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for quadratic variation and parameter estimation, Stochastic Processes and their Applications (2020), https://doi.org/10.1016/j.spa.2020.02.007.

Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications xxx (xxxx) xxx
www.elsevier.com/locate/spa

AR(1) processes driven by second-chaos white noise:
Berry–Esséen bounds for quadratic variation and

parameter estimation✩

Soukaina Douissia, Khalifa Es-Sebaiyb, Fatimah Alshahranic,
Frederi G. Viensd,∗

a Laboratory LIBMA, Faculty Semlalia, Cadi Ayyad University, 40000 Marrakech, Morocco
b Department of Mathematics, Faculty of Science, Kuwait University, Kuwait

c Department of Mathematical Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
d Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, United States of America

Received 15 June 2019; received in revised form 1 February 2020; accepted 17 February 2020
Available online xxxx

Abstract

In this paper, we study the asymptotic behavior of the quadratic variation for the class of AR(1)
processes driven by white noise in the second Wiener chaos. Using tools from the analysis on Wiener
space, we give an upper bound for the total-variation speed of convergence to the normal law, which
we apply to study the estimation of the model’s mean-reversion. Simulations are performed to illustrate
the theoretical results.
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1. Introduction

The topic of statistical inference for stochastic processes has a long history, addressing
a number of issues, though many difficult questions remain. At the same time, a number
of application fields are anxious to see some practical progress in a selection of directions.
Methodologies are sought which are not just statistically sound, but stand a good chance of
being computationally implementable, if not nimble, to help practitioners make data-based
decisions in stochastic problems with complex time evolutions. In this paper, which is motivated
by parameter estimation within the above context, we propose a quantitatively sharp analysis
in this direction, and we honor the scientific legacy of Prof. Larry Shepp.

Prof. Shepp is widely known for his seminal work on stochastic control, optimal stopping,
and applications in areas such as investment finance. Often labeled as an applied probabilist,
by those working in that area, he had the merit, among many other qualities, of showing
by example that research activity in this area could benefit from an appreciation for the
mathematical aesthetics of constructing stochastic objects for their own sake. His papers also
showed that one’s work is only as applied as one’s ability to calibrate a stochastic model to a
realistic scenario. As obvious as this view may seem, it is nonetheless in short supply in some
current circles, where model sophistication seems to replace all other imperatives. Instead, we
believe some of the principles guiding applied probability research should include (i) statistical
parsimony and robustness, (ii) feature discovery, and above all, (iii) real-world impact where
mathematicians propose a real solution to a real problem. We think that Prof. Shepp would not
have been shy about agreeing that his seminal and highly original works on optimal stopping
and stochastic control [3,26], including the invention [27] of the widely used Russian financial
option, illustrate items (ii) and (iii) in this philosophy perfectly. This leaves the question of
how to estimate model parameters needed to implement applied solutions. Prof. Shepp proved
on many occasions that this concern was also high on his list of objectives in applied work; he
proposed methods aligning with our stated principle (i) above. The best example is the work
for which Shepp is most widely known outside of our stochastic circles: the mathematical
foundation of the Computational Tomography (CT) scanner, and in particular, the basis [28]
for its data analysis. Prof. Shepp is less well known for his direct interest in statistically
motivated stochastic modeling; the posthumous paper [8] is an instance of this, on asymptotics
of auto-regressive processes with normal noise (innovations).

Our paper honors this legacy by providing a detailed and mathematically rigorous stochastic
analysis of some building blocks needed in the data analysis of a simple class of stochas-
tic processes. Our paper’s originality is in working out detailed quantitative properties for
auto-regressive processes with innovations in the second Wiener chaos. Our framework is
parsimonious in the sense of being determined by a small number of parameters, while covering
features of stationarity, mean-reversion, and heavier-than-normal tail weight. We focus on
establishing rates of convergence in the central limit theorem for quadratic variations of these
processes, which we are then able to transfer to similar rates for the model’s moments-based
parameter estimation. This precision would allow practitioners to determine the validity and
uncertainty quantification of our estimates in the realistic setting of moderate sample size.
Careless use of a method of moments would ignore the potential for abusive conclusions in
this heavy-tailed time-series setting.

The remainder of this introduction begins with an overview of the landscape of parameter
estimation for stochastic processes related to ours. The few included references call for the
reader to find additional references therein, for the sake of conciseness. We then introduce the



Please cite this article as: S. Douissi, K. Es-Sebaiy, F. Alshahrani et al., AR(1) processes driven by second-chaos white noise: Berry–Esséen bounds
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specific model class used in this paper. It represents a continuation of the current literature’s
motivation to calibrate stochastic models with features such as stochastic memory and path
roughness. It constitutes a departure from the same literature’s focus on the framework of
Gaussian noise.

1.1. Parameter estimation for stochastic processes: historical and recent context

Some of the early impetus in parameter estimation for stochastic processes was inspired by
classical ideas from frequentist statistics, such as the theoretical and practical superiority of
maximum likelihood estimation (MLE), over other, less constrained methodologies, in many
contexts. We will not delve into the description of many such instances, citing only the seminal
account [15], first published in Russian in 1974 (see references therein in Chapter 17, such
as [22]). This was picked up two decades later in the context of processes driven by fractional
Brownian motion, where it was shown that the martingale property used in earlier treatments
was not a necessary ingredient to establish the properties of such MLEs: see in particular
the treatment of processes with fractional noise in [13] and in [32]. It was also noticed that
least-squares ideas, which led to MLEs in cases of white-noise driven processes, did not share
this property in the case of processes driven by fractional noise: this was pointed out in the
continuous-time based paper [11]. See also a more detailed account of this direction of work
in [7] and references therein, including a discussion of the distinction between estimators based
on continuous paths, and those using discrete sampling under in-fill and increasing-horizon
asymptotics. These were applied particularly to various versions of the Ornstein–Uhlenbeck
process, as examples of processes with stationary increments and an ability to choose other
features such as path regularity and short or long memory.

The impracticality of computing MLEs for parameters of stochastic processes in these
feature-rich contexts, led the community to consider other methodologies, looking more closely
at least squares and beyond. A popular approach is to work with incarnations of the method of
moments. A full study in the case of general stationary Gaussian sequences, with application
to in-fill asymtotics for the fractional Ornstein–Uhlenbeck process, is in [2]. This paper relates
the relatively long history of those works where estimation of a memory or Hölder-regularity
parameter uses moments-based objects, particularly quadratic variations. It also shows that the
generalized method of moments can, in principle, provide a number of options to access vectors
of parameters for discretely observed Gaussian processes in a practical way. This was also
illustrated recently in [9], where the Malliavin calculus and its connection to Stein’s method was
used to establish speeds of convergence in the central-limit theorems for quadratic-variations-
based estimators for discretely observed processes. The Stein–Malliavin technical methodology
employed in [9] is that which was introduced by Nourdin and Peccati in 2009, as described in
their 2012 research monograph [19].

Other estimation methods are also proposed for general stationary time series, which we
mention here, though they fall out of the scope of our paper, and they do not lead to the
same precision as those based on the Stein–Malliavin method: see e.g. [35] and [36] for the
Yule–Walker method and extensions. While the paper [34] establishes that essentially every
continuous-time stationary process can be represented as the solution of a Langevin (Ornstein–
Uhlenbeck-type) equation with an appropriate noise distribution, the two aforementioned
follow-up papers [35,36], which present an analog in discrete time, do not, however, connect
the discrete and continuous frameworks via any asymptotic theory.

Following an initial push in [32], most of the recent papers mentioned above, and recent
references therein, state an explicit effort to work with discretely observed processes. At least
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in the increasing-horizon case, the papers [9] and [6] had the merit of pointing out that many of
the discretization techniques used to pass from continuous-path to discrete-observation based
estimators, were inefficient, and it is preferable to work directly from the statistics of the
discretely observed process. Our paper picks up this thread, and introduces a new direction of
research which, to our knowledge, has not been approached by any authors: can the asymptotic
normality of quadratic variations and related estimators, including very precise results on speeds
of convergence, be obtained when the driving noise is not Gaussian?

The main underlying theoretical result we draw on is the optimal estimation of total-variation
distances between chaos variables and the normal law, established in [20]. It was used for
quadratic variations of stationary sequences in the Gaussian case in [18]. But when the Gaussian
setting is abandoned, the result in [20] cannot be used directly. Instead, our paper makes a
theoretical advance in the analysis on Wiener space, by drawing on a simple idea in the recent
preprints [24] and [21]; our main result provides an example of a sum of chaos variables
whose distance to the normal appears to be estimated optimally, whereas a standard use of the
Schwartz inequality would result in a much weaker result. The precise location of the technique
leading to this improvement is pointed out in the main body of our paper: see Theorem 8,
particularly inequality (24) in its proof and the following brief discussion there, and Remark 12.
This allows us to prove our Berry–Esséen-type speed of n−1/2, rather than what would have
resulted in a speed of n−1/4.

1.2. A stationary process with second-chaos noise, and related literature

Given our intent to address the new issue of noise distribution, and knowing that Berry–
Esséen-type questions for models with mere Gaussian noise already present technical chal-
lenges, we choose to minimize the number of technical issues to address in this paper by
focusing on the simplest possible stationary model class which does not restrict the marginal
noise distribution within a family which is tractable using Wiener chaos analysis and tools
from the Malliavin calculus. This is the auto-regressive model of order 1 (a.k.a. AR(1)) with
independent noise terms, where the noise distribution is in the second Wiener chaos, i.e.

Yn = a0 + a1Yn−1 + εn (1)

where {εn; n ∈ Z} is an i.i.d. sequence in the second Wiener chaos, and a0 and a1 are constants.
The complete description and construction of this process and of the noise sequence is given
in Section 3, see (8).

As explained in Section 2, the second Wiener chaos is a linear space, and since the model
(1) is linear, its solution, if any, lies in the same chaos. This points to a simple theoretical
motivation and justification for studying the increasing horizon problem as opposed to the in-
fill problem. We also include a practical motivation for doing so, further below in this section,
coming from an environmental statistics question.

