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A machine learning platform to estimate
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Strategies for drug discovery and repositioning are urgently need with respect to COVID-19. Here we present REDIAL-2020,
a suite of computational models for estimating small molecule activities in a range of SARS-CoV-2-related assays. Models
were trained using publicly available, high-throughput screening data and by employing different descriptor types and various
machine learning strategies. Here we describe the development and use of eleven models that span across the areas of viral
entry, viral replication, live virus infectivity, in vitro infectivity and human cell toxicity. REDIAL-2020 is available as a web appli-
cation through the DrugCentral web portal (http://drugcentral.org/Redial). The web application also provides similarity search
results that display the most similar molecules to the query, as well as associated experimental data. REDIAL-2020 can serve
as a rapid online tool for identifying active molecules for COVID-19 treatment.

treating coronavirus disease 2019 (COVID-19). Here we

present REDIAL-2020, a suite of machine learning models
that forecast activities for live viral infectivity, viral entry and viral
replication, specifically for severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), in vitro infectivity, and human cell tox-
icity. This application could serve the scientific community when
prioritizing compounds for in vitro screening and may ultimately
accelerate the identification of novel drug candidates for COVID-19
treatment. REDIAL-2020 consists of eleven independently trained
machine learning models and includes a similarity search module
that queries the underlying experimental dataset for similar com-
pounds. These models were developed using experimental data gen-
erated by the following assays: the SARS-CoV-2 cytopathic effect
(CPE) assay and its host cell cytotoxicity counterscreen, the Spike-
ACE2 protein—protein interaction (AlphaLISA) assay and its TruHit
counterscreen, the angiotensin-converting enzyme 2 (ACE2) enzy-
matic activity assay, the 3C-like (3CL) proteinase enzymatic activity
assay, the SARS-CoV pseudotyped particle entry (CoV-PPE) assay
and its counterscreen (CoV-PPE_cs), the Middle-East respiratory
syndrome coronavirus (MERS-CoV) pseudotyped particle entry
assay (MERS-PPE) and its counterscreen (MERS-PPE_cs), and the
human fibroblast toxicity (hCYTOX) assay. Such assays represent
five distinct categories: viral entry (CPE' and host cell cytotoxic-
ity counterscreen’), viral replication (3CL enzymatic activity), live
virus infectivity (AlphaLISA, TruHit counterscreen and ACE2
enzymatic activity)’, in vitro infectivity (CoV-PPE with associated
counterscreens for two other coronaviruses, SARS-CoV and MERS)
and hCYTOX, as described in the National Center for Advancing
Translational Sciences (NCATS) COVID-19 portal’. We retrieved
these datasets from the NCATS COVID-19 portal’. The NCATS
team is committed to performing a range of COVID-19-related

| here is currently an urgent need to find effective drugs for

viral and host target assays, as well as analysing the results®. A more
exhaustive description of each assay is provided in the Methods.

For model development, three different types of descriptors were
employed and a best model for each descriptor type was developed
by employing various machine learning algorithms. The three best
models from each descriptor type were then combined using a vot-
ing method to give an ensemble model. These ensemble machine
learning models are integrated into a user-friendly web portal that
allows input using three different formats: (1) the drug name, both
as the international non-proprietary name (for example, remde-
sivir) or as trade name (for example, Veklury); (2) the PubChem
compound ID number (PubChem CID)’ (for example, 121304016
for remdesivir); or (3) using the chemical structure encoded in the
simplified molecular-input line-entry system (SMILES) format®.
The workflow and output, regardless of input format, are identical
and described below.

Drug repositioning requires computational support’ and
data-driven decision making offers a pragmatic approach to iden-
tifying optimal candidates while minimizing the risk of failure.
As molecular properties and bioactivities can be described as a
function of chemical structure, cheminformatics-based predic-
tive models are becoming increasingly useful in drug discovery
and repositioning research. Specifically, anti-SARS-CoV-2 models
based on high-throughput data could be used as a prioritization
step when planning experiments, particularly for large molecular
libraries, thus decreasing the number of experiments and reduc-
ing downstream costs. REDIAL-2020 could serve such a purpose
and help the scientific community reduce the number of molecules
before experimental tests for anti-SARS-CoV-2 activity. This suite
of machine learning models can also be used via the command line
for large-scale virtual screening. As new datasets become available
in the public domain, we plan to tune the machine learning models
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further, add additional models based on SARS-CoV-2 assays and
make these models available in future releases of REDIAL-2020.

Results

Data mining. All workflows and procedures were performed
using the KNIME platform'®. The NCATS data associated with
the aforementioned assays were downloaded from the COVID-
19 portal*®. The files contained over 23,000 data points gener-
ated by high-throughput screening (HTS) experiments. When
possible, each compound was cross-linked to drugs annotated in
DrugCentral''"" to retrieve the chemical structure in SMILES for-
mat (see Methods), otherwise the original SMILES strings were
retained. Bioactivity data were mined according to the curve class
and maximum response parameters'. The activity class and a signif-
icance class were defined using criteria reported in Supplementary
Tables 1 and 2, respectively. As a final data-wrangling step, all com-
pounds were categorized and assay data grouped to have a unique
record per molecule for each assay. When more than one assay was
measured for the same molecule, only the datapoint with the best
curve class was retained. At the end of this process, 4,954 unique
molecules were stored.

