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ABSTRACT Multiple scoring systems (including rank and score functions; MSS) have been widely used
in multiple regression, intelligent biometric systems, multiple artificial neural nets, combining pattern
classifiers, ensemble methods, machine learning and artificial intelligence (AI), data and information fusion,
preference ranking, and deep learning. CombiningMSS has achieved numerous successful results in a variety
of domain applications. However, the reasons why this happens remains an active area of investigation.
Combinatorial fusion analysis (CFA) combines MSS using the rank-score characteristic (RSC) function
and cognitive diversity (CD). The RSC function was proposed to characterise the predictive behaviour of
a scoring system. It was subsequently used to define the notion of ‘‘cognitive diversity’’, which measures
the dissimilarity in the representation of information between two scoring systems. In this article, we first
examine characterizations of and diversity between scoring systems. Then, we review combinatorial fusion
analysis with a variety of domain applications, including biometric systems in cognitive neuroscience, and
joint decision making with visual cognitive systems. Finally, we demonstrate that multi-layer combinatorial
fusion (MCF) on the Kemeny rank space is a viable machine learning and AI framework for preference
ranking and reinforcement learning. This work provides a scientific foundation and technological insights
for the use of Combinatorial Fusion in ensemble methods, data and information fusion, preference ranking,
and deep reinforcement learning with applications to a variety of domains in data science and informatics
for secure and sustainable societies.

INDEX TERMS Bubble-sort Cayley graph Bn, cognitive diversity (CD), combinatorial fusion analysis
(CFA), intelligent biometric systems, Kemeny rank space Hn, multiple scoring systems (MSS), rank-score
characteristic (RSC) function, symmetric group Sn.

I. INTRODUCTION
According to Jim Gray, in The Fourth Paradigm [2], the
scientific discovery process has gone through three phases:
(a) empirical (thousands of years ago), (b) theoretical (in the
last few hundreds years), and (c) modelling and simulation
(beginning about a century ago). Today’s scientific inquiry
and knowledge discovery is not only data-intensive but also
data-centric, which requires the joint effort and fusion of the
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three disciplines: mathematics, statistics, and computation,
used in the previous three phases.

The current process of scientific discovery can be charac-
terised as an inductive, rather than deductive, problem [3].
Early scientific discovery, which was also deductive empiri-
cism, focused upon describing homogeneous, or universal,
processes, which are used to validly predict singular scores
in relation to specific characteristics. One early example of
this technique was Galileo’s experimental construction of
the arc-length of a pendulum, which lead to the property of
isochronism [4].
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When the complexity of a system increases, the num-
ber of necessary parameters to describe the system also
increases. Each parameter must be differentially weighted
by the exhaustive enumeration across the set of possible
points. Within the exhaustive space, scientists are able to
determine the effect of X , a superset of the possible fea-
ture spaces, on Y , the target result of a function that we
attempt to approximate. The expectation of performance is
realised as a form of a conditional random variable. Hence,
the uncertainty in predicting the state of a system is reduced
as a consequence of the increased ability to predict how the
system is expected to perform with the introduction of new
data. Typical examples include scoring systems in biometric
systems [5], [6], information retrieval [7], internet search, and
search engine optimisation, as well as biomedical informat-
ics, chemoinformatics, virtual screening and drug discovery
[8], [9]. Two particular examples are the score function used
by Google to determine the relevance of page presentation
as preference learning [10], protein structure prediction, and
protein-ligand interaction score functions in pharmaceutical
settings [11]–[13].

Many problems in the science, technology, engineering and
mathematics (STEM) areas and social-ecosystems emphasise
the relevance, closeness, or similarity between two data mea-
surement vectors of subjects, objects, or entities. Similarity
is also a well-studied problem in the field of functional
approximation, allowing us to view a system in a specific,
quantitative and convex framework. Methods are not initially
constructed to measure the explicit probability of success or
the relevance to the target prototype that a score function sA of
a scoring system A was trained upon. The initial desired goal
is rather to provide an optimal and/or desired ordering of the
candidate data items that can serve as a proxy for preference
ranking of the data items. This can be accomplished by
sorting the implicit score values in descending (or ascending)
order and assigning natural numbers to that rank order [14].
Our perspective depends upon the fusion of themathematical,
statistical and computational approaches, including the ‘Two
Cultures’ as introduced by Breiman [15], wherein we treat
the data models themselves as fundamental and necessary.
However, each model has its strengths and weaknesses in
the process of acquiring generalisable knowledge, as charac-
terised by the maximisation of information by model fusion.