For the former motivation, note that the AR(1) specification (1), with essentially any square-
integrable i.i.d. noise distribution, is known to converge weakly, after appropriate aggregation
and scaling, to the so-called Ornstein–Uhlenbeck process (also known occasionally as the
Vasicek process), which solves the stochastic differential equation

d X t = α(m − X t )dt + σdW (t) (2)

where W is a standard Wiener process (Gaussian Brownian motion), and the parameters α,m,
and σ are explicitly related to a0, a1 and V ar [εn]. See for instance [29, Chapter 2], which
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covers the case of all square-integrable innovations; this paper assumes a piecewise linear
interpolation in the normalization, which could be eliminated by switching to convergence
in the Skorohod J1 topology. A reference avoiding linear interpolation, with convergence in
the Skorohod J1 topology, is [5], where innovations are assumed to have four moments. In
any case, this central limit theorem constrains the modeling of stationary/ergodic processes
via diffusive differential formulation: under in-fill asymptotics with weakly dependent noise,
the AR(1) specification cannot preserve any non-normal noise distribution in the limit. It is
of course possible to interpolate the above process Y in a number of ways, to result in a
continuous-time process whose discrete-time marginals are those specified via (1).

However we believe it is difficult or impossible to give a linear diffusion-type stochastic
differential equation, akin to (2), whose fixed-time-step marginals are as in (1) for an arbitrary
noise distribution, while simultaneously describing what second-chaos process differential
would need to replace W in (2). The so-called Rosenblatt process (see [31]), the only known
second-chaos continuous-time process with a stochastic calculus similar to W ’s, gives an
example of a viable alternative to (2) living in the second chaos. But this process is known to
have only a long-memory version. Thus it cannot be a proxy for any continuous-time analog
of (1), since the noise there has no memory. Similar issues would presumably exist for other
non-Gaussian AR(1) and related auto-regressive processes. A few have been studied recently in
the literature. We mention [12,37], which cover various noise structures similar to second-chaos
noises, and here again, no asymptotic or interpolation theory is provided to relate to continuous
time. There does exist a general treatment in [8] of asymptotics for all AR(p) processes: the
limit processes are the so-called Continuous-AR(p) processes, which are Gaussian, and have
p −1-differentiable paths (a form of very long memory for p > 1); that paper assumes normal
innovations to keep technicalities to a minimum.

Another indication that finding such a proxy may fail comes in the specific case of the
so-called Gumbel distribution for εn . This law is a popular distribution for extreme-value
modeling. The fact that this law is in the second chaos is a classical result (as a weighted sum
of exponentials, see [25]), though it does not appear to be widely know in the extreme-value
community. The standard (mean-zero) Gumbel law can be represented as

∑
∞

j=1 j−1
(
E j − 1

)
where E j =

(
N 2

j + N̄ 2
j

)
/2 is a standard exponential variable (chi-squared with two degrees

of freedom, N j and N̄ j are iid standard normals). The Gumbel law is known to give rise to a
second-chaos version of an isonormal Gaussian process, known as the Gumbel noise measure
(or Gumbel process); that stochastic measure obeys the same laws as the white-noise measure
(including independence of increments which fails for the Rosenblatt noise), if one replaces the
standard algebra of the reals by the max-plus algebra. This is explained in detail in the preprint
[16]; also see references therein. By virtue of this change of algebra, stochastic differential
specifications as in (2) cannot be defined using the Gumbel noise.

However, the discrete version of the Gumbel noise, an i.i.d. sequence (εn)n with Gumbel
marginals, is a good example of a noise type which can be used in the AR(1) process
(1). This specific model, known as the AR(1) process with Gumbel noise (or innovations),
presents a main motivation for our work. Recent references on this process, and on the closely
related process where the marginals of Y are Gumbel-distributed, include [17] for a Bayesian
study, [30] for applications to maxima in greenhouse gas concentration data, and [1] for
AR process in the broader extreme-value context. A survey on AR(1) models with different
types of innovations and marginals, while not including the Gumbel, is in the unpublished
manuscript [10]. The use of the Gumbel distribution for describing environmental time series,
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mainly when looking at extremes, is fairly widespread, but we do not cite this literature because
it does not appear willing to acknowledge that time-series models driven by Gumbel innovations
should be used, rather than using tools for i.i.d. Gumbel data. This literature, which is easy to
find, is also entirely unaware that the Gumbel distribution is in the second Wiener chaos.

All these reasons give us ample cause to investigate the basic method-of-moments building
blocks for determining parameters in stationary time series with second-chaos innovations. For
the sake of concentrating on the core mathematical analysis towards this end, we focus on the
asymptotics of quadratic variations for models in the class (1). The methodology developed
in [9] can then be adapted to handle any method-of-moments-based estimators, at the cost of
some additional effort. We provide examples of this in the latter sections of this paper. Our
main result is that, for any second-chaos innovations in (1), the quadratic variation of Y has
explicit normal asymptotics, with a speed of convergence in total variation which matches the
classical Berry–Esseén speed of n−1/2.

The remainder of this paper is structured as follows. Section 2 provides elements from the
analysis on Wiener space which will be used in the paper. Section 3 presents the details of
the class of AR(1) models we will analyze. Section 4 computes the asymptotic variance of the
AR(1)’s quadratic variation by looking separately at its 2nd-chaos and 4th-chaos components,
whose asymptotics are of the same order. Section 5 establishes our main result, the Berry–
Esseén speed of convergence in total-variation for the normal fluctuations of the AR(1)’s
quadratic variation. Finally, Section 6 defines a method-of-moments estimator for the mean-
reversion rate of this AR(1) process, and establishes its asymptotic properties; a numerical
study is included to gauge the distance between this renormalized estimator and the normal
law.

2. Preliminaries

In this first section, we recall some elements from stochastic analysis that we will need in
the paper. See [19,23], and [33] for details. Any real, separable Hilbert space H gives rise to
an isonormal Gaussian process: a centered Gaussian family (G(ϕ), ϕ ∈ H) of random variables
on a probability space (Ω ,F ,P) such that E(G(ϕ)G(ψ)) = ⟨ϕ,ψ⟩H. In this paper, it is enough
to use the classical Wiener space, where H = L2([0, 1]), though any H will also work. In the
case H = L2([0, 1]), G can be identified with the stochastic differential of a Wiener process
W and one interprets G(ϕ) :=

∫ 1
0 ϕ (s) dW (s).

The Wiener chaos of order n is defined as the closure in L2 (Ω) of the linear span of the
random variables Hn(G(ϕ)), where ϕ ∈ H, ∥ϕ∥H = 1 and Hn is the Hermite polynomial of
degree n. The intuitive Riemann-sum-based notion of multiple Wiener stochastic integral In
with respect to G ≡ W , in the sense of limits in L2 (Ω), turns out to be an isometry between
the Hilbert space H⊙n (symmetric tensor product) equipped with the scaled norm 1

√
n!

∥ · ∥H⊗n

and the Wiener chaos of order n under L2 (Ω)’s norm. In any case, we have the following
fundamental decomposition of L2 (Ω) as a direct sum of all Wiener chaos.
• The Wiener chaos expansion. For any F ∈ L2 (Ω), there exists a unique sequence of
functions fn ∈ H⊙n such that

F = E[F] +

∞∑
n=1

In( fn),

where the terms are all mutually orthogonal in L2 (Ω) and

E
[
In( fn)2]

= n!∥ fn∥
2
H⊗n . (3)
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• Product formula and contractions. Since L2 (Ω) is closed under multiplication, the special
case of the above expansion exists for calculating products of Wiener integrals, and is explicit
using contractions: For any integers p, q ⩾ 1 and symmetric integrands f ∈ H⊙p and g ∈ H⊙q ,

Ip( f )Iq (g) =

p∧q∑
r=0

r !Cr
pCr

q Ip+q−2r ( f ⊗̃r g); (4)

where f ⊗r g is the contraction of order r of f and g which is an element of H⊗(p+q−2r )

defined by

( f ⊗r g)(s1, . . . , sp−r , t1, . . . , tq−r )

:=

∫
[0,1]p+q−2r

f (s1, . . . , sp−r , u1, . . . , ur )g(t1, . . . , tq−r , u1, . . . , ur ) du1 · · · dur .

while ( f ⊗̃r g) denotes its symmetrization. More generally the symmetrization f̃ of a function
f is defined by f̃ (x1, . . . , x p) =

1
p!

∑
σ f (xσ (1), . . . , xσ (p)) where the sum runs over all

permutations σ of {1, . . . , p}.
The special case for p = q = 1 is particularly handy, and can be written in its symmetrized

form:

I1( f )I1(g) = 2−1 I2 ( f ⊗ g + g ⊗ f )+ ⟨ f, g⟩H.

• Hypercontractivity in Wiener chaos. For h ∈ H⊗q , the multiple Wiener integrals Iq (h),
which exhaust the set Hq , satisfy a hypercontractivity property (equivalence in Hq of all L p

norms for all p ⩾ 2), which implies that for any F ∈ ⊕
q
l=1Hl (i.e. in a fixed sum of Wiener

chaoses), we have(
E
[
|F |

p])1/p
⩽ cp,q

(
E
[
|F |

2])1/2
for any p ⩾ 2. (5)

It should be noted that the constants cp,q above are known with some precision when F ∈ Hq :
by Corollary 2.8.14 in [19], cp,q = (p − 1)q/2.
• Malliavin derivative and other operators on Wiener space. The Malliavin derivative
operator D, and other operators on Wiener space, are needed briefly in this paper, to provide an
efficient proof of the first theorem in Section 5, and to interpret an observation of I. Nourdin and
G. Peccati, given below in (7), for a bound on the total variation distance of any chaos law to the
normal law. We do not provide any background on these operators, referring instead to Chapter
2 in [19], and briefly mentioning here the facts we will use in the proof of Section 5, without
spelling out all assumptions. Strictly speaking, all the results in this paper can be obtained
without the following facts, but this would be exceedingly tedious and wholly nontransparent.

• The operator D maps Iq ( f ) to t ↦→ q Iq−1 ( f (., t)) and is consistent with the ordinary
chain rule. Its domain is denoted by D1,2, and includes all chaos variables.

• The operator L , known as the generator of the Orstein–Uhlenbeck semigroup on Wiener
space, maps Iq ( f ) to −q Iq ( f ), and L−1 denotes its pseudo-inverse: L’s kernel is the
constants, all other chaos are its eigenspaces. Combining this with the previous point, we
obtain −Dt L−1 Iq ( f ) = Iq−1 ( f (., t)).

• This D has an adjoint δ in L2 (Ω), which by definition satisfies the duality relation
E ⟨DF, u⟩H = E [Fδ (u)], where u is any stochastic process for which the expressions
are defined. The domain of δ is a non-trivial object of study, but it is known to contain
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all square-integrable W -adapted processes for the case of G = W , the wiener process,
where H = L2 ([0, 1]).

• We have the relation

F = δ(−DL−1)F.

