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Consider the motion of a Brownian particle in three dimensions, whose
two spatial coordinates are standard Brownian motions with zero drift, and
the remaining (unknown) spatial coordinate is a standard Brownian motion
with a (known) nonzero drift. Given that the position of the Brownian parti-
cle is being observed in real time, the problem is to detect as soon as possible
and with minimal probabilities of the wrong terminal decisions, which spa-
tial coordinate has the nonzero drift. We solve this problem in the Bayesian
formulation, under any prior probabilities of the nonzero drift being in any of
the three spatial coordinates, when the passage of time is penalised linearly.
Finding the exact solution to the problem in three dimensions, including a
rigorous treatment of its nonmonotone optimal stopping boundaries, is the
main contribution of the present paper. To our knowledge this is the first time
that such a problem has been solved in the literature.

1. Introduction. Imagine the motion of a Brownian particle in three dimensions, whose
two spatial coordinates are standard Brownian motions with zero drift, and the remaining
(unknown) spatial coordinate is a standard Brownian motion with a (known) nonzero drift.
Given that the position X of the Brownian particle is being observed in real time, the problem
is to detect as soon as possible and with minimal probabilities of the wrong terminal deci-
sions, which spatial coordinate has the nonzero drift. The purpose of the present paper is to
derive the solution to this problem in the Bayesian formulation, under any prior probabilities
of the nonzero drift being in any of the three spatial coordinates, when the passage of time is
penalised linearly.

The loss to be minimised over sequential decision rules is expressed as the linear combi-
nation of the expected running time and the probabilities of the wrong terminal decisions.
This problem formulation of sequential testing dates back to [24] and has been extensively
studied to date (see [10] and the references therein). The linear combination represents the
Lagrangian and once the optimisation problem has been solved in this form it will also lead to
the solution of the constrained problem where upper bounds are imposed on the probabilities
of the wrong terminal decisions. The central focus of the present paper is on the Lagrangian
and the methods needed to solve the problem in this form. The constrained problem itself
will not be considered in the present paper as this extension is somewhat lengthy and more
routine.

Standard arguments show that the initial optimisation problem can be reduced to an opti-
mal stopping problem for the posterior probability process I1 of the nonzero drift being in
the spatial coordinates given X. A canonical example of X in one dimension is Brownian

Received December 2018; revised May 2019.

MSC2010 subject classifications. Primary 60G40, 60J65, 60H30; secondary 35J15, 45G10, 62C10.

Key words and phrases. Optimal detection, sequential testing, Brownian motion, optimal stopping, elliptic par-
tial differential equation, free-boundary problem, nonmonotone boundary, smooth fit, nonlinear Fredholm integral
equation, the change-of-variable formula with local time on surfaces.

1032


http://www.imstat.org/aap/
https://doi.org/10.1214/19-AAP1522
http://www.imstat.org
mailto:philip.ernst@rice.edu
mailto:goran@maths.man.ac.uk
mailto:quan@stat.tamu.edu
http://www.ams.org/mathscinet/msc/msc2010.html

OPTIMAL REAL-TIME DETECTION 1033

motion having one among two constant drifts (see [13] and [21]). In this case IT is a one-
dimensional Markov/diffusion process. This problem has also been solved in finite horizon
(see [7]). Books [22], Section 4.2, and [17], Section 21, contain expositions of these results
and provide further details and references. Signal-to-noise ratio in these problems (defined as
the difference between the two drifts divided by the diffusion coefficient) is constant. Sequen-
tial testing problems for X in one dimension where the signal-to-noise ratio is not constant
were studied more recently in [8] and [10]. In these problems I7 is no longer Markovian, how-
ever, the process (/1, X) is a two-dimensional Markov/diffusion process with the infinitesimal
generator of parabolic type.

Another canonical example of X in one dimension is Brownian motion having one
among three or more constant drifts (see [23] for a discrete time analogue). This problem
has been studied more recently in [25] (see also [3] for a Poisson process analogue). The
Markov/diffusion process I is two-dimensional and its infinitesimal generator is also of
parabolic type.

Related sequential testing problems for X in three or more dimensions when each coordi-
nate process of X can have a nonzero drift have been studied in [12] and [1]. These problems
contain an element of optimal control as well in deciding which coordinate process should be
observed at any given time. The former paper contains a review of other related papers (such
as [18]) and the latter paper shows that the Markov/diffusion process IT is one-dimensional
even if one admits infinitely many coordinate processes of X in the problem formulation.

In contrast to all the sequential testing problems studied to date we will see below that
the two-dimensional Markov/diffusion process I in the sequential testing problem of the
present paper has the infinitesimal generator of elliptic type. Moreover, we will also see that
the optimal stopping boundaries are nonmonotone as functions of the coordinate variables.
This fact itself presents a formidable challenge as to our knowledge no rigorous treatment of
nonmonotone optimal stopping boundaries (curves) has been exposed in the probabilistic lit-
erature as yet. Finding the exact solution to the problem for X in three dimensions, including
a rigorous treatment of its nonmonotone optimal stopping boundaries, is the main contribu-
tion of the present paper. To our knowledge this is the first time that such a problem has been
solved in the literature. The analogous problem for X in four/more dimensions introduces ad-
ditional challenges for a rigorous treatment of “nonmonotone” optimal stopping boundaries
(surfaces) and this is left for future research.

2. Outline of the paper. The exposition of the material is organised as follows. In Sec-
tion 3 we derive the optimal stopping problem for IT = (IT, IT1, ITy) where IT' is the pos-
terior probability process of the nonzero drift being in the spatial coordinate i given X for
i=0,1,2. Dueto Ziz:o =1 clearly only two coordinates of IT matter and this is utilised
by passing to the posterior probability ratio process @ = (@', ®?2) defined by &' = 11' /11°
fori =1, 2. The processes /1 and @ stand in one-to-one correspondence and we study the op-
timal stopping problem in terms of @ throughout. The previous considerations take place un-
der the probability measure P, = Z%:o 7; P; where 7; is the prior probability of the nonzero
drift being in the spatial coordinate i for i =0, 1, 2. In Section 4 we show that a measure
change from P;; to Py simplifies the setting upon verifying that the posterior probability ratio
process @' coincides (up to the initial point) with the likelihood ratio process L’ of P; and P
given X for i =1, 2. This provides an explicit link between the process @ and the observed
process X.

In Section 5 we show that the process @ solves a coupled system of linear stochastic
differential equations (of the geometric Brownian motion type) driven by two independent
Brownian motions. This enables us to conclude that @ is a Markov/diffusion process and
derive a closed form expression for its infinitesimal generator which is a second-order partial
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differential equation of elliptic type. The optimal stopping problem for @ is Bolza formulated
and in Section 6 we disclose its Lagrange and Mayer formulations (see [17], Section 6, for
the terminology). The Lagrange formulation is expressed in terms of the local time of @ on
three straight lines which makes the optimal stopping problem more intuitive.

The observed process X is three-dimensional and in Section 7 we consider the same op-
timal stopping problem when X is two-dimensional. In this case @ is a one-dimensional
Markov/ diffusion process so that standard arguments enable us to solve the optimal stopping
problem in a closed form. The reduction of dimension three to dimension two corresponds
to either @! or @2 becoming 0 which is a natural boundary point for both processes (cf.
[6]). The one-dimensional results of Section 7 are used in Section 8 to derive existence of
the optimal stopping set and derive basic properties of the value function. We show that the
optimal stopping set consists of three convex sets separated by the three straight lines that
support the local time of @ in the Lagrange formulation of the optimal stopping problem.
Using symmetry arguments combined with the one-dimensional results of Section 7 we also
derive the asymptotic behaviour of the optimal stopping boundaries at zero and infinity.

In Section 9 we derive a directional smooth fit between the value function and the loss
function at the optimal stopping boundary. The proof of the smooth fit makes use of the
asymptotic behaviour of the optimal stopping boundary at infinity to counterbalance the lack
of the global smoothness of the underlying loss function in the optimal stopping problem. In
Section 10 we show that the optimal stopping boundaries are nonmonotone in either direction
of the state space of @ and prove the existence of a “belly” which determines their curva-
ture/shape. These arguments rely on the general hint from [16], Remark 13, on establishing
the absence of jumps of the optimal stopping boundaries and make use of Hopf’s boundary
point lemma to derive a contradiction with the directional smooth fit.

In Section 11 we disclose the free-boundary problem which stands in one-to-one corre-
spondence with the optimal stopping problem and establish the fact that the value function
and the optimal stopping boundaries solve the free-boundary problem uniquely. In Section 12
we show that the optimal stopping boundaries can be characterised as the unique solution to
a coupled system of nonlinear Fredholm integral equations. These equations can be used to
find the optimal stopping boundaries numerically (using Picard iteration).

3. Formulation of the problem. In this section we formulate the sequential testing
problem under consideration. The initial formulation of the problem will be revaluated under
a change of measure in the next section.

1. We consider a Bayesian formulation of the problem where it is assumed that one ob-
serves a sample path of the three-dimensional Brownian motion X = (XO, x! x 2), whose
two coordinates X/ and X* are standard Brownian motions with zero drift, and the remaining
(unknown) coordinate X' is a standard Brownian motion having a (known) nonzero drift x
with a probability w; € [0, 1] for i =0, 1,2 where mo+m1+7m2 =1 and i # j # k belong
to {0, 1, 2}. The problem is to detect which coordinate is drifting as soon as possible and
with minimal probabilities of the wrong terminal decisions. This real-time detection problem
belongs to the class of sequential testing problems as discussed in Section 1 above.

2. Standard arguments imply that the previous setting can be realised on a probability
space (€2, F, P;) with the probability measure P, decomposed as follows

3.1 Pr =moPo + 71 P1 + 1Py

for m = (g, 1, m2) € [0, 1]3 satisfying wg + 71 4+ 2 = 1 where P; is the probability mea-
sure under which the observed process X has the ith coordinate equal to a standard Brownian
motion with drift ¢, and the remaining two coordinates are standard Brownian motions with
zero drift for i =0, 1, 2, with the three coordinates being independent. This can be formally
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achieved by introducing an unobservable random variable 6 taking values 0, 1, 2 with prob-
abilities g, 1, > in [0, 1] satisfying mo+m; +7m2 = 1 and being independent from three
(mutually independent) standard Brownian motions B% B! B? so that X = (X°, X!, X%
after starting at a point in R3 solves the system of stochastic differential equations

(3.2) dX!=plI® =i)dt + dB!

for i =0, 1, 2. Due to stationary and independent increments of Brownian motion it is clear
that the starting point of X plays no role in the sequel so we will leave it unspecified.

3. Being based upon the continued observation of X, the problem is to test sequentially
the hypotheses Hy : 6 =0, Hy : 8 =1, Hp : 6 = 2 with a minimal loss. For this, we are
given a sequential decision rule (t, d;), where 7 is a stopping time of X (i.e., a stopping time
with respect to the natural filtration ]_-tx =0(X;]0<s<t)of X fort >0), and d; is an ]—'TX—
measurable random variable taking values in the set {0, 1, 2}. After stopping the observation
of X at time 7, the terminal decision function d; takes value i if and only if the hypothesis
H; is to be accepted for i =0, 1, 2. With a constant ¢ > 0 given and fixed, the problem then
becomes to compute the risk function

(3.3) V(n):(irtlif)En[r+c(I(9 =0, d; #0)

+I1O=1,d; #D)+1(0=2,d: #2))]

for w = (g, 71, m2) € [0, 17° with mo+m1+m2 = 1 and find the optimal decision rule (z, d;“*)
at which the infimum in (3.3) is attained. Note that E; (7) in (3.3) is the expected waiting
time until the terminal decision is made, and P, (0 =i, d; # i) are probabilities of the wrong
terminal decisions for i =0, 1, 2. Clearly, each probability P, (6 =i, d; # i) could be further
decomposed into the sum of two probabilities P, (0 =i, d; = j) and P, (0 =i, d; = k) for
i=0,1,2and i # j # k in {0, 1, 2}, and each of the six resulting probabilities could have
a different constant/weight placed in front of them, however, since the constrained problems
are not considered in the present paper as explained in the introduction, we only focus on the
canonical setting of a single constant/weight ¢ given in (3.3) above.