In this article, we focus on the RSC function fA, which char-
acterises the information-based relation between the scores
and their orderings (ranks) of a scoring system A. Here we
present a new paradigm that exhibits an analogy between the
scoring system A on the data items D = {d1, d2, · · · , dn}
with sA and rA as defined, and the variable X (A), on the data
set points in D with Euclidean score values sA(di) and the
rank values rA(di) at the data point di. These rank values
constitute a permutation of the set of natural numbers N =
{1, 2, 3, · · · , n}. Current work provides a new paradigm for
machine learning and artificial intelligence (ML/AI) with
respect to general purpose deep reinforcement learning on the
Kemeny rank space, which allows tied rankings. A variety

of diverse application domains are discussed, including data
science, informatics, biomedicine and cheminformatics, data
and information fusion, virtual screening and drug discov-
ery, ensemble methods, information and cyber security, and
model fusion.

II. BACKGROUND AND OUTLINE OF CURRENT WORK
When a score function, sA, of a scoring system A within the
candidate data spaceD is converted (sorted) into a rank func-
tion rA, potential loss of information in the reduction from a
measurable scoring space to a ranking space has historically
been often discussed but little acted upon. When represented
as a rectangular matrix, the data space D is of order n × t ,
reflecting the row space where each of the n rows is a single
data item, and t is the dimension of the system space. The
early work of ordered similarity measures in non-parametric
space, by [16], resulted in a widely applicable measurement
of normed similarity, analogous to the Euclidean Pearson’s
r . However, the lack of a complete ordinal metric topology,
especially in the presence of ties (data items di and dj have the
same value sA(di) = sA(dj)), led to an inability to follow upon
the early successes after the 1970’s. Recently, rank aggrega-
tion, model fusion, or ensembles of model systems, have been
applied many practical uses and demonstrations of utility at
the cutting edge of mathematical development. These have
produced, in a number of data mining competitions, academic
disciples, and industrial sectors, strong accolades not as a
result of the specific model construction techniques, but the
ensembling techniques themselves [17]. When the available
data grows in size and complexity, the need to operate upon
the expanding domain of X in a computationally meaningful
approach has resulted in a black box perspective with respect
to the local function approximations. This situation is further
complicated when multiple divergent systems are combined
to produce singular approximations of Y .
A scoring system A on the data space D =

{d1, d2, . . . , dn}, consisting of a score function sA and a
derived rank function rA, was proposed by Hsu et al. [1].
By sorting the values in the score function sA : D → R
in descending order, a rank function rA : D → N, where
N = {1, 2, 3, . . . , n}, is obtained. The rank-score character-
istic (RSC) function fA : N→ R in equation 1 upon scoring
system A, was introduced in [1]

fA(i) = sA(r
−1
A (i)) = (sA ◦ r

−1
A )(i). (1)

Combinatorial fusion analysis [18], using multiple scoring
systems and the RSC function, was subsequently developed
and shown to be useful in a variety of domains [18]–[20].
These include text categorisation [21] and ranked versions
thereof, protein structure prediction [13], [22], information
retrieval [1], [23], target tracking and robotics [24], [25],
motif detection [26], CHIP-seq peak detection [27], visual
informatics [28], [29], cognitive neuroscience [30], virtual
screening and drug discovery [8], [9], [31], deep learning
[3], microarray analysis [32]–[34], data fusion [1], [7], and
portfolio management [35], [36].
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In what follows, Section III covers the characterisation and
properties of the RSC function fA of scoring system A in
informatics and its counterpart, the cumulative distribution
function (CDF) in statistics. Section IV covers correlation and
diversity between scoring systems, focusing on three estima-
tors of statistical data similarity: the Kolmogorov-Smirnov
(KS) statistic, the Kullback-Leibler (KL) divergence, and the
Cramér-von Mises statistics in light of the RSC function.
Section IV also covers various computational information
diversity measures as defined in machine learning and arti-
ficial intelligence (AI) [37]. In particular, CD(A,B), which
we define to measure the dissimilarity between two scoring
inputs A and B, is compared to the notion of correlation (Pear-
son’s correlation between sX (A) and sX (B), both Spearman’s
ρ and Kendall’s τ rank correlation between rX (A) and rX (B))
in statistics. In Section V, we review the approach of Com-
binatorial Fusion Analysis (CFA), which combines multiple
scoring systems using the RSC function and CD. Finally,
in Section VI, we discuss and demonstrate a recent advance in
multi-layer combinational fusion (MCF) on the Kemeny rank
space as opposed to the traditional deep learning practices on
the Euclidean space.