• Distances between random variables. The following is classical. If X, Y are two real-valued
random variables, then the total variation distance between the law of X and the law of Y is
given by

dT V (X, Y ) := sup
A∈B(R)

|P [X ∈ A] − P [Y ∈ A]|

where the supremum is over all Borel sets. The Kolmogorov distance dK ol (X, Y ) is the same
as dT V except one take the sup over A of the form (−∞, z] for all real z. The Wasserstein
distance uses Lipschitz rather than indicator functions:

dW (X, Y ) := sup
f ∈Lip(1)

|E f (X ) − E f (Y )| ,

Lip(1) being the set of all Lipschitz functions with Lipschitz constant ⩽ 1.
• The observation of Nourdin and Peccati. Let N denote the standard normal law. The
following observation relates an integration-by-parts formula on Wiener space with a classical
result of Ch. Stein.

Let X ∈ D1,2 with E [X ] = 0 and V ar [X ] = 1. Then (see [20, Proposition 2.4], or [19,
Theorem 5.1.3]), for f ∈ C1

b (R),

E [X f (X)] = E
[

f ′ (X)
⟨
DX,−DL−1 X

⟩
H
]
,

and by combining this with properties of solutions of Stein’s equations, one gets

dT V (X, N ) ⩽ 2E
⏐⏐1 −

⟨
DX,−DL−1 X

⟩
H

⏐⏐ . (6)

One notes in particular that when X ∈ Hq , since −L−1 X = q−1 X , we obtain
conveniently

dT V (X, N ) ⩽ 2E
⏐⏐1 − q−1

∥DX∥
2
H
⏐⏐ . (7)

• A convenient lemma. The following result is a direct consequence of the Borel–Cantelli
Lemma (the proof is elementary; see e.g. [14]). It is convenient for establishing almost-sure
convergences from L p convergences.

Lemma 1. Let γ > 0. Let (Zn)n∈N be a sequence of random variables. If for every p ⩾ 1
there exists a constant cp > 0 such that for all n ∈ N,

∥Zn∥L p(Ω) ⩽ cp · n−γ ,
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then for all ε > 0 there exists a random variable ηε which is such that

|Zn| ⩽ ηε · n−γ+ε almost surely

for all n ∈ N. Moreover, E |ηε|
p < ∞ for all p ⩾ 1.

3. The model

3.1. Definition

We consider the following AR(1) model⎧⎪⎪⎪⎨⎪⎪⎪⎩
Yn = a0 + a1Yn−1 + εn, n ⩾ 1

εn =

∞∑
j=1

σ j (Z2
n, j − 1)

Y0 = y0 ∈ R,

(8)

where a0, a1 and
{
σ j , j ⩾ 1

}
are real constants. The sequence of innovations {εn, n ⩾ 1} is

i.i.d., with distribution in the second Wiener chaos. It turns out that this sequence can be
represented as in the second line above in (8), where the family

{
Zn, j , n ⩾ 1, j ⩾ 1

}
are i.i.d.

standard Gaussian random variables defined on (Ω ,F ,P), and
{
σ j ; j ⩾ 1

}
is a sequence of

reals satisfying
∞∑
j=1

σ 2
j < ∞. (9)

This is explained in [19, Section 2.7.4]. We assume that the mean reversion parameter a1 is
such that |a1| < 1. Under this condition, (8) also admits a stationary ergodic solution. Both
the version above and the stationary version are linear functionals of elements of the form of
εn , which are elements of the second Wiener chaos. Since this chaos is a vector space, both
versions of Y take values in the second Wiener chaos.

By truncating the series in (8), one obtains a process which is a sum of chi-squared variables,
converging to Y in L2(Ω ). Special cases where the sum is finite, can be considered. In the four
parts of Fig. 1 below, we simulate 500 observations from such cases, to show the variety of
behaviors, even with a limited number of terms in the noise series.

• When σ1 = σ and σ j = 0, for all j ⩾ 2, corresponds to a scaled mean-zero chi-squared
white noise with one degree of freedom: (Z2

n,1 − 1) ∼ χ2(1).
• When σ1 = σ2 = σ and σ j = 0, ∀ j ⩾ 3, an exponential white noise with rate parameter

1/(2σ ). Indeed (Z2
n,1 − 1) + (Z2

n,2 − 1) ∼ E(1/2).
• When σ1 = −σ2, and σ j = 0, for all j ⩾ 2, which is a symmetric second chaos white

noise, ε’s law is equal to a product normal law: if N , N ′ are two i.i.d. standard normals,
then 2N N ′

∼ (Z2
n,1 − 1) − (Z2

n,2 − 1) = Z2
n,1 − Z2

n,2.

Remark 2. We can see from the four parts of Fig. 1 the asymmetry in figures (a), (b) and
(c) due to the asymmetric nature of the noise; figure (d) shows more symmetry because of the
choice σ1 = −σ2. We also notice that when the mean reversion is fairly strong and the noise
is large the shape of the observations is balanced (figure (a)), while when the noise is larger
compared to the mean-reversion parameter, the observations look like an Ornstein–Uhlenbeck
process with a noise larger than the drift (see figure (b)).
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Fig. 1. 500 various observations from (8) for different values of a0, a1, y0 and σ j , j = 1, 2.

3.2. Quadratic variation

This paper’s main goal is to determine the asymptotic distribution of the quadratic variation
of the observations {Yn, n ⩾ 1} using analysis on Wiener space.

This will be facilitated by the fact, mentioned above, that the sequence (Yn)n⩾1 lives in the
second Wiener chaos with respect to the Wiener process W , by virtue of being the solution of
a linear equation with noise in the second chaos. To be more specific, observe that {Yn, n ⩾ 1}

in (8) can be expressed recursively as follows:

Yi = di +

i∑
k=1

ai−k
1

∞∑
j=1

σ j
(
Z2

k, j − 1
)
, i ⩾ 1 (10)

where

di = ai
1 y0 + a0

i∑
k=1

ai−k
1 . (11)

For the sake of ease of computation in Wiener chaos, it will be convenient throughout this
paper to refer to the Wiener integral representation of the noise terms Z2

k, j . For this, there exists{
hk, j , k ⩾ 1, j ⩾ 1

}
an orthonormal family L2([0, 1]) for which Zk, j = W (hk, j ) = I W

1

(
hk, j

)
=∫ 1

0 hk, j (r) dW (r). Hence, using the fact, which comes from the most elementary application
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of the product formula (4), that W 2 (ϕ)− 1 = I W
2

(
ϕ⊗2

)
, we have for i ⩾ 1:

Yi = di +

i∑
k=1

ai−k
1

∞∑
j=1

σ j
(
Z2

k, j − 1
)

= di +

i∑
k=1

ai−k
1

∞∑
j=1

σ j
(
W 2(hk, j ) − 1

)
= di +

i∑
k=1

ai−k
1

∞∑
j=1

σ j I W
2 (h⊗2

k, j ).

Therefore, using the linearity property of multiple integrals, we can write for i ⩾ 1,

Yi = di + Ỹi ,

where

Ỹi := I W
2 ( fi ) and fi :=

i∑
k=1

ai−k
1

∞∑
j=1

σ j h⊗2
k, j . (12)

A straightforward computation shows that under Assumption (9), the kernel fi ∈ L2([0, 1]2)
for all i ⩾ 1: indeed

∥ fi∥
2
L2([0,1]2) =

∞∑
j=1

σ 2
j ×

(1 − a2i
1 )

(1 − a2
1)

⩽
1

(1 − a2
1)

∞∑
j=1

σ 2
j < ∞.

Our main object of study in the next two sections is the asymptotics of the quadratic variation
defined as follows:

Qn :=
1
n

n∑
i=1

(Yi − di )2
=

1
n

n∑
i=1

Ỹ 2
i . (13)

Using product formula (4), we get

Qn − E[Qn] =
1
n

n∑
i=1

(
I W
2 ( fi )2

− 2∥ fi∥
2
L2([0,1]2)

)
=

1
n

n∑
i=1

I W
4 ( fi ⊗ fi ) +

4
n

n∑
i=1

I W
2 ( fi ⊗1 fi )

= I W
4

(
1
n

n∑
i=1

fi ⊗ fi

)
+ I W

2

(
4
n

n∑
i=1

fi ⊗1 fi

)
=: T4,n + T2,n. (14)

In the next section, we show that the asymptotic variance of
√

n (Qn − E[Qn]) exits and we
will compute its speed of convergence. Then we establish a CLT for Qn , and compute its
Berry–Essé en speed of convergence in total variation.

4. Asymptotic variance of the quadratic variation

Using the orthogonality of multiple integrals living in different chaos, to calculate the
limiting variance of

√
n(Qn − E[Qn]), we need only study separately the second moments

of the terms T2,n and T4,n given in (14).
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4.1. Scale constant for T2,n

Proposition 3. Under Assumption (9), with T2,n as in (14), for large n,⏐⏐⏐⏐⏐E [(√nT2,n
)2
]

−
32
∑

∞

j=1 σ
4
j

(1 − a2
1)2

⏐⏐⏐⏐⏐ ⩽ C1

n
, (15)

where C1 := 32
(∑

∞

j=1 σ
4
j

) [
1+a2

1 (5+6a2
1 )
]

(1−a4
1 )2(1−a2

1 )
. In particular

l1 := lim
n→∞

E
[(√

nT2,n
)2
]

=
32
∑

∞

j=1 σ
4
j

(1 − a2
1)2

. (16)

Proof. We have T2,n = I W
2 ( 4

n

∑n
i=1 fi ⊗1 fi ), by the isometry property (3) of multiple integrals,

we get

E[T 2
2,n] = 2∥

4
n

n∑
i=1

fi ⊗1 fi∥
2
L2([0,1]2) =

32
n2

n∑
i, j=1

⟨
fi ⊗1 fi , f j ⊗1 f j

⟩
L2([0,1]2) . (17)

Moreover, under Assumption (9), we have

( fi ⊗1 fi )(x, y) =

i∑
k1,k2=1

ai−k1
1 ai−k2

1

∞∑
j1, j2=1

σ j1σ j2 (h⊗2
k1, j1

⊗1 h⊗2
k2, j2

)(x, y)

=

i∑
k1,k2=1

ai−k1
1 ai−k2

1

∞∑
j1, j2=1

σ j1σ j2 (hk1, j1 ⊗ hk2, j2 )(x, y)δ j1, j2δk1,k2

=

i∑
k=1

a2(i−k)
1

∞∑
j=1

σ 2
j (h⊗2

k, j )(x, y).

where δi j denotes the Kronecker delta defined as follows:

δi j =

{
0 if i ̸= j
1 if i = j.

