

−
√

n

)
+ 1

=
√

n,

he inequality in (29) follows. □

Proposition 3 tells us that Qn ∑n
k=0

(n
k

)d Pk has same order as n−(d−1)/2
(

Q
(
1 + P1/d

)d
)n

.

Our next goal is to determine the value of Q
(
1 + P1/d

)d . By the definition of P and Q, we
have

Q
(

1 + P
1
d

)d
=

d∏
j=1

q j

⎛⎜⎝1 +

⎛⎝ d∏
j=1

p j q−1
j

⎞⎠ 1
d
⎞⎟⎠

d

=

⎛⎜⎝
⎛⎝ d∏

j=1

p j

⎞⎠ 1
d

+

⎛⎝ d∏
j=1

q j

⎞⎠ 1
d
⎞⎟⎠

d

.

(32)

roposition 5.⎛⎝ d∏
j=1

p j

⎞⎠ 1
d

+

⎛⎝ d∏
j=1

q j

⎞⎠ 1
d

≤ 1, (33)

here equality holds if and only if p = · · · = p .
1 d

13
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roof. Since f (x) = log x is concave, we have

log

⎛⎝ d∏
j=1

q j

⎞⎠ 1
d

=
1
d

d∑
j=1

log q j ≤ log

⎛⎝ 1
d

d∑
j=1

q j

⎞⎠ = log

⎛⎝1 −
1
d

d∑
j=1

p j

⎞⎠ . (34)

ote that the inequality of arithmetic and geometric means implies 1
d

∑d
j=1 p j ≥

(∏d
j=1 p j

) 1
d

.
Together with (34), we have

log

⎛⎝ d∏
j=1

q j

⎞⎠ 1
d

≤ log

⎛⎜⎝1 −

⎛⎝ d∏
j=1

q j

⎞⎠ 1
d
⎞⎟⎠ ,

hich implies (33). The equality holds only if 1
d

∑d
j=1 p j =

(∏d
j=1 p j

) 1
d

, namely, p1 = · · · =

pd . If p1 = · · · = pd the equality holds trivially. This completes the proof. □

Combining Propositions 4, 5 and Eqs. (19) and (32), Theorem 3 follows immediately.

heorem 3. In the case d = 3, i.e. three i.i.d. random walks which are independent
f each other, if p1 = p2 = p3, then ϕ3(1−) = ∞, which means P

(
J 3

= ∞
)

= 0,
.e. rencontre happens almost surely; if p1, p2, p3 are not equal, then ϕ3(1−) < ∞, which
eans P

(
J 3

= ∞
)
> 0. In the case d ≥ 4, ϕd (1−) < ∞ regardless of the values of

p1, . . . , pd . This means that P
(
J d

= ∞
)
> 0.

As promised in the introduction, we now provide an alternative proof that the expectation
f J d is infinite.

heorem 4. For d ≥ 3, E
(
J d
)

= ∞.

roof. According to Theorem 3, we only need prove E
(
J d
)

= ∞ in the case that d = 3
nd p1 = p2 = p3, since in other cases, P

(
J d

= ∞
)
> 0, which implies immediately that

E
(
J d
)

= ∞. If so, P
(
J 3

= ∞
)

= 0, and hence

E
(
J 3)

=

∞∑
n=1

n P
(
J 3

= n
)
. (35)

ote that φ3(x) and ϕ3(x) are analytic if x ∈ [0, 1). By Abel’s theorem for power series, we
ave

∞∑
n=1

n P
(
J 3

= n
)

= lim
x→1−

∞∑
n=1

n P
(
J 3

= n
)

xn−1

= lim
x→1−

φ′

3(x) = lim
x→1−

(
1 −

1
1 + ϕ3(x)

)′

= lim
x→1−

ϕ′

3(x)

(1 + ϕ3(x))2
.

ogether with (35), we obtain

E
(
J 3)

= lim
ϕ′

3(x)
2 . (36)
x→1− (1 + ϕ3(x))
14
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e thus need only estimate ϕ′

3(x)/(1 + ϕ3(x))2. To do so, we need introduce further notation.
et

K1 :=

⎛⎝ P
1
3 + 1√

2π P
1
3

⎞⎠2

K2 :=

⎛⎜⎝ P
1
3 + 1√

2π P
1
3

exp

⎛⎜⎝−

(
P

1
3 + 1

)2

2P
1
3

⎞⎟⎠
⎞⎟⎠

3

T := Q
(

1 + P
1
3

)3
=

(
(p1 p2 p3)

1
3 + (q1 q2 q3)

1
3

)3
.

y Proposition 5, in the case d = 3 and p1 = p2 = p3, we have T = 1. Now consider
roposition 4 with d = 3. There exists an integer N such that for n ≥ N ,

n∑
k=0

(
n
k

)3

Pk
≤ 2K1 n−1

(
1 + P

1
3

)3n
,

n∑
k=0

(
n
k

)3

Pk
≥

K2

2
n−1

(
1 + P

1
3

)3n
.

rom (18), for 0 ≤ x < 1, we have

ϕ′

3(x) =

∞∑
n=1

n Qn xn−1
n∑

k=0

(
n
k

)3

Pk
≥

∞∑
n=N

n Qn xn−1
n∑

k=0

(
n
k

)3

Pk

≥

∞∑
n=N

n Qn xn−1
·

K2

2
n−1

(
1 + P

1
3

)3n
=

K2

2

∞∑
n=N

1
x
(T x)n

=
K2

2

∞∑
n=N

1
x

xn
=

K2

2
x N−1

1 − x
. (37)

ecalling Taylor’s expansion for − log(1 − x) for 0 ≤ x < 1,

1 + ϕ3(x) = 1 +

∞∑
n=1

Qn xn
n∑

k=0

(
n
k

)3

Pk

= 1 +

N−1∑
n=1

Qn xn
n∑

k=0

(
n
k

)3

Pk
+

∞∑
n=N

Qn xn
n∑

k=0

(
n
k

)3

Pk

≤ 1 +

N−1∑
n=1

Qn
n∑

k=0

(
n
k

)3

Pk
+

∞∑
n=N

Qn xn
· 2K1 n−1

(
1 + P

1
3

)3n

= 1 +

N−1∑
n=1

Qn
n∑

k=0

(
n
k

)3

Pk
+ 2K1

∞∑
n=N

1
n
(T x)n

= 1 +

N−1∑
Qn

n∑(
n
k

)3

Pk
+ 2K1

∞∑ 1
n

xn
n=1 k=0 n=N

15
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a

≤ 1 +

N−1∑
n=1

Qn
n∑

k=0

(
n
k

)3

Pk
+ 2K1

∞∑
n=1

1
n

xn

= 1 +

N−1∑
n=1

Qn
n∑

k=0

(
n
k

)3

Pk
− 2K1 log(1 − x). (38)

et

K3 := 1 +

N−1∑
n=1

Qn
n∑

k=0

(
n
k

)3

Pk .

From (38),

1 + ϕ3(x) ≤ K3 − 2K1 log(1 − x). (39)

ombining (36), (37) and (39) yields

E
(
J 3)

= lim
x→1−

ϕ′

3(x)
(1 + ϕ3(x))2 ≥ lim

x→1−

K2
2

x N−1

1−x

(K3 − 2K1 log(1 − x))2
= ∞,

ompleting the proof. □

emark 1. The apt referee has pointed out that the dependence of dimension d in Theorems 3
nd 4 is somewhat reminiscent of that of Pólya’s theorem for simple random walks (see [2]).

