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Abstract
o0
Let [Xll _ [X’%]k RN [Xdlk be d independent sequences of Bernoulli random variables
with success-parameters py, pa, ..., P4 respectlvely, where d > 2 is a positive integer, and 0 < p; < 1

forall j =1,2,...,d. Let
S/ (n) = ZX’ X4+ X 44X, n=12..

We declare a “rencontre” at time n, or, equivalently, say that n is a “rencontre time,” if
Sty = 2y = --- = s4(n).

We motivate and study the distribution of the first (provided it is finite) rencontre time.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

Consider {X}},~ . {X}?},_,..... {X{},_, to be d independent sequences of Bernoulli
random variables with success-parameters pp, ps, ..., pq respectively, where d > 2 is a
positive integer, and 0 < p; < 1 forall j =1,2,...,d. Let

n
S =Y X =x{+X{+ - +X], n=12....
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We declare a “rencontre” at time n, or equivalently, say that n is a “rencontre time”, if n > 1
and

S'n) = S*(n) = --- = $%n).

In plain English, the event that there is a rencontre at time n > 1 is exactly the event
{S'(n) = S%(n) = - -- = S%(n)}. The first rencontre time is given as

J4 = J%p1, pa. ..., ps) =inf{n € {1,2,...} : n a rencontre time},

that is, J¢ is the first time the random walk {(S,%, e, Sff) n> 1} intersects with the line
{1, ..., xq9) i xy =+ =2x4}. Further, let g; =1 —p;,j =1,2,...,d. In order to exclude
trivialities, or evident remarks about possible reduction of dimension d, we shall suppose
that all parameters pi, ps, ..., pg are strictly between 0 and 1. The present work studies the
distribution of the first rencontre time J¢ (provided such a time exists).

We shall see that the case d = 2 is special in the sense that, when p; = p,, P(J 2 < o0)=1
and, for all values of p; and p,, E(J?) = oo. By a simple projection argument we may
conclude without any further calculations that E(J¢) = oo for d > 2. Indeed, in order to have
a rencontre at some time ¢ it is necessary to have a rencontre in all (‘21) different pairs of the
defined Bernoulli processes, so that

E(JY >max{E(J},): 1 <k <l <d}= o0,

where J,i , denotes the corresponding first rencontre time for the kth and £th subprocess. This
is why our main interest shall be on the distribution. We also remark that although the general
problem can be converted to the problem of first intersection to the origin of (d—1)-dimensional
random walks by considering S, = (S, — 84,..., 847" — §9), this formulation proves more
unwieldy.

The literature most closely related to this problem studies the number of intersections of
n independent simple random walks. For two processes {S,} and {7, }, Refs. [1,5,7] consider
the cardinality of the set {k € N : k = S, = T, for any m, n}. Our paper departs from these
previous works in that we are only interested in the first time of intersection.

We now offer two practical motivations for the problem we consider:

1. Consider d independent sequences of Bernoulli random variables with success-parameter
P1, P2, - - -, Pa respectively, for d > 2 a positive integer. Suppose that the sequences
model strands of genes and that a zero is assigned to a gene which is not activated and
a one is assigned to a gene which is activated. We may be interested in the first time
when the number of activated genes coincides across these sequences.

2. Suppose that two players, A and B, play a sequence of independent games with each
other. Let p4 be the win probability for player A in any given game, pp be the win
probability for player B in any given game, each independently of each other. Let S4(n)
and Sp(n) be the respective scores of players A and B after n rounds. Now suppose that
both players A and B can quit the game without cost at a rencontre time, that is at the
time ¢ such that Sy(t) = Sp(¢). Further suppose that the current loser at time ' would
have to pay |SA(I/) — SB(t/)|. It now becomes of interest to know the distribution of the
waiting time until the next rencontre time.

The remainder of this manuscript is organized as follows. Section 2 derives and discusses
the distribution of J¢ (the first rencontre time). In Section 3, we introduce the probability
generating function of J¢ and present a link between the latter and the generating function of
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probabilities of having a rencontre at any given time. In Section 4, we derive an explicit form of
probability generating function of J¢ and use characteristic functions in order to provide an ex-
pression for P(J¢ = 00). In Section 5, we give an alternative proof (Theorem 4) that the expec-
tation of J¢ is infinite for d > 3. This is clear from our preceding result for d = 2 and the pro-
jection argument given above. However this alternative proof of Theorem 5 offers a clear benefit
providing estimates which are useful for estimating the conditional expectations E(J¢|J? <
oo) and E(J¢|b < J¢ < oo) for some upper bound b. We pursue this task in Section 6.

2. Distribution of the first rencontre time
We say that a rencontre happens at time 7 in state k if
(8'(m), S*(n), ..., 8‘n) = (k. k, ... k).

Note that this definition implies that k € {0, 1,2, ..., n}. Since the i.i.d. random walks are
independent of each other, we have that

d d
. . _ j _ _ k n—k
P(rencontre at time n in state k) = l_[ P (S (n) = k) = l_[ <k> piq; -
= j=1
Let RY,n = 1,2... denote the event that a rencontre happens at time n for these d random
walks. Thus, R¢ may be written as union of disjoint events as
n

R,’f = U{rencontre at time » in state k}.

k=0
It then follows that
n n d
P(R,‘f) = Z P(rencontre at time n in state k) = Z 1_[ ( )p’]‘qf k 1
k=0 k=0 j=1

We now proceed with Theorem 1, which indeed is an instance of “first-occurrence decompo-
sition” in Feller’s theory of recurrent events [4].

Theorem 1. For n € N, we have
PUY=nm =) (=" > PRY)---P(RY). ©)

Jittjs=n

Proof.

{J¢ = n} = {no rencontre up to time n — 1, rencontre at time n}
n—1
= R\ J R! =Rd\U (R?NRY).

The probability of the event J¢ = n is

n—1

PJY =n) = P(Rfj\ U (RN R,‘f))

s=1

n—1
P(RH - P (U (RYN R;’)) . (3)
s=1

3
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By inclusion—exclusion, we have

P(Utenn)

s=1

= Z:(—n“ > oop ((le n Rfj) NN (RN R;f))

1<ji<-<js<n—1

n—1
=Y 0 Y P(RIN-NRENRY). @
s=1 1<ji<-<js<n—1

We shall use recursive arguments to simplify the probability of intersection of events in (4).
For example, for j; < ja,

d d\ _ d d
P (le n Rjz) =P (le) P (Rjz ]l)

Knowledge of a rencontre at time j; allows the d processes to be in the same state (and, for

simplicity, we may consider them all as starting again from (0, 0, ..., 0)). By induction, the
terms in (4) split into the corresponding product
d d d d d d d
P(Rin-nR R =P (R))P(RY )P (RL, ) P(RL,). O

Plugging (5) into (4) gives

P (UI (RN R;j))

Z( D=ty PRIOPRY ) P(RY). (6)

s=1 1<ji<<js<n—1

Letl, = j, — ju—1, u < s and l;y; = n — j;, where by convention jy = 0. The right-hand side
of Eq. (6) simplifies to

)- (N

ls1

—1
D= Y P(RUP(RL)--- P(RY

l] +"'+[_¢+| =n
We now perform a change of variables § = s + 1. The right-hand side now simplifies to
D=1 >0 PROHPRY - P(RY). ®)
s= l++ls=n

Combining (3) and (8) completes the proof. [

3. Probability generating function of J¢

Theorem 1 provides an expression for P(J¢ = n) but does not allow us to compute
P(J? = 00) (i.e., the probability of no rencontre). We hence turn to generating functions.
Let us define

$a(x) = Ga(x; p1,. ... p) = ) P (J" =n)x", ©)
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and
Qa(x) = @a(x; p1..... pa) = »_ P (RY)x". (10)
n=1

Note that since Y, P (J? =n) < 1, the power series in (9) converges if x € [0, 1]. For
P (R,‘f) < 1, the power series in (10) converges if x € [0, 1). Recursive arguments enable us
to show that ¢,(x) is related to ¢,(x) as follows:

Lemma 1. For x € [0, 1), we have
1

1 —¢u(x) = Tgod(x).