Therefore, for i, j ⩾ 1 such that j ⩾ i , we get

⟨
fi ⊗1 fi , f j ⊗1 f j

⟩
L2([0,1]2) =

i∑
k1=1

a2(i−k1)
1

j∑
k2=1

a2( j−k2)
1

∞∑
j1, j2=1

σ 2
j1
σ 2

j2

⟨
h⊗2

k1, j1
, h⊗2

k2, j2

⟩
L2([0,1]2)

=

i∑
k1=1

a2(i−k1)
1

j∑
k2=1

a2( j−k2)
1

∞∑
j1, j2=1

σ 2
j1
σ 2

j2

×

(⟨
hk1, j1 , hk2, j2

⟩
L2([0,1])

)2

=

i∑
k1=1

a2(i−k1)
1

j∑
k2=1

a2( j−k2)
1

∞∑
j1, j2=1

σ 2
j1
σ 2

j2
δ j1, j2δk1,k2
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= a2( j−i)
1

i∑
k=1

a4(i−k)
1 ×

∞∑
j=1

σ 4
j

=

∞∑
j=1

σ 4
j × a2( j−i)

1

(
1 − a4i

1

1 − a4
1

)
.

Therefore, by (17), we have

E
[
(
√

nT2,n)2]
=

32
n

n∑
i=1

∥ fi ⊗1 fi∥
2
L2([0,1]2) +

64
n

n−1∑
i=1

n∑
j=i+1

⟨
fi ⊗1 fi , f j ⊗1 f j

⟩
L2([0,1]2) .

Moreover,⏐⏐⏐⏐⏐32
n

n∑
i=1

∥ fi ⊗1 fi∥
2
L2([0,1]2) −

32
∑

∞

j=1 σ
4
j

(1 − a4
1)

⏐⏐⏐⏐⏐ =
32
∑

∞

j=1 σ
4
j

(1 − a4
1)

⏐⏐⏐⏐⏐−1
n

n∑
i=1

a4i
1

⏐⏐⏐⏐⏐
⩽

32
∑

∞

j=1 σ
4
j

(1 − a4
1)2

1
n
.

On the other hand⏐⏐⏐⏐⏐⏐64
n

n−1∑
i=1

n∑
j=i+1

⟨
fi ⊗1 fi , f j ⊗1 f j

⟩
L2([0,1]2) −

64a2
1
∑

∞

j=1 σ
4
j

(1 − a4
1)(1 − a2

1)

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐64
∑

∞

j=1 σ
4
j

(1 − a4
1)

1
n

n−1∑
i=1

(1 − a4i
1 )

n∑
j=i+1

a2( j−i)
1 −

64a2
1
∑

∞

j=1 σ
4
j

(1 − a4
1)(1 − a2

1)

⏐⏐⏐⏐⏐⏐
⩽

64a2
1
∑

∞

j=1 σ
4
j

(1 − a4
1)(1 − a2

1)
1
n

n∑
i=1

⏐⏐⏐((1 − a4i
1 )(1 − a2(n−i)

1 ) − 1
)⏐⏐⏐

⩽
64a2

1
∑

∞

j=1 σ
4
j

(1 − a4
1)(1 − a2

1)

(
3
n

n∑
i=0

a2i
1

)

⩽
64a2

1
∑

∞

j=1 σ
4
j

(1 − a4
1)(1 − a2

1)2

3
n
.

Consequently⏐⏐⏐⏐⏐E [(√nT2,n
)2
]

−
32
∑

∞

j=1 σ
4
j

(1 − a2
1)2

⏐⏐⏐⏐⏐ ⩽
⏐⏐⏐⏐⏐32

n

n∑
i=1

∥ fi ⊗1 fi∥
2
L2([0,1]2) −

32
∑

∞

j=1 σ
4
j

(1 − a4
1)

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐⏐64
n

n−1∑
i=1

n∑
j=i+1

⟨
fi ⊗1 fi , f j ⊗1 f j

⟩
L2([0,1]2)

−
64a2

1
∑

∞

j=1 σ
4
j

(1 − a4
1)(1 − a2

1)

⏐⏐⏐⏐⏐⏐
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⩽
32
∑

∞

j=1 σ
4
j

(1 − a4
1)2

1
n

+
64a2

1
∑

∞

j=1 σ
4
j

(1 − a4
1)(1 − a2

1)2

3
n

⩽ 32
∞∑
j=1

σ 4
j

[
1 + a2

1(5 + 6a2
1)
]

(1 − a4
1)2(1 − a2

1)
1
n
.

The desired is therefore obtained. ■

4.2. Scale constant for T4,n

Proposition 4. Under Assumption (9), with T4,n as in (14), for large n,⏐⏐⏐⏐⏐⏐⏐E
[
(
√

nT4,n)2]
−

4
(1 − a2

1)2

⎡⎢⎣ ∞∑
j=1

σ 4
j +

(
1 + a2

1

1 − a2
1

)⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2
⎤⎥⎦
⏐⏐⏐⏐⏐⏐⏐ ⩽

C2

n
,

where

C2 := C2,1 + C2,2, C2,1 := 4

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2

(3 + 17a2
1)

(1 − a2
1)4

,

C2,2 := 4

⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠ [
1 + a2

1(5 + 6a2
1)
]

(1 − a4
1)2(1 − a2

1)
. (18)

In particular

l2 := lim
n→∞

E
[
(
√

nT4,n)2]
=

4
(1 − a2

1)2

⎡⎢⎣ ∞∑
j=1

σ 4
j +

(
1 + a2

1

1 − a2
1

)⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2
⎤⎥⎦ . (19)

Proof. By definition of the term T4,n , we have

E[(
√

nT4,n)2] = 4!∥
1

√
n

n∑
i=1

fi⊗̃ fi∥
2
L2([0,1]4)

=
4!

n

n∑
i, j=1

⟨
fi⊗̃ fi , f j⊗̃ f j

⟩
L2([0,1]4) ,

where fi⊗̃ fi denotes the symmetrization of fi ⊗ fi , because the kernel
∑n

i=1 fi⊗ fi ∈

L2([0, 1]4) is no longer symmetric. We deal with symmetrization by using a combinatorial
formula, obtaining

4!
⟨
fi⊗̃ fi , f j⊗̃ f j

⟩
L2([0,1]4) = (2!)2 ⟨ fi ⊗ fi , f j ⊗ f j

⟩
L2([0,1]4)

+ (2!)2 ⟨ fi ⊗1 f j , f j ⊗1 fi
⟩
L2([0,1]2) .

Therefore

E[(
√

nT4,n)2] =
4
n

n∑
i, j=1

⟨
fi ⊗ fi , f j ⊗ f j

⟩
L2([0,1]4) +

4
n

n∑
i, j=1

⟨
fi ⊗1 f j , f j ⊗1 fi

⟩
L2([0,1]2)

=: T4,1,n + T4,2,n.
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Moreover,

T4,1,n =
4
n

n∑
i, j=1

⟨
fi ⊗ fi , f j ⊗ f j

⟩
L2([0,1]4)

=
4
n

n∑
i, j=1

(⟨
fi , f j

⟩
L2([0,1]2)

)2

=
4
n

n∑
i=1

(
⟨ fi , fi ⟩L2([0,1]2)

)2
+

8
n

n−1∑
i=1

n∑
j=i+1

(⟨
fi , f j

⟩
L2([0,1]2)

)2
. (20)

On the other hand, using (9), we have for j ⩾ i

⟨
fi , f j

⟩
L2([0,1]2) =

i∑
k1=1

ai−k1
1

j∑
k2=1

a j−k
1

∞∑
j1, j2=1

σ j1σ j2δ j1, j2δk1,k2

= a( j−i)
1 ×

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠×

(
1 − a2i

1

1 − a2
1

)
.

Therefore by (20), we get⏐⏐⏐⏐⏐⏐⏐T4,1,n −
4(1 + a2

1)
(1 − a2

1)3

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2
⏐⏐⏐⏐⏐⏐⏐

⩽

⏐⏐⏐⏐⏐⏐⏐
4
n

n∑
i=1

∥ fi∥
4
L2([0,1]2) −

4
(1 − a2

1)2

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2
⏐⏐⏐⏐⏐⏐⏐

+

⏐⏐⏐⏐⏐⏐⏐
8
n

n−1∑
i=1

n∑
j=i+1

(⟨
fi , f j

⟩
L2([0,1]2)

)2
−

8a2
1

(1 − a2
1)3

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2
⏐⏐⏐⏐⏐⏐⏐

⩽
4

(1 − a2
1)2

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2 ⏐⏐⏐⏐⏐1n
n∑

i=1

((1 − a2i
1 )2

− 1)

⏐⏐⏐⏐⏐
+

8a2
1

(1 − a2
1)3

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2 ⏐⏐⏐⏐⏐1n
n∑

i=1

(
(1 − a2i

1 )2(1 − a2(n−i)
1 ) − 1

)⏐⏐⏐⏐⏐
⩽

12
(1 − a2

1)3

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2

1
n

+
80a2

1

(1 − a2
1)4

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2

1
n

=

4
(∑

∞

j=1 σ
2
j

)2

(1 − a2
1)4

(3 + 17a2
1)

n
.
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Now let us estimate

T4,2,n =
4
n

n∑
i, j=1

⟨
fi ⊗1 f j , f j ⊗1 fi

⟩
L2([0,1]2) .

For j ⩾ i , x, y ∈ L2([0, 1]), we have

( fi ⊗1 f j )(x, y) = a( j−i)
1

i∑
k=1

a2(i−k)
1

∞∑
j=1

σ 2
j (h⊗2

k, j )(x, y). (21)

So, for j ⩾ i ,⟨
fi ⊗1 f j , f j ⊗1 fi

⟩
L2([0,1]2) =

∫
[0,1]2

( fi ⊗1 f j )2(x, y)dxdy

= a2( j−i)
1

⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠×

(
1 − a4i

1

1 − a4
1

)
.

Therefore,⏐⏐⏐⏐⏐T4,2,n −
4
∑

∞

j=1 σ
4
j

(1 − a2
1)2

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐4
∑

∞

j=1 σ
4
j

(1 − a4
1)

1
n

n∑
i=1

(1 − a4i
1 ) +

8
n

∑
∞

j=1 σ
4
j

(1 − a4
1)

n−1∑
i=1

(1 − a4i
1 )

n∑
j=i+1

a2( j−i)
1 −

4
∑

∞

j=1 σ
4
j

(1 − a2
1)2

⏐⏐⏐⏐⏐⏐
⩽

⏐⏐⏐⏐⏐−4
∑

∞

j=1 σ
4
j

(1 − a4
1)

1
n

n∑
i=1

a4i
1

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐ 8

∑
∞

j=1 σ
4
j a2

1

(1 − a4
1)(1 − a2

1)
1
n

n∑
i=1

(
(1 − a4i

1 )(1 − a2(n−i)
1 ) − 1

)⏐⏐⏐⏐⏐
⩽

4
∑

∞

j=1 σ
4
j

(1 − a4
1)2

1
n

+
24a2

1
∑

∞

j=1 σ
4
j

(1 − a4
1)(1 − a2

1)2

1
n

=
4
∑

∞

j=1 σ
4
j

(1 − a4
1)2(1 − a2

1)

[
1 + a2

1(5 + 6a2
1)
]

n
,

which completes the proof. ■

To get a sense of how the two terms T2,n and T4,n compare to each other, we propose the
following example, which shows that, despite one’s best efforts, one should not expect either
of these two terms to dominate the other.