The compounds were labelled as positive or negative for each
assay. The compounds with a low-activity class were treated as
negative, whereas compounds with high- and moderate-activity
classes were treated as positive. Finally, the following calculated
physicochemical property filters were applied: log[P] < 1, log[P] > 9,
log[S] > —3, log[S] < —7.5, where log[P] is the log,, of the octanol/
water partition coefficient and log[S] is the log,, of the aqueous sol-
ubility. These thresholds were initially used to maximize the num-
ber of inactive compounds removed while minimizing the number
of active compounds excluded (see Discussion). Following use of
the physicochemical property filters, each dataset was reduced in
size (see Table 1). As shown in Table 1, certain datasets would have
resulted in 15% or more of the active compounds being excluded;
log[P] and log[S] filters were therefore not applied to those datasets.
Chemical structures were standardized in terms of SMILES repre-
sentation (see Methods). Following standardization, desalting, neu-
tralizing and tautomer normalization, multiple input SMILES can
resolve into the same output SMILES string. Hence, the final step
was removal of duplicate chemical structures.

Model development. Several prediction models were developed for
each assay, employing three categories of features and 22 distinct
machine learning classification algorithms from the scikit-learn
package'® (see the Methods for the complete description of features
categories; Supplementary Fig. 1 shows the workflow for model
generation). The three different categories of features employed
were based on chemical fingerprints, physicochemical descriptors
and topological pharmacophore descriptors. Briefly, 19 different
RDKit fingerprints were tested for fingerprint-based descriptors,
Volsurf+ and RDKit descriptors were employed for physicochemi-
cal descriptors, and topological pharmacophore atom triplets
fingerprints (TPATF) from Mayachemtools were used for pharma-
cophore descriptors. Input data were split into a 70% training set,
15% validation set and 15% test set for each model using a strati-
fied sampling (Supplementary Table 3 reports the number of com-
pounds used in training, validation and test sets for each model).
Six assays (CPE, cytotox, AlphaLISA, TruHit, ACE2 and 3CL) were
initially trained with 22 different classifiers available in scikit-learn
(see Methods)'%; however, some did not output probability estimates
of the class labels (for example, OneVsOne, ridge, nearest centroid,
linear SVC and so on). As our consensus based on probability mod-
els relies on predicted probability of each predicted label, only clas-
sifiers that output class probabilities were used for training. Two
more classifiers—support vector machines and quadratic discrimi-
nant analysis—were evaluated. Finally, 15 classifiers and 22 features

Table 1| Number and percentage of compounds outside of the
log[P] and log[S] criteria

Assay Actives (relative Inactives (relative
percentage) percentage)
CPE 44 (8%) 2,913 (37%)
cytotox 193 (14%) 2,764 (39%)
AlphaLISA 143 (19%) 1119 (49%)
TruHit 134 (16%) 1128 (51%)
ACE2 70 (38%) 1192 (41%)
3CL 81(28%) 3,330 (37%)
CoV-PPE 43 (27%) 881 (51%)
CoV-PPE_cs 247 (28%) 1,085 (44%)
hCYTOX 81(22%) 1,306 (39%)
MERS-PPE 104 (20%) 1,024 (49%)
MERS-PPE_cs 46 (24%) 1,082 (45%)

of three distinct categories (see Methods) were trained across eleven
assays, using hypopt for hyperparameter tuning'’.

Applicability domain. Machine learning models have boundaries for
predictability’, traditionally called the applicability domain'®. The
applicability domain is defined by the parameter space of the training
set on which machine learning models are built. Machine learning
predictions are deemed reliable when they fall within the applicabil-
ity domain of that specific model and less reliable when outside of
it". There are two categories of methods to determine the applica-
bility domain for classification models: novelty detection and confi-
dence estimation. Novelty detection defines the applicability domain
in terms of molecular (feature) space, whereas confidence estimation
defines it in terms of expected prediction reliability*. As confidence
estimation is more efficient at reducing the error rate than novelty
detection”, we implemented this method for evaluating applicabil-
ity domain (see Methods). Confidence scores, which are averaged
for each query molecule, as calculated by default using three differ-
ent models, are incorporated along predictions in the results page.
Confidence scores for each model can be examined by hovering over
the confidence score value shown on the results webpage.

