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Abstract

An object is hidden in one of N boxes. Initially, the probability that it is in box i is 7;(0). You then
search in continuous time, observing box J; at time ¢, and receiving a signal as you observe: if the box
you are observing does not contain the object, your signal is a Brownian motion, but if it does contain
the object your signal is a Brownian motion with positive drift p. It is straightforward to derive the
evolution of the posterior distribution 7 (¢) for the location of the object. If T denotes the first time that
one of the 7 ;(¢) reaches a desired threshold 1 — ¢, then the goal is to find a search policy (J;);>0 which
minimizes the mean of 7. This problem was studied by Posner and Rumsey (1966) and by Zigangirov
(1966), who derive an expression for the mean time of a conjectured optimal policy, which we call
follow the leader (FTL); at all times, observe the box with the highest posterior probability. Posner
and Rumsey assert without proof that this is optimal, and Zigangirov offers a proof that if the prior
distribution is uniform then FTL is optimal. In this paper, we show that if the prior is not uniform, then
FTL is not always optimal; for uniform prior, the question remains open.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

This paper studies a classical search problem first considered independently by Posner and
Rumsey [12] and Zigangirov [17]. An object is hidden in one of N boxes; we denote by j*
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the index of the true box. Initially,
P(j* =i) = m(0).

We then observe in continuous time, choosing to search box J; at time . We see a signal
process Y whose dynamics are

dY(t) = dW(t) + plyy,—jx dt, (1

where i > 0 is a known constant, and W is a Brownian motion. It is straightforward to derive
the evolution of 7 (¢), the posterior distribution at time ¢. The objective proposed by Posner
and Rumsey [12] is to choose (J;);>0 to minimize E7, where

T = inf{t : max7;(r) > 1 — ¢}, @)
i

where ¢ € (1, 1) is some desired error bound.

To the best of our knowledge, the solution to this specific problem was studied by three
papers: Posner and Rumsey [12], Zigangirov [17] and Klimko and Yackel [8]. The earliest of
these references [12] motivates the problem in the context of search for a space probe by radar.
In this framework, the sky is assumed divided into n equal regions (equivalently, “boxes”). One
box emits a signal of Brownian motion with positive drift i and the remaining n — 1 boxes
emit a signal of Brownian motion. Posner and Rumsey [12] asserted, without proof, that the
optimal strategy is to always search the box with the largest posterior probability. We call this
policy the follow the leader (FTL) policy. They formulated the FTL strategy as the limit of a
sequence of discrete-time approximations, which was later shown by Klimko and Yackel [7]
not to be tight. Zigangirov [17] considered only the case of uniform prior distribution, that
is, m;(0) = 1/N for i = 1,..., N, and offered a proof for the optimality of FTL. However,
this proof lacks clarity on a number of points, and we were not able to verify the arguments
given. Klimko and Yackel [8] provided a proof for the optimality of FTL for arbitrary prior
distribution, but, as we will explain later, their proof is in error. The main result of our paper
is to give counterexamples that clearly show FTL is not optimal for some specific values of
(1(0), ..., mn(0)). An additional contribution is the characterization of the solution to a class
of stochastic differential equations, which plays a key role in our calculations, and can be
considered to be generalizations of Tanaka’s SDE.

1.1. Literature review

Optimal scanning problems apparently date back to Shiryaev [14]. Our specific problem of
interest was considered in the works of Posner and Rumsey [12], Zigangirov [17] and Klimko
and Yackel [8]. We now briefly review other variants of the problem that are closely related to
this work.

Liptser and Shiryaev [10] considered a setup with two boxes (N = 2) and allow for the
possibility that the object may not be in either box. The task is to determine if the missing
object is in one of the two boxes. Dragalin [3] considered general stochastic processes other
than Brownian motion and proposed a scanning rule based on the sequential probability ratio
test of Wald [16].

Another class of problems similar to optimal scanning is problems of “quickest search”.
These problems are often formulated under the setting N — oo with an unknown number
of boxes containing the hidden objects. We refer readers to Lai et al. [9] for a discrete-time
solution and Bayraktar and Kravitz [1] for a continuous-time solution to these quickest search
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problems. We also note that optimal scanning problems and quickest search problems are
known collectively as “screening problems”. We refer readers to the references given in Heydari
et al. [5] for other variants of screening problems. More generally, such problems can be viewed
as sequential decision problems. References on this topic include Dvoretzky et al. [4], Shiryaev
[15, Ch. 4], and Peskir and Shiryaev [11, Ch. VI].