Remark 5. In the AR(1) model (8) with chi-squared white noise, i.e. when σ1 = σ and σ j = 0
for all j ⩾ 2, one can try to compare the two formulas for the asymptotic variances of T2,n and
T4,n . Avoiding the situation where |a1| is very close to 1, assuming for instance |a1| < 2−1/2,
so that 1 − a2

1 > 1/2, when n is large, we have

V ar (T2,n) ∼
1
n

32σ 4

(1 − a2
1)2

∼ 4×(1−a2
1)×V ar (T4,n) > 4×

1
2
×V ar (T4,n) = 2×V ar (T4,n).

Therefore the sequence T4,n can be made to have a variance which is significantly smaller that
the one of T2,n in this case, but both of them converge to zero at the same speed n−1.

Using the orthogonality between T2,n and T4,n , Propositions 3 and 4, we conclude the
following.
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Theorem 6. Under Assumption (9), with Qn as in (13), for large n,

|n V ar (Qn) − (l1 + l2)| ⩽
(C1 + C2)

n
,

and in particular the asymptotic variance of Qn is

lim
n→∞

n V ar (Qn) = l1 + l2

=
36

(1 − a2
1)2

⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠+
4(1 + a2

1)
(1 − a2

1)3

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2

,

where C1, l1, and C2, l2 are given respectively in (15), (16), (18) and (19).

Remark 7.

• From the previous theorem, we notice that for n large, and fixed values of the noise scale
parameter family

{
σ j , j ⩾ 1

}
, the variance of

√
nQn has high values when |a1| is close

to 1, and approaches

36

⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠+ 4

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2

when |a1| is small.
• The previous theorem also shows that one can obtain other asymptotics depending on the

relation between a1 and the family
{
σ j , j ⩾ 1

}
. For instance, when |a1| is close to 1,

which is the limit of fast mean reversion, one can avoid an explosion of Qn’s asymptotic
variance by scaling the variance parameters appropriately, leading to a fast-mean reversion
and small noise regime. Letting 1/α := 1 − a2

1 , where α is interpreted as a rate of mean
reversion, one would only need to ensure that

∑
σ 4

j = O
(
α−2

)
and

∑
σ 2

j = O
(
α−3/2

)
.

In the example where there is a single non-zero value σ , for instance, we would obtain
for large α,

n × V ar (Qn) ∼ 36α2σ 4
+ 8α3σ 4

;

here the second term dominates, and as α → ∞, assuming α3σ 4 remains bounded, we
would get an asymptotic variance of 8 limα→∞ α

3σ 4 if the limit exists.

5. Berry–Esséen bound for the asymptotic normality of the quadratic-variation

In this section, we prove that the quadratic variation defined in (13) is asymptotically normal
and we estimate the speed of this convergence in total variation distance, showing it is of
the Berry–Esséen-type order n−1/2. For this aim, we will need the following theorem, which
estimates the total variation distance to the normal of the standardized sum of variables in the
2nd and 4th chaos.

Theorem 8. Let F = I2( f ) + I4(g) where f ∈ L2
s ([0, 1]2) and g ∈ L2

s ([0, 1]4). Then

dT V

(
F

√
E F2

,N (0, 1)
)

⩽
4

E F2

[√
2 ∥ f ⊗1 f ∥L2([0,1]2) + 2

√
6! ∥g ⊗1 g∥L2([0,1]6)

+18
√

4! ∥g ⊗2 g∥L2([0,1]4)
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+36
√

2 ∥g ⊗3 g∥L2([0,1]2) + 9
√

2
√

⟨ f ⊗ f, g ⊗2 g⟩L2([0,1]4)

+3
√

4!

√
∥ f ⊗1 f ∥L2([0,1]2) ∥g ⊗3 g∥L2([0,1]2)

]
. (22)

Moreover, letting RF be the bracketed term on the right-hand side of (22), for any constant
σ > 0, we have

dT V

(
F
σ
,N (0, 1)

)
⩽

4
σ 2 RF + 2

⏐⏐⏐⏐1 −
E F2

σ 2

⏐⏐⏐⏐ . (23)

Proof. We have F = I2( f ) + I4(g). Then

−Dt L−1 F = I1( f (., t)) + I3(g(., t)) =: u(t).

Thus, using F = δ(−DL−1)F , we can write F = δ(u). Now we use the result of a simple
calculation, labeled as (9) in the preprint [21] (see also [24]), to obtain

dT V

(
F

√
E F2

,N (0, 1)
)

⩽
2

E F2

√
V ar

(
⟨DF, u⟩L2([0,1])

)
=

2
E F2

√
E
(
⟨DF, u⟩L2([0,1]) − E F2

)2
, (24)

where the last equality comes from the duality relation E⟨DF, u⟩L2([0,1]) = E(Fδ(u)) = E F2.
The prior inequality appears to be used in a more general context here than what is stated
in [21, Eq. (9)], but an immediate inspection of its proof therein shows that it applies to any
situation where F = δ(u), using only general results such as Stein’s lemma, the chain rule for
the Malliavin derivative D, and the duality between D and δ.

On the other hand, using the product formula (4),

⟨DF, u⟩L2([0,1]) =

∫ 1

0
u(t)Dt Fdt

=

∫ 1

0
u(t)(2I1( f (., t)) + 4I3(g(., t)))dt

=

∫ 1

0
2 [I1( f (., t))]2

+ 4 [I3(g(., t))]2
+ 6I1( f (., t))I3(g(., t)) dt

=

∫ 1

0

[
2I2( f (., t) ⊗ f (., t)) + 2∥ f (., t)∥2

L2([0,1]) + 4I6(g(., t) ⊗ g(., t))

+36I4(g(., t) ⊗1 g(., t)) + 72I2(g(., t) ⊗2 g(., t)) + 24g(., t) ⊗3 g(., t)

+6I4( f (., t) ⊗ g(., t)) + 18I2( f (., t) ⊗1 g(., t))] dt.

Thus

⟨DF, u⟩L2([0,1]) − E F2
=

∫ 1

0
I2(h1(., t)) + I4(h2(., t)) + I6(h3(., t)) dt,

where

h1(.t) = 2 f (., t) ⊗ f (., t) + 72g(., t) ⊗2 g(., t) + 18 f (., t) ⊗1 g(., t)

h2(.t) = 36g(., t) ⊗1 g(., t) + 6 f (., t) ⊗ g(., t)

h3(.t) = 4g(., t) ⊗ g(., t).
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Therefore, using Minkowski inequality,√
E
(
⟨DF, u⟩L2([0,1]) − E F2

)2
⩽

√
2
∫ 1

0
h1(., t) dt


L2([0,1]2)

+
√

4!

∫ 1

0
h2(., t) dt


L2([0,1]4)

+
√

6!

∫ 1

0
h3(., t) dt


L2([0,1]6)

.

Furthermore,∫ 1

0
h1(., t) dt


L2([0,1]2)

⩽

2
∫ 1

0
f (., t) ⊗ f (., t) dt


L2([0,1]2)

+

72
∫ 1

0
g(., t) ⊗2 g(., t) dt


L2([0,1]2)

+

18
∫ 1

0
f (., t) ⊗1 g(., t) dt


L2([0,1]2)

= 2 ∥ f ⊗1 f ∥L2([0,1]2) + 72 ∥g ⊗3 g∥L2([0,1]2)

+18
√

⟨ f ⊗ f, g ⊗2 g⟩L2([0,1]4).

Also, ∫ 1

0
h2(., t) dt


L2([0,1]4)

⩽

36
∫ 1

0
g(., t) ⊗1 g(., t) dt


L2([0,1]2)

+

6
∫ 1

0
f (., t) ⊗ g(., t) dt


L2([0,1]4)

= 36 ∥g ⊗2 g∥L2([0,1]4) + 6
√

⟨ f ⊗1 f, g ⊗3 g⟩L2([0,1]2)

⩽ 36 ∥g ⊗2 g∥L2([0,1]4) + 6
√

∥ f ⊗1 f ∥L2([0,1]2) ∥g ⊗3 g∥L2([0,1]2),

and ∫ 1

0
h3(., t) dt


L2([0,1]6)

=

4
∫ 1

0
g(., t) ⊗ g(., t) dt


L2([0,1]6)

= 4 ∥g ⊗1 g∥L2([0,1]6) .

As a consequence,√
E
(
⟨DF, u⟩L2([0,1]) − E F2

)2
⩽ 2

√
2 ∥ f ⊗1 f ∥L2([0,1]2) + 72

√
2 ∥g ⊗3 g∥L2([0,1]2)

+ 18
√

2
√

⟨ f ⊗ f, g ⊗2 g⟩L2([0,1]4)

+36
√

4! ∥g ⊗2 g∥L2([0,1]4)

+ 6
√

4!

√
∥ f ⊗1 f ∥L2([0,1]2) ∥g ⊗3 g∥L2([0,1]2)

+4
√

6! ∥g ⊗1 g∥L2([0,1]6) .

This, combined with (24), establishes inequality (22).
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For (23), we have by (6)

dT V

(
F
σ
,N (0, 1)

)
⩽

2
σ 2 E[|σ 2

− ⟨DF, u⟩L2([0,1]) |]

⩽
2
σ 2 E[|E[F2] − ⟨DF, u⟩L2([0,1]) |] + 2

⏐⏐⏐⏐1 −
E[F2]
σ 2

⏐⏐⏐⏐ . (25)

Inequality (23) follows using inequalities (25) and (22). ■

We will need Theorem 8 along with the next Lemmas 9–11 in order to prove that the
quadratic variation Qn satisfies the Berry–Esséen Theorem 13.

Lemma 9. Let g2,n :=
4

√
n

∑n
i=1 fi ⊗1 fi where fi is defined in (12). If assumption (9) holds

then the kernel g2,n satisfies

∥g2,n ⊗1 g2,n∥L2([0,1]2) ⩽
C3
√

n
, (26)

where C3 :=

√
4!

44

n

(∑
∞

j=1 σ
8
j

)
1

1−a8
1

(
1

1−a2
1

)3

.