Submission web page. By accessing REDIAL-2020 (http://drugcen-
tral.org/Redial) from any web browser, including mobile devices,
the submission page is displayed (Fig. 1). The web server accepts
SMILES, drug names or PubChem CIDs as input. The user inter-
face at the top of the page allows users to navigate various options
(Fig. 1). The user interface provides a summary of the models, such
as model type, which descriptor categories were used for training
and the evaluation scores. The user interface further depicts the
processes of cleaning the chemical structures (encoded as SMILES)
before training the machine learning models. Input queries such
as drug name and PubChem CID are converted to SMILES before
processing. Each SMILES string input is subject to four different
steps, namely, converting the SMILES into canonical SMILES?*,
removing salts (if present), neutralizing formal charges (except
permanent ones) and standardizing tautomers. REDIAL-2020
predicts input compound activity across all eleven assays: CPE,
cytotox, AlphaLISA, TruHit, ACE2, 3CL, CoV-PPE, CoV-PPE_cs,
MERS-PPE, MERS-PPE_cs and hCYTOX. The workflow of opera-
tions performed on the submitted query SMILES through the redial
web appplication are summarized in Supplementary Fig. 2.

Figure 2 shows an example of the output panel, which is
loaded onto the same web page. REDIAL-2020 links directly to
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Search Redial About Download L1000 signature FAQ

£ DrugCentral 2021

DrugCentral REDIAL 2020
A portal for estimating Anti-SARS-CoV-2 activities

Provide an Input string: |Enter: Drug, SMILES, PubChem CID |

Some Examples: CC(=0)OC1=CC=CC=C1C(=0)O | Remdesivir | 121304016

SUBMIT

Fig. 1| Submission web page. A screenshot of REDIAL-2020's submission page.

Table 2 | Prediction metrics for the best models. ACC, accuracy; F1, F1 score; SEN, sensitivity; PREC, precision; AUC, area under the
receiver operating characteristic curve

Validation set results Test set results

Model ACC F1 SEN PREC AUC ACC F1 SEN PREC AUC

CPE 0.695 0.693 0.689 0.698 0.695 0.651 0.643 0.626 0.661 0.651
cytotox 0.782 0.780 0.773 0.787 0.782 0.688 0.700 0.727 0.675 0.688
AlphaLISA 0.824 0.831 0.863 0.801 0.823 0.790 0.787 0.777 0.798 0.790
TruHit 0.828 0.836 0.873 0.802 0.828 0.734 0.737 0.746 0.728 0.734
ACE2 0.755 0.750 0.750 0.750 0.775 0.755 0.777 0.840 0.724 0.753
3CL 0.804 0.808 0.837 0.782 0.804 0.712 0.705 0.681 0.731 0.713
CoV-PPE 0.771 0.761 0.732 0.793 0.771 0.665 0.658 0.643 0.674 0.665
CoV-PPE_cs 0.872 0.869 0.869 0.869 0.872 0.659 0.636 0.583 0.700 0.661
hCYTOX 0.736 0.736 0.736 0.736 0.736 0.710 0.713 0.719 0.706 0.710
MERS-PPE 0.813 0.823 0.875 0.777 0.814 0.696 0.698 0.698 0.698 0.696
MERS-PPE_cs 0.833 0.823 0.777 0.875 0.833 0.703 0.680 0.629 0.739 0.703
DrugCentral''"* for approved drugs and to PubChem for chemi- Discussion

cals (where available), enabling easy access to further information
on the query molecule. Using REDIAL-2020 estimates, promis-
ing anti-SARS-CoV-2 compounds would ideally be active in the
CPE assay while inactive in cytotox and in hCYTOX; active in the
AlphaLISA assay and inactive in the TruHit assay while not blocking
(inactive) ACE2; active in CoV-PPE while inactive in CoV-PPE_cs;
active in MERS-PPE while inactive in MERS-PPE_cs; or active in
the 3CL assay with any combination of the above. After running
all of the prediction models, a schematic representation of the best
profile that can be defined for a molecule is depicted in Fig. 3.

Similarity search. A similiarity tool is implemented in the web por-
tal. The similarity is determined using Tanimoto coefficient cal-
culations with ECFP4 bit vector fingerprint of length 1,024. The
Tanimoto coefficient represents the overlap of features between
molecules as the ratio of the number of common features to the total
number of features in each fingerprint. Tanimoto coefficient values
range from 0 to 1, with 1 corresponding to identical fingerprints.
A fingerprint-based Tanimoto® similarity search is thus conducted
for each query molecule against training set molecules, based on
NCATS COVID-19 portal® data. The top-ten similar molecules to
that of the query molecule, based on Tanimoto coefficient* scores,
are displayed in the results page.
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Before developing machine learning models, unsupervised learning
can detect patterns that might guide successive steps. Hence, after
establishing the experimental categories (see above), we inspected
the data using principal component analysis (PCA)* on VolSurf+*
descriptors. For both CPE and cytotox, clusters emerge along the
first principal component (PC1; Fig. 4). For CPE data, the major-
ity of compounds showing high-to-moderate CPE activity are
grouped in the right-hand of Fig. 4a. At the same time, compounds
with high-to-moderate cytotoxicity are grouped in the right-hand
region of Fig. 4b. By inspecting the loading score plot for VolSurf+
descriptors that are likely to contribute to these patterns, we iden-
tified membrane permeability (estimated using log[P]) and water
solubility (estimated using log[S]) as major contributors to the first
latent variable (see Supplementary Fig. 3). Compounds with low
log[P]/high log[S]—clustered in the left-hand region of the score
plot—are less likely to be active in the CPE assay and more likely to
be non-cytotoxic.