4. To tackle the sequential testing problem (3.3) we consider the posterior probability
process IT = ((IT°, [T}, I1%)),>0 of H = (Hy, Hy, Hy) given X that is defined by

(3.4) I =P (0 =i | F}))
fori =0, 1,2 and ¢ > 0. Noting that for any decision rule (t, d;) we have
2 2 . 2 .
(3.5) Y Pr0=i,d #i)=) Ex[M1(d:#)] =) Ex[(1-11.)I(d:=i)]
i=0 i=0 i=0

where in the final equality we use that 79+ IT] 4172 = 1, it follows that
(3.6) Ex[t+c(I(0=0,d; Z0)+1(0 =1,d; # 1)+1(0 =2,d; #2))]
> Ex[r+c((1=1T7) A (1=11) A (1-117))]
where equality is attained at the decision rule (7, d}) with c?r defined as follows
(3.7) dr =0 if (1-11°) < (1-11}) A (1-17)
=1 if (1-11))<(1-m% A (1-11%)
=2 if (1-M12) <(1-MI) A (1-11)).
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This shows that the problem (3.3) is equivalent to the optimal stopping problem

(3.8) V(ﬂ):ilrlen[r+M(1'[r)]

where the infimum is taken over all stopping times 7 of X, and the function M is given by
(3.9) M) =c((l—mo)A(1—m)A(1—72))

for m = (g, 71, m2) € [0, 1]3 with o+ +mp = 1. For this reason we focus on solving the
optimal stopping problem (3.8) in what follows.

4. Measure change. In this section we show that changing the probability measure Py
for € [0, 1]° with mo+ 71 +m2 =1 to Py provides important simplifications of the setting
which make the subsequent analysis more transparent. The change of measure argument is
presented in Lemma 1 below. This is then followed by a reformulation of the optimal stopping
problem (3.8) under the new probability measure Py in Proposition 2 below.

1. To connect the process IT in (3.8) to the observed process X we consider the likelihood
ratio process L = ((Lzl, Ltz)),zo defined by
dPi’[

4.1 Li=
4.1) T

where P; ; and P0, denote the restrictions of P; and Py to ]-",X forr >0andi =1,2. Using
that ((XO wut, X}))i>0 and ((X0 X} / — ut))s>o define standard two-dimensional Brownian
motions under Py and P; respectlvely, by the Cameron—Martin—Girsanov theorem (see, e.g.,
[11], Theorem 5.1, p. 191) one finds that

(4.2) Li = et Xi=XD)

for t > 0 and i = 1, 2. A direct calculation indicated below shows that the posterior proba-
bility ratio process @ = ((<1§t1, <1§t2)),20 defined by

43) oi =i
. ;= 10

can be expressed in terms of L (and hence X as well) as follows
(4.4) &/ = BiLi

for + > 0 where <D(") = 1; /7o for i = 1,2. Recalling that I[T?+ 7} + IT? = 1 and formally
setting <D,0 = 1 it is easily seen that (4.3) is equivalent to

;]

4.5 m=——""__
) 4o+ 07
fort>0andi=0,1,2.

2. To derive (4.3)—(4.5) one may use a standard rule for the Radon—Nikodym derivatives

based on (3.1) that gives

dPl"[
dPr s

(4.6) m’=p, (0 =0|FX) Zn, 6 =0|F)

dP()t 1

TT
OdPnt 1+H1 dP][ +ﬂdP2J

7o dPo; T o dPy
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dP;
4.7 I =p 9:1]—“X e 9_1]:X L
4.7) =P (0=1| Zl | )dpm
b dPl,t
o P o Py
dPL szy
dPﬂt 1+%dPo§ +Z_3d|’0,i
(4.8) m* =P, (0 =2|FY) Zn (0 =2|F¥) dPi.
. t T i dPn,t
T dPZ.t
B dF’zr _ E oy
- dPy, dp,
dPﬂt 1+ %dPo,; + %dpo,;

where Py ; denotes the restriction of P, to ]-'tX for m = (g, 1, m2) € [0, 113 with 7o+ 7+
mp =1 and ¢ > 0. It is then easily verified that (4.6)—(4.8) imply (4.3)—(4.5) as claimed.

3. Previous arguments suggest that changing the probability measure P, to Py appears to
be of canonical interest in the optimal stopping problem (3.8). In the sequel we let P; ; denote
the restriction of P, to ]-'TX where 7 is a stopping time of X.

LEMMA 1. The following identity holds

dPy ; L

4.9 _ Y
(4.9) Ry, 11

for all stopping times t of X and all m = (79, 71, m2) € [0, 1]3 with mo+m+my = 1.

PROOF. Using the same arguments as in (4.6) above we find that

dPiJ o dP()’T

= 77,'0
dPy ¢ dPy ;

(4.10) =P, (6 =0| FX) Zn, (6 =0|FX
for any t and 7 as above. From (4.10) we see that (4.9) holds and the proof is complete. [l

4. We now show that the optimal stopping problem (3.8) admits a transparent reformula-
tion under the probability measure Py in terms of the process @ = (@ I ®2) defined in (4.3)
above. Recall that @' starts at 7; /7o and this dependence on the initial point will be indicated
by a superscript 7; /7o to @ replacing its coordinate superscript i for i = 1, 2 when needed.

PROPOSITION 2. The value function V from (3.8) satisfies the identity

@.11) V(J'r)_noV(— @)
Ty Mo

where the value function Vis given by

o (1 T2 . t N
(4.12) v(n—o, n—o) = inf EOUO (140 ™+ @™ dr + M (71, @;72/”0)]

for w = (7o, 71, m2) € [0, 113 with wo+m1 472 = 1 where
(4.13) M (@1, 92) = c((@1+92) A (1+¢1) A (1+¢2))

for (¢1, ¢2) € [0, 00)? and the infimum in (4.12) is taken over all stopping times t of X .
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PROOF. Formw = (g, 71, m2) € [0, 113 with o+ +7m = 1 given and fixed, it is enough
to show that the following identity holds

T
(4.14) Ex[r+ MT) | =moo| [ (1407407 ) dr

+ M(q)fl/ﬂo’ q)éfz/ﬂo)]

for all bounded stopping times t of X. For this, suppose that such a stopping time 7 is given
and fixed, and note by (4.5)—(4.9) that

(4.15) E,T[r—i—M(H,)]:JroEo[ ‘ M(H’)}

—5

m I

= Ty E()[‘C(l-i-@?l/ﬂo-i-@;n/ﬂo)
+ M(gp?l/ﬂo, @ﬁz/ﬂo)].

Setting M; = 1+ &/ ™+ @/™ for t > 0 we see by (4.2) and (4.4) that M = (M,),= is a
continuous martingale under Py so that integration by parts gives

t t
(4.16) tMtzf Msds-l—/ sdM,
0 0

where the final term defines a continuous martingale under Py for # > 0. Hence by the optional
sampling theorem we obtain

4.17) Eo(er):E()(/(;T M,dt).

Inserting this back into (4.15) we obtain (4.14) as claimed and the proof is complete. [

5. Ttis clear from (4.2) and (4.4) that @ = (®!, ®?) is a strong Markov/diffusion process.
We will formally verify this fact in the next section by deriving a coupled system of stochastic
differential equations (driven by two independent Brownian motions) that @ solves. Denoting
the probability law of @¥ = (%!, ®¥2) under Py by Pg = Pgl’ o (where we move 0 from the
subscript to a superscript for notational reasons) we see that the optimal stopping problem

(4.12) can be rewritten as follows

~ T
(4.18) Vg1, ¢2) =infEQ [ /0 (140, +&7) dt

+e(@1+02) A (1401 A (1+<p3))]

for (¢1, ¢2) € [0, 00)? with Py, 4, (DL, D3)= (91, ¢2)) = | where the infimum in (4.18) is
taken over all stopping times T of @. In this way we have reduced the initial sequential testing
problem (3.3) to the optimal stopping problem (4.18) for the strong Markov/diffusion process
@. We will see in the next section that this optimal stopping problem is inherently/fully two-
dimensional with the infinitesimal generator of @ being of elliptic type.

5. Elliptic PDE. In this section we derive a coupled system of stochastic differential
equations (driven by two independent Brownian motions) that @ = (@', ®2) solves. From
this system we derive a closed-form expression for the infinitesimal generator of @ that can be
recognised as a partial differential operator of elliptic type. We also show that a diffeomorphic
transformation of logarithmic type maps the process @ (and its state space (0, 00)?) to a
process Z (and its state space R?) whose coordinate processes Z! and Z? are independent
Brownian motions with a nonzero and zero drift respectively.
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1. From (4.2) and (4.4) we see that
(5.1) D! = et BB g 2 = 5 h(BI-B)—u
under Py for t > 0 where ¢; and ¢, belong to [0, c0). Hence by It6’s formula we find that
(5.2) Ao} = uo! (dB! —dB?)
(5.3) dd} = &7 (dB} ~dBY)

under Py with @} = @1 and @g = ¢ in [0, 00). This shows that @ ! and &2 are two correlated
geometric Brownian motions.

2. A well-known (and easily verifiable) fact states that if B! and B? are two correlated
standard Brownian motions satisfying E(f? f?z) = pt for t > 0 with p € (—1, 1), then (E +
Ez)/«/Z(l +p) and (B1 Bz)/./2(1 —p) are two independent standard Brownian motions.
Applying this implication to B! := (B' —B%)/+/2 and B? := (B*—B%)/v/2 with p = 1/2 it
follows that

B'vB> _B'+B-28° ., B'-B>_ B'-B
Vi Ve L V2

are two independent standard Brownian motions. From (5.4) we see that

(5.4) w!.=

G5 B BTE_VBWIAWE g BB 3WI-
NG 2 NG 2
3. Making use of (5.5) in (5.2)+(5.3) we obtain
(5.6) do) = % @ (V3dW! +dw?)
(5.7) dP? = % ®2(V3dW}! —dw?)

with cD(l) = ¢ and CD(% = ¢y in [0, 00). This is a coupled system of stochastic differential equa-
tions (driven by two independent standard Brownian motions W' and W?) that @' and &2
solve (strongly) and this solution is pathwise unique (see, e.g., [20], pp. 128-131). Moreover,
the solution @ = (&', ®2) is both a strong Markov process (see, e.g., [20], pp. 158-163) and
a strong Feller process (see, e.g., [20], pp. 170-173). Making use of (5.5) in (5.1) we see that

_ wle%mw}w?)—uzr

n w2y ,.2
538) @) = = eI

& @ =

under Py for ¢ > 0 where ¢; and ¢, belong to [0, 00). Often we will write @' and &/ for
¢t > 0 to indicate dependence of @! and @2 on the initial points ¢ and ¢; in [0, 00).

4. Knowing that @ = (@1, ®?) solves the system (5.6)+(5.7) and making use of Itd’s
calculus we find that the infinitesimal generator of @ is given by

2 2
(5.9 Lo = 1’ (¢ a«mm + <p1<p28¢1¢2+ 2 awzsaz)

for @1 and ¢, in (0, 00) (see, e.g., (2.7) in [16]). A standard classification of partial differential
equations shows that L is of elliptic type (see, e.g., (2.12) in [16]).
5. Defining a diffeomorphic transformation of (0, c0)? to R? by

(5.10) D(g1, ¢2) = (log(g192), log(¢1/¢2))
for (¢1, ¢2) € (0, 00)2, and setting
(5.11) Z=(Z', 7% = D(®, ®;) = (log(PP2), log(®1/P2))
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we see from (5.8) that
(5.12) zh =zl 2t +Vouw! & 7P=72+V2uw?

under Py for ¢+ > 0 with Z(l) = log(p1¢2) and Z2 = log(¢1/¢>). This establishes a one-to-
one correspondence between the process @ in (0, 00)? and the process Z in R2. Although
the latter process Z may be viewed as a canonical building block which further clarifies the
underlying setting, we will mainly study the optimal stopping problem (4.18) by means of
the former process @ in the sequel.

6. Lagrange and Mayer formulations. The optimal stopping problem (4.18) is Bolza
formulated. In this section we derive its Lagrange and Mayer reformulations which are help-
ful in the subsequent analysis of the problem.