2. The evolution of the posterior

As we noted at (1), the signal process Y evolves as'
dYy; =dW; + MI[Jt:j*} dt.

If (V)):>0 is the filtration of the observation process, and we choose to search box J; at time ¢,
then the posterior likelihood (relative to Wiener measure) that the true box is j, given ), is

t
Zj(f)ZJTj(O) exp(/ H’IUA':.H dYS—%MZ/
0 0
The posterior probabilities are obtained by normalizing the z;:
(1) = z;(1)/2(1), “

where of course z(t) = Z;V:l zj(t). Now

dzj(t) = z;(t) ulyy,=;y dY;, 5)

so if we write X ;(t) = w! log(z;(¢)) then we have

1

Iy=jy ds ) ©)

de(t):I{L:j} (dY[—%/Ldl) (6)

The evolution (1) of Y is expressed in the filtration of W, but familiar results of filtering theory
(see Kallianpur et al. [6]) establish that we can rewrite the evolution in the filtration ) as

dY, = dW, + (1) dt @)

where W is the innovation process, a Y-Brownian motion, and wiy,(¢) is the Y-optional
projection of the drift w/y;,—;+ of (1).
Formulating the dynamics slightly more generally, as

dz;j(t) =z;(t)0;(t)dY; )

where 0 is a bounded previsible N-vector process, we can consider the evolution of 7 (¢) defined
in terms of z(¢) by (4). Some routine calculations with Itd’s formula give us

drmj(t) = mj(0){ 0;(t) — 6(r) - (1) { dY, —0(r) - w(t)dt }, &)

where 0(t)-7(t) = Z,N=1 0;(t)m;(¢). In the case of special interest to us, where 6;(¢) = ulj;,=j;,
the representation (7) combines with (9) to show that

drj(t) =m;(){0;@t) —0@) -7(t) YW, (10)

In particular, 7 (¢) is a YV-local martingale; but we know this already, because 7;(t) = P( j* =
J | Vi), which is even a martingale.

' The notation X; and X(r) will be used interchangeably according to context.
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3. The FTL policy
For the FTL policy, the dynamics (8) has the special form
0;(1) = ul;(X(1)). (11)
where we define for x € RY
Ii(x)=1 ifx; =max{x; :i=1,...,j} >max{x; :i > j}
=0 else. (12)

Thus 7;(x) is the index where the N-vector x is maximal, taking care to avoid ambiguities
when there are ties, and to ensure that Zi\; i) =1.
In these terms, the evolution of X ;(¢) can be expressed as’

dX;(t) = 1;(X(0)) (dY, — } udr)

= LX) (dW, + p(r;(t) — })di) 13)
= I;}(X(1)dZ,, (14)
say. Since
X0
(1) = ————— (15)

SN enxi)

is a function of X(¢), the SDE (13) is an autonomous SDE, but the coefficients are not Lipschitz,
or even continuous, so the sense in which the SDE has a solution needs to be clarified.
We shall address this by firstly studying the SDE (13) without the drift term:
dX;(t) = L;(X(®)dW;, (16)

where W is a standard Brownian motion. To appreciate the issues involved, let us first consider
the case N = 2, when the SDE is

dX((t) = Iix,0)>x,00) AW: = Iix,0)-x,000>01 AW, 17

dXo(1) = Iixyn=x,00 AW = Iix,00-x,0=0 d Wi (18)
So if y; = X(¢) — X»(¢) we have the celebrated Tanaka SDE

dy, = sgn(y,) dW, (19)

for y, where the definition of sgn is the correct one for the definition of semimartingale local
time — see Theorem 1V.43.3 of Rogers and Williams [13]. There is no strong solution to this
SDE, but there is a weak solution, represented by taking Y to be a Brownian motion started at
yo = X1(0) — X»(0), which we may as well suppose is positive, and then defining

dw, = sgn(y,)dy, = d|y| —dL, (20)
where L is the local time of y at zero. Then we have

dX,(t) = Ijy,-0ydy: = d(y;") — LdL,. 2n

2 In Posner and Rumsey [12], the signal has a constant volatility o, as well as the drift . We could always
scale the signal to turn the volatility to 1, and indeed we could also replace p by any desired positive value; this
is equivalent to a constant rescaling of time, which will not affect optimality of a search policy.
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Thus
X)) = X0 +y =1L (22)
Xa(t) = X2(0)+y, — 3 L. (23)
In view of the above, we realize:

e We cannot hope for (16) to have a strong solution;

e We might obtain uniqueness in law for all initial values;

o If all the X start from 0, the sum Zyzl X(t) is a Brownian motion when N = 2;

o If all the X; start from O, the running minimum X ;(¢) = inf{X;(s) : s < ¢} is the same
for all j when N = 2.