The distribution of actives was also visualized for AlphaLISA
and TruHit compounds in Fig. 4c and Fig. 4d, respectively (see also
Table 1). Although clustering is less pronounced for the AlphaLISA
assay with respect to CPE (Fig. 4a), the right-hand part of the plot
does capture most of the high/moderate-activity compounds. Such
distribution of actives in the right-hand region was not observed for
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Synonyms: remdesivir | s8932

Processed SMILES string:

CCC(CC)COC(=0)[C@H](C)N[P@](=0)(OC[C@H]10[C@@](C#N)
(c2cce3¢c(N)necnn23)[C@H](0)[C@@H]10)Oclcccccl

Molecular Wt.
(g/mol)

LogP (Log
units)

LogS (Log

= Formula
units)

2.20 -2.89 602.59 C27H35N608P

External reference:
PubChem CID Drug Central ID

121304016 5376

Prediction Results

Class

Live Virus Infectivity

SARS-CoV-2 cytopathic effect (host tox Counter) / Cytotoxicity

Viral Entry

Spike-ACE2 protein-protein interaction (TruHit Counter)

ACE2 enzymatic activity

3CL enzymatic activity

Viral Replication

In vitro Infectivity

SARS-CoV pseudotyped particle entry counter screen (CoV-PPE_cs)

MERS-CoV pseudotyped particle entry (MERS-PPE)

MERS-CoV pseudotyped particle entry counter screen (MERS-PPE_cs)

Human Cell Toxicity

SARS-CoV-2 cytopathic effect (CPE)

Spike-ACE2 protein-protein interaction (AlphaLISA)

SARS-CoV pseudotyped particle entry (CoV-PPE)

Human fibroblast toxicity (hCYTOX)

Prediction Confidence

(-] (-]
EBREBEE 68688068

Fig. 2 | Output panel example. A screenshot of the web page displaying the machine learning estimates and for a query molecule.

ACE2 actives (Fig. 4e); thus, permeability and solubility are not the
major determinants of this ACE2 inhibition assay.

This preliminary analysis can point to filtering data before
machine learning. For example, the majority of compounds placed
on the left side of the Fig. 4 PCA plot are inactive (except for ACE2);
therefore, before developing the machine learning models, we used
ALOGPS* on every dataset except for ACE2 to apply cutoff fil-
ters on the basis of compounds’s calculated log[P] and log[S] val-
ues. These filters narrow the focus of machine learning models on

features derived only from compounds for which simple property
criteria (for example, log[P] and log[S]) cannot be used to distin-
guish actives from inactives, specifically, the right-hand regions
in Fig. 4. As the fraction of active compounds excluded from the
ACE2 dataset was quite high (34%), log[P] and log[S] filters were
not applied for ACE2 inhibition.

For 3CL enzymatic activity, data from NCATS were retrieved
separately. The initial set contained 12,263 data points; however,
data wrangling identified 2,100 duplicates and 2,366 inconclusive
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Fig. 3 | Best profile example. A schematic representation of the most desirable profile for anti-SARS-CoV-2 activities that can be observed via
REDIAL-2020 predictions, on the basis of the SARS-CoV-2-specific set of assays. The five additional assays (not depicted here) offer supporting evidence

for the decision making process and hit prioritization.

entries, which were discarded. More entries were removed during
the desalting and physicochemical feature generation as VolSurf+
descriptors could not be computed for some of the compounds.
The final 3CL dataset contains 7,716 entries, with 286 active and
7,430 inactive compounds. Given that the fraction of active 3CL
compounds filtered would have been 30%, the physicochemical
property filters were not applied. There were no notable activ-
ity clusters detected in the 3CL dataset via PCA-VolSurf+ (see
Supplementary Fig. 4).

Furthermore, NCATS released data for five completely new HTS
assays—and updated assay data for the other six after additional
testing—between June and October 2020. Hence, we reevaluated
the entire set of assays. The total number of compounds after data
wrangling was 10,074. Our analysis showed that only the CPE and
the cytotoxicity assays were enriched with more compounds. There
were 2,354 more compounds, with 158 new actives in the CPE data-
set and 2,332 more compounds (295 new actives) in the cytotox
dataset. As the fraction of active compounds filtered out on apply-
ing physicochemical property filters was over 15%, these filters were
not applied for the five new datasets (see also Table 1).

With respect to actives versus inactives, all eleven NCATS assays
are highly unbalanced, with a disproportionate ratio of the active
(few) compounds compared with inactive (many) compounds.
For example, there were approximately nine times more inactives
than actives and approximately three times more non-cytotoxic
compounds than cytotoxic compounds for the CPE and cytotoxic-
ity assays, respectively. Thus, to avoid overtraining for the dominant
category, each model was derived using random selection wherein
compounds from the majority class were selected in equal propor-
tion to those of the minority class. Our balanced dataset numbers
were as follows: 996 for CPE, 2,252 for cytotox, 1,260 for AlphaLISA,

1,668 for TruHit, 206 for ACE2, 572 for 3CL, 1,782 for CoV-PPE,
320 for CoV-PPE_cs, 760 for hCYTOX, 970 for MERS-PPE and 368
for MERS-PPE_cs.