Proof. This Lemma is an instance of the “Feller relation” and is proven in Theorem 1 in
Chapter 13.3 of Feller [4]. Note that Feller’s F' is our ¢, and Feller’s U is our 1 4+ ¢,;. [

4. An expression for P(J¢ = o0)

Note that the coefficients in the power series in (9) are non-negative. By Abel’s theorem for
power series, we have

o0

5t - S e

since by definition )2, P (J¢ =n) < 1. Similarly,

Z;P (RY) =X1irP_ZP (R?) x" = lim @4(x) = @a(1-). (a1

n=1

Applying Lemma 1 gives

P =00)=1— X_; PUJ'=n)=1- lim gq(x)

1
lim = .
-1+ ei(x) 14+ ¢i(1-)

This allows us to convert the problem of calculating P(J¢ = oo) into the problem of calculating
1+ @q(1-).

12)

4.1. Characteristic function representation

We shall now use characteristic functions to give an expression for 1+ ¢,(x). Let 6 be the
vector (0, ..., 0,) and let S¢ the vector (S'(n), ..., $¢(n)). For simplicity, we will write 6
as 0 and S¢ as Sy- Let

Va (8) = va (6 p1. .- pa)
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be the characteristic function of S1 (i.e. (X { X f)). Direct calculation gives

Ya(6) = E (<>) _E (z )

d , d
:l_[E<ei91X{> l_[ Dj egf—i-q,
j=1

Jj=1
Let

Van (0) = Yan (0 p1s ..., Pa)
be the characteristic function of §,. Since {X,:}k = {Xz}k Lo {X,‘f}:i] are independent,
and {X ,{} is a sequence of i.i.d. Bernoulli random variables, we have

Van (0) = E (ef@@)’) = (E (e”(SOT))n = (Y (0))".

The inversion formula for the characteristic function ¥4, (6) is

= —i X% 0) do
(zn)d/ f[_,m]de J Yan (0)do

This formula gives us an additional expression for the probability of a rencontre at time n, i.e.

P(RY) = ZP(S =(k,..., k)
71 Z ko;
- Z (2n)d/ /[ Ve @0

o d g, n
(Zn)d / /[ - FXi= % (v (0))" d.

kO

Note that |p ;e el +4qjl < pjle 7l+q; = 1, and thus |1pd( )| < 1. For x € [0, 1), by dominated
convergence, we have

1+g0d(x)_1+ZP(R

g [ [ TR e a
T, T k:O

_ 0 :

_ 1+; (W/ /[] e (x vu (0))" do

k=0
o [ B
L L eI 0 (xyy (0)) d
;(zn)d [-7,7]d kX(;
1 i .
e R D 3 SRRSO
a5 20 k=0
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:@/m/mw ZZE KE 0 (x g (0)) d

k=0 n
L[ et @)
- Q) f /[‘_mn]d ; ¢ 1 —xyy (9) -
— L S et Y916 k
= Gy / /[ﬂ,n]d - Iﬂd ,Z; (x I/Id 1 ) do
1 [ / 1

_ , ag. (13)

GO S e (1300 @) (1= v (@) )

Together with (12), the above allows us to give an expression for P(J? = 00) as follows:

P (J? = o0)

1
= lim do

1
A o A S e (1-xwle) e Xm)

(14)

In Appendix A, we show in the case d = 2, the function 1 4 ¢,(x) can be calculated explicitly
as

1
I+ @a(x) = = = (15)
V1 =2x(pip2 + q192) + X2(p1p2 — 4192)
Letting
Q(x) =1 =2x(p1p2 + q1q2) + X*(p1p2 — 142)*, (16)
by Lemma 1, we then have
P (x)=1-+/0Kx). (17)

In the case d = 2, our model can be converted to one-dimensional random walk with a stay
(i.e. the values of increment are —1, 0, 1) by letting S, = S! — $2 = 37, (X! — X?). Then
the problem of a first rencontre is equivalent to problem of first return to 0. The authors of Dua
et al. [3] considered the one-dimensional random walk with a stay in the presence of partially
reflecting barriers a and —b. Indeed, (15) is a special case of the results of Dua et al. [3].

Recall from (9) that ¢o(1) = > 02 P(J* = n) = P(J* < 00) so that P(J? = o0) =
1 — ¢»(1). Direct calculation from (16) gives

o) = (p1 — p2)*.

Hence,
P(J? =00)=1—¢y(1) =/ Q) = |p1 — pal.
It is immediate that if P(J> = oo) > 0 then E[J?] = oo. However, in the case that

P(J? = 00) = 0, namely, p; = p,, differentiating (9) gives
E[J] = ¢;(1-),
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while differentiating (17) gives

¢'cr(1—-) = _& = 00
24/00-)

We thus obtain Theorem 2.

Theorem 2. [n the case d = 2, i.e. two i.i.d. random walks which are independent of each
other, the probability of no rencontre is P (12 = oo) = |p1 — p2l. For all py and p,, the
expectation of J? is E (J2) = 00.

5. Some estimation results

In Eq. (14) of Section 4, we gave an expression for P (J 4= oo) However, the integral
cannot be calculated explicitly. This makes it difficult to answer questions such as whether
P (J d = oo) (the probability of no rencontre) is zero or non-zero. The present section develops
tools to answer this question. Note that by (12), we have

1
P(J'=00) = ———,
1+ @qa(1-)
which implies that P (Jd = oo) = 0 if and only if ¢,;(1—) = co. Combining Eqs. (1) and (10)
gives

[e'e] oo n d
oat = Y (&) =S T () ey
n=1 n=1 k=0 j=1

k
n

00 d " n d d
=3 (e ) 2(5) ([T
j=1 j=1

n=1 k=0

Let Q, denote ]_[‘;21 q; and P; denote ]_[‘;21 p jqj_]. For ease of notation, we will write Q4 as
Q and P; as P. Then

o] n d
n
Qa(x) = x"Q" " <k> P*, (18)
n=1 k=0
By Abel’s theorem for power series,
o0 n n d
pa(1-) =Y 0" )" (k) P, (19)
n=1 k=0

In order to study the finiteness of ¢,(1—), we need to estimate Y ,_ (Z)de. In the sequel, we
will give upper bounds and lower bounds for ) }_, (Z)de for sufficiently large n. To find such
bounds, we must provide a few propositions. The value of « in the forthcoming propositions
is always assumed positive.

Proposition 1. Viewing (})a* as a function of k, k € {0,1,...,n}, then (})o* is non-
decreasing if k € {O, 1,..., [%]} and non-increasing if k € {[“f)["—:ll)] [O‘fx":]l)]—}— 1,..., n},
a(n+1)

where [x] is the greatest integer less than or equal to x. As a result, when k = [
obtains its maximum, i.e.

n & n [agm)]
<k>a < <[a(n+1)]>ot 1 kel0,1,...,n}.

a+l1
8

L
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Proof.

