
D1160–D1169 Nucleic Acids Research, 2021, Vol. 49, Database issue Published online 5 November 2020
doi: 10.1093/nar/gkaa997

DrugCentral 2021 supports drug discovery and
repositioning
Sorin Avram1,†, Cristian G. Bologa2,3,†, Jayme Holmes2, Giovanni Bocci2, Thomas
B. Wilson4, Dac-Trung Nguyen 5, Ramona Curpan1, Liliana Halip1, Alina Bora1, Jeremy
J. Yang2, Jeffrey Knockel6, Suman Sirimulla7, Oleg Ursu8 and Tudor I. Oprea 2,8,9,10,*

1Department of Computational Chemistry, “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazu Blvd,
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ABSTRACT

DrugCentral is a public resource (http://drugcentral.
org) that serves the scientific community by provid-
ing up-to-date drug information, as described in pre-
vious papers. The current release includes 109 newly
approved (October 2018 through March 2020) active
pharmaceutical ingredients in the US, Europe, Japan
and other countries; and two molecular entities (e.g.
mefuparib) of interest for COVID19. New additions in-
clude a set of pharmacokinetic properties for ∼1000
drugs, and a sex-based separation of side effects,
processed from FAERS (FDA Adverse Event Report-
ing System); as well as a drug repositioning prioriti-
zation scheme based on the market availability and
intellectual property rights forFDA approved drugs.
In the context of the COVID19 pandemic, we also in-
corporated REDIAL-2020, a machine learning plat-
form that estimates anti-SARS-CoV-2 activities, as
well as the ‘drugs in news’ feature offers a brief enu-
meration of the most interesting drugs at the present
moment. The full database dump and data files are
available for download from the DrugCentral web por-
tal.

INTRODUCTION

DrugCentral integrates a broad spectrum of drug resources
related to chemical structures, biological activities, regula-
tory data, pharmacology and drug formulations (1). Since
2018, DrugCentral has continuously strengthened its role as
a key resource for the worldwide scientific community be-
ing additionally cross-referenced by several resources, such
as UniProt (2), ChEBI (3), Hetionet (4), GUILDify (5),
UniChem (6) and Guide to Pharmacology (7). DrugCentral
served as primary resource for RepoDB, a drug repurpos-
ing database (8), a time-resolved computational drug repur-
posing algorithm (9), and an adverse drug event network for
computational toxicology predictions (10). First introduced
and published in the 2017 NAR database issue (1), Drug-
Central reconciles the basic scientist’s understanding of the
‘drug’ concept (active pharmaceutical ingredient) with the
view of the patient and healthcare practitioner (pharmaceu-
tical formulation). Since its initial launch, the two Drug-
Central papers (1,11) were cited more than 160 times cf.
Google Scholar, and the website is accessed on average by
∼8000 visitors monthly, with a monthly average of ∼20 000
page views and over 20 000 full database downloads per year
(as of 15 September 2020). Throughout regulatory and sci-
entific documents, several terms are often used interchange-
ably: drug substance, new chemical (or molecular) entity
and active (pharmaceutical) ingredient. While these terms
have precise contextual meaning, in this paper preference

*To whom correspondence should be addressed. Tel: +1 505 925 7529; Fax: +1 505 925 7625; Email: toprea@salud.unm.edu
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/D

1/D
1160/5957163 by The U

niversity of Texas at El Paso user on 08 M
ay 2021

http://orcid.org/0000-0003-2591-9948
http://orcid.org/0000-0002-6195-6976
http://drugcentral.org


Nucleic Acids Research, 2021, Vol. 49, Database issue D1161

is given to the term ‘drug’ as synonymous with these three
concepts. The term ‘formulation’ is used when discussing
pharmaceutical products.

The current update adds newly approved drugs by
the US Food and Drug Administration (FDA, https://
www.fda.gov/home) and the European Medicines Agency
(EMA, https://www.ema.europa.eu/en) up to 31 March
2020. Drugs approved by Japan Pharmaceuticals and
Medical Devices Agency (PMDA, https://www.pmda.go.jp/
english/index.html) were also monitored up to the latest in-
formation available, i.e. November 2019. In addition, for
numerous drugs present in DrugCentral since 2018, regu-
latory agency information was added according to their ap-
proval status.