We implemented eleven predictive models based on consensus
methods to evaluate anti-SARS-CoV-2 activities of novel chemicals.
Of the two consensus methods evaluated (voting-based and prob-
ability score-based), the voting-based consensus model exhibited
better performance (see Supplementary Figs. 5-10) and was thus
implemented in the REDIAL-2020 web application. Consensus
models were generated on the basis of the top-three performing
models trained on fingerprint, pharmacophore and physicochemi-
cal descriptors. First, we selected a fingerprint model from an initial
evaluation of 19 different fingerprint descriptor methods; this was
combined with a TPATF model. Finally, RDKit or VolSurf+ pro-
vided a third model, which was based on physicochemical proper-
ties. Supplementary Fig. 11a-d summarizes our initial evaluation
and the comparison between various features and machine learning
algorithms, Supplementary Fig. 11a,b compares the performance of
each feature across 22 machine learning algorithms (classifiers) and
six assays, and Supplementary Fig. 11c,d compares the performance
of each classifier across 22 features and six assays (CPE, cytotoxicity,
AlphaLISA, Truhit, ACE2, and 3CL). For example, the violin plot
for the Avalon feature (see Supplementary Fig. 11a) summarizes F1
scores from all six assays (and 22 classifiers). Among descriptors,
VolSurf+ and LFCFP6 outperformed others, whereas the gradient
boost and the multilayer perceptron classifiers performed better
among machine learning algorithms (see Supplementary Figs. 12
and 13 for comparisons of each feature across 15 machine learn-
ing algorithms and eleven assays; Supplementary Figs. 14-47 depict
more detailed comparisons across different features and machine
learning algorithms with respect to individual models).

\/

Fig. 4 | PCA scores plots of the molecules tested in NCATS SARS-CoV-2 experiments based on VolSurf+ descriptors. On each plot, the compound
position is defined along PC1and PC2. a, CPE compounds coloured by CPE categories: high/moderate activity in yellow and low activity in black. b,
Cytotoxic compounds coloured by cytotoxicity categories: high/moderate cytotoxicity in orange and low (not) cytotoxicity in black. €, AlphaLISA
compounds coloured by Spike-ACE2 interaction blockers categories: high/moderate (strong) blockers in red and low (weak) blockers in black. d, TruHit
compounds coloured by AlphaLISA readout interfering categories: high/moderate interference in cyan and low interference in black. e, ACE2 compounds
coloured by ACE2 inhibition categories: high/moderate (strong) inhibitors in magenta and low (weak) inhibitors in black.
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Two options for the consensus model were initially con- fingerprint+TPATF+VolSurf+, respectively. RDKit descrip-
sidered based on the potential overlap between VolSurf+ tors outperformed VolSurf+ in cytotox, AlphaLISA, ACE2, 3CL,
and RDKit descriptors: fingerprint+TPATF+RDKit and MERS-PPE_cs, CoV-PPE, CoV-PPE_cs and hCYTOX, whereas
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VolSurf+ descriptors outperformed RDKit in CPE and hCYTOX,
along with similar results in MERS-PPE and TruHit for the tested
evaluation metrics such as accuracy, F1 score and AUC in valida-
tion sets (see Supplementary Figs. 48-58). However, the situation
slightly changed when considering consensus models. Inclusion of
VolSurf+ yielded a better consensus model for the CPE, whereas
including RDKit yielded better consensus models for the cytotox,
3CL, TruHit, AlphaLISA, MERS-PPE_cs, CoV-PPE and CoV-PPE_
cs assays (Supplementary Figs. 5-10 compare the best models from
each feature category). As the NCATS team released data for more
compounds for the six initial assays plus five new assays in October
2020, we updated the initial six models and developed models for
the five new assays (comparisons of models from each category for
the new and updated models are shown in Supplementary Figs. 53—
57). Among the eleven assay models, the voting-based consensus
model performed slightly better than individual feature type models
for validation F1 score results; in three assays (ACE2, MERS-PPE
and hCYTOX), the voting-based consensus model was not the top
performer, but its performance was close to the top performing
model. For the web platform, we implemented voting-based con-
sensus models for all eleven assay models using RDKit descriptors
as opposed to Volsurf+ descriptors, as RDKit is open-source soft-
ware that can be ported and dockerized without restrictions. Table
2 summarize the evaluation scores for all models implemented in
REDIAL-2020.