1. We first consider the Lagrange reformulation of the optimal stopping problem (4.18).
For this, note that the loss function M from (4.13) that appears on the right-hand side of
(4.18) is not smooth at the three straight lines

(6.1) co={(p1,9) €10,00% g1 =1 & ¢ €[0,1]}
(6.2) c1={(p1,92) €10,00) | g1 €[0,1] & @r =1}
(6.3) c2={(p1,92) €10,00)% |91 =2 €[1,00)}

ordered clockwise (see Figure 1). Note moreover that M is linear off the three straight lines
and given by

(6.4) M (g1, 92) = c(p1+@2) for (g1, 92) € Ag
=c(l+¢1) for (¢1,¢2) € Ay
=c(1+¢2) for (¢1,¢2) € As

where Ag := [0, 1]? is a subset of the state space surrounded by ¢g and ¢ (from the right and
above), A1 :={(¢1,¢2) € [0, 00)? | @2 > @1 > 1} is a subset of the state space surrounded

L0
Dy
&}
b1 c2
c1
1 (U by
1 bo
3 co Dy
Dy
©
11 1
4 154

FIG. 1. Location of the continuation set C, the stopping sets Dy, D1, D>, and the optimal stopping boundaries
by, by, by, recalling that by (¢1) = ba(p2) for 91 = @3 in [0, 00).
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by c¢1 and ¢ (from below and the right), and Aj := {(¢1, ¢2) € [0, oo)2 lor =@ >1}isa
subset of the state space surrounded by cg and ¢ (from the left and above).

PROPOSITION 3.  The value function 1% from (4.18) can be expressed as

(6.5) ‘7((p1, ) = 1nf E(pu o [/()t(1+q>tl+q§t2) dt — §(£§0(¢)+£gl (®)+1£2 (cb))}

+ M(p1, ¢2)
for (o1, ¢2) €10, oo)2 where £ (D) is the local time of @ at ¢; fori =0, 1, 2 given by
1 T
(6.6) €9 () = P-lim —/ I(1—e<® <1+e)1(0< @ <1)d(®', "),
el0 2¢ Jo
1 T
6.7) €1(@) = P-lim —/ I(1—e <@} <1+e)1(0< @} <1)d(®? @2),
el0 2e Jo
& N O 2 a1
(6.8) L2(P) = P-E&} %/0 [(—e<® -, <¢)

x [(® > 1,07 > 1)d(@*~o!, ?—!),

and the infimum in (6.5) is taken over all stopping times t of ®.

PROOF. Itis evident from (6.4) that M restricted to Ao U Az can be extended to a twice
continuously differentiable function F on [0, 00)?\¢o. Then M=F+ (M F ) and M':=F
is not smooth at ¢y while M? := M — F is not smooth at c1 and c¢;. Since ¢ is the graph of
a (linear) function of ¢3, and ¢y and ¢, are the graphs of (linear) functions of ¢, we see that
the change-of-variable formula with local time on surfaces [15], Theorem 2.1, is apphcable
to M! and M2 composed with @, where we note that M1 (gol—}— ) — Mrm (o1—, @2) =

for (¢1.¢2) € co and M2, (91, ¢2+) — M2, (p1. p2—) = —c for (¢1, ¢2) € c1 U ca. Hence the
formula is also applicable to M composed with @ and this gives

N N t
©9) (@) 0P =M(<P1,<P2)+C/O 1(@;€ AU A dD]

t
+c/0 [(DyeAgU Ay)dd? — %(Kfo(tb)Jrﬁf‘ (D) +L£2 (D))

for (¢1, ¢2) € [0, 00)? and 7 > 0 where the local times are defined in (6.6)—(6.8) above. Since
@' and @2 are continuous martingales under Py we see that the two integrals on the right-
hand side of (6.9) are continuous martingales under Py as well. By the optional sampling
theorem we therefore find from (6.9) that

(6.10) EQ o[ M(@}, 7)] = M(p1.¢2) — > Eon 0 s [ @)+ L () +L2(D) ]

for all (g1, ¢2) € [0, 00)? and all stopping times 7 of @. Inserting (6.10) into (4.18) we obtain
(6.5) as claimed and the proof is complete. [J

The Lagrange reformulation (6.5) of the optimal stopping problem (4.18) reveals the un-
derlying rationale for continuing vs stopping in a clearer manner. Indeed, recalling that the
local time process ¢ > £;' (@) strictly increases only when @ is at ¢;, and that £;' (®) ~ 4/t
is strictly larger than [J(14+®!+®2)ds ~ ¢ for small 7, we see from (6.5) that it should never
be optimal to stop at ¢; and the incentive for stopping should increase the further away @
gets from ¢; for =0, 1, 2. We will see in Section 8 below that these informal conjectures can
be formalised and this will give a proof of the fact that the three straight lines cg, c1, ¢y are
contained in the continuation set of the optimal stopping problem (4.18).
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2. We next consider the Mayer reformulation of the optimal stopping problem (4.18). For
this, in addition to M in (4.13) above, define

. 1 1
(6.11) M(p1, ¢2) = 2 ((Pl (loggp1—1) + g2(logpr—1) — 3 10g(<ﬂ1<02))

and set M (g1, 92) = M (91, 92) + M (91, ¢2) for (91, ¢2) € (0, 00)>.

PROPOSITION 4. The value function 1% from (4.18) can be expressed as

(6.12) Vipr, ¢2) =infEg, , [M (P}, 87)] - M (01, ¢2)

for (g1, @) € (0, 00)% where the infimum is taken over all stopping times t of ®.

PROOF. Recalling the closed-form expression for L in (5.9) it is easily verified that

(6.13) Lo M(g1, 92) = 1+¢1+¢2
for (¢1, ¢2) € (0, 00)2. By Itd’s formula we thus find using (5.6)4(5.7) above that

v v t %
6.14)  M(®) D) =M(g1.¢2) + / My, (@), 02)dd)!
+/ My, (® dcb2+/ Lo M(®!, ®?)ds
~ 17 1 2
= M(¢1, 92) +/(; E(‘pv log ¢3_5>(ﬁdwvl+dwv)
" 2 2 | V3aw! 2
+_/0 E (ps 10g<ps—§ ( 3dW€ _de)

t
+/ (1+®! +02)ds
0

for (g1, ¢2) € (0, oo)2 and ¢ > 0 where the two integrals on the right-hand side define contin-
uous local martingales under Py. Making use of a localisation sequence of stopping times for
these two local martingales if needed, and applying the optional sampling theorem, we find
from (6.14) that

. T
(6.15) Eo ,,[M(P]. @) =M(p1,92) +EY “’2[/0 (1+cb,1+q>,2)df}

for all (¢1, ¢2) € (0, 00)? and all (bounded) stopping times t of @. Inserting (6.15) into (4.18)
we obtain (6.12) as claimed and the proof is complete. [

7. Two dimensions. The observed process X in the initial sequential testing problem
(3.3) is three-dimensional. In this section we consider the analogue of (3.3) and the result-
ing optimal stopping problem (4.18) when X is two-dimensional. The reduction of dimen-
sion three to dimension two corresponds to either ®! or @2 becoming 0 which is a nat-
ural boundary point for both processes (cf. [6]). This shows that @ is a one-dimensional
Markov/diffusion process when X is two-dimensional so that standard arguments enable us
to solve the problem (4.18) in a closed form. The derived results for the one-dimensional opti-
mal stopping problem (4.18) when X is two-dimensional will be used in the subsequent anal-
ysis of the two-dimensional optimal stopping problem (4.18) when X is three-dimensional.
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1. Using the same arguments as above, it is easily seen that the sequential testing problem
(3.3) when X is two-dimensional reduces to the optimal stopping problem (4.18) with @2
being formally equal to zero. Omitting the subscript 1 from ¢; for simplicity, we thus see
that the optimal stopping problem (4.18) reads

(7.1) V(p) :inng[/r(l—i—cD,)dt+c(1/\<bt)}
T 0

for ¢ € [0, co0) with Pg (®9=¢) = 1 where the infimum in (7.1) is taken over all stopping
times T of @. From (5.1) and (5.2) we see that

(7.2) B, = g V2 Wimht

(7.3) d®, = 2u®, dW,

under Py for # > 0 with @y = ¢ in [0, 00) where W := (B I_B% / V/2 is a standard Brownian
motion. From (7.3) we see that the infinitesimal generator of @ is given by

d2
(7.4) Lo = u2p?-

which also follows formally by setting 2 = 0 in (5.9) above.
Recognising the loss function ip (7.1) as M(p) = c(1 Ap) for ¢ € [0, 00), standard argu-
ments imply (see, e.g., [17]) that V should solve the free-boundary problem

(7.5) Lo V(p) =~(1+¢) for ¢ € (¢5. ¢})
(7.6) V(p}) = M(¢}) for i =0,1 (instantaneous stopping)
(7.7) V'(gf) = M'(¢}) for i =0,1 (smooth fit)

where 0 < @5 < 1 < @] < 00 are the optimal stopping/boundary points to be found and we
have V((p) =M (¢) for ¢ € [0, ¢5) U (¢], 00) as well (in addition to (7.6) above).
The general solution to the ordinary differential equation (7.5) is given by

. 1
(7.8) V(g0)=A(p+B+?(l—(p)log<p

for ¢ > 0 where A and B are two undetermined real constants. Boundary conditions (7.6)
and (7.7) then read as follows

1
(7.9) A¢$+B+?(1—<ﬂ§)log¢6‘=w3
1
(7.10) Agoi"—i—B—I—?(l—(p’l“)log(pT:c
(7.11) A+ : ( : 1 - 1>
. —|——loggyg —1)=c
TN 0
1 /1 .
(7.12) A+—2<—*—10g¢1—1>=0.
[N A
It is a matter of routine to verify that the system (7.9)—(7.12) has a unique solution given by
1 /1 1
(7.13) A*=c——<——log(p*—1) & B*=c— —(¢] +logel —1
Mz (p(>)k 0 Mz( 1 1 )
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where ¢ and ¢} are the unique solution to

1/1 1 1 *
(7.14) —(———+1 g((p1>>=c & —2<¢T—¢3+10g<¢—i>>=c
vy ¥y 7 e %)

satisfying 0 < g5 < 1 < @] < 00.
By symmetry we may conclude that ¢ = 1/¢] so that (7.13) and (7.14) reduce to

1
(7.15) A*=B*=c—?(¢i‘+log<pi“—1)
|
(7.16) ¢T—E+2log¢?‘=cu2
1

respectively. It follows from (7.8) and (7.15) that

. 1
V) = (c — ﬁ(wi" + log ¢} — 1))(1+<p)

1
(7.17) + F(l—«))log«) for ¢ € (1/¢7, ¢7)

= M(g) for ¢ €[0,1/¢}{]U g}, 00)

defines a candidate value function for the optimal stopping problem (7.1).

Applying the Ito—Tanaka formula (cf. [19], p. 223) to V* composed with @, which reduces
to Itd’s formula due to smooth fit (7.7), and making use of the optional sampling theorem, it
is easily verified that V* from (7.17) coincides with the value function V from (7.1) and the
optimal stopping time (at which the infimum in (7.1) is attained) is given by

(7.18) t.=inf{t>0]®, ¢ (1/¢},¢7)}

where ¢ is the unique solution to (7.16) on (1, 00).
To avoid a possible confusion with subscripts we will set 8 := ¢{ in the sequel. Thus
B € (0, 0o) is the unique solution to

(7.19) ﬁ—%—l—ﬂogﬂ:c,uz

and the stopping time
(7.20) t=inf{r>0|P ¢ (x,p)}

is optimal in (7.1) where we set « = 1/8. These facts will be used in the subsequent analysis
of the optimal stopping problem (4.18) when X is three-dimensional.

8. Properties of the optimal stopping boundaries. In this section we establish the exis-
tence of an optimal stopping time in (4.18) when the observed process X is three-dimensional
and derive basic properties of the optimal stopping boundaries. These results will be further
refined in Section 10 below.