For general N, we have the analogous conclusions.
Theorem 1. For all starting values X(0), the SDE (16) has a weak solution which is unique
in law. If X(0) =0, then

(1) Z?’Zl X ;(t) = W, is a Brownian motion;
(2) the running minimum processes coincide:

X () =inf{X;(s):s <t} =N"'W, = X(t) (24)
(3) for all t > 0,
X;(t)=X(t)  for all but at most one index j; (25)

(4) X;j@t)— X(@) =W, = W, if X;(t) > X(1);
(5) The process

M(W, —W)) (26)

Xe—(N =17 Y X0 = b

1<j#k<N
is a martingale.

Theorem 1 is proved in the appendix. It deals immediately with the question of existence
and uniqueness of solutions of (13), because any weak solution to (16) can be transformed by
change of measure into a weak solution to (13), and vice versa.

4. The value of FTL

Our aim in this section is to discover the value function V(xy, ..., xy) of the FTL policy,
where x; denotes the initial value of the process X ;(¢). Formally,

V(xi,....xy) = E(T | X1(0) = x1, ..., Xy(0) = xy, policy = FTL)

where T is as in (2). It does not appear possible to express this in closed form, but we can find
a recursive algorithm for computing the value numerically. It is obvious that V is a symmetric
function of its arguments, so we will make the convention in what follows that the arguments
of V have been arranged in decreasing order:

X = X2 = - = XN 27

It is also obvious that the value will not be changed if we add the same constant to all the
arguments.
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Now suppose that all the inequalities in (27) are strict, and we apply the FTL rule. What
happens is that initially we observe the most likely box, box 1, up until the time 7, when X
first falls® to x,. At that time, X, begins to move, and in accordance with Theorem 1 we find
that

dX,(1) =dX,(t) = ;dZ,, max{X(r), Xo()} — X,(t) = Z, — Z,. (28)

This continues until the first time 73 that one of X;, X, (and hence both) falls to x3. Thereafter
we observe the boxes 1, 2, 3 with

dX, (1) =dX,(t) =dX5(1) = ydZ,, max{X;(t), Xo(0), X3()} — X,() = Z; — Z,.

This continues sequentially, with the X;(z) starting to move one after another, until all the
Xj(t) achieve a common minimum xy at time Ty, or, of course, the termination criterion is
achieved. So we see that calculation of the value comes down to solving a sequence of first-exit
problems, which we formalize in the following result.

Theorem 2. Suppose that x; > x; > --- > xy, and let V,(x, X411, ...,Xyn) denote the
value if we start with x; = xy = -+ = X, = X > Xpp1 > --- > Xxy. Then the values
Va(Xn, Xpnt1s - .., Xn) can be calculated recursively as
B, (x,)
Vo(Xn, Xnat1s ooy XN) = Ap(x,) + ———, 29
n( ns An+1 N) n( n) 1+Kn(xn) ( )
where
K,y)=n—-1+ bye ™, b, = et 4 ... 4 eI (30)

where B, is the solution to the ODE (py =1 —¢)

2n(K,(y) — 1
(1= po(l + KxOB') = (n — DuB(y) + & = 1)

201 —2py)

Kn - l Kn 1, 31
MKn(y)( ) —n+DEK,(»+1D, @D

with boundary condition
(I + Ky pe O Vi1 ety -+ X)) — 2¢0 (0411 — 2¢))