(kjlrl)ak-H n—k

= (X, 20
A 20
which is a decreasing function of k. We set the right-hand of (20) > 1 and obtain
k < M — 1.
a+1
This concludes the proof. [
Proposition 2. For sufficiently large n, we have
< n > [ot(n_:rll)] ( oa+1 4 (l)) _%(1 Fay 1)
al = 0 n ).
[ Vora
Proof. Let # denote [““EU] It then follows that, for sufficient large n,
o
=(— D) n,
B <a 1 —+ o )> n
1
—B=(— 1 , 22
n—p <a+1+0()>n (22)
By Stirling’s formula, we have
an |
< a(:l-‘rl) )a[m] = <n>aﬁ L
(%] B Bl(n — B)!
Znn(f) 5
- A% I
x/277,3<;> V2 (n — /3)(7>
s () ()
N — — p— — a
27\ Bn—B) \ B n—p
1 B n—p
~ 2 (f) ( . ) o (by (22))
2r o B n—p
atl —4f_n ﬂ( - )nﬂ(1+ )
~ n o
27 o et (@ + Dn—p)
oa+1 -1 (1 + ) 51 n
~ n a)" ex 0
21 o P £ “TH,B
+ =Pl ( . ) 23)
n—Blog| ———— ) |.
@t Do—p)
Before continuing, we pause to note that
1 1
n——<a+ B <n+1,
o o
and thus (recalling the definition of §)
1 1
—1<n-— ot B<—.
o
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Simplifying the above yields

—a<an—(x+ 1B < 1.
Then

an — (a+ DB = O(1), (24)
or, equivalently,

n—(a+1n—p)=0q1). (25)

By Taylor’s expansion, we have

n n—otlg
Blog aig = Blog l—i—ﬁ

R LAY n—etp)’
(=i (=) (5

_on—(@+Df 1(an—(a+ DB)? 0<(Om —(a+ l)ﬂ)2>

a+1 2 (a+1)28 (@ + 1B
_an—(a+ 1B l o o
T e+l 20m) 0(0@)) by (23)
_an—(a+ DB _1
B a+1 +0@™).
Similarly,
_ n _n—(ax+1n—-p) .
(n ﬁ)IOg((O[Jr 1)(n_ﬁ)) = por +0mn™).
Thus
n n
ﬂlog(“%ﬂ)+("_ﬁ)1°g<(a+1><n—ﬂ>>
_om—(oc—{—l)ﬂ 1 n—(a+1)n-—7) 1
== +0m H+ P +0®m™)
=0m".

The Proposition now follows by plugging in the above result into (23). O

Proposition 3. For sufficiently large n, we have

el (2L g (LY )y
<[afxn:]1)_\/ﬁ])a +1 —<mexp o +o(l) )n"2(1+a)". (26)

Proof. Let y denote [a(”“) —Jn ], then it follows easily that, for sufficiently large n,

a+l1

y = (a_—i—l+0( )>n,

1
n—y = (a—_H+0(l)>n.

10
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By Stirling’s formula, we have

n [a(nJrl)_ﬁ] <n> y n! y
aln ol o+l = o = —m—
<[% -~ «/ﬁ]) y ylin — )
Znn(g)
aV

VI (2) v =)

e (0) () e
~— | — = o

V2eVyin—=y)\y) \n—vy

o+ 1 <

y _

a+1 1 n n -y ;

- 2710:” (%V) <(01+1)(Vl—7/)> (+e

a+1 7%(1_’_ v ) n
~ n a)texp|ylog| -
/ ily

27 o -

n
+ (n — y)log <—(a+ 1)(n—y))) . 27

By the definition of y, we have

~

am+1) a(n +1)
_ -1 < ———" —./n.
a+1 Vn =V= oa+1 Vn

Hence,

(@+Dvn—a<an—(x+ 1y <(@+ Dv/n+1,
which implies that

an —(a+ 1)y = (a + 1+ o(1)V/n.

To assess (27) we first note by Taylor’s expansion that

] " | 1+n_a°‘iy
ylog| ——) =vlog —
ety ety

2 2
n—”‘T“)/ 1 n_aTHV N n_aTH),
14 -3 o\ | —m—
a;rly 2 a;rly a;rly

_oen—(@+ly ln—(@@+hy)? <(0m —(a+ 1))/)2>

a+1 2 (a+ 132y (a + 12y
Can—(@+y 1 (@+1+o(1)yn)’ (a4 1+ o(1))y/n)?
TS 2@+ 2G5 +o)n - “\@+ 2G5 +o()n
_an—(ot—i—l)y l a+1
B a+1 2

+ o(1).

11
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Similarly,

n _n—(@+Dn-y) 1
(n_y)IOg((a~|—1)(n—y)> = P 2(a+ 1)+ o(1).

Thus

n n
ylog(%y)H"_V)log((aﬂ)(n—y))
an—(a—i—l)y_la—l—l n—(a—i—l)(n—y)_l

- o+ 1 2 « +o)+ oa+1 §(a+1)+0(1)
2
=_l(a+1) +o(l).
2 o

Plugging in the above result into (27), Proposition 3 follows. [J
With the above propositions in hand, we now turn towards the finiteness of ¢,(1—).

Proposition 4. Let d be integer satisfying d > 3. For sufficiently large n, we have
d-1

n d 1
P 1 - dn
) (Z) L R e (R T 28)

d

2
N I (Pi+1) ) 1\dn
S (U) Pz | = | ——L |+ | (l—i—Pd) .9
2P

¢ Vor ph

k=0
Proof. Set

1 1
IB:|:Pd(1n+1):|, andy:[Pd(anrl)_ﬁ]
P+ 1 Pi+1

By Proposition 1, we have

() =G aemrn

> (Z) (P%)y, kely,y+1,.... ).

T = S

L ~ 3

ey

=~ 3 —

~ ~

U =

T —%
Il v

~

Nagh

N

ey

=~ 3

@) 20w
- ((;) (Pi)ﬁ) 1+ P$>n. (30)
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By Proposition 2, we have

<Z) (P%)ﬂz 2—:+o(1) nt (14 Pd)"

The inequality in (28) now follows by plugging the above result into (30). Further,
NN - n A
P* = <P7>
2 () -2 ()
k=0 k=0
B n N d
2 ((5) (7)
k=
B
n
(BIC
P 14
=@B-rv+D ((
I4

By Proposition 3, we have

| 2
n 1\ P%_i_l (Pd+1) 1 1\"
(Pd) = | —=ep|-—F|+o)|n 2(1+Pd>.
4 \/271P$ 2pd

Together with (31) and the fact that

P Pd(n+l):|_|:Pd(n+l)_ﬁj|+l

v

<

v
N
N—"
<
~—
%

<

(3D

S
N——

—

~

/=

—

<
\—/

[

| Pi+1 Pi+1
1 1
Pi(n+1 Pi(n+1
Pi+1 Pi+1
= /n,

the inequality in (29) follows. [l
Proposition 3 tells us that Q" > _, (Z)de has same order as n~@=1/2 (Q (1 + Pl/d)d) .

Our next goal is to determine the value of Q (1 + P‘/")d. By the definition of P and Q, we
have

1\ 4 1 1\ 4
N d d d d d d d
o(1+p1) =TTa; [ 1+ [[Trsa" (110 +(IT4
j=1 j=1 j=1 =1
(32)

Proposition 5.

RS ETERY

[Tei| +(]1as] =1 33)

j=1 j=1
where equality holds if and only if py = --- = pa.

13
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Proof. Since f(x) = logx is concave, we have

d d d d
1 1 1
log([Taj) =2 logg; <log| > a;| =log|1-=3 p;]. (34)
j=1 j=1 j=1

j=1

1
Note that the inequality of arithmetic and geometric means implies Z’;:l pj = (]_[f: P j) ‘
Together with (34), we have

d d d d
log 1_[611' <log|1- 1_[611' ,
j=1 j=1

1
which implies (33). The equality holds only if é Z?:l pj = (]—[‘]{:1 pj> ‘ namely, p; = -+ =
pq.- If py =--- = py the equality holds trivially. This completes the proof. [

Combining Propositions 4, 5 and Egs. (19) and (32), Theorem 3 follows immediately.
Theorem 3. In the case d = 3, i.e. three i.i.d. random walks which are independent
of each other, if p1 = p» = p3, then 3(1—) = 00, which means P(J3 = oo) = 0,
i.e. rencontre happens almost surely; if pi, p2, p3 are not equal, then ¢3(1—) < oo, which

means P (13 = oo) > 0. In the case d > 4, p;(1—) < o0 regardless of the values of
Pls ... pa. This means that P (Jd = oo) > 0.