1. Looking at (4.18) we may conclude that the (candidate) continuation and stopping sets
in this problem are respectively given by

(8.1) C ={(¢p1,92) €10,00)% | V(p1, 02) < M(g1,02) )
(8.2) D ={(¢1,92) €10,00) | V (g1, 92) = M(¢1,92) }

where M is defined in (4.13) above. Recalling (5.8) we see that the expectation in (6.12)
defines a continuous function of the initial point (g1, ¢3) in [0, 00)? for every (bounded)
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stopping time 7 of @ given and fixed. Taking the infimum over all (bounded) stopplng time
7 of @ we can conclude that the value function V is upper semicontinuous on [0, 00)2. From
(4.13) and (6.11) we see that the loss function M = M + M is continuous and hence lower
semicontinuous on [0, oo)z. It follows therefore by [17], Corollary 2.9, that the first entry
time of the process @ into the closed set D defined by

(8.3) th=inf{t>0|®d, €D}

is optimal in (6.12), and hence in (4.18) as well, whenever P (tp < 00) =1 for all

<p1 )
(@1, ¢2) € [0, 00)?. In the sequel we will establish this and other properties of p by analysing

the boundary of D. We first turn to global properties of the value function V itself.

PROPOSITION 5.  For the value function 1% from (4.18) we have
(8.4) (91, 92) = V (@1, ) is concave on [0, 00)?
(8.5) (o1, 02) — V((pl, @) is continuous on [0, oo)z.

PROOF. We first show that (8.4) is satisfied. Combining (5.8) with the concavity of the
loss function M from (4.13) we see that the expectation in (4.18) defines a concave function
of the initial point (¢1, @) in [0, 00)? for every (bounded) stopping time 7 of @ given and
fixed. Taking the infimum over all (bounded) stopping times t of @ we find that the value
function V itself is concave as claimed in (8.4) above.

We next show that (8 5) is satisfied. From the concavity of V on the open set (0, 00)?2
we can conclude that V is continuous on (0, 00)2. Recall that there are concave functions F
defined on a convex subset S of R? and taking values in R, such that the limit of F(x,) may
not exist when x,, belonging to the interior of S converges to a point xg at the boundary of S as
n — o0o. However, if § is closed then it is well known (and easily verified) that such a function
F must be lower semicontinuous. Applying this implication to F' = V and S = [0, 00)? we
can conclude that V is lower semicontinuous on [0, 00)2. At the same time we know that 1%
is upper semicontinuous (as established following (8.2) above) and hence we can conclude
that V is continuous as claimed in (8.5) above. [

2. We show that the three straight lines co, c1, ¢z defined in (6.1)—(6.3) above are contained
in the continuation set C. The proof of this fact uses the Lagrange reformulation (6.5) of the
optimal stopping problem (4.18) combined with the fact that the local times in (6.5) have a
square-root growth at the three straight lines while the integral in (6.5) grows linearly.

PROPOSITION 6. The straight lines cg, c1, c2 from (6.1)—(6.3) are contained in the con-
tinuation set C of the optimal stopping problem (4.18).

PROOF. We claim that
(8.6) EQ, oo [linege] = Kin/t

for all ¢+ € (0,7;) with some «x; > 0 and #; > 0 for i = 0,1,2 where tge = Inf{r >
0] (thl, @f) ¢ R} is the first exit time of @ from a bounded rectangle R containing the
given point (¢1, ¢2) € cp U c1 U ¢y in its interior. Indeed, this follows by a direct application
of Lemma 15 in [16] when (¢1, ¢2) belongs to co U ¢, while the same lemma is applicable
to (43 I 452) = (P2 —p!, @24+ @) obtained by a (bijective) clockwise rotation of (¢1, ¢2)
for 45° when (@1, ¢2) belongs to ¢;. Note that the case when (@1, ¢2) =(1,1) ecoNecy Ner
presents no difficulty as the proof of Lemma 15 in [16] extends plainly to cover this case as
well. Having (8.6) in place we can then proceed as follows.
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For (@1, ¢2) € co U c1 U ¢y given and fixed, set R = [0, 2¢1] x [0, 2¢2] and consider the
stopping time 7 :=1 A tge for t € (0, t;) if (@1, ¢2) belongs to ¢; for i =0, 1, 2. Inserting this
T under the expectation sign in (6.5) and making use of (8.6) we find that

~ c ~
(8.7) Vg1, ¢2) < (14201 +2¢2)1 — iki«ﬁJrM(cpl,(pz)

for all 1 (0; t;) if (¢1, ®2) belongs to ¢; for i =0, 1, 2. Taking ¢ in (8.7) sufficiently small
we see that V (¢1, ¢2) < M (@1, ¢2) which shows that (¢1, ¢2) belongs to C as claimed. [

3. The three straight lines cg, c1, ¢z naturally split the stopping set D into the three subsets

(8.8) Do={(¢1,92) €D | g1, 92 €[0,1]}
(8.9) Di={(p1,¢)eD|1<¢i <@}
(8.10) Dy={(p1,)eD|1 <@ <¢1}.

Note that the set Dy is surrounded by the straight lines co and cy, the set Dy is surrounded
by the straight lines ¢ and c;, and the set D; is surrounded by the straight lines c¢g and c;.
Clearly D = Dy U D1 U D5 and the sets Dy, D1, D; are disjoint (see Figure 1).

PROPOSITION 7. The sets Do, Dy, Dy are convex.

PROOF. We will show that the set D; is convex and the same arguments can be used to
show that the sets Dy and D are convex. For this, let (¢}, ¢)) and (¢], ¢5) belonging to D,
and A € (0, 1) be given and fixed. Firstly, note that

(8.11) V() 05)+ (=0 (0], 95)) = V (hep| +(1=2)¢], 2gh + (1= 1)g5)
< M(api+(1=1)gf, ks +(1—1)gh)
=c(14+rp5+(1—1)¢3),

where we use (4.13) to infer that M (o1, 02) = c(l—i—cpg) for (¢1, @) belonging to the subset of

[0, 00)? surrounded by cg and c5. Secondly, using that V is concave on [0, 00)? as established
in (8.4) above, we find that

(8.12) V (Ml 05)+(0=1) (0], 03)) = AV (0], 93) +(1 =)V (¢ . )
=AM (¢}, 95)+(1—1)M (], ¢5)
=c(1+rp5+(1—2)¢5)

where in the first equality we use that (¢}, ¢5) and (¢}, ¢)) belong to Dy € D. Combining

(8.11) and (8.12) we see that V()»((pl, ©5)+(1=1)(¢], ¥))) = M(A((pl, ©5)+(1=1)(¢], ¥5))
showing that )»((p1 (p2)+(1 A)((p ) belongs to D as needed. [

4. To describe the shape of the stopping sets Do, D1, D, we may recall from Section 7 that
the subsets ([0, 1/8] U [B, 00)) x {0} and {0} x ([0, 1/8] U [B, c0)) of [0, 00)? are contained
in D where g8 € (1, o0) solves (7.19) uniquely. Symmetry arguments to be addressed shortly
below show that it is sufficient to focus on the set D; as the conclusions will directly extend
to the sets Dy and D as well. Moving from the straight lines cg and ¢; in C to the right, let
us formally define the (least) boundary between C and D; by setting

(8.13) by(p2) =inf{ @1 > 1V @2 | (@1,92) € D2}

for ¢ € [0, 00). Clearly the infimum in (8.13) is attained since D> is closed. We now show
that b, constitutes the entire boundary of D5 in [0, 00)? (see Figure 1).
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PROPOSITION 8. The mapping @2 +— ba(¢2) is finite valued on [0, 00) and we have

(8.14) Dy ={ (91, ¢2) €[0,00)? | o1 > ba(2) }
with br(0) = B € (1, 00) and by (p2) — 00 as ¢y — oo.

PROOF. To derive (8.14) we show that
(8.15) (¢1,93) € D2 = (¢, 93) € D2

for all ¢} > ¢]. For this, recall from (8.4) that ¢; — Vg1, ¢%) is concave on [0, co) while
o1 = M(gp1, ¢5) = c(14¢3) is constant for 1 > @5 > 1. Hence if V((pi, @5) = A;I((pi, ¢5) due
to (¢}, ¢5) € Dy with V((pi’, @5) < M(goi’, ¢5) meaning that (¢}, ¢5) ¢ D for some ¢} > ¢},
then V((pl, ¢%) must converge to —oo as ¢ converges to co. This however contradicts the

fact that V is nonnegative and hence (8.15) must hold as claimed. Combining (8.13) and
(8.15) we see that (8.14) is satisfied as claimed.
To establish that b, is finite valued we first show that

(8.16) (¢1, 3) € D2 = (9], ¢3) € D2
for all ¢} € [0, ¢5] when ¢| > B. (Note that the latter inequality cannot be omitted and
(8.16) may fail when goi < B as we will see in Section 10 below.) For this, recall from
(8.4) that ¢ — V((pi, @) is concave on [0, co) while ¢ — 1\;1((,01, @) = c(1+¢») is lin-
ear for ¢ € [1, go{]. By the results of Section 7 we know that (goi ,0) belongs to Dj so that
\7(goi, 0) = M((p’l, 0) when ¢| > B. Hence if \7(¢i, ¢5) = ]\;I(goi, ¢5) due to (¢}, ¢5) € Dy
then ‘7((,01, ©¥2) = M((pi, @) for all g2 € [0, ¢5]. This shows that (8.16) holds as claimed.

From (8.16) we see that if b>(¢5) > B for some ¢} > 0 then ¢ — by(¢») is increasing on
[}, 00). In particular, this means that if b>(¢)) = oo for some ¢} > 0 then b>(¢2) = oo for
all ¢> > ¢ . We will now use this fact to show that b5 is finite valued as claimed.

Assuming that by(¢}) = oo for some @5 > 0, and fixing b > a > ¢, it follows from
the previous argument that the rectangle Ry = (N, 00) x (a, b) is contained in C for every
N > No with some Ny > 1 large enough. Consider the stopping time

(8.17) ‘czi”m =inf{r >0 (&', ®/*) ¢ Ry }

(ﬂlﬂ’(PZ < Tglﬁﬁ

for (¢1, ¢2) € Ry. Since Ry € C we see that 7 and hence it follows that
N

(8.18) c(14+¢2) = M(g1,92) = V (91, 92)
[9)) R
:Egu,wz[/o (1+¢t1+¢z2)dt+M(¢rID’q>$D)]

t‘/’]y‘ﬂz

> Eo[ [ e dz} > NEo[rf "]
0

forall N > Np. Noting that Eo[rz;;]’m] — Eolt} ] where 12, =inf {1 > 0| &* ¢ (a, b))
as N — oo, we see from (8.18) that

N
(8.19) c(I+¢2) = — Eo[( )]

for all N > N; with some N| > 1 large enough. Letting N — oo and using that Eo[‘l,'((fi pyel >
0 we obtain a contradiction. Thus there is no ¢5 > 0 such that b»(¢5) = oo and hence b, is
finite valued as claimed.

Finally, the fact that b(0) = 8 € (1, oo) was established in Section 7 above. Moreover,
since by (¢2) > ¢y for all g2 > 0 due to cp and ¢; being contained in C, we see that by (¢2) —
o0 as ¢o — 00 and the proof is complete. [J
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PROPOSITION 9.  The mapping ¢> > ba(¢2) is convex and continuous on [0, 00).

PROOF. Convexity of the mapping ¢» — b2(¢2) on [0, co) follows from the convexity of
the stopping set D, as established in Proposition 7 above. Hence the mapping @2 — ba(¢2)
is continuous on (0, co) while b, cannot make a jump at 0 due to the fact that the stopping
set Dy is closed. This completes the proof. [l

We will show in Section 10 below that by (¢2) < B for ¢ € (0, k) with ¥ > 0 such that
by (k) = B. This fact combined with the convexity of b on [0, c0) means that the mapping
@2 > by(@o) is (firstly) decreasing on [0, k] and (then) increasing on [k, 00) with some
k" € (0, k). In addition to these facts about by around zero we will conclude this section by
evaluating the asymptotic behaviour of b, at infinity. Before we do that we will turn to the
remaining two stopping sets Do and D including their boundaries.