An important component of drug discovery and repo-
sitioning is information related to the pharmacokinetic
(PK) properties of drugs, e.g. maximum recommended dose
or half-life, as well as information related to side effects.
In this regard, DrugCentral 2021 introduces critically re-
viewed information on PK, thus increasing the clinical
pharmacology-related information coverage for drugs. Fur-
thermore, adverse drug events separated by sex are tabu-
lated at the drug level, to increase our understanding of drug
safety.

Sudden outbreaks can rapidly impact global health, as
evidenced by the COVID-19 pandemic, caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
This pandemic has accelerated the need to rely on com-
putational platforms (12) capable of identifying and ad-
vancing novel therapeutics for clinical evaluation. In this
regard, the current DrugCentral update enables computa-
tional and medicinal chemists with (i) drug repositioning
categories, i.e. an in-depth classification of drugs based on
current market status and intellectual property rights in the
US (13), to prioritize new therapeutic uses for ‘old drugs’;
and (ii) a suite of machine learning models that predict anti-
SARS-CoV-2 activities, REDIAL-2020 (14), to prioritize
compounds against COVID-19.

CURRENT CONTENT

Active pharmaceutical ingredients

The current DrugCentral update includes 109 newly ap-
proved drugs and two molecules (mefuparib and EIDD-
2801, or ) with anti-SARS-CoV-2 potential to the 4531 in-
dexed in 2018 (11). The vast majority of these were ap-
proved by the US FDA (95 drugs), followed by EMA (36
drugs), with 31 overlapping drugs. Compared to the addi-
tions in 2018, the number of newly approved drugs in Japan
has nearly tripled, i.e. 16 new drugs compared to 6. In the
past two years, the ratio of newly approved drugs between
small organic molecules and biologics has changed in fa-
vor of the first class (70 small molecule drugs compared to
35 biologics), which contrasts with a more balanced ratio
encountered in the last version of the database (11). Com-
pared to the 2018 update, we note increases in the num-
ber of approved subtypes of biologics, such as antibody-
drug conjugates (60% increase), oligonucleotides (50% in-
crease) and monoclonal antibodies (30% increase). Approx-
imately, half of the drugs processed (i.e. 52) are orphan
drugs (15) pointing out the therapeutic gain in the group

of rare diseases (15,16). Out of the newly added drugs, the
ChEMBL database (17) indexes 104 (91) of the 111 drugs,
KEGG (18) indexes 107, DrugBank captures 105 and the
Guide to Pharmacology 77 drugs, respectively (Table 1).

Bioactivity data and mechanism of action

The present release adds 1379 new bioactivity datapoints
from ChEMBL (17) and the Guide to Pharmacology (7)
using automated pipelines, 79% and 8%, respectively; and
manually curated scientific literature and approved drug
label data (13%). Newly introduced drugs are associated
with 551 bioactivity points from ChEMBL (65.5%), man-
ual curation from literature (24.14%), the Guide to Phar-
macology (6.17%) and approved drug labels (4.17%), re-
spectively; as well as 109 mechanism of action (MoA or
Tclin proteins––vide infra) targets, with kinases (26%) and
enzymes (21%) representing the major target categories, fol-
lowed by G-protein-coupled receptors––GPCRs (17%) and
tumor-associated antigens (9%). Since 2018, 46 novel MoA
targets, associated with 32 newly approved drugs, have been
introduced (Table 2).