B(x,11) = (32)
i {1 = po(1 + K (xas1)}
and where
0=A,(»)+ 1 —¢)Bu(y) — 2g.(y)(1 —2¢)/ 1, (33)
an(y) = p~log{ (1 — &)(n — 1 + be ™) /e }. (34)
The recursion begins at n = N with the Posner-Rumsey value:
V(i) = M 21N =2 Mo — D)+ @po— D1 —¢ (35)
xy) = =—| — —Dlog( ———— ) |-
NN PR 2N 1 Po Po g e/(N - 1)
Proof. Holding x4, ..., xy fixed, we let f(s, y) denote the value when the running minimum
of Xy,..., X, is y € [x,41, x,], and the unique leading particle is at y + s > y. The success
criterion will be satisfied if
eHO+s)
1—e¢, (36)

erots) + (n — Demy + b, -

3 of course, the termination condition may have been achieved before that time.
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where b, is given by (30). Hence successful termination occurs when

s = og{(1 — &)(n — 1+ bye ™) /e} = gu(y). (37)
Now up until 7,4, in terms of Z we have that

f(Z,—Z,,n"'Z,)+1t is a martingale.

The probability that we are viewing the correct box is

et +s)
p(s,y) = e+ + (n — ey + b,
ets
et 4+ (n— 1)+ be
ets
=—, (38)
et + Ku(y)
where K, is defined at (30). Using Itd’s formula, we arrive at the equations
0=%fss+(P(S,)’)—%)Hfs+1, (39)
0=-nfi+f, (=0 (40)
with boundary conditions
F@n(y),y) =0 Vy € [xpp1, xal, (4D
FQO, x041) = Va1 gty - oo X)) (42)

We see that (39) is a second-order linear ODE in the variable s, whose general solution can
be shown by routine calculations to be

Fe)= Aoyt — B B e (43)
R TS e I

for some functions A, B. Equivalently, we may express the solution as

2s
fGs,y)=A(y)+ B(y)p(s, y) + n (I —=2p(s, y) (44)
for some functions A, B. The boundary condition at reflection (40) leads to the equation
— DuB 2n(K,(y) —1 B’
(n— DuB(y)  2n(K() -1 _ A + (») 45)
1+ Kq(y) w(Ky(y)+ 1) 1+ Ku(y)
and the boundary condition (41) gives us
0=AQ)+ (1 —¢&)B(y) — 2¢,(y)(1 — 2¢)/ . (46)

This allows us to express A(y) as a function of y and B(y), reducing the ODE (45) to a
first-order linear ODE for B. From (46) we find that
A = —poB 0+ 222 ()~ 1), )
nKa(y)
Returning this to (45) leads to the first-order ODE (31) for B in y > x,4;. The boundary
condition (42) together with (46) becomes the boundary condition (32).
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At the final stage, Vi is a function of just one variable, and p(s, y) is independent of y; the
form (44) collapses to

2
f(s)= AN+ By p(s,0) + i(l —2p(s,0) (48)

with the boundary conditions

fgn(0) =0, [ =0. (49)

Solving this for Ay, By leads to the Posner-Rumsey solution (35). Finally, the expression (29)
is obtained by letting s = 0. O

5. Counterexamples for the optimality of FTL

In this section, we introduce an alternative strategy that can beat FTL in some circumstances.
We make use of a classical result for the exit time of a Brownian motion at two boundaries.
It was apparently first derived by Darling and Siegert [2].

Lemma 1 (Darling and Siegert [2]). Let W (t) be a Brownian motion with drift At and variance
o’t, and started at x. Let p = /o’ Consider the boundaries a and b such that a > x > b.
Then exit at one of the boundaries occurs with probability 1, and the probability of exit at a
is given by

—2pb __ ,—2px

P(x,a,b 0 =" —°
(x,a,b,A,07) = 7T ——e

Conditional on exiting at a, the expected time is given by

1 2(a — b)e 21 2x — b)e 2P
Fu(x’a,b,)\,o‘z)zx[(a_x)_i_ (a )e B (x e ]

672pb _ 672,011 672ph _ 672,0):

Conditional on exiting at b, the expected time is given by

2(a — b)e 27 2(a — x)e
e—20b _ o=2pa  o=2px _ p—2pa

1
Fb(x,a,b,k,az)z X[('x—b)_'_

Remark. Observe that F,(x, a, b, A, 0%) = F,(x, a, b, —, 0?). The same equality holds true
for Fp. This is useful since, by (6), the drift of X, () is either p/2 or —u /2.