6. Conditional expected first rencontre time

As we have seen throughout the preceding sections, rencontres are typically rare events. In
fact, we know that E(J d ) = ∞ for d ≥ 2, and P(J d

= ∞) > 0 for all d > 3. Still, even
rare events do happen, and of course there are many examples in science where it was the
occurrence of a rare event that has given rise to new questions. However, in many of these
examples, the questions are difficult to answer, in particular since they are of the a-posteriori
type. A well-known example of such a question is as follows: we are here, and thus life exists,
but then how plausible is it that life was born at random out of chaos?

One way to approach such questions is to consider a system is determined by c components,
of which c − 1 are assumed known and the remaining one is unknown. One may then attempt
plausibility arguments for the last component to have functioned in one way or another such
that the event which we see could have occurred. Our focus here is related to such objectives,
although on a much more modest level.

Specifically, suppose that d = 3, p1 = 0.3, and p2 = 0.5, and that p := p3 is unknown. The
larger p becomes, the more likely it is that S3(n) will quickly dominate S1(n) and S2(n), and
so by the law of large numbers, a rencontre after time n tends quickly to zero as n becomes
large. In other words, by knowing J d < ∞ and E(J d

|J d < ∞) = t , we would expect p to be
larger as t becomes smaller because the conditional probabilities of J d given J d < ∞ must be
more concentrated on the smaller values of J d . Our approach will be simpler in the sense that
we will not work with partially unknown parameters; we instead suppose that all parameters
are known and develop tools to provide bounds for E(J d

|J d < ∞). With p1 and p2 fixed, we
obtain a “sampled” version of what we want by plugging in several values of p .
3
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With this motivation in hand, we now consider the problem raised in the introduction of
alculating the conditional expectations E(J d

|J d < ∞) and E(J d
|b < J d < ∞). To obtain

he bounds needed for these conditional expectations, we shall replace Stirling’s formula by
obbins version of Stirling’s formula [6]: for n ∈ N+,

√
2π nn+

1
2 e−n e

1
12n+1 ≤ n! ≤

√
2π nn+

1
2 e−n e

1
12n . (40)

We shall first extend Propositions 2 and 3. It is assumed throughout that α is positive. As
above, the notation [x] is used to denote the largest integer which is less than or equal to x .

Proposition 6. Let λ be a real number in (0, 1) and let N (α, λ) = max{[α/λ]+1, [1/(λα)]+1}.
For n ≥ N (α, λ), we have(

n[
α(n+1)
α+1

])α[ α(n+1)
α+1

]
≤

M(α, λ)
√

2π
n−

1
2 (1 + α)n,

here

M(α, λ) :=
α + 1
√
α

1
1 − λ

.

roof. See Appendix B. □

roposition 7. Let λ be a real number in (0, 1). If n satisfies λαn − (α+ 1)
√

n − 1 ≥ 0, then(
n[

α(n+1)
α+1 −

√
n
])α[ α(n+1)

α+1 −
√

n
]

≥

√
2π

e2 C1(α, λ) n−
1
2 (1 + α)n,

where

C1(α, λ) := max
{

4,
(α + 1)2

α(1 + λα)

}
· exp

(
−

1
2

1 + λα

(1 − λ)α

(
(α + 1)2

+
λα

1 + λα

))
.

roof. See Appendix B. □

roposition 8. Let λ be a real number in (0, 1). If positive integer n satisfies λn − (α +

)
√

n − α ≥ 0, then(
n[

α(n+1)
α+1 +

√
n
])α[ α(n+1)

α+1 +
√

n
]

≥

√
2π

e2 C2(α, λ) n−
1
2 (1 + α)n,

where

C2(α, λ) := max
{

4,
(α + 1)2

α + λ

}
· exp

(
−

1
2

α + λ

(1 − λ)α2

(
(α + 1)2

+
λα2

α + λ

))
.

roof. See Appendix B. □

With the above propositions in hand, we now give bounds for the coefficients of ϕd (x).
17
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roposition 9. Let d ≥ 3 be an integer. For n ≥ N
(

P
1
d , λ

)
, with N (α, λ) defined in

Proposition 6,

n∑
k=0

(
n
k

)d

Pk
≤

⎛⎝M
(

P
1
d , λ

)
√

2π

⎞⎠d−1

n−
d−1

2

(
1 + P

1
d

)dn
. (41)

roof. See Appendix B. □

roposition 10. Let d ≥ 3 be a positive integer. Define

L(α, λ) := max
{⎡⎣( (α + 1) +

√
(α + 1)2 + 4λα
2λα

)2
⎤⎦+ 1,

⎡⎣( (α + 1) +
√

(α + 1)2 + 4λα
2λ

)2
⎤⎦+ 1

}
.

or n ≥ L
(

P
1
d , λ

)
, we have

n∑
k=0

(
n
k

)d

Pk
≥

(√
2π
e2

)d

K
(

P
1
d , d, λ

)
n−

d−1
2

(
1 + P

1
d

)dn
, (42)

ith K (α, d, λ) defined as

K (α, d, λ) :=
(1 − λ)α + 1

α + 1
(C1(α, λ))d + (C2(α, λ))d ,

and C1(α, λ) and C2(α, λ) defined, respectively, in Propositions 7 and 8.

Proof. See Appendix B. □

6.1. Bounds for the generating function

With the above propositions in hand, we now give bounds for ϕd (x) and ϕ′

d (x). It follows
from (10) and (18) that

ϕd (x) =

∞∑
n=1

P
(
Rd

n

)
xn

=

∞∑
n=1

xn Qn
n∑

k=0

(
n
k

)d

Pk,

with

P
(
Rd

n

)
= Qn

n∑
k=0

(
n
k

)d

Pk, for n ∈ N+.
18
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pplying Proposition 9 yields

ϕd (x) =

N (P
1
d ,λ)−1∑

n=1

P
(
Rd

n

)
xn

+

∞∑
n=N (P

1
d ,λ)

xn Qn
n∑

k=0

(
n
k

)d

Pk

≤

N (P
1
d ,λ)−1∑

n=1

P
(
Rd

n

)
xn

+

∞∑
n=N (P

1
d ,λ)

xn Qn

⎛⎝M
(

P
1
d , λ

)
√

2π

⎞⎠d−1

n−
d−1

2

(
1 + P

1
d

)dn

=

N (P
1
d ,λ)−1∑

n=1

P
(
Rd

n

)
xn

+

⎛⎝M
(

P
1
d , λ

)
√

2π

⎞⎠d−1
∞∑

n=N (P
1
d ,λ)

n−
d−1

2

(
Q
(

1 + P
1
d

)d
x
)n

. (43)

Let U B (x; P, Q, d, λ|ϕd) denote the right-hand side of (43), i.e. the upper bound for ϕd (x).
pplying Proposition 10 to ϕd (x) yields