Our knowledge-based protein classification (19) bins hu-
man proteins into four categories, according to their ‘tar-
get development level’ (TDL): Tclin are MoA-designated
drug targets via which approved drugs act (15,20,21), cur-
rently 659 human proteins; Tchem are proteins that are
not Tclin, but are known to bind small molecules with
high potency; Tbio includes proteins that have Gene On-
tology (22) ‘leaf’ (lowest level) term annotations based on
experimental evidence; or meet two of the following three
conditions: A fractional publication count (23) above five,
three or more Gene RIF, ‘Reference Into Function’ anno-
tations (https://www.ncbi.nlm.nih.gov/gene/about-generif),
or 50 or more commercial antibodies, as counted in the An-
tibodypedia portal (24). The fourth category, Tdark, cur-
rently includes ∼31% of the human proteome that were
manually curated at the primary sequence level in UniProt,
but do not meet any of the Tclin, Tchem or Tbio criteria.
DrugCentral 2021 contains 669 Tchem, 219 Tbio and 14
Tdark proteins linked to 3859, 607 and 39 bioactivity points,
respectively. These proteins are mapped onto the Target
Central Resource Database (TCRD) and interfaced with
the TCRD portal, Pharos, respectively (25,26).

Pharmacological classification

New and existing drugs in DrugCentral were mapped (or
remapped) into the latest versions of the World Health
Organization Anatomic, Therapeutic and Chemical classi-
fication system (WHO ATC, https://www.whocc.no/), the
FDA Established Pharmacologic Class (EPC, https://bit.ly/
2OWiJdH), the Medical Subject Headings (MeSH) (27) and
ChEBI (3) pharmacological classifications using the adap-
tive mapping schemes described in 2018. The resulting phar-
macological additions are described in Table 1. Among
novel drugs, 78 were linked to 136 pharmacologic classifi-
cations; 313 of the drugs were mapped to 424 additional
pharmacologic terms.
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Table 1. Differences in data content between DrugCentral 2016 (first release), 2018 and 2021 (current release)

Entities (annotated drugs, or active pharmaceutical ingredients)
DrugCentral 2016 DrugCentral 2018 DrugCentral 2021

Active pharmaceutical ingredients 4444 4531 4642
FDA drugs 2021 2094 2220
EMA drugs 239 272 354
PMDA drugs 80 86 167
Small molecules 3799 3825 3876
Biologics and peptides 239 282 315
Other drugs 294 309 395
Parent molecules 199 (308) 211 (327) 216 (332)

Drug efficacy targets 837 (1689) 855 (1756) 872 (1760)
Human protein targets 600 (1387) 613 (1447) 659 (1534)
Infectious agents targets 194 (221) 197 (224) 212 (230)
Protein–drug crystal complex (PDB) 48 (82) 333 (139) 411 (165)
All protein–drug crystal complex (PDB) 1452 (283) 3991 (433) 5576 (799)
Bioactivity data points 13 825 (1792) 15 481 (1911) 16 843 (2052)
Human proteins 10 427 (1605) 11 241 (1692) 12 373 (1837)
Other species 3398 (1002) 4240 (1175) 4470 (1235)

Pharmacological classification
WHO ATC code 4195 (2941) 4889 (2978) 5067 (3082)
FDA Established Pharmacologic Class 428 (1165) 450 (1220) 462 (1256)
MeSH pharmacological action 424 (2529) 457 (2615) 447 (2661)
ChEBI ontology roles 285 (1487) 295 (1529) 303 (1607)

Drug indications 2224 (2247) 2167 (2371) 2241 (2496)
Drug contra-indications 1458 (1376) 1407 (1379) 1415 (1399)
Drug off-label uses 847 (646) 817 (641) 818 (654)

Pharmaceutical products 67 064 (1660) 77 484 (1716) 108 035 (1810)
Rx pharmaceutical products 29 665 (1561) 34 192 (1609) 56 515 (1697)
OTC pharmaceutical products 37 399 (286) 43 292 (296) 51 520 (319)

External identifiers 61 349 (4444) 69 516 (4531) 63 658 (4639)
CAS registry number 6072 (4444) 6200 (4531) 6350 (4642)
PubChem Compound Id 4175 (4175) 4289 (4308) 4399 (4412)
FDA Unique Ingredient Identifier (UNII) 4304 (4304) 4391 (4391) 4505 (4505)
ChEMBL-db id 5615 (4075) 6077 (4330) 6473 (4469)
WHO INN id 3519 (3519) 3589 (3589) 3700 (3700)
SNOMED-CT 4745 (2637) 4968 (2815) 5193 (2910)
KEGG DRUG 3501 (3501) 3576 (3576) 3697 (3698)
NDFRT 4171 (2406) 4256 (2479) 3464 (3314)
RxNorm RxCUI 2897 (2897) 2988 (2991) 3107 (3110)
IUPHAR/BPS ligand id 1345 (1345) 1391 (1395) 1599 (1599)
UMLS CUI 2839 (2839) 2835 (2835) 2835 (2835)
CHEBI 2557 (2557) 3824 (3830) 3855 (3861)
MeSH 4063 (3846) 4180 (3946) 4299 (4056)
DrugBank 2473 (2388) 2773 (2858) 3685 (3699)
Protein Databank ligand id 646 (618) 713 (695) 695 (659)