5. Symmetry arguments enable us to extend the setting and results of Proposition 8 and
Proposition 9 from the stopping set D> to the remaining two stopping sets Dy and Dj.
For this, recall from (4.3) that ol = 1'[1/1'[0 and ®2 = 1'[2/170. Since I1°, I1!, 12 play
a symmetric role in the optimal stopping problem (3.8) we see that any permutation of the
three coordinates should yield the same result. There are two generic permutations which
generate all the others (six in total). The first generic permutation is obtained by swap-
ping IT' and 7% while keeping IT° intact. This yields @' = IT'/I1° ~ [1?/IT° = ®? and
@2 =11?/11° ~ I1' /11" = @' showing that

(8.20) (91, 92) € 90C = (92, 1) € 0C

where dC can also be replaced by C or D. The second generic permutation is obtained by
swapping I7° and IT! while keeping IT? intact. This yields ®; = IT'/I1° ~ 1°/I1' = 1/®!
and &, = IT?/I1° ~ [T?/IT" = ®?/®! showing that

1
(8.21) (@1, 9) € 9C > (—, %) cac
o1 @1

where dC can also be replaced by C or D. The remaining four equivalencies can be obtained
by combining (8.20) and (8.21). For example, applying first (8.20) and then (8.21) we find
that (¢1,¢2) € 0C < (1/¢2, ¢1/92) € 0C (where dC can also be replaced by C or D as
above) which is obtained by swapping I7° and IT?> while keeping IT! intact.

6. Having understood the symmetry relations we now move to extending the setting and
results of Proposition 8 and Proposition 9 from D; to Dg and D;. We first address the case
of D which in view of (8.20) is a mirror image of D; across the main diagonal in [0, 00)2.
In analogy with (8.13) we thus define the (least) boundary between C and D by setting

(8.22) bi(p1) =inf{r > 1V e |(g1,¢) €D}

for ¢1 € [0, 00). Clearly the infimum in (8.22) is attained since D is closed. Similarly to b»
and D; above we now show that b; constitutes the entire boundary of D in [0, oo)2 (see
Figure 1).

PROPOSITION 10. The mapping @1 — b1 (1) is finite valued on [0, 0c0) and we have
(8.23) D1 = {(¢1.92) €10,00)° | 2 = bi(p1) }
with b1(0) = B € (1, 00) and b1 (p1) — 00 as ¢1 — o0.

PROOF. This can be derived in exactly the same way as in Proposition 8 above. Alter-

natively Proposition 10 also follows directly from Proposition 8 using the symmetry relation
(8.20) which shows that D is a mirror image of D, across the main diagonal in [0, 00)2. O
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PROPOSITION 11. The mapping @1 +— b1(¢1) is convex and continuous on [0, 00).

PROOF. This can be derived in exactly the same way as in Proposition 9 above. Alter-
natively Proposition 11 also follows directly from Proposition 9 using the symmetry relation
(8.20) which shows that b coincides with by on [0, 00). [

Despite the fact that the functional rules of b and b; coincide on [0, co], we will still keep
their different subscripts 1 and 2 in place to account for different arguments in (@1, b1 (1))
and (b2(¢2), ¢2) for 1 > 0 and ¢, > 0 respectively.

7. We next address the case of Dg which in view of (8.21) can similarly be linked to
the case of D; in a one-to-one way. Moving from the point (1, 1) € C down to the point
(0,0) € Dy along the main diagonal in [0, 1]?, we know that there exists the (first) point
(v, y) that belongs to Dg. Equivalently y can also be formally defined by

(8.24) y =sup{¢€[0,1]]| (¢, 9) € Do }.

Clearly the supremum in (8.24) is attained since Dy is closed and we have y € (0, 1) since
(1,1) € C. Similarly to (8.13) and (8.22) we then define the (least) upper boundary between
C and Dy by setting

(8.25) by(e1) =sup {2 €10, 111 (¢1,92) € Do }
for ¢1 € [0, y], and the (least) lower boundary between C and Dy by setting
(8.26) bi(e2) =sup{ g1 €10, 111 (¢1,92) € Do }

for ¢y € [0, y]. Clearly the suprema in (8.25) and (8.26) are attained since Dy is closed. In
view of (8.20), it is clear that the graphs of b(l) and b(z) are mirror images of each other across
the main diagonal in [0, y]z, so that b(l) = b(z) on [0, y] and we set

(8.27) bo(p) := bj () = bi(¢)

for ¢ € [0, y]. Similarly to Proposition 8 and Proposition 10 above, we now show that by can
be used to describe the entire boundary of Dy in [0, 00)2 (see Figure 1).

PROPOSITION 12. The following identity holds

(8.28) Do={(p1,92) €0, y1* | @1 < g2 < bo(g1) or g2 < @1 <bo(p2) )

with bg(0) = 1/8 and bo(y) =y € (1/B, 1). The mapping ¢ +— by(@) is concave and contin-
uous on [0, y].

PROOF. All claims follow by convexity (and closeness) of Dy established in Proposi-
tion 7 above combined with the symmetry relations (8.20) and (8.21). The latter symmetry
relation links Dy to D5 in a one-to-one way and this enables us to conclude that by(0) = 1/8
as claimed. The final claim bo(y) =y € (1/8, 1) is evident from (8.24)—(8.26) above. []

The one-to-one correspondence between Dy and D, obtained by the symmetry relation
(8.21) enables us to transfer the facts stated following Proposition 9 above from D; to Dy. In
particular, this yields that the mapping ¢ +— bg(¢) is (firstly) increasing on [0, 6] and (then)
decreasing on [§, y] for some § € (0, y) (see Figure 1).

8. Another consequence of the one-to-one correspondence between Dy and D> (and hence
D1 as well) is the possibility to describe the asymptotic behaviour of b and b, at infinity.
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PROPOSITION 13. We have

b b
(8.29) lim 2100 g 02002 g
1o g1 LI )

PROOF. The first equality follows by the symmetry relation (8.20) implying that b; co-
incides with b, on [0, 0o) so that it is enough to establish the second equality in (8.29). For
this, note that the symmetry relation (8.21) yields

(8.30) (1. bo(p1)) € 0C = (i, bwl)) €aC

?1 1
for ¢ € [0, y]. Note also that (¢1, bo(¢1)) € dDg tends to (0, 1/8) and (1/¢1, bo(¢1)/¢1) €
0 D5 tends to (00, 00) as ¢ — 0. The fact that the point (1/¢1, bo(¢1)/¢1) belongs to dC N
d D> means that this point can be identified with (b2(¢2), ¢2) for some ¢, > 0 with g» — 00
as ¢1 — 0. This shows that

1
ba(wa) o 1 1
(83 @ @) T po(e) ” % -’
@1

as o — 00. This establishes (8.29) and the proof is complete. [
We will continue our study of the sets Do, D1, D; in Section 10 below.

9. Smooth fit. In this section we show that the value function V from (4.18) satisfies the
smooth fit condition at the optimal stopping boundaries bg, b1, b>. A key point in the proof is
based upon the fact that the boundary points are Green regular for Dy, D1, D> in the sense

n on " no . .
that the first entry time rgl Y2 of (@1, %) into D; satisfies

(9.1) =0

with Py-probability one whenever (¢}, ¢5) from C tends to (¢1, ¢2) at the boundary 0C N D;
fori =0, 1,2 as n — oo. The Green regularity follows from the fact that the boundary points
are probabilistically regular for Do, D1, D; in the sense that Pgl’ (pz(TDI. =0) =1 for every
(o1, ¢2) at the boundary dC N D; for i =0, 1,2 combined with the fact that the process
(@', ®?) is strong Feller which is evident from (5.8) above (cf. [4], Section 3). The prob-
abilistic regularity is a consequence of the fact that the sets D; are convex (as established
in Proposition 7 above) so that in view of (5.8) each boundary point from dC N D; satisfies
Zaremba’s cone condition for D; withi =0, 1, 2 (see, e.g., [11], Theorem 3.2, p. 250). These

facts establish (9.1) and we can now state the main result of this section.

PROPOSITION 14 (Smooth fit). For the value function Vfrom (4.18) we have

9.2) Vo, (01, 92) = My, (01, 92)
9.3) ‘7902 (01, 92) = Mgaz (o1, 92)

forall (p1,¢2) €0CND; withi=0,1,2.

PROOF. We will establish (9.2) and (9.3) for D, and similar arguments can be used for
Dy and D;. For this, let ¢1 = b2(¢2) with ¢ > 0 be given and fixed in the sequel.
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1. We show that (9.2) holds. For this, we first note that

V(g1 —h, )=V (91, 92)

(9.4) liminf
hl0 —h
M (g1 —h, 3)— M (@,
> liminf (1 ©2) (o1, 92) _0
hl0 —h

since V(1 —h, ¢2) < M(p1 —h, ¢2) and V (g1, ¢2) = M(¢1, ¢2) with ¢} = M (g}, ¢) =
c(1+4 ¢2) being constant for ¢ > @2 > 1. We next show that

Vg1 —h, 92)—V (01,
9.5) Jim sup (o1 ©2) =V (p1,92) 0.
) —h

For this, let rgl_h"pz denote the first entry time of (®¥1~", ®¥2) into D for h > 0 given and
fixed. Since ‘Egl ~he2 g optimal for V((pl —h, ¢3) we find by (5.8) that

(9.6) Vigi—h, 92)—V (91, 92)

Tﬁﬂl—h,(ﬂz A
onUD (1+<D;”‘_h+q§,‘/’2)dt+M(cp“’"h Y2 )]
0

o1—h,9p o1—h,0p
™D ™

—h,
r‘/’l 2

D A
_Eo[/ (1+q§t¢1+q)t<ﬂz)dz + M(qﬁ‘/ﬁgl_h,q;z, @“;?l_h,wz)]
0 p 19))
¢1—h.¢
_ w7 1 1 o1—h,¢ p1—h,¢2
=E, A (—h®,)dt — chcbtw[_h,q,z I(z} # Tpy )
D

for all & € (0, hg) with some hg > O sufficiently small, where in the final equality we use
(6.4) combined with the two implications in (9.7) below which we motivate and derive first.

Recalling (6.4) and definitions of Ag, A1, Aj stated afterwards, we claim that
9.7) (@4 ) @7, ) €0CND; = (0%, &%, )eA,

™D ™D ™D ™D
for h € (0, hp) with some hg > O sufficiently small and i =0, 1.

To show (9.7) for i = O recall that ¢ and c; are contained in C so that the continuous curve
by stays away from the straight line cp in particular. Setting 7, := Tg:)—h,wz to simplify the
notation throughout this shows that there exists § > 0 sufficiently small such that the right-
hand side in (9.7) with i = 0 implies that (¢1—h) CDtlh < 1-6 for h € (0, ¢1). This implies that
<Drlh < (1—=98)/(¢1—ho) for all h € (0, hg) with hg € (0, ¢1) given and fixed. It follows that
i = @] = (p1—h)@] +hd] <1-8+ho(1-8)/(p1—ho) = [(1-8)(14+ho) / (p1—ho)] <
1 if we choose Ay > 0 small enough. This shows that (9.7) holds for i = 0 as claimed.

To show (9.7) for i =1 set 7; := tg'l_h’m to simplify the notation throughout and note
that (8.29) shows that there exists § > 0 sufficiently small such that the right-hand side in
(9.7) with i =1 implies that (p1 —h) P} < (1—8) @2 @2 for h € (0, ¢1). This implies that
@Tlh <[(A=8)/(p1—ho)]p2 Q§Tzh for all 2 € (0, hg) with hg € (0, ¢1) given and fixed. It follows
that @7} = g1 Py, = (91 —h) Py +h Py < (1=8) 2 @7 +h[(1=8)/(p1—ho)lp2 7, =<
[(1=8)(14+ho)/(p1 —ho) 1P < ®F? if we choose hp > 0 small enough. This shows that
(9.7) holds for i =1 as claimed.

Making now use of (6.4) and (9.7) in the middle term of (9.6) above, upon noting that

o1—h,¢2 o1—h.g2 _@1—h,¢2 _¢1—h,¢ :
145 always equals one among 7, s Tp, > Tp, respectively, we see that the
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final equality in (9.6) holds as claimed. Dividing both sides of (9.6) by —/ we obtain

Vigi—h, 92) =V (@1, 92)
—h
TW] —h,pp

550[/0D o/ di+c®ly s 1(7h) BaeE 173 h‘”z)]

9.8)

for all i € (0, hg). Letting & | 0 and using that the right-hand side in (9.8) tends to zero by
(9.1) and the continuity of V we see that (9.5) holds as claimed. Combining (9.4) and (9.5)
with the fact that M¢1 (¢1, v2) = 0 we see that (9.2) holds as claimed.