ϕd (x) =

L(P
1
d ,λ)−1∑

n=1

P
(
Rd

n

)
xn

+

∞∑
n=L(P

1
d ,λ)

xn Qn
n∑

k=0

(
n
k

)d

Pk

≥

L(P
1
d ,λ)−1∑

n=1

P
(
Rd

n

)
xn

+

∞∑
n=L(P

1
d ,λ)

xn Qn

(√
2π
e2

)d

K
(

P
1
d , d, λ

)
n−

d−1
2

(
1 + P

1
d

)dn

=

L(P
1
d ,λ)−1∑

n=1

P
(
Rd

n

)
xn

+

(√
2π
e2

)d

K
(

P
1
d , d, λ

) ∞∑
n=L(P

1
d ,λ)

n−
d−1

2

(
Q
(

1 + P
1
d

)d
x
)n

. (44)

et L B (x; P, Q, d, λ|ϕd) denote the right-hand side of (44), i.e. the lower bound for ϕd (x).

t follows easily from (43) that ϕd (x) is convergent for 0 ≤ x <
(

Q
(
1 + P

1
d
)d
)−1

, and hence
d (x) is analytic in this region. Then

ϕ′

d (x) =

∞∑
n=1

n P
(
Rd

n

)
xn−1

=

∞∑
n=1

n xn−1 Qn
n∑

k=0

(
n
k

)d

Pk,

nd

ϕ′′

d (x) =

∞∑
n(n − 1) P

(
Rd

n

)
xn−2

=

∞∑
n(n − 1) xn−2 Qn

n∑(
n
k

)d

Pk .
n=1 n=1 k=0
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imilarly, applying Propositions 9 and 10 to ϕ′

d (x), we have for 0 < x <
(

Q
(
1 + P

1
d
)d
)−1

,

L B
(
x; P, Q, d, λ|ϕ′

d

)
≤ ϕ′

d (x) ≤ U B
(
x; P, Q, d, λ|ϕ′

d

)
, (45)

here U B
(
x; P, Q, d, λ|ϕ′

d

)
is defined as

N (P
1
d ,λ)−1∑

n=1

n P
(
Rd

n

)
xn−1

+

⎛⎝M
(

P
1
d , λ

)
√

2π

⎞⎠d−1
∞∑

n=N (P
1
d ,λ)

n−
d−3

2 x−1
(

Q
(

1 + P
1
d

)d
x
)n

,

(46)

and L B
(
x; P, Q, d, λ|ϕ′

d

)
is defined as

L(P
1
d ,λ)−1∑

n=1

n P
(
Rd

n

)
xn−1

+

(√
2π
e2

)d

K
(

P
1
d , d, λ

) ∞∑
n=L(P

1
d ,λ)

n−
d−3

2 x−1
(

Q
(

1 + P
1
d

)d
x
)n

.

(47)

ote that

ϕ′

d (x) + xϕ′′

d (x) =

∞∑
n=1

n2 xn−1 Qn
n∑

k=0

(
n
k

)d

Pk .

pplying Proposition 9 to ϕ′

d (x) + xϕ′′

d (x), we have for 0 < x <
(

Q
(
1 + P

1
d
)d
)−1

,

ϕ′

d (x) + xϕ′′

d (x) ≤ U B
(
x; P, Q, d, λ|ϕ′

d + xϕ′′

d

)
, (48)

here U B
(
x; P, Q, d, λ|ϕ′

d + xϕ′′
)

is defined as

N (P
1
d ,λ)−1∑

n=1

n2 P
(
Rd

n

)
xn−1

+

⎛⎝M
(

P
1
d , λ

)
√

2π

⎞⎠d−1
∞∑

n=N (P
1
d ,λ)

n−
d−5

2 x−1
(

Q
(

1 + P
1
d

)d
x
)n

.

(49)

6.2. Bounds for E
(
J d

|J d < ∞
)

Recall that in Section 5, we have shown the expected value of J d to always be infinite (see
heorem 4). We now investigate the conditional expectation E

(
J d

|J d < ∞
)

and give bounds
or it.

We first observe that

E
(
J d

|J d < ∞
)

=

∑
∞

n=1 n P
(
J d

= n
)∑

∞
(

d
) =

limx→1− φ
′

d (x)
= lim

φ′

d (x)
.

n=1 P J = n limx→1− φd (x) x→1− φd (x)
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he last equality holds because the limit of φd (x) is positive and finite as x tends to 1−. Since
d (x) = 1 −

1
1+ϕd (x) (i.e. Lemma 1), we have

E
(
J d

|J d < ∞
)

= lim
x→1−

φ′

d (x)
φd (x)

= lim
x→1−

ϕ′

d (x)
ϕd (x) (1 + ϕd (x))

. (50)

pplying the bounds for ϕd (x) and ϕ′

d (x), i.e. (43)–(47), with λ replaced by λ1 in the upper
ounds and λ replaced by λ2 in the lower bounds, Theorem 5 immediately follows.

heorem 5. Let d ≥ 3 be a positive integer and let λ1 and λ2 be two arbitrary real numbers
in (0, 1). We have

E
(
J d

|J d < ∞
)

≤ lim
x→1−

U B
(
x; P, Q, d, λ1|ϕ

′

d

)
L B (x; P, Q, d, λ2|ϕd) (1 + L B (x; P, Q, d, λ2|ϕd))

, (51)

E
(
J d

|J d < ∞
)

≥ lim
x→1−

L B
(
x; P, Q, d, λ2|ϕ

′

d

)
U B (x; P, Q, d, λ1|ϕd) (1 + U B (x; P, Q, d, λ1|ϕd))

. (52)

If Q
(
1 + P

1
d
)d
< 1 (i.e. p1, . . . , pd are not all the same, see Proposition 5 and (32)),

hen U B
(
1; P, Q, d, λ1|ϕ

′

d

)
and L B (1; P, Q, d, λ2|ϕd) are both finite, since the power series

n (44) and (46) are convergent when x = 1. Hence, by (51), E
(
J d

|J d < ∞
)

is also
nite. Note that if Q

(
1 + P

1
d
)d

= 1 (i.e. p1 = · · · = pd ) and d = 4 or 5, then the
ower series in (47) diverges when x = 1 but the power series in (43) converges when

x = 1, i.e. L B
(
1; P, Q, d, λ2|ϕ

′

d

)
= ∞ but U B (1; P, Q, d, λ1|ϕd) < ∞. In this case,

it follows immediately from (52) that E
(
J d

|J d < ∞
)

= ∞. If Q
(
1 + P

1
d
)d

= 1 and
d ≥ 6, note that the series

∑
n n−a converges for a > 1, and thus U B

(
1; P, Q, d, λ1|ϕ

′

d

)
and L B (1; P, Q, d, λ2|ϕd) are both finite. Hence E

(
J d

|J d < ∞
)

is again finite by (51). The
only remaining case to consider is Q

(
1 + P

1
d
)d

= 1 and d = 3. In this case, as x → 1−,

L B
(
x; P, Q, d, λ2|ϕ

′

d

)
≥

(√
2π
e2

)3

K
(

P
1
3 , 3, λ2

) ∞∑
n=L

(
P

1
3 ,λ2

) x−1
· xn

=

(√
2π
e2

)3

K
(

P
1
3 , 3, λ2

)
·

x L(P
1
3 ,λ2)−1

1 − x
= O

(
(1 − x)−1) ,

nd

U B (x; P, Q, d, λ1|ϕd) ≤

N (P
1
3 ,λ1)−1∑
n=1

xn
+

⎛⎝M
(

P
1
3 , λ1

)
√

2π

⎞⎠2
∞∑

n=N (P
1
3 ,λ1)

n−1 xn

≤

N (P
1
3 ,λ1)−1∑
n=1

1 +

⎛⎝M
(

P
1
3 , λ1

)
√

2π

⎞⎠2
∞∑

n=1

n−1 xn

= N
(

P
1
3 , λ1

)
− 1 −

⎛⎝M
(

P
1
3 , λ1

)
√

2π

⎞⎠2

log(1 − x)

= O − log(1 − x) ,
( )
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Table 1
Numerics for upper and lower bounds of E(J d

|J d < ∞).