To confirm the utility of our models, we collected three addi-
tional datasets from the literature and submitted these molecules
(external to our training/validation/test sets) as input for predic-
tion. First, we used a database for COVID-19 experiments” to
explore and download recently published”~" in vitro COVID-19
bioactivity data of the reported compounds. After removing com-
pounds already included in the NCATS experiments, we identified
27 external compounds active in anti-SARS-CoV-2 CPE assays (see
Supplementary Table 4). Out of 27 compounds, three were excluded
on applying the log[P]/log[S] filters, and the remaining 24 were pre-
dicted by the CPE model. Sixteen compounds were correctly pre-
dicted as active by the consensus model (that is, at least two models,
see Supplementary Fig. 59), with eight compounds predicted as
inactive. Among those predicted to be inactive, the majority stem
from the work by Ellinger and colleagues®’, which were derived from
Caco-2 cells for CPE experiments. There is a high degree of variabil-
ity between these two CPE assays (Caco-2 versus Vero E6), which
explains the lack of predictivity using Vero E6-trained CPE mod-
els for Caco-2 data. The second dataset of 3CL (Mpro) inhibitors™
identified six inhibitors: ebselen (0.67 uM), disulfiram (9.35uM),
tideglusib (1.55uM), carmofur (1.82 puM), shikonin (15.75uM) and
PX-12 (21.39uM) (see Supplementary Table 5). Among these six
inhibitors, our consensus 3CL model correctly predicted four of
them as actives, and five of them as actives by at least one of the three
3CL machine learning models. The REDIAL-2020 suite of models
therefore correctly predicted 67% of the external compounds for
CPE and 3CL inhibitors®. Although the external predictivity of CPE
model seems to underestimate previous model performance in the
validation and external sets (see Supplementary Table 6), it has been
noted that CPE experiments are affected by considerable intra- and
interexperiment variability”’. Hence, we cannot exclude the possi-
bility that some of the experiments performed by other laboratories
are not directly comparable with NCATS COVID-19 portal’ results.

Conclusion

Here we described REDIAL-2020, an open-source, open-access
machine learning suite for estimating anti-SARS-CoV-2 activi-
ties from molecular structure. By leveraging data available from
NCATS, we developed eleven categorical machine learning mod-
els: CPE, cytotox, AlphalISA, TruHit, ACE2, 3CL, CoV-PPE,
CoV-PPE_cs, MERS-PPE, MERS-PPE_cs and hCYTOX. These
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models are exposed on the REDIAL-2020 portal, and the output of
a similarity search using input data as a query is provided for every
submitted molecule. The top-ten most similar molecules to the
query molecule from the existing COVID-19 databases, together
with associated experimental data, are displayed. This allows users
to evaluate the confidence of the machine learning predictions.
The REDIAL-2020 platform provides a fast and reliable way
to screen novel compounds for anti-SARS-CoV-2 activities.
REDIAL-2020 is available on GitHub and DockerHub as well, and
the command-line version supports large-scale virtual screening
purposes. Future developments of REDIAL-2020 could include addi-
tional machine learning models. For example by using the TMPRSS2
inhibition assay** data from the NCATS COVID-19 portal or addi-
tional NCATS data as they become available in the public domain.
We will continue to update and enhance the machine learning mod-
els and make these models available in future releases of REDIAL.

Methods

HTS assays. The SARS-CoV-2 CPE assay measures the ability of a compound

to reverse the cytopathic effect induced by the virus in Vero E6 host cells. As cell
viability is reduced by a viral infection, the CPE assay measures the compound’s
ability to restore cell function (cytoprotection). Although this assay does not
provide any information concerning the mechanism of action, it can be used to
screen for antiviral activity in a high-throughput manner; however, there is the
possibility that the compound itself may exhibit a certain degree of cytotoxicity,
which could also reduce cell viability. As this confounds the interpretation of CPE
assay results, masking the cytoprotective activity, a counterscreen to measure host
(Vero E6) cell cytotoxicity is used to detect such compounds; thus, a net-positive
result from the combined CPE assays consists of a compound showing a protective
effect but no cytotoxicity.

The AlphaLISA assay measures a compound’s ability to disrupt the interaction
between the viral Spike protein and its human receptor protein, ACE2”. The
surface of the ACE2 protein is the primary host factor recognized and targeted
by SARS-CoV-2 virions*. This binding event between the SARS-CoV-2 Spike
protein and the host ACE2 protein initiates binding of the viral capsid and leads
to viral entry into host cells. Thus, disrupting the Spike-ACE2 interaction is likely
to reduce the ability of SARS-CoV-2 virions to infect host cells. This assay has
two counterscreens, as follows. The TruHit counterscreen is used to determine
false positives, that is, compounds that interfere with the AlphaLISA readout in a
non-specific manner, or with assay signal generation and/or detection. It uses the
biotin-streptavidin interaction (one of the strongest known non-covalent drug-
protein interactions) as other compounds are unlikely to disturb it. Consequently,
any compound showing interference with this interaction is most likely a false
positive. Common interfering agents are oxygen scavengers or molecules with
spectral properties sensitive to the 600-700 nm wavelengths used in AlphaLISA.
The second counterscreen is an enzymatic assay that measures human ACE2
inhibition to identify compounds that could potentially disrupt endogenous
enzyme function. ACE2 lowers blood pressure by catalysing the hydrolysis of
angiotensin II (a vasoconstrictor octapeptide) into the vasodilator angiotensin
(1-7)*. Although blocking the Spike-ACE?2 interaction may stop viral entry, drugs
effective in this manner could potentially cause unwanted side-effects by blocking
the endogenous vasodilating function of ACE2. The ACE2 assay thus serves to
detect such eventualities and to de-risk such off-target events.