III. CHARACTERISATION OF THE SCORING SYSTEMS
Given a scoring system A with score function sA and its rank
function rA, the RSC function fA, as shown in formula 1,
can be derived. In addition, a scoring system A (see III-A)
can be characterised w.r.t. statistical distribution and matrix
(subsection III-B), permutation group (subsection III-C), and
RSC function (subsection III-D).

A. SCORING SYSTEMS
An approximating model or scoring system A on items in a
data set D = {d1, d2, · · · , dn}, consists of a score function
sA : D → R which assigns a value sA(di) to the data item
di. Given a score function sA of the scoring system A, a rank
function rA : D → N, where N = {1, 2, 3, · · · , n} = [1, n],
can be derived by sorting the score values sA(di), for all
di ∈ D, into descending order. Under this interpretation,
a rank-score characteristic (RSC) function fA : N → R
was defined [1] as a mapping from the ordering of the score
values upon the n score values with fA(i) = sA(r−1(i)) =
(sA ◦ r

−1
A )(i). The RSC function fA of a scoring system A

has three distinctive characteristics that we formulated as the
following three remarks:
Remark 1: For a scoring system A with score function sA

and its derived rank function rA, the rank-score character-
istic (RSC) function fA : N → R has either one of two
possibilities: (a) fA is a monotonically decreasing function,
or (b) fA is a non-increasing function. More specifically, case
(a) consists of scoring systems without tied score values,
while in case (b), tied score values (and hence tied rankings)
are allowed.
Remark 2: Since the RSC function fA for the scoring system

A is fromN→ R, it possesses the following two fundamental
properties: (a) The removal of the data items in D as an

FIGURE 1. CDF function graphs for variables XA and XB in Table 2.

explicit middle transition step between the conversion of the
scores to rankings leads to a function that is based on N, not
on D; and (b) For two scoring systems A and B on the same
domain data set D, the relationship between A and B defined
using fA and fB is independent of the data set items di in D.
Remark 3: For two scoring systems A and B on the dataset

itemsD, we define rank combination C as sC (di) = (rA(di)+
rB(di))/2 and score combination D as sD(di) = (sA(di) +
sB(di))/2, then under certain conditions including the differ-
ent functions fA and fB, rank combination C is better than
score combination D [1], [38].

Here we give one example. Let D = {d1, d2, · · · , dn} be a
set of n data items and N = [1, n] be the set of all integers
from 1 to n. Let A and B be two scoring systems with score
function sA and sB, and rank functions rA and rB, respectively.
Let fA and fB be the rank-score characteristic (RSC) functions
of A and B, respectively. Tables 2 and 3 list the normalised
scores sA and sB, score combination SC(A,B), rank combina-
tionRC(A,B), and fA and fB, for the case n = 10, respectively.
Figure 2 depicts the RSC function graph for fA and fB.

The RSC function fA characterises the scoring system A,
which is obtained by formula 1. It provides the relationship
between the ranks and the score values of the scoring sys-
tem A (See Figure 2 for RSC function graphs fA and fB,
respectively). In what follows, we review three other different
types of characterisations: the cumulative distribution func-
tion (CDF), the score matrix, and the permutation.