Pharmaceutical formulations

FDA pharmaceutical formulations were assessed us-
ing DailyMed (https://dailymed.nlm.nih.gov/) data, down-
loaded on 9 May 2020. A total of 31 731 new formulations
with effective dates starting from 30 June 2018 were added
to DrugCentral 2021. The vast majority of these products
(82%) are for oral (17 052) and topical (9832) administra-
tions. The percentage of human prescription (Rx) products
(52.7%) remains only slightly higher compared to OTCs.

NEW DATA AND FUNCTIONALITY

Drug repurposing categories

The current version of DrugCentral includes a recently pub-
lished drug repurposing categorization scheme (13), accord-
ing to which drugs are sorted based on their market avail-
ability and intellectual property rights (including exclusiv-
ity protections) into three distinct categories: OFP, or off-
patent, which are on-market drugs with expired patents

or exclusivities; ONP, or on-patent, which are on-market
drugs covered by current patents and exclusivity protec-
tions; and OFM, or off-market, which includes all previ-
ously marketed drugs that have been discontinued or with-
drawn, respectively. The analysis, based on the US FDA’s
Orange Book (FDA-OB), mapped small organic molecules
and peptides from DrugCentral (having molecular weight
between 100 and 1250) onto FDA-OB. In total, 996 drugs
were categorized as OFP, 320 as OFM and 237 as ONP
(Figure 1), respectively. These drugs can be found in a vari-
ety of pharmaceutical formulations, but oral drugs appear
to be predominant in all three sets: 73% in OFP, 82% in
ONP and 62% in OFM. Moreover, the data shows an in-
creasing proportion of oral drugs in more recently approved
drugs (i.e. ONP and OFP compared to OFM).

This classification scheme allows researchers to inform
their decisions with respect to drug repositioning based on
the existing intellectual property landscape. Given that, in
time, novel drugs will be added and other drugs will change
categories (i.e. ONP drugs naturally migrate to OFP and,
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Table 2. New active pharmaceutical ingredients with novel mechanisms of action approved since the 2018 release of DrugCentral

Active Ingredient(s) Target Target Classa Agency Indication

crizanlizumab SELP Adhesion FDA Vaso-occlusive crisis in sickle
cell disease

luspatercept GDF11, MSTN Cytokine FDA Beta thalassemia
emapalumab IFNG Cytokine FDA Primary hemophagocytic

lymphohistiocytosis
prabotulinumtoxinA SNAP25 Cytosolic other FDA Rhytidectomy of glabellar frown

lines
botulinum toxin type A SNAP25 Cytosolic other EMA Rhytidectomy of glabellar frown

lines
andexanet alfa rivaroxaban, apixaban Drug FDA, EMA Direct-acting anticoagulant

adverse reaction
roxadustat EGLN1, EGLN2, EGLN3 Enzyme PMDA Anemia in chronic kidney

disease, refractory anemia
ivosidenib IDH1 Enzyme FDA Acute myeloid leukemia
romosozumab SOST Glycoprotein FDA Postmenopausal osteoporosis
fremanezumab CALCA GPCR FDA, EMA Migraine
galcanezumab CALCA GPCR FDA Migraine
erenumab CALCRL GPCR FDA, EMA Migraine
ubrogepant CALCRL GPCR FDA Migraine
lasmiditan HTR1F GPCR FDA Migraine
cannabidiol GPR55 GPCR FDA, EMA Lennox-Gastaut syndrome,