As promised in the introduction, we now provide an alternative proof that the expectation
of J¢ is infinite.

Theorem 4. Ford > 3, E (Jd) = 0.
Proof. According to Theorem 3, we only need prove E (J d) = oo in the case that d = 3

and p; = p, = p3, since in other cases, P (J d — oo) > 0, which implies immediately that
E (J9) = oc0. If so, P (J? = 00) = 0, and hence

E(F*)=>"nP(J?=n). (35)
n=1

Note that ¢3(x) and ¢3(x) are analytic if x € [0, 1). By Abel’s theorem for power series, we
have

( 1 ) @4(x)
l———+) = lim —————.
1= 1+ ¢3(x) == (1 + @3(x))
Together with (35), we obtain

= 1iI{1 #i(x) = lim

. 3(x)

E(J%) = lim —52 36

)=l (1 +@3(x))? G0
14
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We thus need only estimate ¢}(x)/(1 + @3(x))%. To do so, we need introduce further notation.
Let

1 2
P3i+1
\/ZnP%
| 2
P3+1 (Ps+1)
exp| ————

\/27‘[1)% 2P3

r=e (1 +P%)3 - ((pl P p3)i + (@ 6]26]3)%>3.

Kl =

Kz =

By Proposition 5, in the case d = 3 and p; = p, = p3, we have T = 1. Now consider
Proposition 4 with d = 3. There exists an integer N such that for n > N,

n n3 k _1 l3"
3 L) =2k <1+P3> ,

k=0

n 3 n
2 (1) = B (et

k=0

From (18), for 0 < x < 1, we have

n 3 n 3
(Pé(x) — in annfl Z (Z) Pk > i n annfl Z <:> Pk
n=1 k=0 n=N k=0

o0 o0
n. n— Ky _ 1\3" K, 1 n
= Y onn S (1P )= Y )
n=N n=N
Ky e 1 K, xN-1
=) —x'=—_ ) 37
anl:vxx 2 1—x 7

Recalling Taylor’s expansion for —log(l —x) for 0 <x < 1,

00 n 3
L+ =1+) 0"x" ) <Z> pk
n=1

k=0

N-1 n n 3 oo n n 3

n=1 k=0 n=N k=0

N-—1 n n 3 (o) 1N 3n
< 1+ZQ”Z<k> PEt Y 02K 7 (14 P3)

n=1 k=0 n=N

N-1 n n 3 [e9)
=1+ZQ" <k> P"+2K12—(Tx)”

n=1 k=0 n=N

N—1 n n 3 o0 1
=1+) 0 <k> PE2K ) "

n=1 k=0 n=N n
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N-1 n n 3 00 1
<14) 0" <>Pk+2KIZ—x"
k n
n=1 k=0 n=1
N—1 n n 3
=1+) 0" <k> P¥ — 2K, log(1 — x). (38)
n=I1 k=0
Let
N—1 n 3
n n k
R N AL
n=1 k=0
From (38),

1+ ¢3(x) < K3 — 2K, log(1 — x). (39)
Combining (36), (37) and (39) yields

) e
E(JB) = lim _ B > lim 2 1-x 5=
w=1= (1 + @3(x))> ~ x=1- (K3 — 2K log(1 — x))

completing the proof. [

’

Remark 1. The apt referee has pointed out that the dependence of dimension d in Theorems 3
and 4 is somewhat reminiscent of that of Pélya’s theorem for simple random walks (see [2]).

6. Conditional expected first rencontre time

As we have seen throughout the preceding sections, rencontres are typically rare events. In
fact, we know that E(J?) = oo for d > 2, and P(J? = c0) > 0 for all d > 3. Still, even
rare events do happen, and of course there are many examples in science where it was the
occurrence of a rare event that has given rise to new questions. However, in many of these
examples, the questions are difficult to answer, in particular since they are of the a-posteriori
type. A well-known example of such a question is as follows: we are here, and thus life exists,
but then how plausible is it that life was born at random out of chaos?

One way to approach such questions is to consider a system is determined by ¢ components,
of which ¢ — 1 are assumed known and the remaining one is unknown. One may then attempt
plausibility arguments for the last component to have functioned in one way or another such
that the event which we see could have occurred. Our focus here is related to such objectives,
although on a much more modest level.

Specifically, suppose that d = 3, p; = 0.3, and p, = 0.5, and that p := p3 is unknown. The
larger p becomes, the more likely it is that S3(n) will quickly dominate S'(n) and S?(n), and
so by the law of large numbers, a rencontre after time n tends quickly to zero as n becomes
large. In other words, by knowing J¢ < oo and E(J?|J¢ < 0o) = t, we would expect p to be
larger as ¢ becomes smaller because the conditional probabilities of J¢ given J¢ < oo must be
more concentrated on the smaller values of J¢. Our approach will be simpler in the sense that
we will not work with partially unknown parameters; we instead suppose that all parameters
are known and develop tools to provide bounds for E(J?|J¢ < co). With p; and p, fixed, we
obtain a “sampled” version of what we want by plugging in several values of p;.

16



F. Thomas Bruss, PA. Ernst and D. Huang Stochastic Processes and their Applications xxx (xxxx) xxx

With this motivation in hand, we now consider the problem raised in the introduction of
calculating the conditional expectations E(J?|J¢ < oo) and E(J|b < J? < o0). To obtain
the bounds needed for these conditional expectations, we shall replace Stirling’s formula by
Robbins version of Stirling’s formula [6]: for n € IN,,

1
V2T n"“‘% e e T < pl <27 "+2 e~ g12n_ (40)

We shall first extend Propositions 2 and 3. It is assumed throughout that « is positive. As
above, the notation [x] is used to denote the largest integer which is less than or equal to x.

Proposition 6. Let A be a real number in (0, 1) and let N(o, A) = max{[a/A]+1, [1/(le)]41}.
For n > N(a, A), we have

n [L,(Lll)] M(a,2) _1 n
[et0] omi=Ta (e
a+l1

where

M(a, 1) =

Proof. See Appendix B. [
Proposition 7. Let A be a real number in (0, 1). If n satisfies Aan — (o + 1)/n —1 > 0, then

n atl) _ o 2T 1 "
<[a(n+1) _ ﬁ])a[ a+l1 f] > 7 Cl(()[, )\)I’l 2 (1 +(¥) s

a+l1

B (@ + 1) 1 1+ 2, M
Cl(“’)‘)'_max{4’M}'eXp< 2 0= <(“+1) +1+Aa))'

Proof. See Appendix B. [

where

Proposition 8. Let A be a real number in (0, 1). If positive integer n satisfies An — (o +
D/n —a >0, then

n [a(rHrl)_,M/*] N2 1 .
an o+l Cz(Ol, )\)I’l 2 (1 + O[) P
(e 12

where

(o + 1)? 1 a+A 2 ro?
Co(a, A) = 4, ——— ¢ - - 1 )
2(o, A) max{ Y exp S (o + )+a+k
Proof. See Appendix B. O

With the above propositions in hand, we now give bounds for the coefficients of ¢,(x).

17
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Proposition 9. Let d > 3 be an integer. For n > N (Pik), with N(«, )) defined in
Proposition 6,

" /n d M(Pdl’)‘> - d—1 1\dn
Z<k> Pk < —5= " (l—i—Pﬁ) . (41)

k=0
Proof. See Appendix B. [

Proposition 10. Let d > 3 be a positive integer. Define

2
2
L(o, A) Z=max{ ((a+1)+ (@+1) +4Aa> Ll

200

((a+ 1)+\/(Zo;+ 1)2+4m>2 N ]}.