2. We show that (9.3) holds. For this, we first note that

Vo1, 03—h)—V (g1,
9.9) limin (01, 02—h) =V (o1, 92)
hi0 —h

M —h)—M
> liminf (@1, 92—h) (01, 92) _
hl0 —h
‘7 ) h _‘7 )
9.10) lim sup (¢1, p2+h) =V (g1, ¢2)
hi0 h

. M(p1, p2+h)— M (1, 92)
< lim sup =
hy0 h

depending on whether (¢1, 92 —h) or (¢1, ¢2+h) belongs to C for & > 0 respectively. In
(9.8) and (9.9) we use that V (@1, 2 Fh) < M(¢1, 92 F h) and V (@1, 92) = M (@1, ¢2) with
@5 = M (@1, ¢5) = c(14¢)) being linear for 1 < ¢5 < ¢;. We next show that

Vg1, p2—h)—V (91, 92) -

(9.11) lim sup
hi0 —h
V(pr, g2+h)—V(e1,
©.12) liminf (o1, 02+h) =V (01, 2) .
hl0 h

depending on whether (¢1, 2 —h) or (g1, g2 +h) belongs to C for h > 0 respectively. For
this, let ‘Egl 2% Jenote the first entry time of (®%!, ®¥>F) into D for h > 0 given and fixed.

Since rgl"pﬁh is optimal for V (¢1, 9> F h) we find by (5.8) that
(9.13) Vipr, o2 Fh) =V (g1, ¢2)
2/31 92 Fh
> Eo[/o (14+ 07"+ o) dr + M(c1><‘;}1 o @“;ﬁ’;ﬂ)}

s h
t‘ﬂ] 2F

D
_ Eo[/o (1+ @'+ @) dt + M(cb*f,}1 — befl,wm)]
D

s h
_[‘ﬂ] 2F

D Y i
= Eo[/o (Fh@?)dr Ch@fwl,q;ﬁh (e T L o8 <p1 0T )}
D
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for all & € (0, hg) with some hg > O sufficiently small, where in the final equality we use
(6.4) and (9.7) similarly as in (9.6) above. Dividing both sides of (9.13) by & we obtain

Vg1, o2—h)—V (91, 92)

(9.14) —
u(’;l’(pz*hz ) _h —h
< E0|:/0 P, dt + ccprglv‘PZ*h I(‘[gl’wz + Tg?w ):|
©.15) Vg1, 24+ —=V(e1, ¢2)
h
r<p1,<p2+h

D 2 2 @1,02+h @1,92+h
> Eo[/0 &, dt + ccbrwwﬁh I(zp "+ rD‘I >
D

for all 4 € (0, hg). Letting & | 0 and using that the right-hand side in (9.14) and (9.15) tends
to ¢ by (9.1) and the continuity of V we see that (9.11) and (9.12) hold as claimed. Combining
(9.9)+(9.10) and (9.11)+(9.12) respectively with the fact that /l;I(p2 (o1, 92) = ¢ we see that
(9.3) holds as claimed. This completes the proof. [

COROLLARY 15 (C! regularity). For the value function 1% from (4.18) we have

(9.16) (o1, p2) — le (o1, @2) is continuous on (0, 00)?
9.17) (o1, p2) — \A/m (o1, @2) is continuous on (0, 00)2.

PROOF. We have established in Proposition 14 that V is differentiable on (0, 00)2. By
(8.4) we know that V is concave on [0, 00)2. The claims (9.16) and (9.17) then follow from
the general fact that concave differentiable functions are continuously differentiable on open
sets (see, e.g., [2], Theorem 2.2.2). This completes the proof. [J

10. Nonmonotonicity of the optimal stopping boundaries. In this section we show
that the optimal stopping boundaries by, b1, b are nonmonotone as functions of their argu-
ments and prove the existence of a “belly” which determines their curvature/shape. In the
first part of the proof we introduce the local time of @ on a fictitious curve which enables
us to decompose the two-dimensional optimal stopping problem into two one-dimensional
optimal stopping problems which can be solved explicitly. In the second part of the proof we
follow the general hint from [16], Remark 13, on establishing the absence of jumps of the
optimal stopping boundaries and make use of Hopf’s boundary point lemma to derive a con-
tradiction with the directional smooth fit. In view of the symmetry relations (8.20)+(8.21) it
is sufficient to focus on the optimal stopping boundary b, and these facts then extend to the
optimal stopping boundaries by and b as discussed in Section 8 above.

1. To derive that the optimal stopping set D> has a “belly” as displayed on Figure 1, we
first show that not only the point (8, 0) belongs to D, as derived in Section 7 above but also
a nontrivial vertical segment above (8, 0) is contained in D;.

PROPOSITION 16. For the stopping set Dy from (8.10) we have

(10.1) {B}x[0, ¢2] € D

for some @3 > 0 small enough.
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PROOF. The idea is to introduce the local time of @ on the line

(10.2) ch=1(p1,92) €10,00% g1 =1 & g2 €[l,00) ]}

and decompose the two-dimensional optimal stopping problem (4.18) into two one-
dimensional optimal stopping problems that can be solved explicitly.

For this, set ¢} := B throughout and consider the Lagrange reformulation (6.5) of the
optimal stopping problem (4.18) that yields

(10.3)  V(¢}, ¢2) =M (4], ¢2)
3 ' ¢ C c C
=infEQ, . [/O (1+® +07) dt — 5(zz;>(<p)+z;(q>)+ﬁg(<p))]

for ¢, € [0, 0o) where the infimum is taken over all stopping times T of @. Since the left-
hand side of (10.3) is nonpositive, it is enough to show that the left-hand side of (10.3) is

nonnegative for all ¢, > O sufficiently small. For this, adding and subtracting Zi‘)((b) under
the expectation sign in (10.3) and noting that

(10.4) £0(D) + £0(D) = £ (D)
we find that
. T c C| C C
(10.5) inf ngz [/0 (1+® +02)dr — 5(510(q>)+erl(<1>)+(i12(q>))]

T
> inf E0, wz[/o (1+@))dr - Sel(@ )}
+infE? "o2dr + Eec‘)(cp) _< (L5 (D) +-£2 (D))
T e fy ! 2T o\t T

T
1nfE2] > [/ (1+<ptl)dt+c(1/\q§rl)}—c(lA(pi")

—i—irTleO U &2 dt + M (P!, @ )}—M(w’f’soz)

>1nfE0 U o2 dt +c(1nD? )]—c(lf\fpz)

for ¢ € [0, 1] where in the equality we use the [t6—Tanaka formula (cf. [19], p. 223) applied
to c(1 A @), and the change-of-variable formula with local time on surfaces [15], Theorem
2.1, applied to M (@ I @?) similarly to (6.9) above with

(10.6) M :=c[(1V 1) Ag]

for (¢1,¢2) € [0, 00)2 both combined with the optional sampling theorem upon using that
@! and @2 are martingales under Py. In the final inequality of (10.5) we use that ol =P
is an optimal stopping point in the one-dimensional optimal stopping problem for ®! as
established in Section 7 above as well as that M (¢}, ¢2) = c[(1 V ¢}) A 92] = c(¢F A @) =
cpr =c(1 A @) for ¢ € [0, 1] as claimed.

Motivated by the right-hand side in (10.5) above, consider the optimal stopping problem

(10.7) V() :inng[/r &, dt —{—c(l/\@br):|
T 0

for ¢ € [0, co) with P(g (®9=¢) = 1 where the process @ and its infinitesimal generator L
are given by (7.2)4(7.3) and (7.4) above, and the infimum in (10.7) is taken over all stopping
times 7 of @. The optimal stopping problem (10.7) is similar to the optimal stopping problem
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(7.1) and we can use similar arguments to tackle it. Denoting the loss function in (10.7) by
M () = c(1Ap) for ¢ € [0, 00) it follows that the free-boundary problem now reads

(10.8) LoV (p) = —¢ for ¢ € (¢5.¢7)
(10.9) V(@F) = M(¢}) for i =0, 1 (instantaneous stopping)
(10.10) V(@) = M'(@F) for i =0, 1 (smooth fit)

where 0 < ¢; < 1 < ¢} < oo are the optimal stopping/boundary points to be found and we
have V((p) = 1\7I(g0) for ¢ € [0, ¢3) U (¢}, oo) as well (in addition to (10.9) above).
The general solution to the ordinary differential equation (10.8) is given by

R |
(10.11) V((p)=Ag0+B+?go(l—log(p)

for ¢ > 0 where A and B are two undetermined real constants. Boundary conditions (10.9)
and (10.10) then read as follows

- ~ 1 ~
(10.12) AGy+ B+ -5 ¢ (1-loggg) = cgg
- -1 ~
(10.13) A¢T+B+E¢T(1—log<ﬂi")=c
| Y
(10.14) A— —loggy=c
7
| Y
(10.15) A— —logg; =0.
7
It is a matter of routine to verify that the unique solution to (10.12)—(10.15) is given by
2 2 cu?
. ci .. Ccu‘e
10.16 (== & fi=—7—
( ) Po 65“2—1 1 eCV“z—l
~ 1 ~ 1
(10.17) At=ctogloggy & BT=—50.

Note that ¢ € (0, 1) and ¢ € (1, 00) as needed. Inserting A* and B* from (10.17) to (10.11)
we obtain a candidate value function V* for the optimal stopping problem (10.7). Applying
the It6—Tanaka formula (cf. [19], p. 223) to V* composed with @, which reduces to Itd’s for-
mula due to smooth fit (10.10), and making use of the optional sampling theorem, it is easily
verified that V* coincides with the value function V from (10.7) and the optimal stopping
time (at which the infimum in (10.7) is attained) is given by

(10.18) t.=inf{t>0| @, ¢ (&5, ¢7) )

where ¢ and ¢ are given by (10.16) above. This in particular shows that the interval [0, @]
is contained in the stopping set of the optimal stopping problem (10.7). Translating this con-
clusion to the right-hand side of (10.5) above we see that its value equals zero whenever ¢
belongs to [0, ¢5]. It follows therefore from (10.3) and (10.5) that ¢ in (10.1) can be taken

to be equal to g5 = cu?/ (eC“2 —1) and the proof is complete. [

2. We now show that the “belly” of the optimal stopping set D> is not flat but curved
(see Figure 1). For this, suppose that this is not the case. Then [a, b) x [c, d] € C with {b} x
[c,d] € D; and {b} x (d, b] C C for some a < b with [a, b] C [1, B] and some ¢ < d with
[c, d] € [0, a]. The initial claim is then a direct consequence of the following fact.
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PROPOSITION 17. If the “belly” of the optimal stopping set D> would be flat as de-
scribed above, then the horizontal smooth fit condition (9.2) would fail on {b} x [c,d] C
0C N Dy.

PROOF. Suppose that the “belly” of the optimal stopping set D, is flat as described
above. Set RV = (a,b) x (c,d) and R' = (a,b] x (c,d) with R = [a, b] x [c, d]. Recalling
the Lagrange reformulation (6.5) of the optimal stopping problem (4.18), and arguing as in
the proof of Theorem 12 in [16], we find that the value function V from (4.18) solves the
equation

(10.19) LoV =—H
on R® and belongs to C 4(R") where L is given by (5.9) above and we set

(10.20) H(p1, ) = 1+014+¢2

for (g1, ¢2) € [0, 00)2. Differentiating both sides of (10.19) with respect to ¢, and defining
the differential operator IL by setting

(10.21) L= <p1 Wm + o192 a(m(pz + @3 85%02 + 2010y, +4¢20y, +2
we find that waz solves the equation

(10.22) LVpyg, =0

on R°. We will now complete the proof in two steps as follows.