severe myoclonic epilepsy in
infancy

bremelanotide MC4R GPCR FDA Lack or loss of sexual desire
larotrectinib NTRK2, NTRK3 Kinase FDA, EMA Malignant neoplasm
entrectinib NTRK2, NTRK3, ROS1 Kinase FDA, PMDA Reactive oxygen species 1

positive non-small cell lung
cancer, solid neoplasm with
neurotrophic receptor tyrosine
kinase gene fusion

duvelisib PIK3CG Kinase FDA Chronic lymphoid leukemia,
malignant lymphoma - small
lymphocytic, follicular
non-Hodgkin’s lymphoma

lorlatinib ROS1, LTK, FER, FES,
NTRK2, NTRK3, PTK2,
PTK2B, TNK2

Kinase FDA, EMA,
PMDA

Non-small cell lung cancer lung
cancer

fostamatinib SYK Kinase FDA, EMA Immune thrombocytopenia
ibalizumab CD4 Membrane

receptor
FDA, EMA Human immunodeficiency virus

infection
tagraxofusp IL3RA Membrane

receptor
FDA Blastic plasmacytoid dendritic

cell neoplasm
selinexor XPO1 Nuclear other FDA Relapse multiple myeloma
givosiran ALAS1 RNA FDA, EMA Hepatic porphyria
volanesorsen APOC3 RNA EMA Chylomicronemia syndrome
golodirsen DMD RNA FDA Duchenne muscular dystrophy
burosumab FGF23 Secreted FDA, EMA,

PMDA
Familial x-linked
hypophosphatemic vitamin D
refractory rickets

voxelotor HBA1 Transporter FDA Sickle cell disease
sotagliflozin SLC5A1 Transporter EMA Diabetes mellitus type 1
tenapanor SLC9A3 Transporter FDA Irritable bowel syndrome

characterized by constipation
polatuzumab vedotin CD79B Tumor-associated

antigen
FDA, EMA Diffuse large B-cell lymphoma

refractory
enfortumab vedotin NECTIN4 Tumor-associated

antigen
FDA Metastatic urothelial carcinoma

caplacizumab VWF Unclassified EMA, FDA Thrombotic thrombocytopenic
purpura

aSELP, P-selectin; GDF11, Growth/differentiation factor 11; MSTN, Growth/differentiation factor 8; IFNG, Interferon gamma; SNAP25, Synaptosomal-
associated protein 25; EGLN1, Egl nine homolog 1; EGLN2, Egl nine homolog 2; EGLN3, Egl nine homolog 3; IDH1, Isocitrate dehydrogenase
[NADP] cytoplasmic; SOST, Sclerostin; CALCA, Calcitonin gene-related peptide 1; CALCRL, Calcitonin-gene-related peptide receptor; HTR1F, 5-
hydroxytryptamine receptor 1F; GPR55, G-protein coupled receptor 55; MC4R, Melanocortin receptor 4; NTRK2, BDNF/NT-3 growth factors re-
ceptor; NTRK3, NT-3 growth factor receptor; ROS1, Proto-oncogene tyrosine-protein kinase ROS; PIK3CG, Phosphatidylinositol 4,5-bisphosphate
3-kinase catalytic subunit gamma isoform; LTK, Leukocyte tyrosine kinase receptor; FER, Tyrosine-protein kinase Fer; FES, Tyrosine-protein kinase
Fes/Fps; PTK2, Focal adhesion kinase 1; PTK2B, Protein-tyrosine kinase 2-beta;TNK2,Activated CDC42 kinase 1; SYK, Tyrosine-protein kinase SYK;
CD4,T-cell surface glycoprotein CD4; IL3RA, Interleukin-3 receptor; XPO1,Exportin-1; ALAS1, aminolevulinate synthase1 (ALAS1) mRNA; APOC3,
apolipoprotein C-III (apoC-III) mRNA; DMD, exon 53 of dystrophin pre-mRNA; FGF23, Fibroblast growth factor 23; HBA1, hemoglobin subunit
alpha; SLC5A1, Sodium/glucose cotransporter 1; SLC9A3, Sodium/hydrogen exchanger 3; CD79B, B-cell antigen receptor complex-associated protein
beta chain; NECTIN4, Nectin-4; VWF, von Willebrand factor;
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Figure 1. Bar plot showing the number of DrugCentral active pharmaceutical ingredients––drugs (formulated for oral versus non-oral route administra-
tion) mapped to FDA-OB and labeled as: OFP (on-market but off-patent), OFM (off-market) and ONP (on-market, on-patent), respectively (13).