Parameter settings Lower bound Upper bound

d = 3, p1 = 0.3, p2 = 0.4, p3 = 0.5
λ1 = 1/80, λ2 = 1/8

3.86223 3.88172

d = 3, p1 = 0.45, p2 = 0.5, p3 = 0.55
λ1 = 1/300, λ2 = 1/10

9.31034 9.84928

d = 3, p1 = 0.05, p2 = 0.5, p3 = 0.5
λ1 = 1/15, λ2 = 1/2

1.22586 1.22586

d = 4, p1 = 0.3, p2 = 0.4, p3 = 0.5, p4 = 0.6
λ1 = 1/15, λ2 = 1/2

2.3814 2.38296

d = 4, p1 = 0.4, p2 = 0.45, p3 = 0.5, p4 = 0.55
λ1 = 1/250, λ2 = 1/8

4.35938 4.361

d = 4, p1 = 0.47, p2 = 0.5, p3 = 0.52, p4 = 0.53
λ1 = 1/500, λ2 = 1/15

9.9011 10.3937

d = 4, p1 = 0.5, p2 = 0.5, p3 = 0.6, p4 = 0.6
λ1 = 1/200, λ2 = 1/8

4.73906 4.75067

d = 4, p1 = 0.48, p2 = 0.49, p3 = 0.5, p4 = 0.51
p5 = 0.52, λ1 = 1/500, λ2 = 1/15

5.1569 5.49917

d = 4, p1 = 0.4, p2 = 0.4, p3 = 0.5, p4 = 0.5
p5 = 0.5, λ1 = 1/150, λ2 = 1/8

3.02342 3.0273

The order of the numerator of the right-hand side of (52) is at least O
(
(1 − x)−1

)
but the order

of the denominator is at most O
(
(log(1 − x))2

)
as x → 1−, which implies the right-hand side

of (52) tends to ∞ as x tends to 1−. Hence, E
(
J d

|J d < ∞
)

= ∞.
The above results are now summarized by Corollary 1.

orollary 1. Let d ≥ 3 be a positive integer, then

E
(
J d

|J d < ∞
) {= ∞, if p1 = · · · = pd and d ∈ {3, 4, 5},
< ∞, otherwise.

We conclude by offering numerics of the bounds for E
(
J d

|J d < ∞
)

in Table 1.

.3. Bounds for E(J d
|b < J d < ∞)

We shall now find an upper bound for E
(
J d

|b < J d < ∞
)

for small b. For ease of
otation, let us define a new random variable J̃ d to be a positive-integer-valued random variable
qualing n with probability P

(
J d

= n
)
/P

(
J d < ∞

)
. That is, J̃ d is J d conditioned on the

vent
{

J d < ∞
}
. As such, E

(
J d

|J d < ∞
)

= E
(
J̃ d
)
. We shall henceforth let µ denote the

xpectation of J̃ d .

heorem 6. Let d ≥ 3 be a positive integer and let t be a positive real number in (1,∞).
et λ1 and λ2 be arbitrary real numbers in (0, 1). If p1, . . . , pd are not all the same or d ≥ 6,

hen

E
(

J d
⏐⏐⏐µ

t
< J d < ∞

)
≤

t2

(t − 1)2 · lim
x→1−

(
U B

(
x; P, Q, d, λ1|ϕ

′

d + xϕ′′

d

)
L B

(
x; P, Q, d, λ2|ϕ

′

d

) −
L B

(
x; P, Q, d, λ2|ϕ

′

d

)
1 + U B (x; P, Q, d, λ1|ϕd)

)
.(53)
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roof. By the definition of conditional expectation and the definition of J̃ d , we have

E
(

J d
⏐⏐⏐µ

t
< J d < ∞

)
=

∑
∞

n=[µ/t]+1 n P
(
J d

= n
)∑

∞

n=[µ/t]+1 P
(
J d = n

)
=

∑
∞

n=[µ/t]+1 n P
(
J d

= n
)∑

∞

n=1 P
(
J d = n

) /∑
∞

n=[µ/t]+1 P
(
J d

= n
)∑

∞

n=1 P
(
J d = n

)
≤

∑
∞

n=1 n P
(
J d

= n
)∑

∞

n=1 P
(
J d = n

) /∑
∞

n=[µ/t]+1 P
(
J d

= n
)∑

∞

n=1 P
(
J d = n

)
= E

(
J̃ d
)/

P
(

J̃ d > µ/t
)
. (54)

y the conditional form of Jensen’s inequality,

E
[(

J̃ d
)2
]

≥ P
(

J̃ d > µ/t
)

E
[(

J̃ d
)2
⏐⏐⏐⏐ J̃ d > µ/t

]
≥ P

(
J̃ d > µ/t

) [
E
(

J̃ d
⏐⏐⏐ J̃ d > µ/t

)]2

=

[
E
(

J̃ d
; J̃ d > µ/t

)]2

P
(

J̃ d > µ/t
) =

[
E
(

J̃ d
)

− E
(

J̃ d
; J̃ d

≤ µ/t
)]2

P
(

J̃ d > µ/t
)

≥
(µ− µ/t)2

P
(

J̃ d > µ/t
) =

(t − 1)2

t2

µ2

P
(

J̃ d > µ/t
) .

hus,

P
(

J̃ d > µ/t
)

≥
(t − 1)2

t2

µ2

E
[(

J̃ d
)2
] .

ogether with (54) and the fact that E
(
J̃ d
)

= µ, it follows that

E
(

J d
⏐⏐⏐µ

t
< J d < ∞

)
≤

t2

(t − 1)2 µ
E
[(

J̃ d
)2
]
. (55)

e now represent the right-hand side of (55) in terms of ϕd (x) and its derivatives.

E
[(

J̃ d
)2
]

=

∞∑
n=1

n2 P
(

J̃ d
= n

)
=

∞∑
n=1

n(n − 1) P
(

J̃ d
= n

)
+

∞∑
n=1

n P
(

J̃ d
= n

)
=

∑
∞

n=1 n(n − 1) P
(
J d

= n
)∑

∞

n=1 P
(
J d = n

) +

∑
∞

n=1 n P
(
J d

= n
)∑

∞

n=1 P
(
J d = n

)
=

limx→1− φ
′′

d (x)
limx→1− φd (x)

+
limx→1− φ

′

d (x)
limx→1− φd (x)

= lim
x→1−

φ′

d (x) + φ′′

d (x)
φd (x)

,

here the last step follows since limx→1− φd (x) is finite and in (0, 1]. Together with the fact
d (x) = ϕd (x)/ (1 + ϕd (x)), it follows that

E
[(

J̃ d
)2
]

= lim
x→1−

(
ϕ′′

d (x)
ϕd (x) (1 + ϕd (x))

+
ϕ′

d (x)
ϕd (x) (1 + ϕd (x))

−
2 ·
(
ϕ′

d (x)
)2

ϕd (x) (1 + ϕd (x))2

)
.