1. We claim that the strict inequality holds

(10.23) ‘7902(p2 (p1,92) <0

for all (¢1, @) € R For this, suppose that (10.23) fails for some (g1, ¢2) € RO. Recalling
that {b} x (d, b] € C, consider the ball b(z,r) with centre at z := (b, d) and radius r > 0
small enough so that b(z,r) C A,, where Aj is defined following (6.4) above. Enlarge R
by setting RY:=ROU (b(z,r) N C) and note that the same arguments as above show that the
equations (10.19) and (10.21) hold on RO too. Since the coefficients of LL are continuous and
the set RV is bounded we can conclude that L is uniformly elliptic on R? (cf. [9], p. 31). The
hypothesis that (10.23) fails for some (¢1, ¢2) € R combined with the fact that prz <0
on RO by (8.4) above, implies that V(pz(p2 (91, ¢2) = 0 so that V(/,z(p2 attains its maximum in
the interior of R® (i.e., not at its boundary alone). Hence by the strong maximum principle
for elliptic equations (see Theorem 3.5 in [9], p. 35, and the second sentence following its
proof) we can conclude that me = 0 on the entire R0 This in particular means that ¢ —
V(b, @>) is linear on [d, d+r]. Since ¢; +— V(b, @) =c(1+¢2) 1SA11near on [c, d] as well,
and the vertical smooth fit (9.3) holds at z = (b, d), it follows that V (b, ¢2) = c(1+¢») for
all ¢ € [c,d—+r] so that {b} x (d,d+r] C D which is a contradiction. This establishes that
(10.23) is satisfied as claimed.

2. Fix any point e in (c, d) and note that \A/(pwz (b, e) = 0 since Ve C*(RY Cc C%(R') and
‘7(b @) =c (14+¢) for ¢, € [c,d]. Hence we see that (10. 23) reads as ‘A/(pwz((p],gog) <
Vm(p2 (b,e) for all (¢1,¢2) € R°. Moreover, we know that L is uniformly elliptic and
L prz > 0 holds on R° by (10.22) above. Finally, it is evident that R® satisfies an in-
terior sphere condition at z := (b, e) € dRY (i.e., there exist w € R and r > 0 such that
b(w,r) € R® and z € (b(w, r))). These facts show that Hopf’s boundary point lemma for
elliptic equations (see [9], Lemma 3.4, p. 34) is applicable and thus the outer normal deriva-
tive of \A@,wz at z = (b, e) must be strictly positive. In other words, we have

(10.24) Vron)or(br€) > 0.
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This conclusion shows that the horizontal smooth fit condition (9 2) cannot hold on {b}x [c, d]
as claimed, since otherwise we would have (V</,2¢,2)(/;l (b,e) = (V(p1 )20, (b, €) =0 due to Ve
C*(R") € C3(R"), and the proof is complete. U

11. Free-boundary problem. In this section we derive a free-boundary problem that
stands in one-to-one correspondence with the optimal stopping problem (4.18) and establish
the fact that the value function V and the optimal stopping boundary dC solve the free-
boundary problem uniquely. These considerations will be continued in the next section.

1. Consider the optimal stopping problem (4.18) where the strong Markov/Feller process
@ = (@', ®?) solves the system of stochastic differential equations (5.6)+(5.7). Recalling
that the infinitesimal generator Lg of @ is given by (5.9) above, and relying on other proper-
ties of V and dC derived in Section 8 above, we are naturally led to formulate the following
free-boundary problem for finding V and 3C:

(11.1) LoV =—H on C
(11.2) V=MonD (instantaneous stopping)
(11.3) Vi = My, on dC for i =1,2 (smooth fit)

where H is given by (10.20) above and M is given by (4.13) above. The continuation set C
and the stopping set D are formally defined by (8.1) and (8.2) respectively. We know from the
results of Section 8 that the optimal stopping boundary dC can be fully described by means
of the functions by and b; defined in Section 8 above via the equivalence (@1, ¢2) € 0C
if and only if either (@1, ¢2) € 9C N Dy and ¢; = bo(¢;) when ¢; > ¢; for i # j € {1, 2}
or (¢1,92) € 0C N D; and ¢; = bi(g;) for i # j € {1,2} where Dy, D1, D, are given by
(8.8)-(8.10) above (see Figure 1). Clearly the global condition (11.2) can be replaced by the
local condition V = M on 9C so that the free- boundary problem (11. 1) (11.3) needs to be
considered on the closure of C only (extending V to the rest of D as M).

2. To formulate the existence and uniqueness result for the free-boundary problem (11.1)—
(11.3) we let C denote the class of functions (F; ag, a;) such that

F is concave and continuous on [0, oo)2 and belongs to

11.4
(114 C'((0,00)%) N C?*(Cyy.ay)
(11.5) ap is concave and continuous on [0, §] with ag(0) =1/8 & ag(8) =46
) and ¢ < ap(p) <1 for ¢ € (0,5) with some § € (0, 1)
(11.6) ap is convex and continuous on [0, co) with a;(0) =8 & aj(0c0) =

and a;(p) > 1V g for ¢ €[0, 00)

where Cogqy i= { (@1, ¢2) € [0,00)% | ap(¢i) < ¢; < ai(g;) when ¢; < ¢; and ¢; €
[0,8] or ¢; <¢; <ai(p;)) when ¢; <¢; and ¢; € (§,00) for i # j € {1,2} and some § €
(0, 1) } is the open set surrounded by ag and a; (applied twice).

THEOREM 18. The free-?oundary problem (11.1)—(11.3) has a unique solution (\7;
bo, b1) in the class C where V is given by (4.18) while by and by are defined in Section 8
above.

PROOF. Combining the results of Proposition 5 and Corollary 15 with the arguments
leading to (10.19) above, we see that the value function V from (4.18) satisfies (11.4) and
solves the boundary value problem (11.1)-(11.3) with 0C described by bg and b; from Sec-
tion 8 as recalled above. Moreover, combining the results of Propositions 8—12 we see that
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bo and by satisfy (11.5) and (11.6) respectively. This shows that (\7; bo, b1) solves the free-
boundary problem (11.1)—(11.3) in the class C as claimed. To derive uniqueness of the so-
lution we will first see in the next section that any solution (F'; ag, ay) to the free-boundary
problem (11.1)—(11.3) in the class C admits a closed triple-integral representation of F' ex-
pressed in terms of ag and a1, which in turn solve a coupled system of nonlinear Fredholm
integral equations, and we will see that this system cannot have other solutions satisfying
the specified properties. Drawing these facts together we can conclude that there cannot exist

more than one solution to the free-boundary problem (11.1)—(11.3) in the class C as claimed.
O

12. Nonlinear integral equations. In this section we show that the optimal stopping
boundaries by and b1 can be characterised as the unique solution to a coupled system of non-
linear Fredholm integral equations (recall that b, coincides with b; in terms of its functional
rule). This also yields a closed triple-integral representation of the value function 1% expressed
in terms of the optimal stopping boundaries by and b;. As a consequence of the existence and
uniqueness result for the coupled system of nonlinear Fredholm integral equations we also
obtain uniqueness of the solution to the free-boundary problem (11.1)—(11.3) as explained in
the proof of Theorem 18 above. Finally, collecting the results derived throughout the paper
we conclude our exposition at the end of this section by disclosing the solution to the initial
problem.

1. To formulate the theorem below, let p denote the transition probability density function
of the (time-homogeneous) Markov process @ = (@ I ®2) under Py in the sense that

Vi v
(12.1) P) (@ <Y1, @ <) =/0 /0 p(t; @1, 925 1, m2) dmdna

for ¢t > 0 with (¢1, ¢2) and (¥, ¥) in [0, oo)z. A lengthy but straightforward calculation

based on (5.8) shows that
1 | V1Y
exp|—— t+1lo ( )
23Uty v p[ 3<“ 8 192

e () o) o))

for t > 0 with (¢1, ¢2) and (Y1, ¥) in [0, oo)z. Recalling from Section 8 above that the
functions bg and b are sufficient to describe the entire boundary of the continuation set, we
can then evaluate the expression of interest in the theorem below as follows

(12.2) p(t; 01,92, Y1, Y2) =

Oo A
(12.3) S [/0 H(®! o) 1((@], #?)eC) ds:|

oo/ oo rb1(Y1) .
=f (/ / H(l//lal/fz)p(sﬂﬂl,(pz;1//1,1//2)dw2dw1
0 \Jo Jro(yi)vy

oo rb1(Y2)
T g s e g . ) dWldW2>dS
0 Jbo(Y2) V2

oo roo rbi(Y1)
=2f /f A1, v2) pls; o1, 923 Y1, ¥2) d dop ds
0 JO Jbo(¥1)Vvy

for (1, 92) € [0, 00)? where the final ‘equality follows by symmetry relative to the main
diagonal in [0, 00)? and we recall that H is defined in (10.20) above.
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THEOREM 19 (Existence and uniqueness). The optimal stopping boundaries by and by
in the problem (4.18) can be characterised as the unique solution to the coupled system of
nonlinear Fredholm integral equations

2 oo poo pbi(Y1)
(12.4) 901+bo(901)=—f // A, ¥)
cJO JO Jbo(Y¥1) Vi
X p(s; @1, 92; Y1, ¥2) dyrady ds
2 oo poo prbi(Y1)
(12.5) L 4+g == / f f AW, )
cJO JO Jby(Y1)Vi

X p(s; 01, 925 Y1, ¥2) dyp dyids

in the class of functions ag and ay satisfying (11.5) and (11.6) respectively, where ¢y in (12.4)
belongs 1o [0, y ] with bo(y) =y for some y € (0, 1) and ¢, in (12.5) belongs to [0, 00). The
value function V in the problem (4.18) admits the following representation

n oo poo pb1(Y1)
(12.6) Vot g2 =2 / / f A ¥)
0 JO Jbo(¥1)Vvyn

X p(s; @1, 92; Y1, ¥2) dyadids
for (1, ¢2) € [0, 00)2. The optimal stopping time in the problem (4.18) is given by
(12.7) Tpopy = inf{1>0| D > ®] with & < bo(®]) or & = by (®])
for i #j in {1,2}}

under Pwl o, With (¢1, ¢2) € [0, o0)? given and fixed (see Figure 1).

PROOF. (I) Existence. We first show that the value function V in the problem (4.18)
admits the representation (12.6) and that the optimal stopping boundaries by and b; solve the
system (12.4)4(12.5). Recalling that by and b; satisfy the properties (11.5) and (11.6) this
will establish the existence of a solution to the system (12.4)+(12.5).

For this, recall that by (8.4) in Proposition 5 we know that V is concave and from Corol-
lary 15 we know that V is globally C! on (0, 00)?. These properties however are generally
insufficient to apply a known extension of It6’s formula to V(@!, ®2) due to not knowing
the size of the second partial derivatives wal, le’m, \A/m’(pz close to the optimal stopping
boundaries. Note that we know that the optimal stopping boundaries are convex/concave,
however, this is generally insufficient to derive a local boundedness of the second par-
tial derivatives close to the optimal stopping boundaries (without having their smoothness)
using the generally theory of elliptic PDEs (see [9]). A semimartingale decomposition of
V(@!, ®2) obtained by It6’s formula is useful because it leads to Dynkin’s formula (upon lo-
calising, taking expectations, and passing to the limit) which in turn yields the representation
(12.6). We will show in the proof below that Dynkin’s formula can be derived without ap-
pealing to Itd’s formula and/or without formally verifying that the second partial derivatives
are locally bounded close to the optimal stopping boundaries. This will be accomplished in
several steps below by exploiting the underlying convexity/concavity in the problem (4.18)
combined with the fact that the expectation of the running local time of (@', @2) on the (ap-
proximating) optimal stopping boundaries remains uniformly bounded as the time tends to
infinity (recall that (@ L @2) itself converges to zero so that this is rather intuitive).

1. We begin by localising the process & = (®!, ®2). For this, let N > 1 be given and
fixed (large) and consider the first exit time of & from the square [1/N, N]* given by

(12.8) py =inf{r>0|®, ¢ [1/N,NI*}.
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Let @V = (P pp )i>0 denote the process @ stopped at py. Clearly the process @°¥ stays
in the square [1/N, N]? all the time while both V and \A/(/,i are continuous and thus bounded
on [1/N, N]? for i = 1,2. As we have not established that Vtm,wl’ 17(/;,#,2, \A/m’(pz are locally
bounded close to the optimal stopping boundaries, we proceed by modifying the value func-
tion V within the continuation set C close to its boundary.