possibly, to OFM), this drug repositioning classification will
be updated on a yearly basis following the previously de-
scribed workflow (13). This feature complements the phar-
macopedic nature of DrugCentral, providing the scientific
community (academia and industry) support to more effi-
ciently advance ‘old’ drugs toward new therapeutic oppor-
tunities (28).

ADMET-PK data

DrugCentral 2021 now includes nine measured proper-
ties that describe pharmacokinetics (PK) such as absorp-
tion, distribution, metabolism, excretion and toxicity (AD-
MET) for a number of drugs. These ADMET-PK data
were retrieved from five authoritative references (29–33),
which themselves are extensively curated compilations from
biomedical literature or drug records. These ADMET-PK
properties are highly relevant for understanding the fate of
drugs in the human body, for estimating dosage regimens
and for conducting data analyses or machine learning stud-
ies. The number of drugs indexed with each property is sum-
marized in Figure 2. What follows is a brief description of
the ADMET-PK properties incorporated in DrugCentral
2021.

i. The absolute oral bioavailability (BA) indicates the
fraction of the orally dosed drug that is absorbed
through the gut, undergoes first-pass metabolism (gut
and liver) and reaches systemic circulation.

ii. The volume of distribution at steady state (Vd) is the
theoretical volume (expressed in L/kg) necessary to
contain the measured steady-state drug concentration
in plasma.

iii. The systemic (or total) clearance (CL) is the volume
of plasma from which a drug is completely removed
from the body. It is expressed as mL/min/kg and it is
the sum of the clearance of the drug by each organ:
kidneys, liver, etc.

iv. Half-life (t1/2) is the time (expressed in hours) it takes
for a drug to decrease to half of its maximum concen-
tration in plasma.

v. The fraction unbound (fu) is the fraction of drug that
is not bound to plasma proteins.

vi. Water solubility (S) indicates the degree of a drug dis-
solving in water at neutral pH and 37◦C.

vii. The extent of metabolism (EoM) is the fraction of the
drug (API) excreted unchanged (mainly, in urine).

viii. The Biopharmaceutical Drug Disposition Classifica-
tion System (BDDCS) is an adaptation of the FDA
Biopharmaceutical Classification System for bioe-
quivalence studies. In BDDCS, drugs are assigned to
four categories in accordance with solubility and EoM
cutoffs: Class 1 are high solubility, extensively metab-
olized drugs; Class 2 are low solubility, extensively me-
tabolized drugs; Class 3 are high solubility, poorly me-
tabolized drugs; and Class 4 are low solubility, poorly
metabolized drugs, respectively. It should be noted that
the solubility used for BDDCS is the one defined by
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Figure 2. Bar plot showing the number of drugs indexed from literature sources for each ADMET-PK (absorption, distribution, metabolism, excretion
and toxicity––pharmacokinetics) property. Colors indicate the different literature sources: orange for BA––bioavailability (29); blue for Vd––Volume
of distribution, CL––Clearance, t1/2––half-life time and fu––fraction unbound (30); purple for S––water solubility, EoM––Extent of Metabolism and
BDDCS––Biopharmaceutical Drug Disposition Classification System (31), (32); and green for MRTD––Maximum Recommended Therapeutic Daily
Dose (33), respectively.