Now we introduce an alternative strategy, which we call “Strategy B”. For simplicity,
let us consider three boxes with initial values x; > x; > x3 (and thus prior probabilities
71(0) > m,(0) > m3(0)). We shall suppose that

ehx1 ehx1
m(0) = <l—-¢e<———, (50)
erx1 4 ehX2 | phX3 erx1 4 Qehx3
so that there exists a unique a € (x3, x,) such that
eHx1
=1—e. (51)

eHX1 4 eha | o3
Strategy B observes X,(¢) until it reaches a or x;. If X, reaches a before x, then the objective
is achieved, in view of (51). Because of Lemma 1, we know the mean of this stopping time, and
the probability that exit happens at x;. Otherwise, if X, reaches x; before a, we now continue
with the FTL policy, whose mean remaining time to finish will be V(x;, x, x3), which can be
calculated according to Theorem 2.
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Table 1

Counterexamples for the optimality of FTL with N =3, p =1 and x; > x3 > x3 = 0. E4(T)
denotes the expected search time of the FTL strategy, which can be computed using Theorem 2.
Ep(T) denotes the expected search time of Strategy B, which can be computed as explained above.

€ X1 X2 EA(T) x 102 Ep(T) x 102
0.4 2 1.4 3.633 3.464

0.3 2.7 1.7 3.053 2.936

0.2 4.05 2.6 1.832 1.797

0.1 6.2 4.0 3.749 3.738

0.05 10.3 7.4 10.6482 10.6476

By fixing u = 1, x3 = 0 and searching over the corresponding domain of (x;, x,), we obtain
a few counterexamples for different values of ¢. These are presented in Table 1.

6. Further discussion

6.1. Discussion of the work of Klimko and Yackel [S]

Klimko and Yackel [8] gave a proof for the optimality of FTL for arbitrary prior distribution;
however, according to our counterexamples, this conclusion cannot be correct. Here we explain
why their proof is incorrect.

Consider that we start the search by choosing one box to observe until (¢) reaches either
71(0) + o or m;(0) — B, assuming 71(0) > --- > mn(0). Denote this stopping time by t and
assume that there is no switch of the observed box before 7. Thus for ¢ € [0, ], there are N
possible search rules. In both the proofs of Lemma 3.4 and Theorem 3.5 in Klimko and Yackel
[8], the authors assume that the posterior distribution at t is independent of the search rule,
which is incorrect. For example, their proof for case (i) of Theorem 3.5 relies on this incorrect
assumption (the authors write that “furthermore, the posterior distribution at exit time are also
independent of the rule used”.)

For a concrete example, consider N = 3 and 7(0) = (0.5, 0.25, 0.25). We wish to use this
example to further explain why the reasoning of Klimko and Yackel [8] is incorrect. Let 1
be the exit time of 7 at either 1 — & or 0.4, and assume no switch of observed box before
71. Lemma 3.1 of Klimko and Yackel [8] correctly states that in order to minimize E(t;) we
should choose to observe box 1. However, if box 1 is observed and 7; exits at 0.4, at 7, we
have the posterior probability 7 (7;) = (0.4, 0.3,0.3) = m,; if box 2 is observed and 7| exits
at 0.4, we have m(r;) = (0.4,0.4,0.2) = mp. The inductive argument used in the proof of
Lemma 3.4 of Klimko and Yackel [8] now fails because it is no longer clear whether 74 or
g would lead to a smaller expected search time after t;. In fact, according to our numerics,
g would give a smaller expected search time if FTL is applied.

6.2. Open problems

Our work gives rise to several open problems. First, what is the optimal strategy for this
optimal scanning problem for any prior distribution? For decades, it has been (incorrectly)
assumed that FTL is optimal. Indeed, as we have shown, FTL is sub-optimal at least for some
values of (1(0), ..., wn(0)).

Another open problem concerns whether FTL is optimal for the case of uniform prior
distribution. There is already a proof given by Zigangirov [17], but as already mentioned, we
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found the argument presented to lack clarity in various places, so we cannot be confident that
the result is established.

So the answer to the question in the title is, “We don’t know, but we know that it is not
always best to follow the leader!’
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Appendix. The SDE dX = I(X)dW

The aim in this appendix is to prove Theorem 1. Until further notice, we shall focus on the
case X ;(0) =0 for all j. To begin with, we present two results about any solution of the SDE
(16)

dX;(t)=1;(X(t)dW,, Xij0)=0 Vj. (A.D)
Proposition 1. Forall i, X;(t) = X,(t) = X(¢).