Following entry into the host cell, the main SARS-CoV-2 replication enzyme
is 3CL, also called main protease or Mpro*, which cleaves the two SARS-CoV-2
polyproteins into various proteins (for example, RNA polymerases, helicases,
methyltransferases and so on), which are essential to the viral life cycle. As
inhibiting the 3CL protein disrupts the viral replication process, this makes 3CL
an attractive drug target”. The SARS-CoV-2 3CL biochemical assay measures
the ability of compounds to inhibit recombinant 3CL cleavage of a fluorescently
labelled peptide substrate.

In this category there are four assays: SARS-CoV pseudotyped particle
entry and its counterscreen, and MERS-CoV pseudotyped particle entry and its
counterscreen. The pseudotyped particle assay measures the inhibition of viral
entry in cells but it does not require a BSL-3 facility (BSL-2 is sufficient) to be
performed, as it does not use a live virus to infect cells. It instead uses pseudotyped
particles that are generated by the fusion of the coronavirus Spike protein with a
murine leukaemia virus core. As they have the coronavirus spike protein on their
surface, the particles behave like their native coronavirus counterparts for entry
steps. This makes them excellent surrogates of native virions for studying viral
entry into host cells. The experimental protocol of such an assay is described in
detail elsewhere®. The cell lines used are Vero E6 for SARS-CoV and Huh?7 for
MERS-CoV, respectively.

At the time of data extraction, compound data were available for one assay
human fibroblast toxicity. With the human fibroblast toxicity assay, it is possible
to assess the general human cell toxicity of compounds by measuring host cell
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ATP content as a readout for cytotoxicity (similarly to what is done in the various
counter screenings). This assay is therefore intended for discarding compounds
that are likely to show high toxicity in human cells (that is, side effects in the
organism). Hh-WT fibroblast cells are used in this assay and the highly cytotoxic
drug bortezomib is used as a reference compound.

Data matching operations. The matching of NCATS compounds to DrugCentral
was conducted in three sequential steps: by InChI (international chemical
identifier)*, by synonym (name), and by matching Chemical Abstracts Service
registry numbers. First, NCATS molecules were matched by InChl. Molecules

that did not match were then queried by drug name and associated synonyms,

as annotated in DrugCentral. Finally, if not matched by either InChI or name,
molecules were matched by Chemical Abstracts Service number. If none of the above
steps resulted in a match, then the molecule in question was not classified as an
approved drug. At the end of this process, 4,954 unique molecules (2,273 approved
drugs and 2,681 chemicals) were stored. SMILES were retrieved from DrugCentral
whenever possible, otherwise the original SMILES strings were retained.

SMILES standardization. Chemical structures were standardized to ensure rigorous
deduplication, accurate counts and performance measures, and consistent descriptor
generation, preserving stereochemistry, which is required for conformer-dependent
descriptors. This workflow uses the MolStandardize SMARTS-based functionality
in RDKit* to transform input SMILES into standardized molecular representations.
Four different filters were implemented via RDKit: (1) input SMILES were
standardized into canonical (isomeric where appropriate) SMILES strings. The
input SMILES that failed to convert were discarded; (2) RDKit Salt Stripper

was used to de-salt input compounds (that is, remove the salt structures). The
donotRemoveEverything feature leaves the last salt structure when the entire
canonical SMILES string is comprised of salts only; (3) RDKit Uncharger neutralizes
input molecules by adding/removing hydrogen atoms and setting formal charges to
zero (except for for example, quaternary ammonium cations); (4) canonical SMILES
were then formalized into specific tautomers using RDKit.

Molecular features/descriptors. A total of 22 features of three distinct types

(19 fingerprints-based, 1 pharmacophore-based and 2 physicochemical
descriptors-based) were implemented. Fingerprints were converted into a bit
vector of either 1,024 or 16,384 lengths. Pharmacophore type was also a bit vector
of size 2,692, whereas RDKit and VolSurf+ descriptors were of length 200 and 128,
respectively.

The fingerprints-based description includes the circular, path-based, and
substructure keys'®"". Circular fingerprints include the extended-connectivity
fingerprints (ECFPx) and feature-connectivity fingerprints (FCFPx), where
x1is 0, 2, 4, and 6 are the bond length or diameter for each circular atom
environment. The ECFP consists of the element, number of heavy atoms, isotope,
number of hydrogen atoms and ring information, whereas the FCFP consists of
pharmacophore features.

Avalon and the molecular access system (MACCS) are two distinct types
of substructure keys (fingerprints). The Avalon fingerprint, used here, is a bit
vector of size 1,024. It includes feature classes such as atom count, atom symbol
path, augmented atom, augmented symbol path and so on. MACCS structural
keys are 166-bit structural key descriptors. Each bit here is associated with a
SMARTS pattern and belongs to the dictionary-based fingerprint class. Path-based
fingerprints include RDKx (where x is 5, 6, 7), topological torsion (TT), HashTT,
atom pair (AP) and HashAP. The size of each fingerprint is 1,024. The longer,
16,384-bits, versions of the fingerprint, marked by the prefix L (LAvalon, LECFP6,
LECFP4, LFCFP6 and LFCFP4) were used for comparison.