FDA guidance: the solubility of the formulated active
ingredient at its highest approved dose strength, in 250
mL of water, at 37◦C, over the pH range 1–6.8 (https:
//www.fda.gov/media/70963/download). BDDCS has
proven to be useful in understanding the role of drug
transporters (34), in predicting the brain permeability
of drugs (35) and in understanding the PK specificity
of drug targets (36). BDDCS, S and EoM data gath-
ered from two separate publications (31,32).

ix. The Maximum Recommended Therapeutic Daily
Dose (MRTD) is the dose threshold above which a
drug starts to manifest adverse reactions. Therefore,
it is a measure of the toxicity potential of a drug.
While the original publication (33) reported MRTD
in mg/kg/day units, whereas DrugCentral 2021 uses
�M/kg/day (i.e. the mg quantities were divided by
the molecular weight of the specific active ingredient).
MRTD values were re-normalized to an average body
weight of 70 kg instead of the original 60 kg, although
the ‘average 70 kg man’ concept needs re-evaluation
(37).

As new data points become available, these will be added
in DrugCentral.

Sex-differences in adverse drug events

FAERS (FDA Adverse Event Reporting System, https:
//open.fda.gov/data/faers/) data were first incorporated in
DrugCentral 2018 (11). Compared to the 2018 release, there
was a 10% increase in unique drugs (from 2023 to 2220),

which are associated with 12,098 unique MedDRA terms
(i.e. adverse events––AEs; Medical Dictionary for Regula-
tory Activities, https://www.meddra.org/), resulting in 739
990 drug-AE combinations. The larger the log likelihood
ratio LLR value (38) for an AE, the more likely the event oc-
curred due to a drug, and significant signals can be encoun-
tered for AEs with LLRs larger than the calculated drug-
specific threshold values (t). Statistically relevant signals for
the LLR test yield 1618 unique drugs associated with 8185
unique AEs, for a total of 147 191 (20%) significant drug-
AE combinations. The DrugCentral 2021 FAERS dataset
supports sex-specific granularity for AEs. An overview of
the sex differences described in Table 3 shows a larger num-
ber of AEs reported for women compared to men. Indeed,
at LLR > 5*t, the number of API-AE pairs almost doubles
in females. This phenomenon, first reported in the US us-
ing FAERS data (39), and independently confirmed in the
Netherlands (40), shows that sex bias in medical treatment
persists, ten years after it was first discussed (41). Creating
an interface that highlights sex-differences in AEs may facil-
itate further analyses and may reveal essential drug actions
to pave the way for truly personalized medicine (42).

REDIAL-2020

DrugCentral 2021 incorporates a web server named
‘REDIAL-2020’ to efficiently estimate anti-SARS-CoV-2
activities from molecular structure (14). REDIAL-2020
hosts a suite of machine learning (ML) models that rep-
resent various experimental assays related to live virus in-
fectivity (LVI), viral entry (VE) and virus replication (VR)
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Table 3. Summary of sex-specific adverse event data from FAERS, at different LLR levels

Categories Number of API-AE pairs (unique drugs/unique AEs)

MALE FEMALE

LLR > 0 403 993 (1824/9160) 467 048 (1.936 /9872)
LLR > 2*t 31 740 (968/3316) 50 282 (1124/4163)
LLR > 5*t 12 014 (737/1735) 20 845 (866/2397)

AE: adverse event; LLR: log likelihood ratio; t, LLR threshold.

Figure 3. Front-page of the Drugcentral 2021 portal, featuring remdesivir in the chemical structure window.

process. It currently consists of six ML models that repre-
sent six assays using data from the NCATS (National Cen-
ter for Advancing Translational Sciences) COVID19 portal
(43). These assays are: the SARS-CoV-2 cytopathic effect,
CPE (LVI) (44); Vero E6 host cell cytotoxicity (LVI counter-
screen); Spike-ACE2 protein-protein interaction (AlphaL-
ISA; VE) (45), TruHit (VE) counterscreen; angiotensin-
converting enzyme 2 (ACE2; VE) inhibition; and 3C-like
proteinase (3CL or Mpro; VR) inhibition (46). These mod-
els use chemical structures (or drug names; or PubChem
CIDs) as input; a similarity search retrieves similar com-
pounds in the NCATS dataset, and sorts them according to
the Tanimoto similarity score. In addition to anti-SARS-
CoV-2 activities, the top 10 most similar entries compared

to the query molecule are displayed. Promising compounds
are the ones that are (i) active in the CPE but inactive in
cytotoxicity LVI models; (ii) active in the Spike-ACE2 (Al-
phaLISA) model and inactive in both the TruHit and ACE2
counterscreen VE models; or (iii) active in 3CL (VR) model;
or any combination of the above. We are committed to up-
date the current models periodically and build additional
models to represent more assays as new data gets available
in the literature.