Proof. For any a < 0, we let H;(a) = inf{r : X;(t) < a}. If it were the case that for some
i # j we have X;(H;(a)) > X;(Hj(a)) = a, then there has to be some time interval (s, u)
containing H;(a) throughout which X;(¢) > a. This means that throughout (s, u) the process
X; is not the leader, so it does not move. This contradicts the definition of H;(a). Therefore
Xi(Hj(a)) <aforalli # j, and hence H;(a) < Hj(a) for all i # j. Since we can interchange
the roles of i and j, it must be that H;(a) = H;(a) for all i # j, and the result follows. [

Proposition 2. Forallt >0, W, = NX(¢).

Proof. Observe that Z?’zl X(t) = W, since Z?’:l I;(x) = 1, which proves statement (1) of
Theorem 1. With the notation of the proof of Proposition 1, we have that for any a < 0

Xj(H(a)) = X(H(a)) =a, Vj,
where H(a) denotes the common value Hj(a). Therefore W(H(a)) = Na. Further, for any
t < H(a) we have X ;(t) > a, and thus W, > Na. So it must be that H(a) = inf{t : W, < Na},
and the result follows. [

Remark. Statement (2) of Theorem 1 is now proved.

Proposition 3. On a suitable probability space, a solution to (A.1) may be constructed.
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Proof. Consider the Itd excursion point process description of Brownian motion, using notation
and terminology from Rogers and Williams [13, Ch. VI]. According to Proposition VI.51.2,
the rate of excursions which get at least x > 0 away from zero is

n({feU: Sliplf(l)l > x}) = 1/x, (A.2)

and the full excursion law is specified in various ways. We write U, for the space of
non-negative excursions:

Uy ={f: Rt - R 710, 00)) = (0, ¢) for some ¢ > 0}. (A.3)

We let n be the law of excursions away from zero of |W|, so that

ny({f €U :sup f(t) > x}) = 1/x. (A4
t
Now let I be a Poisson random measure on (0, 0o) x U, x {1, ..., k} with mean measure
My = N7Ydt x n (df) x py, (A.5)

where uy({j}) =1 foreach j =1,..., N. Now we define the clock

T) = /// ¢(f) ds, df, dj), (A.6)
(0,6]1xUy xSy

with inverse
L, =inf{{ : T) > t}. (A7)
The local time L remains constant through all excursion intervals; let
g =sup{s: Ly < L} (A.8)
denote the left end of the excursion including time ¢. Finally, we may define
X = —N7'L,+ ft —g) if(L,, f, j)isa point of I7; (A9)
=—-N"'L, else. O (A.10)

Proposition 4. Uniqueness in law holds for (A.1).

Proof. Firstly, let us deal with the case N = 2. We saw in Section 3 that any solution to the
SDE (16) can be represented in terms of the Brownian motion Y defined at (19) by Egs. (22),
(23), so the law of the solution (X, X5) is uniquely determined.

The case N > 3 requires a little more subtlety. Take any j # k in {1, ..., N}, and define

A

[[aexen + noxom as, (A1)
T, = ir?f{u LA, > 1) (A.12)
Notice that
(I =1;(X(@0) = (X(@)dX (1) = 1;(X@)(A = 1;(X (1)) — (X)) dW; =0 (A.13)
s0 X, Xj do not change when the clock A is not growing. Therefore if we define

X;(t)=X;j(r), Xi(t) = Xp(r), (A.14)
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we have

inf{f(j(s) 15 <t} =X(n) = X(1). (A.15)
With a slight overloading of notation, we have

dX(t) = [;(X(t) dW,,

dXi(t) = (X)) dW,,
so the pair (X js Xy) is a solution of the SDE for the case d = 2. But we know that uniqueness in

law holds for this situation, so in particular we know that at any time ¢ such that X () > X (1)
we must have

X (t) = inf{X;(s) : s <t} = inf(X;(s) 1 s < 1} = X(1,). (A.16)
But the choice of the pair j, k was arbitrary, so we deduce that

whenever X;(7) > X(¢), it must be that X ;(z) = X(¢) for all j # k.

This is statement (3) of Theorem 1. In view of the facts that ZI].V:, Xij=Wand X =N “lw,
if at time r we have X;(¢) > X(¢) then '

Xi(t) = X() =) _(X;() — X0} =W, —W,, (A.17)
J
proving statement (4) of Theorem 1.