Topological pharmacophore atomic triplets fingerprints were obtained using
Mayachemtools*; the TPATFs describe the ligand sites that are necessary for
molecular recognition of a macromolecule or a ligand, and passes that information
to the machine learning model to be trained. Ligand SMILES strings were passed
through a Perl script to generate TPATE. The basis sets of atomic triplets were
generated using two different constraints: (1) the triangle rule, that is, the length
of each side of a triangle cannot exceed the sum of the lengths of the other two
sides; and (2) elimination of redundant pharmacophores related by symmetry.
The default pharmacophore atomic types hydrogen-bond donor (HBD),
hydrogen-bond acceptor (HBA), positively ionizable (PI), negatively ionizable
(NI), hydrophobic (H) and aromatic (Ar) were used during generation of TPATF*.

The physicochemical description includes the RDKit molecular descriptors
and VolSurf+ descriptors. For RDKit descriptors, a set of 200 descriptors were
used, which were obtained from RDKit*. They are either experimental properties
or theoretical descriptors, which are for example molar refractivity, log[P], heavy
atom counts, bond counts, molecular weight, topological polar surface area.

A total of 128 descriptors were obtained using VolSurf+ software. VolSurf+ is
a computational approach aimed at describing the structural, physicochemical and
pharmacokinetic features of a molecule starting from a three-dimensional map of
the interaction energies between the molecule and chemical probes (grid-based
molecular interaction fields)*. VolSurf+ compresses the information present in
molecular interaction fields into numerical descriptors, which are simple to use
and interpret™*.

Machine learning classifiers. Using assay data as input (specifically, CPE, cytotox,
AlphaLISA, TruHit, ACE2 and 3CL), we trained machine learning models using
the following 24 different classifiers: complement naive Bayes, extreme gradient
boosting, KNeighbors, gradient boosting, perceptron, OneVsRest, extra-tree,
ridge, OneVsOne, bagging, random forest, output code, passive aggressive, linear
SVC, stochastic gradient descent, logistic regression, extra trees, multinomial naive
Bayes, AdaBoost, decision tree, nearest centroid, multilayer perceptron, support
vector machines and quadratic discriminant analysis. All of these algorithms

are implemented in the scikit-learn package'®. The 22 types of features (ECFPO,
ECFP2, ECFP4, LECFP4, ECFP6, LECFP6, FCFP2, FCFP4, LFCFP4, FCFP6,
LFCFP6, RDK5, RDK6, RDK7, Avalon, LAvalon, MACCS, HashT'T, HashAP,
VolSurf+, TPATF and RDKit descriptors) that served as input to the machine
learning classifiers are described above. All classifiers were trained on their default
configurations. For hyperparameter tuning we used hypopt'” and the best-suited
combination of classifiers and features (see Supplementary Table 7). All models
were optimized and selected based on the validation F1 score. The best-performing
models were saved and used for the evaluation of external datasets.

Confidence scores. One way to calculate the certainty of prediction is provided

by the classification algorithms framework applied here, as implemented in the
scikit-learn package. The confidence estimate associated with predictions for each
object (small molecule) recalls a basic feature of scikit-learn, predict_proba. For
example, in the random forest classifier, votes are noted for each (sub)model; thus,
for each class, predict_proba returns the number of votes divided by the number of
trees in that particular forest (model). This confidence score, which estimates the
model predictions reliability, is used to gauge the applicability domain.

Data availability

All data used for the model described in this work are available at Zenodo (https://
doi.org/10.5281/zenodo.4606720). These datasets were originally collected from
the following links (please note that these data are subject to change without
notice): CPE: https://opendata.ncats.nih.gov/covid19/assay?aid=14, cytotox:
https://opendata.ncats.nih.gov/covid19/assay?aid=15, AlphaLISA: https://
opendata.ncats.nih.gov/covid19/assay?aid=1, TruHit: https://opendata.ncats.
nih.gov/covid19/assay?aid=2, ACE2: https://opendata.ncats.nih.gov/covid19/
assay?aid=6, 3CL: https://opendata.ncats.nih.gov/covid19/assay?aid=9, CoV-PPE:
https://opendata.ncats.nih.gov/covid19/assay?aid=22, CoV-PPE_cs: https://
opendata.ncats.nih.gov/covid19/assay?aid=23, MERS-PPE: https://opendata.
ncats.nih.gov/covid19/assay?aid=24, MERS-PPE_cs: https://opendata.ncats.nih.
gov/covid19/assay?aid=25, hCYTOX: https://opendata.ncats.nih.gov/covid19/
assay?aid=21.

Code availability
All of the codes and the trained models are available at Zenodo (https://doi.
org/10.5281/zenodo.4606720).
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