Forn> L (Pi A), we have

S0P () k(e ()

k=0
with K (o, d, A) defined as

1 -2 1
K(a,d, 1) = % (Ci(e, ) + (Cale, 1)),

and Ci(a, A) and Cy(w, 1) defined, respectively, in Propositions 7 and 8.

Proof. See Appendix B. O

6.1. Bounds for the generating function

With the above propositions in hand, we now give bounds for ¢, (x) and ¢/ (x). It follows
from (10) and (18) that

0 00 n d
=3P (k) =303 (1) 7
n=1 n=1 k=0

with
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Applying Proposition 9 yields

1
NP )1

o0 n d
n
= P (RY)x" no" Pk
ax)= > P(RHx"+ > x"Q (k)
n=1 1 k=0
n=N(Pd )
d—1
N(Pll 0 M (Péak d dn
< PR;’ X+ nT<l+Pd)
n=1 (5 Zl V2m
n=N(Pd ,})
N(Pé,)u)—l
= P (R})
n=1
. d—1
M(PE,A) o0 . Nd \"
| ——7 n 7 Q(1+P2> x) . 43)
V2w Zl <
n=N(Pd,\)

Let UB (x; P, Q,d, Alp;) denote the right-hand side of (43), i.e. the upper bound for ¢,(x).
Applying Proposition 10 to ¢4(x) yields

1
L(Pd 2)—1

00 n d
n
x) = P (RY)x" + x"Q" Pk
"8 rmes £ o ()
- n=L(Pd,)\.) N
1
L(Pd 2)—1 d
2 dn
> > P(R)x"+ Z ( ”) K (Pd.d.)n™5 (14 Pi)
n=1 n=L(PT 3)
LPd -1
= >  P(R)x"
n=1
d o9} n
V2 _ d
+< 2”) K(Pﬁ,d,x) oo (Q(1+P31) x) . (44)
e 1
n=L(Pd 1)

Let LB (x; P, Q,d, A|gs) denote the right-hand side of (44), i.e. the lower bound for ¢,(x).

—1
It follows easily from (43) that ¢4(x) is convergent for 0 < x < (Q(l + Pﬁ)d> , and hence
@q(x) is analytic in this region. Then

[0 ] 00 " J
v = Yn e (®)x = Ynartor Y (1)

n=l n=1 k=0
and
o0 00 n ; d
//(X) = n(l’l — 1) P erl xn—Z — n(n _ l)xn—z n ( ) Pk
v ; (R3) 2:1: 0 ; )

19
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-1
Similarly, applying Propositions 9 and 10 to ¢/,(x), we have for 0 < x < (Q(l + Pﬁ)d) ,

LB (x; P, Q,d, Mg)) < ¢4(x) <UB(x; P, Q,d, Algy), (45)
where U B (x; P, 0,d, )L|g0(’i) is defined as

1
N(Pd -1

Z nP(R,‘f)x_
n=1
| d—1 (46)
(PN & Ly
+ n- 2z x_ Q(1+P7) x) ,
V2w Zl (
n=N(Pd,\)

and LB (x; P, 0.,d, )L|g0;) is defined as

1

n=I1

(47)

n:L(Pé,,\)
Note that
d
/ " 2 n 1 n k
P,
(%) +xg,(x) = E n E <k>

k=0

~1
Applying Proposition 9 to ¢ (x) + x¢/(x), we have for 0 < x < (Q(l + p%)d) ,

9y(x) +x¢)(x) <UB (x; P, Q.d, Mg} + x¢))) , (48)
where U B (x; P,0Q.d, Ay, + x(p”) is defined as

N(P%,)L)fl
Z n’p (Rf) X!
n=1
. d—1 49)
M (PE’)‘) i d-5 1 1\d "
N/ n= 2 xm Q(l—i—PF) x) .
V2 (

1
n=N(Pd i)

+

6.2. Bounds for E (Jd|Jd < oo)

Recall that in Section 5, we have shown the expected value of J¢ to always be infinite (see
Theorem 4). We now investigate the conditional expectation E (J9|J < o) and give bounds
for it.

We first observe that

Zn 1 n P ( I’l) - 1imx—>1— ¢:1(x) — i ¢;(x)
= — = lim .
S P =n) M g el galx)

20

E(JJ? < 0) =
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The last equality holds because the limit of ¢, (x) is positive and finite as x tends to 1—. Since
Pa(x)=1— ;) (i.e. Lemma 1), we have

I4¢q(x
E(JYJ? <o00) = lim 94x) — lim %'
x=l=Pg(x)  x—1- @u(x) (1 + @g(x))

Applying the bounds for ¢(x) and ¢} (x), i.e. (43)—(47), with A replaced by 1, in the upper
bounds and A replaced by A, in the lower bounds, Theorem 5 immediately follows.

(50)

Theorem 5. Let d > 3 be a positive integer and let .y and Ay be two arbitrary real numbers
in (0, 1). We have

UB (x; P, Q.d, Mlg))

E(JJ% < o0) < lim . (5D
x—1- LB (x; Ps Q’dv)"2|(pd) (1+LB (x;Py Q,d,)ﬁl(pd))
LB (x; P, Q,d, \|¢
E(J9J < 00) > lim (x; P, 0,d, algy) )
x=>1=UB (x; P, Q,d, Milos) 1+ UB (x; P, Q.d, Alga))
If Q(l + Pﬁ)d < 1 (i.e. p1,..., pa are not all the same, see Proposition 5 and (32)),

then UB (1; P, Q.d, Al¢}) and LB (1; P, Q. d, A|@g) are both finite, since the power series
in (44) and (46) are convergent when x = 1. Hence, by (51), E(Jdljd < oo) is also

finite. Note that if Q(l + Pé)d =1(@Ge pp = --- = pg) and d = 4 or 5, then the
power series in (47) diverges when x = 1 but the power series in (43) converges when
x = 1,ie. LB(1; P, Q.d, Alg)) = oo but UB(1; P, Q,d, Ailps) < oc. In this case,
it follows immediately from (52) that E(]dljd < oo) = oo. If Q(l + Pé)d = 1 and
d > 6, note that the series Y., n™ converges for a > 1, and thus UB (1; P, Q. d, M¢))
and LB (1; P, Q,d, A |@,) are both finite. Hence E (Jd|Jd < oo) is again finite by (51). The

only remaining case to consider is Q(l + Pﬁ)d =1 and d = 3. In this case, as x — 1—,

3
, V2T 1 > _ n
LB (x;P, Q,d,)»zl(pd)z ( 22 K<P3,3,A2) Z x'.x

n=L(P%,xz)
3 1
oy L(P3 ,3n)—1
—( 2”) K (P3,3,52) = =0(1-07"),
e — X
and
1 , 2
N(P3 a1 M(Pé’)q) %0
UB (x; P, Q,d, Mleg) < x" + ntxn
= N2 2
n=N(P3 )
NP a1 M<P%,)»1) ?
S 1+ S n—lxn
2 ) &
1 2
1 M (Pi,kl)
=N(P§,A1)—1— log(1 — x)
V2T

= O (=log(l —x)),
21
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Table 1

Numerics for upper and lower bounds of E(J9|J? < 00).