B. CDF & SCORE MATRIX
Treating normalised score function sA of a scoring system
A as a random variable xA, we can construct a cumulative
distribution function such that

FA(x) =
∫ n

i=1
P(rA(di) ≤ rA(dj)) di

s.t., i ≤ j ∈ {1, . . . , n} (2)

Figure 1 depicts the CDF function graphs of XA and XB.
There are several different ways of using matrices to charac-
terise the scoring system A. First, the traditional Kendall’s τ
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FIGURE 2. RSC function graphs for scoring systems A and B in Table 3.

has the form for scoring system A without ties:

Mτa (A) = Mτa (aij) =

{
1 if di > dj
−1 if di < dj

(3)

Then the extended Kendall’s τb matrix representation
which can handle ties [39]:

τb(A,B) =

∑∑
aijbij∑∑

a2ij
∑∑

b2ij
(4)

Mτb (A) = Mτb (aij) =


1 if di > dj
−1 if di < dj
0 if di = dj or i = j

(5)

In their study of consensus ranking problems, Emond and
Mason [40] used the Banach inner-product nature of the
Kemeny rank space τx , same as dH in Section VI, to char-
acterise the scoring system A:

τx(A,B) =
1

n(n− 1)

n∑
i=1

n∑
j=1

aijbij (6)

Mτx (A) = Mτx (aij) =


1 if di ≥ dj
−1 if di < dj
0 if i = j

(7)

This characterisation is similar to the description and
proofs of [41], utilising the Borda count for Mixed Group
Ranks fusion, with the combination function tending towards
the expectation of the group, defined as the median of the
set of scoring functions. The Borda count is, however, a non-
compliant Condorcet technique, in that it is expected, but
not guaranteed, that scoring systems should rank candidates
as a linear combination that produces a one-to-one corre-
spondence between the highest composite scores and the
highest rankings. However, the Borda count fails to satisfy
this criterion in certain specific conditions, wherein a lesser
scoring candidate combination may be ranked higher than
a higher scoring candidate. Our utilisation of the Kemeny
metric (See Section VI), which is linearly invariant under
monotonic transformation, allows our combinations to reduce

FIGURE 3. The bubble-sort graph B4. B4 has connectivity = 3 [43].

FIGURE 4. There exists 3 disjoint paths between any two nodes, such
as 1432 and 4123: P1 = {1432, 4132, 4123}, P2 = {1432, 1423, 4123}, and
P3 = {1432, 1342, 3142, 3412, 4312, 4321, 4231, 4213, 4123}, [43].

the potential for Condorcet failures occurring in the presence
of ties upon scoring systems.

C. PERMUTATIONS
A rank function is really a permutation, with potential ties,
of the data. The permutation unit distance under the Kendall
metric, defined upon Sn, provides a combinatorial and com-
putational framework in which distances are computed across
the comparative number of swaps that are necessary in order
to recover the target ordering [14], [42]. As the score matrix
(equation 5 and equation 7), rather than the scores themselves,
are the comparative basis uponwhich all unit evaluations (i.e.,
errors in prediction) are computed, the inclusion of a proper
metric analysis, with ties, sub-additively decomposes the bias
realised in [42]. This, in turn, enables construction of a linear
function of the cumulative distribution function across the
ranks of allm units that is optimal in the Gauss-Markov sense.
Thus, independent of actual construction of the target score
approximation, which is orderable, the permutation measure
determines a compact and comparable measure space.

For example, consider Figure 3 and Figure 4, which depict
the permutation ranking of n = 4 elements upon the complete
symmetric permutation space. This restricts the score real-
isations to be monotonically invariant, such that the lowest
rank denotes the highest score realisation upon the symmetric
group space S4 with adjacency defined as a swap of two

3922 VOLUME 9, 2021



L. Hurley et al.: MCF Using CD

adjacent elements. In general, Sn with the metric Kendall’s
τ , is called a bubble-sort graph (Bn) [43]. In said graph (Bn),
no tied rankings may occur. Figure 3 shows that B4 can be
constructed using 4 copies of B3. Figure 4 depicts the layout
of the 4! = 24 nodes w.r.t. the distance from the identity
permutation In = 1234 or its inverse I ′n = 4321.