(56)
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e know from (50)) that

µ = E
(
J d

|J d < ∞
)

= lim
x→1−

ϕ′

d (x)
ϕd (x) (1 + ϕd (x))

.

ince µ is finite and positive, we can interchange the orders of the limit and the fraction. Hence,

E
[(

J̃ d
)2
]/

µ = lim
x→1−

(
ϕ′′

d (x)
ϕ′

d (x)
+ 1 −

2ϕ′

d (x)
1 + ϕd (x)

)
= lim

x→1−

(
x ·
ϕ′′

d (x)
ϕ′

d (x)
+ 1 −

2ϕ′

d (x)
1 + ϕd (x)

)
= lim

x→1−

(
ϕ′

d (x) + xϕ′′

d (x)
ϕ′

d (x)
−

2ϕ′

d (x)
1 + ϕd (x)

)
.

ombining the above result with (55) yields

E
(

J d
⏐⏐⏐µ

t
< J d < ∞

)
≤

t2

(t − 1)2 · lim
x→1−

(
ϕ′

d (x) + xϕ′′

d (x)
ϕ′

d (x)
−

2ϕ′

d (x)
1 + ϕd (x)

)
. (57)

pplying bounds (43), (45), and (48) to (57), and replacing λ by λ1 in the upper bounds and
eplacing λ by λ2 in lower bounds, the proof is completed. □
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ppendix A

We derive an explicit expression for 1 + ϕ2(x) (see (15)). For d = 2, it follows from (13)
hat

1 + ϕ2(x) =
1

(2π )2

∫
[−π,π]2

1
(1 − xψ2(θ1, θ2))(1 − e−i(θ1+θ2) xψ2(θ1, θ2))

dθ1dθ2,

here ψ2(θ1, θ2) =
(

p1eiθ1 + q1
) (

p2eiθ2 + q2
)
. Let z1 = eiθ1 and z2 = eiθ2 . This yields

1 + ϕ2(x)

=
1

(2π i)2

∮
γ×γ

dz1dz2

(1 − x(p1z1 + q1)(p2z2 + q2)) (z1z2 − x(p1z1 + q1)(p2z2 + q2))
,

here γ is a counter-clockwise unit circle with center at 0. We first calculate the integral with
espect to z1. Let

A1 = 1 − xq1(p2z2 + q2),
B1 = xp1(p2z2 + q2),
C1 = z2 − xp1(p2z2 + q2),

D1 = xq1(p2z2 + q2).
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hen

1 + ϕ2(x) =
1

(2π i)2

∮
γ 2

dz1dz2

(A1 − B1z1)(C1z1 − D1)

=
1

(2π i)2

∮
γ 2

dz1dz2

B1C1( A1
B1

− z1)(z1 −
D1
C1

)
. (58)

ote that since |p2z2 + q2| ≤ p2|z2| + q2 = p2 + q2 = 1,

|A1| = |1 − xq1(p2z2 + q2)| ≥ 1 − |xq1(p2z2 + q2)| ≥ 1 − xq1 > x − xq1

= xp1 ≥ |B1|,

|C1| = |z2 − xp1(p2z2 + q2)| ≥ |z2| − |xp1(p2z2 + q2)| ≥ 1 − xp1 > x − xp1

= xq1 ≥ |D1|.

his implies that
⏐⏐⏐ A1

B1

⏐⏐⏐ > 1 and
⏐⏐⏐ D1

C1

⏐⏐⏐ < 1. Hence, 1
A1
B1

−z1
is analytic in the unit disk and 1

z1−
D1
C1

has a simple pole at z1 =
D1
C1

in unit disk. The integral (58) may then be calculated as

1 + ϕ2(x) =
1

2π i

∮
γ

dz2

B1C1( A1
B1

−
D1
C1

)
=

1
2π i

∮
γ

dz2

A1C1 − B1 D1

=
1

2π i

∮
γ

dz2

(1 − xq1(p2z2 + q2)) (z2 − xp1(p2z2 + q2))− xp1(p2z2 + q2)xq1(p2z2 + q2)

=
1

2π i

∮
γ

dz2

−xq1 p2z2
2 + (1 − xp1 p2 − xq1q2)z2 − xp1q2

. (59)

ow let

w1 =
(1 − xp1 p2 − xq1q2) +

√
1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2

2xq1 p2
,

w2 =
(1 − xp1 p2 − xq1q2) −

√
1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2

2xq1 p2
,

.e., w1 and w2 are two roots of equation −xq1 p2z2
2 + (1 − xp1 p2 − xq1q2)z2 − xp1q2 = 0. In

rder for w1 and w2 to be well defined, we need to show that

1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2
≥ (1 − x)2 > 0, for 0 < x < 1. (60)

et s j = p j − q j , j = 1, 2, then |s j | ≤ 1, and p j = (1 + s j )/2, q j = (1 − s j )/2. Then

p1 p2 − q1q2 =
1 + s1

2
·

1 + s2

2
−

1 − s1

2
·

1 − s2

2
=

s1 + s2

2
,

p1 p2 + q1q2 =
1 + s1

2
·

1 + s2

2
+

1 − s1

2
·

1 − s2

2
=

1 + s1s2

2
.

his implies that

1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2

= 1 − 2x
1 + s1s2

+ x2
(

s1 + s2
)2
2 2
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= 1 − x(1 + s1s2) + s1s2x2
+ x2

(
s1 + s2

2

)2

− s1s2x2

= (1 − x)(1 − s1s2x) +

(
s1 − s2

2

)2

x2. (61)

hen (60) follows since x < 1 and |s j | ≤ 1. With roots w1 and w2, (59) can be represented as

1 + ϕ2(x) =
1

2π i

∮
γ

dz2

−2xq1 p2(z2 − w1)(z2 − w2)
. (62)

e proceed to calculate

1 − xp1 p2 − xq1q2

= 1 − x + x − xp1 p2 − xq1q2

= 1 − x + x(p1 + q1)(p2 + q2) − xp1 p2 − xq1q2

= 1 − x + xp1q2 + xq1 p2

> xp1q2 + xq1 p2

= 2xq1 p2 + x(p1q2 − q1 p2)

= 2xq1 p2 + x
(

1 + s1

2
·

1 − s2

2
−

1 − s1

2
·

1 + s2

2

)
= 2xq1 p2 +

(
s1 − s2

2

)
x .

ombining the above result with (61), we have

1 − xp1 p2 − xq1q2 +

√
1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2 > 2xq1 p2. (63)

imilarly, we have

1 − xp1 p2 − xq1q2 +

√
1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2 > 2xp1q2. (64)

t follows directly from (63) that w1 > 1. Further note that

w2 =
(1 − xp1 p2 − xq1q2) −

√
1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2

2xq1 p2

=
2xp1q2

(1 − xp1 p2 − xq1q2) +
√

1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2
.