Parameter settings Lower bound Upper bound
d=3,p1=03,pp=04,p3=0.5 3.86223 3.88172
A =1/80,1 =1/8

d =3, p1 =045, p, =05, p3 =0.55 9.31034 9.84928
A1 =1/300, 2, = 1/10

d=3,p =005 pp=05,p3=0.5 1.22586 1.22586
A =1/1510m=1/2

d=4,p1 =03,p, =04, p3 =0.5,ps =0.6 2.3814 2.38296
A =1/151m=1/2

d=4,p =04, p, =045, p3 =0.5, ps =055 4.35938 4.361
A =1/250,1, =1/8

d=4,p =047, p» =05, p3 =0.52, p4 = 0.53 9.9011 10.3937
A1 =1/500, A = 1/15

d=4,p1 =05,p=0.5,p3=0.6, ps =0.6 4.73906 4.75067
A =1/200,2, =1/8

d=4,p =048, p» =049, p3 =0.5, p4 =0.51 5.1569 5.49917
ps =0.52, A1 =1/500, 1, = 1/15

d=4,p1 =04,p=04,p3=0.5,ps =05 3.02342 3.0273

ps =05, A1 =1/150, 2, = 1/8

The order of the numerator of the right-hand side of (52) is at least O ((1 - x)’l) but the order
of the denominator is at most O ((log(1 — x))*) as x — 1—, which implies the right-hand side
of (52) tends to oo as x tends to 1—. Hence, E (J9|J¢ < 00) = oo.

The above results are now summarized by Corollary 1.

Corollary 1. Let d > 3 be a positive integer, then

= i —a 4
E(Jd|.]d<00) o0, U(pl . pd andde{3’ »S}y
< 00, otherwise.
We conclude by offering numerics of the bounds for E (J 174 < oo) in Table 1.
6.3. Bounds for E(J%b < J? < c0)

We shall now find an upper bound for E (J9|b < J? < o0) for small b. For ease of
notation, let us define a new random variable J¢ to be a positive-integer-valued random variable
equaling n with probability P (J¢ =n) /P (J¢ < 00). That is, J¢ is J conditioned on the
event {Jd < oo}. As such, E (Jd|Jd < oo) = E(fd) We shall henceforth let © denote the
expectation of Je.

Theorem 6. Let d > 3 be a positive integer and let t be a positive real number in (1, 00).
Let Ay and A, be arbitrary real numbers in (0, 1). If p1, ..., pq are not all the same or d > 6,
then

E ()5 < st < o0)

o (UB(:P Q. di kg +xgp)  LB(x: P Q. d o))
—_— lm —_

T —-1? x>i- LB (x; P, Q.d, Al¢)) 1+UB(x; P, Q,d, Mlpa)

(53)
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Proof. By the definition of conditional expectation and the definition of J¢, we have

o] d __
( ‘/L d<oo) Done [u/11+1”P(J —”)
OO
pBped (/1141 (J —")
o0
Xy n P (I =n) g3 [M/t]-s-l (J9=n)
a P Jd—n szn)
B S P J =n /Zn w1 P J = n)
Y P Jd=n Jd=n)

£ (7) /P (7 = rt). (54
By the conditional form of Jensen’s inequality,
B[] = p (3= ur) £ | (34) |3
P (fd > ,u/t) [E (fd‘jd > ;L/t)]2

[E (jd;jd>,u/t)]2 [E (jd)—E(fd;de,u/t)]z

> ,u/t]

v

P(fd>u/t) P(fd>u/t)
(w—p/n* =1 1w
P (fd > ,u/t) ©?p (fd > /,L/t)I

Thus,

» t—1 2 2
P(Jd>u/t)z([2) i -
[ ()]
Together with (54) and the fact that E(J¢) = pu, it follows that
2

E (Jd‘% <J!< oo) < (t_t—l)z [(id)2]. (55)

We now represent the right-hand side of (55) in terms of ¢,(x) and its derivatives.

oo
ZnP Ji=n Zn(n—l)P J4=n —I—ZnP Ji=n
£[()] = S (7 =) = S 0p (7 =)+ S (7 =1)
_Z 1n(n—l)P(Jd_n) Z;o:lnP(szn)
DAV T IS S (T
_ lim, ;- ¢y(x) n lim, ;- ¢y (x) _ lim ¢, (x) + ¢ (x)
lim, 1 ¢g(x)  lime 1 @a(x) x—1- ®a(x)
where the last step follows since lim,_, |_ ¢;(x) is finite and in (0, 1]. Together with the fact
$a(x) = @4(x)/ (1 + @a(x)), it follows that

()] = i (ot 2-(eu)”
= 1=\ @g(0) (1T +@a(x))  @a(x) (1 +@a(x))  @i(x) (1 + @a(x))

(56)

)
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We know from (50)) that
/
. Pa(x)
pw=E(JJ? <o0)= lim o

x~1= @a(x) (1 4 @a(x))”
Since u is finite and positive, we can interchange the orders of the limit and the fraction. Hence,

=1\2 o @y (x) o 2¢,(x)
E[(J”/“_xlf?<wg<x>“ 1+<pd(x))

~ lim <x_<p[§(x) | _20a™) ): lim (¢;(X)+w;f(x) 2050 )
x=1- 94 (x) L+eax))  x=i- @y(x) 1+ @a(x)

Combining the above result with (55) yields
B (] <o <o) = L (LR 200 )
t =1y x>1- @, (x) L+ @q(x)

Applying bounds (43), (45), and (48) to (57), and replacing A by A; in the upper bounds and
replacing A by A, in lower bounds, the proof is completed. [

(67
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Appendix A

We derive an explicit expression for 1 + ¢,(x) (see (15)). For d = 2, it follows from (13)
that
1

27)? Ji_p . (1 = x2(61, 02))(1 — e~ O1+02) x4y (6, 62))
where ¥,(61, 65) = (p1'”' + ¢1) (p2e'” + q2). Let z; = ¢ and z, = €. This yields

1+ ¢a(x)

1+ @(x) = d6,do,,

1 dzidzs

© Qmi)? f/xy (1 —x(p1z1 + q)(p2z2 + @2) (2122 — x(p121 + q1)(P222 + ¢2))
where y is a counter-clockwise unit circle with center at 0. We first calculate the integral with
respect to z;. Let

A =1 —xqi(p2z22 + q2),

By = xpi(p222 + ),

Ci =2 —xpi(p222 + ),

Dy = xqi(p2z2 + q2).
24
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Then
1 dz1dz;
1+ @) = ——5 yg
@2ri)* J,2 (A = B1z1)(Ci1z1 — Dy)
1 dzid
e '27§ A - Dy’ (58)
@ri)* Jy2 BiCi(5 — 21 — &
Note that since |p2z2 + @2 < p2lz2l + 2 = p2+q2 =1,
A1l = |1 —xq1(p2z2 + q2)| > 1 — |xq1(p2z2 + q2)| > 1 —xq1 > x — xq1
= xp1 > |Bi1l,
[C1] = |z2 — xp1(paz2 + @2)| = |z2] — [xp1(p2z2 +q2)| =2 1 —xp1 > x — xp;
= xq1 > |Di.
This implies that ‘2—: > 1 and ‘2_11 < 1. Hence, an I_Zl is analytic in the unit disk and zl—lgl
1 1
has a simple pole at z; = % in unit disk. The integral (58) may then be calculated as
1 dz 1 dz
1~|—</72(x)=r ﬁ=r%—2
Tt J, BlCl(B_l_C_]) Tl yA1C1—BlD1

1 %‘ dzy
27w J, (1= xq1(paza + q2)) (22 — xp1(p2z2 + 42)) — xp1(paza + 42)xq1(p2z2 + 42)

1 dz;
S . . (59)
2ri J, —xq1p2zy + (1 —xp1p2 — Xq192)22 — Xp1q2
Now let
oo — L= xP1p2 = X4142) + V1 = 2X(p1p2 + 142) + ¥*(P1P2 — 0102)°
1 = ’
2xq1p2
W — (1 —xp1p2 — xq192) — /1 = 2x(p1p2 + 142) + x2(p1p2 — 192)°
2 = ’
2xq1p2

i.e., w; and w, are two roots of equation —qupzz§ + (1 —xpi1pr—xq192)72 —xp1g> = 0. In
order for w; and w, to be well defined, we need to show that

1=2x(pip2+ q142) + X (pipa —q1qp)* = (1 —x)* >0, for 0 <x < L. (60)

Lets; =p;—qj, j=1,2,then |s;| < 1,and p; = (1 +5,)/2, g; = (1 —5;)/2. Then
14+s1 1+ 1 —s 1—52_S1+S2

piP2 —qi192 = ) ) : > = 5
1451 1450 1—5 1—s5 14 5152
pip2+qi1q> = ) + T, T T

This implies that

1= 2x(p1p2 + q192) + X2(p1p2 — q1g2)*

2
1o 1+ZS1S2 42 <S1+Sz>

2
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2
S+ S
1 —x(1+s15)+ s1s2x2 + x? <sz) — s1s2x2

2
= (1 —x)(1 —s185x) + <s1 ;Sz) x2.