Initially for each assay type, ML models based on
each descriptor category (fingerprint, pharmacophore and
physicochemical) were developed by employing 22 different
ML algorithms from scikit-learn (47). The best performing
model from each descriptor type was used to build consen-
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sus models. Finally, the best performing models according
to their performance on the validation and test sets (15%
of the initial set, each) were picked and implemented in
the REDIAL-2020 prediction server. Against three differ-
ent external sets, these models exhibited predictivity in the
range of 60–75%. An in-depth discussion of the models,
their training procedures, performance, external predictiv-
ity and implementation are discussed elsewhere (14). Based
on the same concept as the L1000 gene perturbation pro-
file similarity, which was implemented in DrugCentral 2018
(11), REDIAL-2020 serves a complementary need, i.e. the
search for drugs effective against COVID-19, as opposed to
the evidence-based (factual) DrugCentral system. Both aim
to support the process of drug discovery and repositioning.

Drugs in the news

Given the lack of approved therapeutic options, the
COVID-19 pandemic has heightened the interest in ap-
proved medicines that are suitable for drug repositioning.
A number of them have been used off-label in COVID-
19 patients, and are therefore of interest to the commu-
nity at large. Assessment of evidence for COVID-19-related
treatments are frequently updated by the American So-
ciety of Health-System Pharmacists, AHSP (https://bit.ly/
3mvXCQX). Reflecting heightened interest in COVID-19,
the front-page of DrugCentral 2021 now includes a list of
drugs that are ‘in the news’ (Figure 3). The current list
includes favipiravir, which is not available in the US, but
approved as Avigan in Japan and Russia and emergency
approved in Italy (48) and remdesivir, which was granted
emergency authorization in Japan and was FDA-approved
as Veklury (https://bit.ly/33zA8Su), among other drugs.

SUMMARY AND FUTURE DIRECTIONS

DrugCentral 2021 is up-to-date with drug marketing
approvals and patent/exclusivity annotations up to 31
March 2020 and 23 June 2020, respectively. We incor-
porated ADMET-PK data and sex-based adverse events
from FAERS, in addition to an anti-SARS-CoV-2 activ-
ities prediction server. At its core, DrugCentral contin-
ues to index {pharmaceutical formulation––drug––drug
target––disease} association, although a significant num-
ber of additional attributes have been added to facili-
tate drug discovery and repositioning. We will continue
to incorporate new drugs as soon as regulatory approvals
are published. Drugs withdrawn due to other than safety
reasons will be flagged in the OFM category, and all
other drugs will be annually updated with respect to
their marketing/patent/exclusivity status (13) in order to
maintain easily accessible lists for drug repositioning. The
FAERS interface will be streamlined to highlight sex differ-
ences in the drug safety profiles of existing drugs. Within the
next six months, we plan to launch a chemical substructure
and similarity search functionality. Last but not least, we
have performed an extensive curation of veterinary drugs,
which will be annotated in the next major DrugCentral re-
lease.

DATA ACCESS

Web interface

The DrugCentral web interface has been updated since the
2018 release to integrate novel data types and function-
alities. The ‘Drugs in the news’ section will be updated
monthly, by monitoring drugs that are widely associated
with current events.

Download

DrugCentral data can be downloaded in PostgreSQL for-
mat (full database dump available) for advanced data
query, export and integration. User interaction with the
local instance is facilitated through structured query lan-
guage (SQL) examples as previously available, together with
downloads of the chemical structures of the drugs in sev-
eral formats (e.g. SDF, InChI and SMILES) and drugs
bioactivity profiles in tabular format. The database is avail-
able via Docker container (https://dockr.ly/35G46a6), and
public instance drugcentral:unmtid-dbs.net:5433. A Python
API is also available (https://bit.ly/2RAHRtV).
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Supplementary Data are available at NAR Online.
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