Proof. We have

∥g2,n ⊗1 g2,n∥
2
L2([0,1]2) =

44

n2 ∥

n∑
i, j=1

( fi ⊗1 fi ) ⊗1 ( f j ⊗1 f j )∥2
L2([0,1]2)

=
44

n2

n∑
i, j,k,l=1

⟨
( fi ⊗1 fi ) ⊗1 ( f j ⊗1 f j ),

( fk ⊗1 fk) ⊗1 ( fl ⊗1 fl)
⟩
L2([0,1]2).

Moreover, by above calculations and (9)

( fi ⊗1 fi )(x, y) =

i∑
k=1

a2(i−k)
1

∞∑
j=1

σ 2
j h⊗2

k, j (x, y).

Hence

( fi ⊗1 fi ) ⊗1 ( f j ⊗1 f j )(x, y)

=

∫
[0,1]

( fi ⊗1 fi )(x, t)( f j ⊗1 f j )(y, t)dt

=

i∑
k1=1

a2(i−k1)
1

j∑
k2=1

a2( j−k2)
1

∞∑
j1, j2=1

σ 2
j1
σ 2

j2

∫
[0,1]

hk1, j1 (x)hk1, j1 (t)hk2, j2 (y)hk2, j2 (t)dt

=

i∑
k1=1

a2(i−k1)
1

j∑
k2=1

a2( j−k2)
1

∞∑
j=1

σ 4
j (hk1, j ⊗ hk2, j )(x, y)δk1,k2

=

i∧ j∑
k1=1

a2(i+ j−2k1)
1

⎛⎝+∞∑
j=1

σ 4
j

⎞⎠ (hk1, j ⊗ hk1, j )(x, y).
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Similarly

( fk ⊗1 fk) ⊗1 ( fl ⊗1 fl)(x, y) =

k∧l∑
k2=1

a2(k+l−2k2)
1

⎛⎝+∞∑
j=1

σ 4
j

⎞⎠ (hk2, j ⊗ hk2, j )(x, y).

Therefore⟨
( fi ⊗1 fi ) ⊗1 ( f j ⊗1 f j ), ( fk ⊗1 fk) ⊗1 ( fl ⊗1 fl)

⟩
L2([0,1]2)

=

∫
[0,1]2

(
( fi ⊗1 fi ) ⊗1 ( f j ⊗1 f j )

)
(x, y) (( fk ⊗1 fk) ⊗1 ( fl ⊗1 fl)) (x, y)dxdy

=

i∧ j∧k∧l∑
m=1

a2(i+ j+k+l−4m)
1

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ .
Consequently

∥g2,n ⊗1 g2,n∥
2
L2([0,1]2) =

44

n2

n∑
i, j,k,l=1

i∧ j∧k∧l∑
r=1

a2(i+ j+k+l−4r )
1

∞∑
j=1

σ 8
j

⩽ 4!
44

n2

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ ∑
1⩽i⩽ j⩽k⩽l⩽n

i∑
r=1

a2(i+ j+k+l−4r )
1

⩽ 4!
44

n2

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ ∑
1⩽i⩽ j⩽k⩽l⩽n

a2( j+k+l−3i)
1

1 − a8i
1

1 − a8
1

⩽ 4!
44

n2

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ 1
1 − a8

1

∑
1⩽i⩽ j⩽k⩽l⩽n

a2( j+k+l−3i)
1

⩽ 4!
44

n

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ 1
1 − a8

1

n∑
k1,k2,k3=0

a2(k1+k2+k3)
1

= 4!
4
n

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ 1
1 − a8

1

⎛⎝ n∑
k1=0

a2k1
1

⎞⎠3

⩽ 4!
44

n

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ 1
1 − a8

1

(
1

1 − a2
1

)3

,

where we used the change of variables k1 = j − i, k2 = k − i, k3 = l − i . The desired result
therefore follows. ■

Lemma 10. Let g4,n :=
1

√
n

∑n
i=1 fi ⊗ fi where fi is defined in (12). If assumption (9) holds,

then for every r = 1, 2, 3, the kernel g4,n satisfies

∥g4,n⊗r g4,n∥L2([0,1](8−2r )) ⩽
C4,r
√

n
, (27)
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where

C4,r :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
4!

(∑
∞

j=1 σ
2
j

)2 (∑
∞

j=1 σ
4
j

)(
1

(1−a2
1 )(1−a4

1 )

)3

if r = 1,√
4!

(∑
∞

j=1 σ
2
j

)4
(

1
1−a2

1

)7

if r = 2,√
4!

(∑
∞

j=1 σ
2
j

)2 (∑
∞

j=1 σ
4
j

)
1

(1−a4
1 )2

1
(1−a2

1 )4 if r = 3.

Proof. For r = 1, 2, 3, we have

∥g4,n⊗r g4,n∥
2
L2([0,1]2(4−r )) =

1
n2 ∥

n∑
i, j=1

( fi ⊗ fi )⊗̃r ( f j ⊗ f j )∥2
L2([0,1]2(4−r ))

⩽
1
n2 ∥

n∑
i, j=1

( fi ⊗ fi )⊗r ( f j ⊗ f j )∥2
L2([0,1]2(4−r ))

=
1
n2

n∑
i, j,k,l=1

⟨
( fi ⊗ fi )⊗r ( f j ⊗ f j ),

( fk ⊗ fk)⊗r ( fl ⊗ fl)
⟩
L2([0,1]2(4−r )).

For r = 1, we get

∥g4,n⊗1g4,n∥
2
L2([0,1]6)

⩽
1
n2

n∑
i, j,k,l=1

⟨
( fi ⊗ fi )⊗1( f j ⊗ f j ), ( fk ⊗ fk)⊗1( fl ⊗ fl)

⟩
L2([0,1]6)

=
1
n2

n∑
i, j,k,l=1

⟨ fi , fk⟩L2([0,1]2)
⟨
f j , fl

⟩
L2([0,1]2)

⟨
fi ⊗1 f j , fk ⊗1 fl

⟩
L2([0,1]2)

⩽
4!

n2

∑
1⩽i⩽ j⩽k⩽l⩽n

⟨ fi , fk⟩L2([0,1]2)
⟨
f j , fl

⟩
L2([0,1]2)

⟨
fi ⊗1 f j , fk ⊗1 fl

⟩
L2([0,1]2) . (28)

By (9), for all 1 ⩽ i, k ⩽ n,

⟨ fi , fk⟩L2([0,1]2) =

i∧k∑
m=1

ai+k−2m
1 ×

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠ . (29)

Similarly, for all 1 ⩽ j, l ⩽ n,

⟨
f j , fl

⟩
L2([0,1]2) =

i∧k∑
m=1

a j+l−2m
1 ×

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠ .
On the other hand, for all 1 ⩽ i, j ⩽ n

( fi ⊗1 f j )(x, y) =

∫ 1

0
fi (x, t) f j (y, t)dt

=

i∧ j∑
m=1

ai+ j−2m
1

∞∑
j=1

σ 2
j h⊗2

m, j (x, y). (30)
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Hence, by (9), for all 1 ⩽ i, j, k, l ⩽ n,

⟨
fi ⊗1 f j , fk ⊗1 fl

⟩
L2([0,1]2) =

i∧ j∧k∧l∑
m=1

a(i+ j+l+k−4m)
1 ×

⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠ .
Therefore, from (28) and above calculations, we have

∥g4,n⊗1g4,n∥
2
L2([0,1]6)

⩽
4!

(1 − a2
1)2

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠ 1
(1 − a4

1)
1
n2

×

∑
1⩽i⩽ j⩽k⩽l⩽n

a2(k−i)
1 a2(l−i)

1 (1 − a2i
1 )(1 − a4i

1 )(1 − a2 j
1 )

⩽
4!

(1 − a2
1)2

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠ 1
(1 − a4

1)
1
n

n∑
k1,k2,k3=0

a2(2k1+2k2+k3)
1

=
4!

(1 − a2
1)2

1
(1 − a4

1)

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠ 1
n

⎛⎝ n∑
r1=0

a4r1
1

⎞⎠2⎛⎝ n∑
r2=0

a2r2
1

⎞⎠
⩽ 4!

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠( 1
(1 − a2

1)(1 − a4
1)

)3

×
1
n
,

where we used the change of variables k1 = j − i , k2 = k − j , k3 = l − k.
For r = 2, we have

∥g4,n⊗2g4,n∥
2
L2([0,1]4)

⩽
1
n2

n∑
i, j,k,l=1

⟨
( fi ⊗ fi )⊗2( f j ⊗ f j ), ( fk ⊗ fk)⊗2( fl ⊗ fl)

⟩
L2([0,1]4)

=
1
n2

n∑
i, j,k,l=1

⟨
fi , f j

⟩
L2([0,1]2) ⟨ fk, fl⟩L2([0,1]2) ⟨ fi , fk⟩L2([0,1]2)

⟨
f j , fl

⟩
L2([0,1]2)

=
4!

n2

∑
1⩽i⩽ j⩽k⩽l⩽n

⟨
fi , f j

⟩
L2([0,1]2) ⟨ fk, fl⟩L2([0,1]2) ⟨ fi , fk⟩L2([0,1]2)

⟨
f j , fl

⟩
L2([0,1]2) .

Hence, by (29) and (9), we get

∥g4,n⊗2g4,n∥
2
L2([0,1]4) ⩽

4!

(1 − a2
1)4

(∑
∞

j=1 σ
2
j

)4

n2

×

∑
1⩽i⩽ j⩽k⩽l⩽n

a2(l−i)
1 (1 − a2i

1 )2(1 − a2k
1 )(1 − a2 j

1 )

⩽
4!

(1 − a2
1)4

(∑
∞

j=1 σ
2
j

)4

n

n∑
k1,k2,k3=0

a2(k1+k2+k3)
1
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=
4!

(1 − a2
1)4

(∑
∞

j=1 σ
2
j

)4

n

⎛⎝ n∑
k1=0

a2k1
1

⎞⎠3

⩽
4!

(1 − a2
1)7

(∑
∞

j=1 σ
2
j

)4

n
,

where we used the change of variables k1 = j − i , k2 = k − j , k3 = l − k.
For r = 3, we have

∥g4,n⊗3g4,n∥
2
L2([0,1]2)

⩽
1
n2

n∑
i, j,k,l=1

⟨
( fi ⊗ fi )⊗3( f j ⊗ f j ), ( fk ⊗ fk)⊗3( fl ⊗ fl)

⟩
L2([0,1]2)

=
1
n2

n∑
i, j,k,l=1

⟨
fi , f j

⟩
L2([0,1]2) ⟨ fk, fl⟩L2([0,1]2)

⟨
fi ⊗1 f j , fk ⊗1 fl

⟩
L2([0,1]2)

=
4!

n2

∑
1⩽i⩽ j⩽k⩽l⩽n

⟨
fi , f j

⟩
L2([0,1]2) ⟨ fk, fl⟩L2([0,1]2)

⟨
fi ⊗1 f j , fk ⊗1 fl

⟩
L2([0,1]2)

⩽
4!