(61)

Then (60) follows since x < 1 and [s;| < 1. With roots w; and w;, (59) can be represented as

1 dz,
I+ @(x) = — :
2wi J, —2xq1pa(z2 — w1 (z2 — w2)

We proceed to calculate

1 —xp1p2— xq192
=1—-x4+x—xp1pr—xq192
l —x+x(p1+q)(p2+q2) —xpip2 — xq192
=1l—x+xpig2+xqip2
xpi1g2 +xq1p2
= 2xq1p2 + x(p192 — q1P2)

\

14+s1 1—92 1—s51 145
:2 . — .
XC]1P2+X( 2 > ) > )
si— S
=2xq1p2+(12 2>x

Combining the above result with (61), we have

1 —xpip2 — xqiq2 + /1 = 2x(pip2 + q192) + X2(p1p2 — 192)* > 2xq1 pa.

Similarly, we have

1 —xpipr — xq1g2 + V1 = 2x(p1p2 + 142) + x2(P1p2 — 142 > 2xP1ga.

It follows directly from (63) that w; > 1. Further note that

(I =xpipr—xq1q2) — V1=2x(p1p2 + q192) + xX(p1p2 — q192)2

2xq1p2
2xp1q2

(1 —xp1p2 — xq192) + /1= 2x(pip2 + q192) + X2(P1p2 — 142)*

w?

(62)

(63)

(64)

Together with (64), we have that 0 < w, < 1. Then the integral in (62) can be calculated as

1 1
14+ @a(x) =

It now easily follows that for x € [0, 1),

1
1 — ¢a(x) = 5o = V1 =2x(pip2 + q192) + X2(p1p2 — q192)*.

Appendix B

This appendix contains the proofs of Propositions 6—10.
26
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Proof of Proposition 6

Proof. Let f denote [““D]. Then

n [al(an:—ll)] _ n s n! P
Q%])“ - (ﬂ)“ T Bl pn

As we shall see, under the assumption n > max{[a/A] + 1, [1/(Ax)] + 1}, we have 1 <

[“g’—:ll)] <n—1,orequivalently, ] < <n—1land 1 <n— g <n— 1. Thus, applying (40)

to the above equation gives

n antl) n!
(oo )L = e

1 1
V2rn"t2 e e

S 1 1 1 aﬂ
(mﬂﬁ% b em) . («/E(n — gyt e—-p) em)
S Y e () ()
~ V2r \B(n—B) atg ) \(e+ D —p)
1(1r__1 1
(1 +a)e ( i ﬂ*> (65)

Note that f(x) = 1/x for x > 0 is a convex function. By Jensen’s inequality,
1 1 - 1 4 4 1

T =27 i N - 175, " "
B+ n—PB+35 3B+ +n—B+35) n4+i 20 on
This implies that

a1 1
e”(" Pz "*‘”ﬁ) <1 (66)
Note that N(a, A) > o/A and N(«, 1) > 1/(Aa). We then have
n? n? n?
= <
— a(n a(n - [ amn a(n+1
o) (] (- ()~ (1) (o 22
_ (14 a)? n? . (1 + a)? n n
- o (n—l/ot)(n—a)_ o n—1l/an—«o
_a +a) N N(a, )

- o N(a,A) —1/a N(o, A) —«
- A+a? 1/ a/h _(1+a)2< 1 )2
o 1/()—1/a a/h—a  « 1—a/)

Thus,

N
(a=p) =we» “

Since the inequality log(1 4+ x) < x holds for x > —1, we have

_ atl _ atl —(x+1
ﬁ1og<£—lﬂ>=ﬁlog(l+"waﬁﬁ)fﬁ,”maﬂﬂzan a(il )/3.

27
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Hence,

B
—(a+1
(#7) =oolere(ai) | =ov =2}

Similarly,

< n )”_ﬁ {n—(a+1)(n—ﬁ)}
- < exp .
(x4 D(n—p) a+1

Combining (65)—(69) completes the proof. [

Proof of Proposition 7

Proof. Let y denote [l — /n]. Then

n [ ] _ (”) o "
([%—\/ﬁ])“ y)¥ T =t

As we shall see, the assumption Aan — (¢ + 1)/n — 1 > 0 ensures 1 <
hence, 1 <y <n — 1. Applying a simple bound for n!, i.e.

V2rn"tie™ < nl < en"t2e
to the equation in (70) gives

n [u(n+l>,ﬁ] n! v
ol atl = —-
<[—“L”I,” - «/ﬁ]) yin —y)!
V2r "1 e

>
- ( +1 e ). (e(n s e—mgv>)

V27 n? 2 B n\ n n-y ;
e (y(n—y)) ! (%“y) <(a+1)(n—y)> (e

From the definition of y, we have

a(n+1)
a+1

aV

Bl

1 on o
a+1 VIS S ES Vr
and thus
+ /0 — <n_y<L+¢_+;
a+1 oz—i—l a+1 o+ 1

(68)

(69)

(70)

—Jn <n,

(71)

It follows easily from the above inequalities and by the assumption Aan > (a + 1)3/n + 1 that

y(n—)/)<<——\/_+a+1> <—+\/—+ +1>
( an ) ( n Aan) a(l+ra) ,

< . + = n-.
a+1 a+1 o+1 (o +1)2

Hence

n? - (o + 1)?
y(n—y)  a(l+ia)

28
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By the inequality of arithmetic and geometric means, y(n — y) < (y +n — y)?/4 = n*/4,

which implies ; (:iy) > 4. Together with (72), we have

2 2
S > max {4, —(oz +D } . (73)
y(n—vy) a(l + Aa)

By the assumption Aan — (o + 1)/n — 1 > 0, we have

1 1)2 4 41 1
ﬁz(a—k)%— (e +1)"+ @ ot

—. (74)
Since log(1 + x) = fo 11 ds = fo T 41
lo n +( )1o ( - )
4 TV G D=
e\@, @+ Din—y)
—(oc—l—l)y) an —(a+ 1)y
:ylog(l—i—— +—y)log| 1 - ——
(@ + Dy (@ + Dn—vy)
1 um(f(ot;)rl)y 1 —W
CESY (a+1)(n—y)
=yf T3 ety OV T ey, 4
0 1+W 0 1_(oHrl)(n 't
1 — (a4 DyPn (! !
CESE L E(H ))y) n[ @i wror ) 7
o n— an—(a+1)y an—(a+1)y
y(n—y 0 (1 el ) (1 - s )

t (an— (ot+1)}/) n

One may easily verify by taking first derivatives tha =)

of y when y € [0,

is a non-increasing function

a+1] Hence

(an — (¢ + Dy)’n < (an =@+ 1) (7 _‘/ﬁ_alﬁ))z n
yn—y) T (- ) (= (- V- )
((@+Dyn+1)n
(an —(@+ Dyn—1) (n+ (@ + Dyn+1)
(@4 Dyn+1)n
(I =Nan - (n+ @+ 1)y/n+1)
@417 (@+Dya+1)
T A-Ma nt(@t Dyt

= (a+ 1)

< (@+1)7?