D. RSC FUNCTION
Rank-score characteristic (RSC) function as defined by [1]
is the function fA : N → R that assigns the score value of
a data item to the rank of that data item under the scoring
system A. In mathematical terms, the composite function of
sA and r−1A , is constructed in the following way: fA(i) =
sA(r

−1
A (i)) = (sA ◦ r

−1
A )(i). As discussed earlier in this

section, the RSC function of a scoring system A charac-
terises the scoring system A analogous to the role played
by the cumulative distribution function (CDF) and scoring
matrix (Mτa ,Mτb ,Mτx , in Section III-B) that characterises
Euclidean spaces with parametric Euclidean score values and
non-parametric Kemeny rank values of the scoring variables
xA, respectively, in computation.

We note that given the score function sA of a scoring
system A, the RSC function fA can be computed efficiently
[38], [44]. More specifically, fA is obtained by sorting the
score values {sA(di)|di ∈ D} using the rank value [1, n] =
{1, 2, 3, · · · , n}, with n = |D| as the key.

IV. DIVERSITY BETWEEN SCORING SYSTEMS
Given two scoring systems A and B on the same dataset items
D = {d1, d2, · · · , dn}, similarity (or dis-similarity) between
A and B has been studied due to its importance in statistics
and informatics. In statistics, correlation (Pearson) and rank
correlation ( [16], [39], [40], [44], [45], [49]) were studied.
Sowere the Kolmogorov [53] and Smirnov [54], the Kullback
and Leibler [55], and the Cramér [57] statistics.

In informatics, diversity has been studied in combining
artificial neural networks [58], combining pattern classifiers
[59], complex systems and ensemblemethods [47], [60], [61],
and combining multiple scoring systems [1], [18]. We illus-
trate more details in the following two subsections: statisti-
cal data correlation and computational information diversity,
in the context of a pair of scoring systems A and B.

A. STATISTICAL DATA CORRELATION
For two scoring systems A and B, statistical correlation
focuses on the correlation between data distributions of the
random variables xA and xB. In this regard, we begin with
the empirical Euclidean definition of distance for the Pearson
correlation (equation 8) and compare it to the Spearman data
correlation (equation 9),

PearsA,sB ∝
(
d =

1− r
2

)
,

s.t., d =

√√√√ n∑
i=1

(
sA(di) · sB(di)

)2
. (8)

rS (rA, rB) = 1−
6
∑(

rA(di)− rB(di)
)2

n(n2 − 1)
, (9)

where in equation 9 the Spearman footrule is defined in
which the squared difference between the rankings of the two
scoring systems upon each of n observations, in addition to
the previous metrics in equations 3,4, and 6.

When performing statistical tests within the rank space,
the Kolmogorov-Smironov (KS) statistic [53], [54] is an
easily understood measure. In the following discussion of
statistical methods, we note the equivalence between x =
{x1, x2, . . . , xn} = {s(d1), s(d2), . . . , s(dn)}. In the context of
the RSC function for each of the scoring systems A and B [1],
the KS statistic computes the supremum of the differences in
ranks between two ranks f −1A and f −1B for each score value
x ∈ (0, 1):

KS(A,B) = sup
x
|FA(x)− FB(x)|, (10)

where FA, FB, fA and fB are all the cumulative distribution
functions of XA and XB (equation 2 and Figure 1) and RSC
functions of A and B (equation 1 and Figure 2), respectively.
Importantly, while the score functions may be non-linearly
related to the feature spaces of interest, rankings are linearly
monotonically invariant function spaces [62], allowing for
more fundamental distributional characteristics to be defined
without the embedding complexity otherwise necessary upon
the Euclidean plane.

The Kullback and Leibler divergence [55] can also be
understood in the context of the RSC function. The expres-
sion measures the divergence from the function approxima-
tion distribution XB to the target XA, weighted by the potential
score difference in magnitude consequent from the choice of
difference in Euclidean parametric formulates from B under
A:

KL(A,B) = −
∑
X

FA(x) log
(
FB(x)
FA(x)

)
(11)

= −

∑
X

f −1(x) log
(
f −1B

f −1A

)
, (12)

where FA and FB : R+0 → R+0 and x ∈ R+0 ; x ≤ 1. The
Cramér-von Mises criterion [57] operates upon an identical
domain as the KS-statistic, supplanting the `∞-norm with the
`2-norm.