(1 − a2
1)2

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠ 1
(1 − a4

1)
1
n2

×

∑
1⩽i⩽ j⩽k⩽l⩽n

a2( j−i)
1 a2(l−i)

1 (1 − a2i
1 )(1 − a4i

1 )(1 − a2k
1 ).

Furthermore, using (29) and the change of variables k1 = j − i , k2 = k − j , k3 = l − k, we
obtain

∥g4,n⊗3g4,n∥
2
L2([0,1]2)

⩽
4!

(1 − a2
1)2

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠ 1
(1 − a4

1)
1
n

n∑
k1,k2,k3=0

a2(2k1+k2+k3)
1

=
4!

(1 − a2
1)2

1
(1 − a4

1)

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠ 1
n

⎛⎝ n∑
r1=0

a4r1
1

⎞⎠⎛⎝ n∑
r2=0

a2r2
1

⎞⎠2

⩽ 4!

⎛⎝ ∞∑
j=1

σ 2
j

⎞⎠2⎛⎝ ∞∑
j=1

σ 4
j

⎞⎠ 1
(1 − a4

1)2

1
(1 − a2

1)4
×

1
n
,

which ends the proof. ■

Lemma 11. Suppose that assumption (9) holds. Consider the kernels g2,n and g4,n defined in
Lemmas 9 and 10 respectively, then we have√⟨

g2,n ⊗ g2,n, g4,n ⊗2 g4,n
⟩
L2([0,1]4) ⩽

C5
√

n
, (31)

where C5 :=

√
4!

4
n

(∑
∞

j=1 σ
8
j

)
1

1−a8
1

(
1

1−a2
1

)3

.
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Proof. We have⟨
g2,n ⊗ g2,n, g4,n ⊗2 g4,n

⟩
L2([0,1]4)

=
4
n2

n∑
i, j,k,l=1

⟨
( fi ⊗1 fi ) ⊗ ( f j ⊗1 f j ), ( fk ⊗ fk) ⊗2 ( fl ⊗ fl)

⟩
L2([0,1]4)

=
4
n2

n∑
i, j,k,l=1

∫
[0,1]4

( fi ⊗1 fk)(x1, x3)( fi ⊗1 fk)(x1, x4)

× ( f j ⊗1 fl)(x2, x3)( f j ⊗1 fl)(x2, x4)dx1dx2dx3dx4.

Consequently, using (30), we get

⟨
g2,n ⊗ g2,n, g4,n ⊗2 g4,n

⟩
L2([0,1]4) ⩽

4
n2

n∑
i, j,k,l=1

i∧ j∧k∧l∑
r=1

a2(i+ j+k+l−4r )
1

∞∑
j=1

σ 8
j

⩽ 4!
4
n2

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ ∑
1⩽i⩽ j⩽k⩽l⩽n

i∑
r=1

a2(i+ j+k+l−4r )
1

⩽ 4!
4
n2

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ ∑
1⩽i⩽ j⩽k⩽l⩽n

a2( j+k+l−3i)
1

1 − a8i
1

1 − a8
1

⩽ 4!
4
n2

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ 1
1 − a8

1

∑
1⩽i⩽ j⩽k⩽l⩽n

a2( j+k+l−3i)
1

⩽ 4!
4
n

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ 1
1 − a8

1

n∑
k1,k2,k3=0

a2(k1+k2+k3)
1

= 4!
4
n

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ 1
1 − a8

1

⎛⎝ n∑
k1=0

a2k1
1

⎞⎠3

⩽ 4!
4
n

⎛⎝ ∞∑
j=1

σ 8
j

⎞⎠ 1
1 − a8

1

(
1

1 − a2
1

)3

,

where we used the change of variables k1 = j − i, k2 = k − i, k3 = l − i . ■

Remark 12. It turns out that, when applying Theorem 8 to estimate the speed of convergence
in the CLT for Qn , the term

√
⟨ f ⊗ f, g ⊗2 g⟩L2([0,1]4) cannot merely be bounded above via

Schwarz’s inequality. See Lemma 11 and its proof. This is the key element which allows us to
obtain the Berry–Esséen speed n−1/2 in the next theorem.

Theorem 13. With Qn defined in (13), under Assumption (9), we have for all n ⩾ 1

dT V

(√
n(Qn − E[Qn])

√
l1 + l2

,N (0, 1)
)
⩽

C0
√

n
, (32)
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where

C0 :=
4
√

2
l1 + l2

(
1

2
√

2
(C1 + C2) + C3 + 36C4,3 + 9C5

+36
√

3C4,2 + 6
√

3C1/2
3 C1/2

4,3 + 12
√

10C4,1

)
,

where l1, l2, are defined in the previous section in (16), (19), and C1, C2, C3, C4,r , r = 1, 2, 3
and C5 are given in the lemmas below, respectively in (15), (18), (26), (27) and (31).

In particular
√

n(Qn − E[Qn]) is asymptotically Gaussian, namely

lim
n→∞

√
n (Qn − E[Qn])

law
−→ N (0, l1 + l2).

Proof. Based on the decomposition of (Qn − E(Qn)) given in (14), we have
√

n (Qn − E[Qn]) =
√

nT2,n +
√

nT4,n = I W
2 (g2,n) + I W

4 (g4,n),

where

g2,n :=
4

√
n

n∑
i=1

fi ⊗1 fi and g4,n :=
1

√
n

n∑
i=1

fi ⊗ fi . (33)

Applying Theorem 8 to
√

n (Qn − E[Qn]), we get

dT V

(√
n(Qn − E[Qn])

√
l1 + l2

,N (0, 1)
)

⩽
4

l1 + l2

[√
2
g2,n ⊗1 g2,n


L2([0,1]2) + 36

√
2
g4,n ⊗3 g4,n


L2([0,1]2)

+ 9
√

2
√⟨

g2,n ⊗ g2,n, g4,n ⊗2 g4,n
⟩
L2([0,1]4)

+18
√

4!
g4,n ⊗2 g4,n


L2([0,1]4) + 3

√
4!

√g2,n ⊗1 g2,n


L2([0,1]2)

g4,n ⊗3 g4,n


L2([0,1]2)

+2
√

6!
g4,n ⊗1 g4,n


L2([0,1]6)

]
+ 2

⏐⏐⏐⏐⏐⏐1 −

E
[(√

n (Qn − E[Qn])
)2
]

(l1 + l2)

⏐⏐⏐⏐⏐⏐ . (34)

The bound (32) is then a direct consequence of inequality (34) and the estimates given
respectively in (26), (27), (31) and Theorem 6. ■

6. Application: estimation of the mean-reversion parameter

In this section, to illustrate the implications of Theorem 13 in parameter estimation in an
easily tractable case, we consider that we have observations Yn coming from a specific version
of our second-chaos AR(1) model (8), that which is driven by a chi-squared white noise with
one degree of freedom:⎧⎨⎩Yn = a0 + a1Yn−1 + σ (Z2

n − 1), n ⩾ 1,

Y0 = y0 ∈ R.
(35)

where a0, a1 and σ are real constants, and {Zn, n ⩾ 1} are i.i.d. standard normal random
variables. This is model (8) where all σ j ’s are zero except for the first one.
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Proposition 14. The quadratic variation Qn defined in (13) for model (35) satisfies, for all
n ⩾ 1,⏐⏐⏐⏐E[Qn] −

2σ 2

(1 − a2
1)

⏐⏐⏐⏐ ⩽ C6

n
,

where C6 :=
2σ 2

(1−a2
1 )2 .

Proof. From the definition of Qn in (13), we have by the isometry property of multiple integrals⏐⏐⏐⏐E[Qn] −
2σ 2

(1 − a2
1)

⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐2n
n∑

i=1

∥ fi∥
2
L2([0,1]2) −

2σ 2

1 − a2
1

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐2σ 2

n

n∑
i=1

i∑
k=1

a2(i−k)
1 −

2σ 2

1 − a2
1

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐ 2σ 2

1 − a2
1

(
1
n

n∑
i=1

(1 − a2i
1 ) − 1

)⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐− 2σ 2

1 − a2
1

1
n

n∑
i=1

a2i
1

⏐⏐⏐⏐⏐ ⩽ 2σ 2

(1 − a2
1)2

1
n
. ■

Remark 15. Assuming that σ is known, Proposition 14 shows that the quadratic variation Qn

is an asymptotically unbiased estimator for 2σ 2/(1 − a2
1), and thus, after a transformation, for

|a1| as well:

lim
n→∞

√
1 −

2σ 2

E[Qn]
= |a1| .

Therefore, using the fact that E[Qn] can be estimated via Qn , we suggest the following
moment estimator for the mean-reversion rate |a1|

ân := f (Qn), (36)

where

f (x) :=

√
1 −

2σ 2

x
, x > 2σ 2. (37)

Remark 16. Note that we chose to estimate the absolute value |a1| instead of a1 because the
quadratic variation only gives access to a2

1 . For an estimator that accesses the sign of a1, we
would presumably need to use a variation or another method of moments with an odd power.
This is feasible, but it is beyond the scope of the paper.

6.1. Properties of the estimator ân

Proposition 17. The estimator ân of the mean reversion parameter |a1| defined in (36) is
strongly consistent, namely almost surely

lim
n→∞

ân = |a1|.
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Proof. We write Qn =
Vn√

n +E[Qn], with Vn =
√

n(Qn −E[Qn]). According to Theorem 6, we
have E[V 2

n ] → l1+l2, n → ∞. Hence, there exists a constant C > 0, such that for every n ⩾ 1,(
E

[⏐⏐⏐⏐ Vn
√

n

⏐⏐⏐⏐2
])1/2

⩽
C
√

n
.

Hence, by Lemma 1 we have almost surely Vn√
n → 0, as n → ∞. On the other hand, by

Proposition 14, E[Qn] →
2σ 2

1−a2
1

, as n → ∞. Thus Qn →
2σ 2

1−a2
1

almost surely as n → ∞, as
announced. ■

Proposition 18. Under Assumption (9), the estimator ân defined in (36) satisfies

dW

( √
n

f ′(µ)
√

l1 + l2

(
ân − |a1|

)
,N (0, 1)

)
⊴ n−1/2.

where l1 and l2 are given in Propositions 3 and 4 respectively and µ =
2σ 2

(1−a2
1 )

.