_(a—l—l)z‘((a—kl)zn—i—(a—i—l)«/r_l—i-l (o + 1)/n >
T (=M n+(a+ Dy/n+1 n+(a+ Dy/n+1

(o + 1)? 2y (@+1) )
= 0= e <(a+l) i+ @+ 1)

1)? 1

< % <(a+ ” + O‘H(j-—f —)i-1)> applying (74)
a4y 2 !
S <(oz+l) m). (76)
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an—(a+1)y

@ihm—,) 18 a non-increasing function of ¥ when y € (0, n),

Similarly, since

an—(@+ Dy _on—(@+D (G —vn—g5)

@t D=7~ et D~ (5~ Vi~ 7))

_ (et D+l (@+Dyn+1 _ e .
nt@+Dyn+1 7 L(@+Dy/n+1)+@+Dy/n+1  1+r

Combining (75), (76), (77) and using the fact that W > 0 gives us

1
(75)2—; <(a+1)2+ ro >/ ! dt
(1 — Mo 1 + ra 0o 1-(1—:22)

1+Ao
1 1+ A 2 Lo
S 1 :
21— Ma <(“+ ) +1+Aa)

This implies

n o\ n "7y> 1 14 i 2 Ao 8
aily <<a+1>(n—y>) —e"p<_§<1—x>a <(“+ ) +1+m))' (78)

Combining (71), (73), and (78) completes the proof. [J

Proof of Proposition 8

Proof. Let 7 denote [““ED + /n]. Then

n [a;n+l)+ﬁ] _ (n) s n! p
([“;”:l” +ﬁ])“ i 7)¥ T =

As we shall see, the assumption An — (@ + 1)3/n — a > 0 ensures that 1 < % +.n <n,
and, hence, 1 <y <n — 1. Applying a simple bound for n!, i.e.

1 1
M2 t2e™ < pl < entze™"

to the above equation gives

[oz(nJrl)Jn/’] n! %
an a+1 = —u
<[ ;jl” +/n ]) Pl — !
/27_[ nnJr% 6‘_” 5
z ~ 1 ~ 1 a’
(e s e—?) . (e (n — py7th e—(n—f))
1 % s
2 2 2 n—y
= VT (”—) e ( — > (1+a)". (79)
er \y(n—7) etly (@ + D —y)
From the definition of y, we have
an 1 - an
— < -
R ey S G ary S dbar
Thus,
n n 1
_ _ < _ -
o+ 1 ﬁ o snors o+ 1 ﬁ+a+1
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It follows easily from the above inequalities and by the assumption An > (a + 1)4/n + « that
P —7) < [+
n—y)<|(——
v v o+

< \ )1(ﬁ+aaﬁ>'<ailﬁ+ 1 >

a+1
n at+ir 5,
a1 o+l a+1>:(a+1)2”'
This yields
n2

>(oc+1)2
y(n—7y) a+A

S = 4. Together with (80), we have
2

(80)
Again, by the inequalit;/ of arithmetic and geometric means, y(n—y) < (7 +n—7y)*/4 = n?/4,
which implies that =
n

1 2
o zmax{4,M}_ (81)
yn—vy) o+ A
By the assumption that An — (& + 1)4/n — o > 0, we have
1 1)2 +4x 1
ﬁz(a+)+ (¢ + 1) + cx>a;|: . 82)
Since log(1 + x) = [ ﬁ ds = fol T dt,

- n - n

vioe (iy) = los ((a - f))

- _(ot—i—l))?—an - (x+ 1)y —an

= 7 log (1 @+ 7 ) 4+ (n — y)log (1 + —)
_ (@tDy—an

(@+1Dn—7y)
1 1 letby-an
~ (a+1)y ~ (a+1)(n—y)
- V/ (a+Dy—an dt+(n — J/)/ (@+1)y—an
o 1=y ! 0 1+ e !
. 1 (@ + 1)y —an)’n
T (a4 1)2

! t
y(n—y) /0 (

(a+1)yy—an _ (@tDy—an
L+ e t) (1

dt.

(83)
@+Dy t)
It is easy to verify by taking first derivatives that ((”}712,’;’:;)")2” is a non-decreasing function of
y when p € [ 2%, n]. Hence
~ on o 2
(o + 1)y —an)*n (e + D (4 +Vn+ %) —an)" n
yn=p) T (Vi) (- (@ Vit E)
@+ 1) ((@+Dy/n+ a)2 n
= (a
(an+ @+ Dyn+a)(n—(a+1Dyn—a)
2
a+D/n+a) n
< @1y (o + Dy + )

(an+ (@ + Dyn+a)-(1—21n
_@+1? (@t Dyata)

I1—2 an+(@+DyJ/n+a
_ (o + 1)? ' ((a—i— 1)%n + a(a + 1)/n + a? N ala + 1)/n )
o 1l—2 an+ (@ + 1)/n+a an+ (@ + 1)/n+a
31
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<(a+1)2.<(a+1)2+ ala +1) >

- 1-2 o a/n+ (e +1)
1)? 1)? 1
< (x+1) . (x+1) a(la + 1) apply (82)
1—x o -4 (@+1)
(o + 1)? 5 ra?
= . 1 . 84
1 - Mo o+ )+oz+k 34
Similarly, since W is a non-decreasing function of y when y € (0, n),
(o + 17 —an <a+1>(a+1+f+a+1)—an
@+by = @+ D(F at1)
(@ + DJ/n+a - (oe+1)f+a _ A . 85

Tant @+ Dnta L (@t Dvnta)+ @+ Dynta  ata

Combining (83), (84), and (85) with the fact that (“z;%)y“" > 0 gives

(83)>_;(( PRI 2) f;d’
T =M a+r) Jo 1-(1-2%)

a+r

1 a+A ) Lo

N I 1 ,
21— na? ((OH' ) +a+,\)

which implies

o\ n "777> 1 ata 12 ra? %6
oty ((a+1)(n—)7)) —exp< E(l—k)aﬂ((‘)‘+ ) +a+x)>' e

Combining (79), (81), and (86) completes the proof. [
Proof of Proposition 9

Proof. Let

pi n+1
pi +1
As shown in Proposition 1,

<Z) (P%)k = <Z> (P%)ﬁ, fork € {0,1,...,n}.

Hence,

S OIER I
=((5)()) (e )
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By Proposition 6, we have
1
<——"n .
B V2m
The inequality in (41) now follows by plugging the above result into (87). [

Proof of Proposition 10

Proof. Set

1 1 1
ﬂ:|:Pd(ln+l):|, y:|:Pd(ln+1)_\/ﬁ:|7 and)7=|:Pd(ln+1)+\/ﬁ:|.
P +1 Pi 41 P +1

As shown in Proposition 1, we have

R RO p—
L

()Y (e

Forn > L (Pﬁ, k), the assumption in Proposition 7 is satisfied when « is replaced by Pi.

Applying Proposition 7 and replacing « by Pﬁ, we obtain

V2 n
<") (P) =T (Pha)nt (14 P7)" (89)
y e
Similarly, by Proposition 8, we have
VA2
<'f) (Pi)" =T (Paa)nt (14 PE)". (90)
v e

The condition n > L (P%, A) implies

1 1 2 1
(Pd+1)+\/<Pd+l) f4APi 1
Pa+1
Jis : SR oD
20Pd APd
33
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Then
1 1
Pi(n+1) Pi(n+1)
B—y=|—7F"|-"|—7— —Vn
Pa+1 Pa 41
1 1
Pa 1 P 1
Pa+1 Pa +1
1
1 1—1)Pa+1
=\/ﬁ.(1——>>$ﬁ. (applying (91)) 92)
NG Pi+1
And
1 1
~ Pin+1 Pi(n+1
y—B+1= #m/ﬁ - ¥ +1
Pa+1 Pd+1
1 1
Pi(n+1 Pi(n+1
U Bl B N (93)
P 41 Pi+1

Combining (88), (89), (90), (92), and (93) completes the proof. [
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