Together with (64), we have that 0 < w2 < 1. Then the integral in (62) can be calculated as

1 + ϕ2(x) =
1

−2xq1 p2(w2 − w1)
=

1√
1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2

.

It now easily follows that for x ∈ [0, 1),

1 − φ2(x) =
1

1 + ϕ(x)
=

√
1 − 2x(p1 p2 + q1q2) + x2(p1 p2 − q1q2)2.

ppendix B

This appendix contains the proofs of Propositions 6–10.
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roof of Proposition 6

Proof. Let β denote
[
α(n+1)
α+1

]
. Then(

n[
α(n+1)
α+1

])α[ α(n+1)
α+1

]
=

(
n
β

)
αβ =

n!

β!(n − β)!
αβ .

As we shall see, under the assumption n ≥ max{[α/λ] + 1, [1/(λα)] + 1}, we have 1 ≤[
α(n+1)
α+1

]
≤ n − 1, or equivalently, 1 ≤ β ≤ n − 1 and 1 ≤ n − β ≤ n − 1. Thus, applying (40)

o the above equation gives(
n[

α(n+1)
α+1

])α[ α(n+1)
α+1

]
=

n!

β!(n − β)!
αβ

≤

√
2π nn+

1
2 e−n e

1
12n(√

2π ββ+
1
2 e−β e

1
12β+1

)
·

(√
2π (n − β)n−β+

1
2 e−(n−β) e

1
12(n−β)+1

) αβ
=

1
√

2π

(
n2

β(n − β)

) 1
2

n−
1
2

(
n

α+1
α
β

)β (
n

(α + 1)(n − β)

)n−β

· (1 + α)n e
1

12

(
1
n −

1
β+

1
12

−
1

n−β+
1
12

)
. (65)

ote that f (x) = 1/x for x > 0 is a convex function. By Jensen’s inequality,
1

β +
1

12

+
1

n − β +
1
12

≥ 2
1

1
2

(
β +

1
12 + n − β +

1
12

) =
4

n +
1
6

>
4

2n
>

1
n
.

his implies that

e
1

12

(
1
n −

1
β+

1
12

−
1

n−β+
1
12

)
≤ 1. (66)

ote that N (α, λ) > α/λ and N (α, λ) > 1/(λα). We then have

n2

β(n − β)
=

n2[
α(n+1)
α+1

]
·

(
n −

[
α(n+1)
α+1

]) ≤
n2(

α(n+1)
α+1 − 1

)
·

(
n −

α(n+1)
α+1

)
=

(1 + α)2

α

n2

(n − 1/α)(n − α)
=

(1 + α)2

α

n
n − 1/α

n
n − α

≤
(1 + α)2

α

N (α, λ)
N (α, λ) − 1/α

N (α, λ)
N (α, λ) − α

≤
(1 + α)2

α

1/(λα)
1/(λα) − 1/α

α/λ

α/λ− α
=

(1 + α)2

α

(
1

1 − λ

)2

.

hus,(
n2

β(n − β)

) 1
2

≤ M(α, λ). (67)

ince the inequality log(1 + x) ≤ x holds for x > −1, we have

β log

(
n

α+1

)
= β log

(
1 +

n −
α+1
α
β

α+1

)
≤ β ·

n −
α+1
α
β

α+1 =
αn − (α + 1)β

α + 1
.

α
β

α
β

α
β
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H

ence,(
n

α+1
α
β

)β
= exp

{
β log

(
n

α+1
α
β

)}
≤ exp

{
αn − (α + 1)β

α + 1

}
. (68)

imilarly,(
n

(α + 1)(n − β)

)n−β

≤ exp
{

n − (α + 1)(n − β)
α + 1

}
. (69)

ombining (65)–(69) completes the proof. □

roof of Proposition 7

roof. Let γ denote
[
α(n+1)
α+1 −

√
n
]
. Then(

n[
α(n+1)
α+1 −

√
n
])α[ α(n+1)

α+1 −
√

n
]

=

(
n
γ

)
αγ =

n!

γ !(n − γ )!
αγ . (70)

s we shall see, the assumption λαn − (α + 1)
√

n − 1 ≥ 0 ensures 1 ≤
α(n+1)
α+1 −

√
n < n,

ence, 1 ≤ γ ≤ n − 1. Applying a simple bound for n!, i.e.
√

2πnn+
1
2 e−n

≤ n! ≤ enn+
1
2 e−n

o the equation in (70) gives(
n[

α(n+1)
α+1 −

√
n
])α[ α(n+1)

α+1 −
√

n
]

=
n!

γ !(n − γ )!
αγ

≥

√
2π nn+

1
2 e−n(

e γ γ+
1
2 e−γ

)
·

(
e (n − γ )n−γ+

1
2 e−(n−γ )

) αγ
=

√
2π

e2

(
n2

γ (n − γ )

) 1
2

n−
1
2

(
n

α+1
α
γ

)γ (
n

(α + 1)(n − γ )

)n−γ

(1 + α)n. (71)

rom the definition of γ , we have

αn
α + 1

−
√

n −
1

α + 1
< γ ≤

αn
α + 1

−
√

n +
α

α + 1
,

and thus
n

α + 1
+

√
n −

α

α + 1
≤ n − γ <

n
α + 1

+
√

n +
1

α + 1
.

t follows easily from the above inequalities and by the assumption λαn ≥ (α+ 1)
√

n + 1 that

γ (n − γ ) <
(
αn
α + 1

−
√

n +
α

α + 1

)
·

(
n

α + 1
+

√
n +

1
α + 1

)
≤

(
αn
α + 1

)
·

(
n

α + 1
+

λαn
α + 1

)
=
α(1 + λα)
(α + 1)2 n2.

ence
n2

>
(α + 1)2

. (72)

γ (n − γ ) α(1 + λα)
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w

B

S
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y the inequality of arithmetic and geometric means, γ (n − γ ) ≤ (γ + n − γ )2/4 = n2/4,
hich implies n2

γ (n−γ ) ≥ 4. Together with (72), we have

n2

γ (n − γ )
≥ max

{
4,

(α + 1)2

α(1 + λα)

}
. (73)

y the assumption λαn − (α + 1)
√

n − 1 ≥ 0, we have

√
n ≥

(α + 1) +
√

(α + 1)2 + 4λα
2λα

>
α + 1
λα

. (74)

ince log(1 + x) =
∫ x

0
1

1+s ds =
∫ 1

0
x

1+xt dt ,

γ log

(
n

α+1
α
γ

)
+ (n − γ ) log

(
n

(α + 1)(n − γ )

)
= γ log

(
1 +

αn − (α + 1)γ
(α + 1)γ

)
+ (n − γ ) log

(
1 −

αn − (α + 1)γ
(α + 1)(n − γ )

)
= γ

∫ 1

0

αn−(α+1)γ
(α+1)γ

1 +
αn−(α+1)γ

(α+1)γ t
dt + (n − γ )

∫ 1

0

−
αn−(α+1)γ
(α+1)(n−γ )

1 −
αn−(α+1)γ
(α+1)(n−γ ) t

dt

= −
1

(α + 1)2

(αn − (α + 1)γ )2 n
γ (n − γ )