In particular ân is asymptotically Gaussian; more precisely we have as n → +∞

√
n
(
ân − |a1|

)
−→ N

(
0, f ′(µ)2

× (l1 + l2)
)
,

where

f ′(µ)2
× (l1 + l2) =

(1 − a2
1)(5 − 4a2

1)
2a2

1
.

Proof. For x > 2σ 2, the function f defined in (37) has an inverse f −1(y) =
2σ 2

1−y2 . Let denote

µ = f −1(|a1|) =
2σ 2

(1−a2
1 )
> 2σ 2, for all a1 ∈ (−1, 1). On the other hand, we can write

√
n

√
l1 + l2

(Qn − µ) =

√
n

√
l1 + l2

(Qn − E[Qn])+

√
n

√
l1 + l2

(E[Qn] − µ) .

Therefore, from the properties of the Wasserstein metric and denoting N ∼ N (0, 1), we get

dW

( √
n

√
l1 + l2

(Qn − µ) , N
)
⩽

√
n

√
l1 + l2

|E[Qn] − µ|

+ dW

( √
n

√
l1 + l2

(Qn − E[Qn]) , N
)

⩽
C6

√
l1 + l2

n−1/2
+ C0n−1/2

⊴ n−1/2, (38)

where we used the bound (32) and Proposition 14 for the above bounds. On the other hand,
since the function f defined in (37) is a diffeomorphism and since ân = f (Qn), then by the
mean-value theorem, there exists a random variable ξn ∈ [|Qn, µ|] such that(

ân − |a1|
)

= f ′(ξn) (Qn − µ) ,
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where the notation [|a, b|] for two reals a, b means [a, b] if a ⩽ b and [b, a] if b ⩽ a. We
have

dW

( √
n

f ′(µ)
√

l1 + l2

(
ân − |a1|

)
,N (0, 1)

)
⩽ dW

( √
n

f ′(µ)
√

l1 + l2

(
ân − |a1|

)
,

√
n

√
l1 + l2

(Qn − µ)

)
+ dW

( √
n

√
l1 + l2

(Qn − µ) ,N (0, 1)
)
.

According to (38), the last term is bounded by the speed n−1/2. Moreover, applying the mean-
value theorem again since f is twice continuously differentiable, there exists a random variable
δn ∈ [|ξn, µ|] ⊂ [|Qn, µ|], such that

dW

( √
n

f ′(µ)
√

l1 + l2

(
ân − |a1|

)
,

√
n

√
l1 + l2

(Qn − µ)

)
| f ′(µ)|

√
l1 + l2

⩽
√

nE[|(Qn − µ)( f ′(ξn) − f ′(µ))|]
=

√
nE[

⏐⏐(Qn − µ) f ′′(δn)(ξn − µ)
⏐⏐]

⩽
√

nE[(Qn − µ)2 | f ′′(δn)|]

⩽
√

n
(
E[(Qn − µ)2p]

)1/p
(

E[| f ′′(δn)|p′

]
)1/p′

, (39)

where we used Hölder’s inequality with p, p′ are two reals greater than 1 such that 1
p +

1
p′ = 1.

Moreover, by the hypercontractivity property for multiple integrals (5), there exists a constant
C(p) such that

√
n
(
E[(Qn − µ)2p]

)1/p
⩽ C(p)

√
nE[(Qn − µ)2]

⩽ 2C(p)
√

nE[(Qn − E[Qn])2] + 2C(p)
√

n(E[Qn] − µ)2

⩽ Cn−1/2
+ Cn−3/2

⊴ n−1/2, (40)

where we used the inequality (a + b)2 ⩽ 2a2
+ 2b2, for all a, b ∈ R and the bounds of

Proposition 14 and Theorem 6 respectively. On the other hand, for all x > 2σ 2,

f
′′

(x) = −
2σ 2

x3

(
1 −

3σ 2

2x

)(
1 −

2σ 2

x

)−3/2

< 0.

Therefore using (39) and (40), to obtain a bound for the term dW

( √
n

f ′(µ)
√

l1+l2

(
ân − |a1|

)
,

√
n

√
l1+l2

(Qn − µ)
)

, it remains to show that E[| f ′′(δn)|p′

] is finite for some p′ > 1 but using the

fact that δn ∈ [|Qn, µ|] and the monotonicity of f ′′, it is actually sufficient to show that for
some p′ > 1, we have

sup
n⩾1

E
[
| f ′′(Qn)|p′

]
= sup

n⩾1
E
[
|2σ 2 Qn − 3σ 4

|
p′

|Qn|
−5p′/2

|Qn − 2σ 2
|
−3p′/2

]
< ∞.

The function | f ′′
| has two singularities in 0 and in 2σ 2 and thus is not bounded. But, we can

write for any p′ > 1

E
[
| f ′′(Qn)|p′

]
= E

[
| f ′′(Qn)|p′

1
{|Qn−µ|⩾ 1√

n
}

]
+ E

[
| f ′′(Qn)|p′

1
{|Qn−µ|< 1√

n
}

]
.
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For the term E
[
| f ′′(Qn)|p′

1
{|Qn−µ|< 1√

n
}

]
and since µ > 2σ 2, we can pick n such that 1

√
n < σ 2.

Then Qn > 2σ 2
− σ 2 > 0, therefore Qn is bounded away from 0 and the term |Qn|

−5p′/2

has no singularity for any p′ > 1. For the term |Qn − 2σ 2
|
−3p′/2, we put C :=

µ−2σ 2

2 , the
constant C ̸= 0, because µ ̸= 2σ 2

⇔ a1 ̸= 0, we can assume a1 ̸= 0, because there is
no AR(1) process with a1 = 0. Therefore, we can pick n such that 1

√
n < C . In this case

Qn − 2σ 2
= Qn −µ+ 2C > −

1
√

n + 2C > 2C − C > 0, hence the term |Qn − 2σ 2
|
−3p′/2 has

no singularities at 2σ 2 for any p′ > 1. In conclusion, to avoid the singularities at both 0 and
2σ 2, it is sufficient to pick n such that

1
√

n
< σ 2

∧ C =

{
σ 2 if |a1| ⩾

1
√

2
,

C if |a1| ⩽
1

√
2
.

For the other term, by the asymptotic normality of
√

n(Qn −µ) and using a similar argument

as in Section 5.2.2 of [9], there exists p′ > 1 such that E
[
| f ′′(Qn)|p′

1
{|Qn−µ|⩾ 1√

n
}

]
< +∞,

which gives the desired result. ■

6.2. Numerical results

The table below reports the mean and standard deviation of the proposed estimator ân

defined in (36) of the true value of the mean-reversion parameter |a1|.

|a1| = 0.10 |a1| = 0.30 |a1| = 0.50 |a1| = 0.70

Mean Std dev Mean Std dev Mean Std dev Mean Std dev

n = 3000 0.2178 0.0901 0.2887 0.0969 0.4946 0.0520 0.6962 0.0234
n = 5000 0.1878 0.0866 0.2905 0.0616 0.4966 0.0413 0.6978 0.0270
n = 10 000 0.1630 0.0692 0.2928 0.0852 0.4974 0.0315 0.6987 0.0215

We simulate the values of the estimator ân from the quadratic variation Qn for different
sample sizes n and for fixed σ 2 chosen to be equal to 1. For each sample size n, the mean
and the standard deviation are obtained by 500 replications. The table above confirms that the
estimator ân is strongly consistent even for small values of n and has small standard deviations
for different true values of |a1|. Moreover, the estimator ân is more efficient for values of |a1|

greater than 0.5, this could be explained by the fact that the asymptotic variance of the limiting
law of |ân| is (1−a2

1 )(5−4a2
1 )

2a2
1

is high for small values of |a1| and small for values of |a1| close to 1.

Therefore, ân is presumably more accurate as an estimator when |a1| is closer to 1, e.g. greater
than 0.5 as can be seen in the Fig. 2.

To investigate the asymptotic distribution of ân empirically, we need to compare the
distribution of the following statistic

φ(n, a1) :=

√
2a2

1√
(1 − a2

1)(5 − 4a2
1)

√
n(ân − |a1|) (41)

with the standard normal distribution N (0, 1). For this aim, for parameter choices |a1| = 0.5,
n = 3000, σ = 1, and based on 3000 replications, we obtained the following histogram:
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Fig. 2. Asymptotic variance for values of |a1| between 0.09 and 0.99.

Fig. 3. Histogram of φ(n, a1) with n = 3000, |a1| = 0.5, σ = 1, 3000 replications.

This Fig. 3 shows that the normal approximation of the distribution of the statistic φ(n, a1)
is reasonable even if the sampling size n is not very large. The table below compares statistics
of φ(n, a1) and N (0,1) based on 3000 replications, with n = 3000, and σ = 1. The
empirical mean, median and standard deviation of φ(n, a1) match those of N (0,1) very closely,
corroborating our theoretical results.

Statistics Mean Median Standard deviation

N (0,1) 0 0 1
φ(n, a1) 0.0048515 0.0020649 1.0004691

We can check more precisely how fast is the statistic φ(n, a1) converges in law to N (0,1).
We chose to compute the Kolmogorov distance between φ(n, a1) and N (0, 1). For this aim,
we approximate the cumulative distribution function using empirical cumulation distribution
function based on 500 replications of the computation of φ(n, a1) for n = 3000. The next
figure shows the empirical and standard normal cumulative distribution functions.
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The Kolmogorov distance between the two laws, which equals the sup norm of the difference
of these cumulative distribution functions, computes to approx. 0.052. On the other hand, since
(See for example Theorem 3.3 of [4] for a proof)

dK ol(φ(n, a1),N (0, 1)) ⩽ 2
√

dW (φ(n, a1),N (0, 1)), (42)

the distance on the left-hand side should be bounded above by 2 × 3000−1/4
= 0.27 approx

times any constant coming from the upper bound in Proposition 18. This is five times larger
than our estimate of the actual Kolmogorov distance 0.052, a reassuring practical confirmation
of Proposition 18, and of our underlying results on normal asymptotics of 2nd-chaos AR(1)
quadratic variations. If that proposition’s upper bound with its rate n−1/2 applied directly to the
Kolmogorov distance, as is known to be the case for the Berry–Esséen theorem in the classical
CLT, the value 0.052 should be compared to 3000−1/2

= 0.018 approx., which is arguably in
the same order of magnitude. This is a motivation to investigate whether the so-called delta
method which we used here to prove Proposition 18 under the Wasserstein distance, could also
apply to the total variation distance, since it is known to be an upper bound on the Kolmogorov
distance without the need for the square root as in the comparison (42).
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