The picture of the solution of (A.1) is now clearer: each excursion away from 0 of W — W
is assigned to exactly one of the X ;. We shall now prove that the probabilistic structure of
any solution to (A.1) coincides with the probabilistic structure of the solution constructed in
Proposition 3.

For this, define

Ai(t) = / I;(X(s)) ds, 7;(t) =inf{s : A;(s) > t}, X/ () = Xi(z;(®). (A.18)
0

Thus each X/ is a standard Brownian motion. In fact, the X’/ are independent Brownian
motions, as we see by the following argument. Fix any #1,...,fy > 0, and any 6, ...,0y € R.
Then

N
M; = exp Z{i@ij(t/\Tj(lj))— %QJ?AJ'([/\'C]'(Z‘J'))}

Jj=1

is a bounded martingale,* so

N
| = EMy=EMy =E [exp| Y {i0;X/(t)) — 1671;)
j=1
Hence the X/ (¢ ;) are independent zero-mean Gaussian, and the independence of the X 7 follows.
Thus if we decompose each X/ into its Poisson process II/ of excursions away from the

minimum as in Proposition 3, then the I7 J are independent. Therefore if we define a random
measure /I on (0,00) x Uy x {1,...,k} by

II(B x {j}) = II'(B)

4 This is proved using Itd’s formula, and the fact that d(Xj, Xk> =0 for j # k.
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for any Borel B C (0, co) x U4, it can be seen that IT is a Poisson random measure, with mean
measure dt xn(df)x iy, where as before uy({j}) = 1for j = 1,..., N. This is the measure
My defined at (A.5), but scaled up by a factor of N. A point in (0, 00) x Uy x {1,...,k}isa
triple, where the final component in {1, ..., N} we refer to as the label. If we take all points
in IT with label j, we see the Poisson point process of excursions of a Brownian motion (in
fact, X/); if we take all points in IT, we see the Poisson point process of a Brownian motion
(in fact, W) but scaled up by a factor of N. This means that the local time of the totality of
all points in IT is growing N times as fast as the local time of the corresponding Brownian
motion, explaining the factor N ~lin expressions (A.9), (A.10). O

Proposition 5. For any k, the process
NI (X(1) — 1

M, =X (6) = (N = 1)) X;(t) = — W =Wy (A.19)
j#k

is a martingale.

Proof. Firstly we verify the algebraic equivalence of the two sides of (A.19). If X} is the lead
process at time ¢ (that is, I(X(#)) = 1), then from (A.17) we have X;(t) = W, — W, + X(©),
and X (1) = X(¢) for j # k, so the two sides of (A.19) agree in this case. If X; is not the lead
process at time ¢, then similarly the left-hand side of (A.19) is equal to —(N — 1)"' (W, = W,),
as required.

Now take 0 < s < t, any A € Fj, and let Tt = inf{u > s : W,, = W, }. Notice that

(N=-DEM;, — M, : A, v <t]=E[(NLXQ®)—-DW, =W, :A 1 <1]
=FE[NLX(@t)—1:A, Tt <t]E[W,—W,: A, t<{]
=0

since the label of any excursion is independent of the path of that excursion, and each label
has equal probability 1/N. Therefore

E[M; —M;: Al = E[M; —M; : A,t <t]+ E[M;, —M;: A, t>1t]

=FEM, —M;:A, vt <t|+E[M;, —M;:A,t>t]
= E[M n — M, : A]

= E[(N = D' (Ik(X(5)) = D(Wep, — Wy) : A]

= E[E(Wrn — Wi|F) (N — D)7 (X (5)) — 1)4]
=0,

because the label of the lead process does not change during [s, 7], nor does W. [

This completes the proof of Theorem 1 in the case where X(0) = 0. The general case
follows by concatentation. So if we have X{(0) > X5(0) > --- > Xx(0), then up until the
time 7; = inf{t : X;(¢) = X;(0)} none of the processes X;, i > j has moved. Up until 7>,
only X; is moving, so this behaves like Brownian motion. Between 7, and T3, both X; and
X, are moving with a common minimum, so we may apply Theorem 1 with two processes,
both starting at the same place; then between T3 and T; we have three moving processes, and
SO on.
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