∫ 1

0

t(
1 +

αn−(α+1)γ
(α+1)γ t

) (
1 −

αn−(α+1)γ
(α+1)(n−γ ) t

) dt. (75)

One may easily verify by taking first derivatives that (αn−(α+1)γ )2 n
γ (n−γ ) is a non-increasing function

f γ when γ ∈
[
0, αn

α+1

]
. Hence

(αn − (α + 1)γ )2 n
γ (n − γ )

≤

(
αn − (α + 1)

(
αn
α+1 −

√
n −

1
α+1

))2
n(

αn
α+1 −

√
n −

1
α+1

) (
n −

(
αn
α+1 −

√
n −

1
α+1

))
= (α + 1)2

(
(α + 1)

√
n + 1

)2 n(
αn − (α + 1)

√
n − 1

) (
n + (α + 1)

√
n + 1

)
≤ (α + 1)2

(
(α + 1)

√
n + 1

)2 n

(1 − λ)αn ·
(
n + (α + 1)

√
n + 1

)
=

(α + 1)2

(1 − λ)α
·

(
(α + 1)

√
n + 1

)2

n + (α + 1)
√

n + 1

=
(α + 1)2

(1 − λ)α
·

(
(α + 1)2n + (α + 1)

√
n + 1

n + (α + 1)
√

n + 1
+

(α + 1)
√

n
n + (α + 1)

√
n + 1

)
≤

(α + 1)2

(1 − λ)α
·

(
(α + 1)2

+
(α + 1)

√
n + (α + 1)

)
≤

(α + 1)2

(1 − λ)α
·

(
(α + 1)2

+
(α + 1)

α+1
λα

+ (α + 1)

)
applying (74)

=
(α + 1)2

·

(
(α + 1)2

+
λα

)
. (76)
(1 − λ)α 1 + λα
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imilarly, since αn−(α+1)γ
(α+1)(n−γ ) is a non-increasing function of γ when γ ∈ (0, n),

αn − (α + 1)γ
(α + 1)(n − γ )

≤
αn − (α + 1)

(
αn
α+1 −

√
n −

1
α+1

)
(α + 1)

(
n −

(
αn
α+1 −

√
n −

1
α+1

))
=

(α + 1)
√

n + 1
n + (α + 1)

√
n + 1

≤
(α + 1)

√
n + 1

1
λα

(
(α + 1)

√
n + 1

)
+ (α + 1)

√
n + 1

=
λα

1 + λα
. (77)

ombining (75), (76), (77) and using the fact that αn−(α+1)γ
(α+1)γ > 0 gives us

(75) ≥ −
1

(1 − λ)α

(
(α + 1)2

+
λα

1 + λα

)
·

∫ 1

0

t
1 ·
(
1 −

λα
1+λα

) dt

= −
1
2

1 + λα

(1 − λ)α

(
(α + 1)2

+
λα

1 + λα

)
.

his implies(
n

α+1
α
γ

)γ (
n

(α + 1)(n − γ )

)n−γ

≥ exp
(

−
1
2

1 + λα

(1 − λ)α

(
(α + 1)2

+
λα

1 + λα

))
. (78)

ombining (71), (73), and (78) completes the proof. □

roof of Proposition 8

roof. Let γ̃ denote
[
α(n+1)
α+1 +

√
n
]
. Then(

n[
α(n+1)
α+1 +

√
n
])α[ α(n+1)

α+1 +
√

n
]

=

(
n
γ̃

)
αγ̃ =

n!

γ̃ !(n − γ̃ )!
αγ̃ .

s we shall see, the assumption λn − (α + 1)
√

n − α ≥ 0 ensures that 1 ≤
α(n+1)
α+1 +

√
n < n,

nd, hence, 1 ≤ γ̃ ≤ n − 1. Applying a simple bound for n!, i.e.
√

2πnn+
1
2 e−n

≤ n! ≤ enn+
1
2 e−n

o the above equation gives(
n[

α(n+1)
α+1 +

√
n
])α[ α(n+1)

α+1 +
√

n
]

=
n!

γ̃ !(n − γ̃ )!
αγ̃

≥

√
2π nn+

1
2 e−n(

e γ̃ γ̃+
1
2 e−γ̃

)
·

(
e (n − γ̃ )n−γ̃+

1
2 e−(n−γ̃ )

) αγ̃
=

√
2π

e2

(
n2

γ̃ (n − γ̃ )

) 1
2

n−
1
2

(
n

α+1
α
γ̃

)γ̃ (
n

(α + 1)(n − γ̃ )

)n−γ̃

(1 + α)n. (79)

rom the definition of γ̃ , we have

αn
α + 1

+
√

n −
1

α + 1
< γ̃ ≤

αn
α + 1

+
√

n +
α

α + 1
.

Thus,
n

−
√

n −
α

≤ n − γ̃ <
n

−
√

n +
1

.

α + 1 α + 1 α + 1 α + 1
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B
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t follows easily from the above inequalities and by the assumption λn ≥ (α + 1)
√

n + α that

γ̃ (n − γ̃ ) <
(
αn
α + 1

+
√

n +
α

α + 1

)
·

(
n

α + 1
−

√
n +

1
α + 1

)
≤

(
αn
α + 1

+
λn
α + 1

)
·

(
n

α + 1

)
=

α + λ

(α + 1)2 n2.

his yields

n2

γ̃ (n − γ̃ )
>

(α + 1)2

α + λ
. (80)

gain, by the inequality of arithmetic and geometric means, γ̃ (n−γ̃ ) ≤ (γ̃+n−γ̃ )2/4 = n2/4,
hich implies that n2

γ̃ (n−γ̃ ) ≥ 4. Together with (80), we have

n2

γ̃ (n − γ̃ )
≥ max

{
4,

(α + 1)2

α + λ

}
. (81)

y the assumption that λn − (α + 1)
√

n − α ≥ 0, we have

√
n ≥

(α + 1) +
√

(α + 1)2 + 4λα
2λ

>
α + 1
λ

. (82)

ince log(1 + x) =
∫ x

0
1

1+s ds =
∫ 1

0
x

1+xt dt ,

γ̃ log

(
n

α+1
α
γ̃

)
+ (n − γ̃ ) log

(
n

(α + 1)(n − γ̃ )

)
= γ̃ log

(
1 −

(α + 1)γ̃ − αn
(α + 1)γ̃

)
+ (n − γ̃ ) log

(
1 +

(α + 1)γ̃ − αn
(α + 1)(n − γ̃ )

)
= γ̃

∫ 1

0

−
(α+1)γ̃−αn

(α+1)γ̃

1 −
(α+1)γ̃−αn

(α+1)γ̃ t
dt + (n − γ̃ )

∫ 1

0

(α+1)γ̃−αn
(α+1)(n−γ̃ )

1 +
(α+1)γ̃−αn
(α+1)(n−γ̃ ) t

dt

= −
1

(α + 1)2

((α + 1)γ̃ − αn)2 n
γ̃ (n − γ̃ )

∫ 1

0

t(
1 +

(α+1)γ̃−αn
(α+1)(n−γ̃ ) t

) (
1 −

(α+1)γ̃−αn
(α+1)γ̃ t

) dt. (83)

It is easy to verify by taking first derivatives that ((α+1)γ̃−αn)2 n
γ̃ (n−γ̃ ) is a non-decreasing function of