2. For n > 1 given and fixed (large) define the sets C, := { (¢1, ¢2) € [0, 00)? | V((pl,
©2) < M(p1,92)—1/n} and D, = { (p1, ¢2) €[0,00)% | V(1. 92) = M (g1, ¢2)—1/n}. Set
C!':=C,NA;and D} := D, N A; where A; are defined following (6.4) above fori =0, 1, 2.
Clearly D! | D; as n — oo for i =0, 1,2. Using the same arguments as in the proof of
Proposition 7 above we find that each set D;' is convex fori =0, 1, 2. Hence we can conclude
that the boundary b of D! restricted to the square [1/N, N 1> converges uniformly to the
boundary b; restricted to the square [1/N, N ]2 asn — oo fori =0, 1, 2. Thus, as in the case
of the sets Do, Dy, D5 and their boundaries by, b1, b2, the boundary of the set Dy restricted to
the square [1/N, N 1? is described by a concave/continuous function by : [1/n, y,] — [0, 1]
and the boundaries of the sets D} and D5 are described by a convex/continuous function
b} :[1/N,N]— [1, N]forall n > ng with ng > 1 sufficiently large.

3. We approximate the value function 1% by functions V" defined as follows

(12.9) V' (@1, 02) = Vg1, @2) if (¢1,92) € Cy

. 1
=M(¢1,<ﬂ2)—; if (p1,92) € Dy

for (¢1, ¢2) € [0, 00)? with n > ng given and fixed. Clearly V" is a continuous function on
[0, oo)2 and moreover V" restricted to C,, and D, belongs to Cz(Cn) and CZ(Dn) respec-
tively. Thus the change-of-variable formula with local time on surfaces [15], Theorem 2.1, is
applicable to V" composed with @V = (¢ 1V $2PN) and this gives

(12.10) Vi (@PN)

_V”((p)—l-f Ve (@fV)d q>10n+/ Vo (@LN) ddyn
+ / Loy V(@PV) ds
Vn ¢1pN bl ¢1pN
w2 [ B(@1)4)

L,n
bO

— Vg, (@b, Byl a (@)
43 [ 17 @2+ 02
0 (@2~ 027 )] bl (@)
43 [0 @b b(@l )4

— U (@1PV, B (@) <) ] ded (@0

1 [foA
+5 [ 7,01 (@) + 020)
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—Vn (B (PPN — PPN dgbg PPN
Vgo]( 1 (¢s ) ’ ¢s )] s ( )
A INPN 1 . N
=V (go)—i—M,—/(; H(¢S)I(Q§SECn)ds+§Lt’

for ¢ € [0, 00)? using (11.1) and (11.2) where M; is a continuous martingale (the sum of the
first two integrals in the first identity of (12.10) above) and L?’N is the sum of the final four
integrals in the first identity of (12.10) above. Note that the first partial derivatives V,; and

V(;Lz are discontinuous over the boundary curves b;; and b} because these boundary curves are
not optimal. However, since Vis globally C! on (0, 00)? by Corollary 15, it follows that

(12.11) sup  |V2 (1. b} (@) — M2, (1. b} (@1))| = 0
1/N<¢1 <N

(12.12) sup |V (92, b (92)) — M2 (2. b} (@2))| = 0
I/N<¢1=N

for i = 0,1 as n — oo. Note that the suprema in (12.11) and (12.12) for i = 0, 1 provide
uniform upper bounds on the modulus of the integrands in the four integrals of (12.10) with
respect to the local times. To obtain a control over the local times themselves in these four
integrals (their integrators) we now show that their expectations remain uniformly bounded
as the running time tends to infinity.

4. We first consider the case of b(])’" and bg’" recalling that the two functions coincide by
symmetry for n > 1 given and fixed. We thus focus on bé’" in the sequel. Since bé’” is concave

we see that @>PN — bé’”(@l’pN ) is a continuous semimartingale so that by the It6—Tanaka
formula we find that

(12.13) (@tz’pN_b(l)Jl((pll,pN))Jr
= (p2—by" (e1))"

t
+ [ 1@ by (@ L) d(@2 " (@)

N

1 1,n
+ L om)

t
= (p2—by" (1) + /0 (@77 >by" (&) d b
t
= [ 1@ by @) (") (@17 db Y
0

t [ee}
— [ 1@ by (@) [ det@ vy aey”) )
0 0

1 bl.n
+5 600

2
for t > 0 where (b(l)’")/ denotes the first derivative of b(l)’" (its existence follows by the implicit
function theorem since smooth fit fails at b(l)’" as pointed out above). Since b(l)’" is concave

we see that d (b(l)’" )" defines a nonpositive measure on [1/N, y,,] so that the final integral in
(12.13) is nonpositive. Using this fact in (12.13) we obtain the following pathwise bound on
the size of the local time

1,n
(12.14) 0 (DPY) <2(D7N —by" (@1 N)) T — M,
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where M, is a continuous martingale (the difference between the second and the third integral
in (12.13) above) for ¢ > 0. Taking E° on both sides of (12.14) above and using that

P1,92
®2PN < N forall t > 0 we find that

(12.15) EQ (60 ] <2N

for all > 0 and all n > ng with (¢, ¢2) € [0, oo)2 and i = 1, 2 (where the case i = 2 follows
from the case i = 1 by symmetry).

5. We next consider the case of b} and b, recalling that the two functions coincide by
symmetry for n > 1 given and fixed. We thus focus on bf in the sequel. Similarly, since
bl is convex we see that b{‘(cbl""N ) — ®@%PN is a continuous semimartingale so that by the
[t6-Tanaka formula we find that

(12.16)  (B)(@} ") —2rV)*
= (B 1) —g)"

t 1 n
+ [ 1010} = 02 a0 ) 02, + 2 (@)

t
=V (1) —e) " + /O I(b} (@ PN)>D2PN) (D) (D4 PN) dd PN

t [e¢}
+ [ 1@i@} )= 020 [ aet (@ ) ) W)

t 1
- [ 161 (@} > 02y aae 4 S
0

for t > 0 where (b))’ denotes the first derivative of 5] (its existence follows by the implicit
function theorem since smooth fit fails at b7 as pointed out above). Since b} is convex we
see that d (b{’)/ defines a nonnegative measure on [1/N, y,,] so that the second last integral in
(12.16) is nonnegative. Using this fact in (12.16) we obtain the following pathwise bound on
the size of the local time

A2.17) (@) <2(bf (0] ™) 0P -

where M, is a continuous martingale (the difference between the second and the final integral
in (12.16) above) for ¢ > 0. Taking ngz on both sides of (12.17) above and using that
b} < by with My := SUP |y <, <n b1(91) < 00 we find that

bn
(12.18) Eo ,[6'] <2My

for all r > 0 and all n > ng with (g1, ¢2) € [0, 00)>.
6. Combining (12.11)+(12.12) with (12.15)+(12.18) we find that EC_ _[L""]— 0 as

91,92
0

$1,92
of (12.10), letting n — oo and using the monotone convergence theorem due to H > 0, we
obtain the following identity

n — oo for every (g1, ¢2) € [0, 00)? and N > 1 given and fixed. Taking E on both sides

A

A~ N tAPN
(12.19) Eo ooV (@)= V(er.¢2) — E(“)’l*‘”[/o H(cbs)l(cbseC)dS}

fort > 0and N > 1 with (¢1, ¢2) € [0, 00)2. Recalling that 0 < 1% < M where M is defined in

.13) above, and noting that supg.~, ') < oo fori = 1,2, we see ettin —
(4.13) ab d noting th ngz( Po<s<r Py) f 1,2 by 1 gN

oo that the dominated convergence theorem is applicable to the left-hand side of (12.19),
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while the monotone convergence theorem is applicable to the right-hand side of (12.19) since
H > 0. Letting N — oo in (12.19) we thus obtain

(12.20) E0 L [V(@)]= V(1,92 —EY | m[/ H (D)) 1 (&, eC)ds]

for t > 0 and (¢1, ¢2) € [0, 00)Z.

7. Despite the fact that neither (thl )r>0 nor (Cptz)tzo is uniformly integrable (since thi -0
with Py, ,-probability one as t — 0o but E, ,,(®!) = ¢; for all ¢+ > 0 with i = 1,2 and
(o1, 92) € (0, 00)?2 given and fixed) we claim that

(12.21) (M (@], @) |t >0} is uniformly integrable

where we recall that M is defined in (4.13) above. For this, note that 0 < M (cb}, Cbtz) =
(PP A+DH A (14+PD) < c(1+PH A (1+P2) =c(14+P] A ®?) fort > 0. A
direct martingale argument based on (5.8) then gives
23 fwl

(12.22) E [® AP =p192E[eV

(e ae )

1,2 L 13,2

_1,2
=gpe T 50

as t — oo for (1, @) € [0, 00)?. Since cbtl A cbtz — 0 with Py, ,,-probability one as t —
oo for (g1, ¢2) € (0,00)? given and fixed, we see from (12.22) that {®@! A &2 |t > 0} is
uniformly integrable. Hence by the bound preceding to (12.22) we see that (12.21) holds as
claimed.

8. Since 0 < V(@!, @2) < M(®,}, ®?) for t > 0 we see from (12.21) that { V(P),
@,2) | t > 0} is uniformly integrable. Letting + — oo in (12.20) and using that \7(q§t1, qﬁtz) —
0 with Py, ,,-probability one we thus find by the extended dominated convergence theorem
(applied to the left-hand side) and the monotone convergence theorem (applied to the right-
hand side) that the following identity holds:

(12.23) V(i g2) =E) wz[/ H(®,) (P, eC)a’s}

(<p1 ) € [0, oo)2 Combining (12.23) with (12.3) we obtain (12.6) as claimed. Evaluating
V from (12.23) at the optimal stopping points (¢1, bo(¢1)) and (¢1, b1(¢1)) upon using that
V (g1, bo(g1)) = M (g1, bo(91)) = @1 +bo(g1) and V (g1, b1 (1)) = M (91, bi(¢1)) = 1+¢
for ¢1 € [0, y] and ¢ € [0, co) respectively, we see that the functions by and b; solve the
integral equations (12.4) and (12.5) as claimed. This completes the proof of the existence of
the solution to these equations.

(IT) Uniqueness. To show that bg and b are a unique solution to the system (12.4)+(12.5)
one can adopt the four-step procedure from the proof of uniqueness given in [5], Theorem
4.1, extending and further refining the original arguments from [14], Theorem 3.1, in the case
of a single boundary. Given that the present setting creates no additional difficulties we will
omit further details of this verification and this completes the proof. [

The coupled system of nonlinear Fredholm integral equations (12.4)+(12.5) can be used to
find the optimal stopping boundaries by and b; numerically (using Picard iteration). Inserting
these bg and b1 into (12.6) we also obtain a closed form expression for the value function V.
Collecting the results derived throughout we now disclose the solution to the initial problem.
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COROLLARY 20. The value function of the initial problem (3.3) is given by

(12.24) V (0, 71, 72) = nov(ﬂ, @)
Ty Mo

for (mg, 71, m2) € [0, 113 with mo+m1+m2 = 1 where the function Vs given by (12.6) above.

The optimal stopping time in the initial problem (3.3) is given by

(12.25) T, = inf{ >0 ‘ ﬁeu(Xf—X?) > ﬂeu(X-/'_X?)
770 T

. T i_v0 T J_y0
with —L e Xi=X1) §bo(—je“(xf X’))
o 0

or Ee“(X;_X?) 2b1<ﬂe“(x"i_x?)) for i #j in {1,2}}
TT0 0

where by and by are a unique solution to the coupled system of nonlinear Fredholm integral
equations (12.4)4(12.5). The optimal decision function d-, in the initial problem (3.3) equals
0 if stopping in (12.25) happens at bg, equals 1 if stopping in (12.25) happens at by withi =1,
and equals 2 is stopping in (12.25) happens at by with i = 2.

PROOF. The identity (12.24) was established in (4.11) above. The explicit form (12.25)
follows from (12.7) in Theorem 19 combined with (4.2)—(4.4) above. The final claim on the
optimal decision function follows from (3.7) combined with the argument used in the second
equality of (4.15) above completing the proof. [
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