γ̃ when γ̃ ∈
[
αn
α+1 , n

]
. Hence

((α + 1)γ̃ − αn)2 n
γ̃ (n − γ̃ )

≤

(
(α + 1)

(
αn
α+1 +

√
n +

α
α+1

)
− αn

)2 n(
αn
α+1 +

√
n +

α
α+1

) (
n −

(
αn
α+1 +

√
n +

α
α+1

))
= (α + 1)2

(
(α + 1)

√
n + α

)2 n(
αn + (α + 1)

√
n + α

) (
n − (α + 1)

√
n − α

)
≤ (α + 1)2

(
(α + 1)

√
n + α

)2 n(
αn + (α + 1)

√
n + α

)
· (1 − λ)n

=
(α + 1)2

1 − λ
·

(
(α + 1)

√
n + α

)2

αn + (α + 1)
√

n + α

=
(α + 1)2

·

(
(α + 1)2n + α(α + 1)

√
n + α2

√ +
α(α + 1)

√
n

√

)

1 − λ αn + (α + 1) n + α αn + (α + 1) n + α
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C

w

C

P

P

H

≤
(α + 1)2

1 − λ
·

(
(α + 1)2

α
+

α(α + 1)
α
√

n + (α + 1)

)
≤

(α + 1)2

1 − λ
·

(
(α + 1)2

α
+

α(α + 1)
α ·

α+1
λ

+ (α + 1)

)
apply (82)

=
(α + 1)2

(1 − λ)α
·

(
(α + 1)2

+
λα2

α + λ

)
. (84)

imilarly, since (α+1)γ̃−αn
(α+1)γ̃ is a non-decreasing function of γ̃ when γ̃ ∈ (0, n),

(α + 1)γ̃ − αn
(α + 1)γ̃

≤
(α + 1)

(
αn
α+1 +

√
n +

α
α+1

)
− αn

(α + 1)
(
αn
α+1 +

√
n +

α
α+1

)
=

(α + 1)
√

n + α

αn + (α + 1)
√

n + α
≤

(α + 1)
√

n + α
α
λ

(
(α + 1)

√
n + α

)
+ (α + 1)

√
n + α

=
λ

α + λ
. (85)

ombining (83), (84), and (85) with the fact that (α+1)γ̃−αn
(α+1)γ̃ > 0 gives

(83) ≥ −
1

(1 − λ)α

(
(α + 1)2

+
λα2

α + λ

)
·

∫ 1

0

t
1 ·
(
1 −

λ
α+λ

) dt

= −
1
2

α + λ

(1 − λ)α2

(
(α + 1)2

+
λα2

α + λ

)
,

hich implies(
n

α+1
α
γ̃

)γ̃ (
n

(α + 1)(n − γ̃ )

)n−γ̃

≥ exp
(

−
1
2

α + λ

(1 − λ)α2

(
(α + 1)2

+
λα2

α + λ

))
. (86)

ombining (79), (81), and (86) completes the proof. □

roof of Proposition 9

roof. Let

β =

[
P

1
d (n + 1)

P
1
d + 1

]
.

As shown in Proposition 1,(
n
k

)(
P

1
d

)k
≤

(
n
β

)(
P

1
d

)β
, for k ∈ {0, 1, . . . , n}.

ence,
n∑

k=0

(
n
k

)d

Pk
=

n∑
k=0

((
n
k

)(
P

1
d

)k
)d−1 (n

k

)(
P

1
d

)k

≤

n∑
k=0

((
n
β

)(
P

1
d

)β)d−1 (n
k

)(
P

1
d

)k

=

((
n
β

)(
P

1
d

)β)d−1 n∑
k=0

(
n
k

)(
P

1
d

)k

=

((
n
)(

P
1
d

)β)d−1 (
1 + P

1
d

)n
. (87)
β
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B
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S

T

y Proposition 6, we have(
n
β

)
≤

M
(

P
1
d , λ

)
√

2π
n−

1
2

(
1 + P

1
d

)n
.

The inequality in (41) now follows by plugging the above result into (87). □

Proof of Proposition 10

Proof. Set

β =

[
P

1
d (n + 1)

P
1
d + 1

]
, γ =

[
P

1
d (n + 1)

P
1
d + 1

−
√

n

]
, and γ̃ =

[
P

1
d (n + 1)

P
1
d + 1

+
√

n

]
.

s shown in Proposition 1, we have(
n
k

)(
P

1
d

)k
≥

(
n
γ

)(
P

1
d

)γ
, k ∈ {γ, γ + 1, . . . , β − 1},(

n
k

)(
P

1
d

)k
≥

(
n
γ̃

)(
P

1
d

)γ̃
, k ∈ {β, β + 1, . . . , γ̃ }.

Hence,
n∑

k=0

(
n
k

)d

Pk
=

n∑
k=0

((
n
k

)(
P

1
d

)k
)d

≥

β−1∑
k=γ

((
n
k

)(
P

1
d

)k
)d

+

γ̃∑
k=β

((
n
k

)(
P

1
d

)k
)d

≥

β−1∑
k=γ

((
n
γ

)(
P

1
d

)γ)d

+

γ̃∑
k=β

((
n
γ̃

)(
P

1
d

)γ̃)d

= (β − γ )
((

n
γ

)(
P

1
d

)γ)d

+ (γ̃ − β + 1)
((

n
γ̃

)(
P

1
d

)γ̃)d

. (88)

For n ≥ L
(

P
1
d , λ

)
, the assumption in Proposition 7 is satisfied when α is replaced by P

1
d .

Applying Proposition 7 and replacing α by P
1
d , we obtain(

n
γ

)(
P

1
d

)γ
≥

√
2π
e2 C1

(
P

1
d , λ

)
n−

1
2

(
1 + P

1
d

)n
. (89)

imilarly, by Proposition 8, we have(
n
γ̃

)(
P

1
d

)γ̃
≥

√
2π
e2 C2

(
P

1
d , λ

)
n−

1
2

(
1 + P

1
d

)n
. (90)

he condition n ≥ L
(

P
1
d , λ

)
implies

√
n ≥

(
P

1
d + 1

)
+

√(
P

1
d + 1

)2
+ 4λP

1
d

1 >
P

1
d + 1

1 . (91)

2λP d λP d
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hen

β − γ =

[
P

1
d (n + 1)

P
1
d + 1

]
−

[
P

1
d (n + 1)

P
1
d + 1

−
√

n

]

>
P

1
d (n + 1)

P
1
d + 1

− 1 −

(
P

1
d (n + 1)

P
1
d + 1

−
√

n

)
=

√
n − 1

=
√

n ·

(
1 −

1
√

n

)
>

(1 − λ)P
1
d + 1

P
1
d + 1

√
n. (applying (91)) (92)

nd

γ̃ − β + 1 =

[
P

1
d (n + 1)

P
1
d + 1

+
√

n

]
−

[
P

1
d (n + 1)

P
1
d + 1

]
+ 1

>

(
P

1
d (n + 1)

P
1
d + 1

+
√

n − 1

)
−

P
1
d (n + 1)

P
1
d + 1

+ 1 =
√

n. (93)

ombining (88), (89), (90), (92), and (93) completes the proof. □
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