T = n · ω2
=

1
12n
+

n∑
i=1

[
2i− 1
2n
− F(xi)

]2
(13)

with the same defined domain and range as the RSC func-
tion, from which it can be easily seen that the Cramér-von
Mises statistic is equivalent to the total marginalised distance
between the two scores under both functions over all data
items in the sample, thus representing the total dissimilarity
between a sequence of n scores for any empirical finite sam-
ple. It can be easily understood that the term

2i− 1
2n
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TABLE 1. Statistical and computational diversity.

in ascending order with respect to i reflects an intrinsic order-
ing which is present, as proven before, within any cumulative
distribution function. The existence of the ratio 2i

2n−
1
2n allows

for the assigned probability of comparison to be a perma-
nently increasing value whose asymptotic limit is bound to
the support (0, 1], purely as a function of n, the sample space.
This direct orderability of both allows for a comparison to
be made across common points of the area between the two
curves, which thereby allows us to determine whether the
proportion of the distribution function indexed upon the rank
space, that is less than a given threshold, is roughly equivalent
to the theoretical Euclidean object of comparison. It also
allows for the first term to be treated as the rank score func-
tion, upon which the rank with respect to i and the aggregated
score 1− 2i−1

2n up to point i possess a proportional equivalence.
In the left of Table 1(a), we provide a number of different
score based statistical data aggregations marginalising over n,
which allow for the predictive similarity of bivariate scoring
systems to be compared.

B. COMPUTATIONAL INFORMATION DIVERSITY
In informatics and in computational science, scoring systems
(with score functions and/or rank functions) have been used
extensively. In data mining, machine learning, and data and
information fusion, the notion of ‘‘diversity’’ between two
scoring systems has been widely discussed and used in the
context of artificial neural nets [58], pattern classifiers [59],
complex systems [61], ensemble methods [47], and multiple
scoring systems [1], [63].

In [59], diversity in classification ensembling was com-
pared to diversity in biology, software engineering, and sta-
tistical measures of relationship. Kuncheva reviewed pair-
wise measures and six non-pairwise measures and discussed
the relationship between diversity and accuracy in the con-
text of combining pattern classifiers. Reference [19] showed
shared relationships between various diversity measures in
multiple classifier systems, and [63], [64] established a
diversity-performance relationship for majority voting and
plurality voting in classifier ensembles.

Diversity in ensemble methods [47] among the individual
learners has been considered as a fundamental issue and is
crucial to the accuracy of the ensemble. Althoughmany diver-
sity measures have been proposed and developed in the field

of ensemble methods, the right formulation and measures for
diversity have not been resolved yet [37], [47], [59], [65],
[66].

In the field of complex systems, measuring diversity exists
in three categories: diversity within a type, such as variates,
diversity across types, such as entropy and attributes, and
diversity of community composition such as population [60],
[61]. Complex systems exist in a variety of domains, includ-
ing ecological systems, economic systems, financial systems,
political systems, and biological systems. In the right of
Table 1(b), we provide a number of different approaches to
computational information diversity, which allow for the pre-
dictive similarity of bivariate scoring systems to be compared.

C. COGNITIVE DIVERSITY
CD was proposed to measure the dissimilarity between two
scoring systems A and B [1], [18]. More specifically, it was
calculated using RSC functions fA and fB of A and B [67].
For example, cognitive diversity between A and B, CD(A,B),
is computed as in formula 14 [8], and utilised as depicted in
Figure 5 to depict the relationships between A and B [67].

CD(A,B) = d(fA, fB) =

√√√√ 1
n2 − n

n∑
i=1

(fA(i)− fB(i))2 (14)

It was shown [38] that under certain conditions, rank combi-
nation performs better than score combination. These condi-
tions for which better performant combinations are obtained
in favour of larger cognitive diversity between A and B. More
details on the notion of cognitive diversity and its domain
applications can be found in [67].

D. EXAMPLES
In information retrieval systems, each of the two search algo-
rithms uses similarity scoring systems A and B, respectively.
LetD be the set of documentsD = {d1, d2, · · · , dn}. Tables 2
and 3 illustrate: score functions sA and sB; rank functions rA
and rB; score combinations SC(A,B) and rank combinations
RC(A,B), as well as RSC-functions fA and fB in the case of
n = 10.
For the pair of scoring systems A and B as illustrated in

Table 2, we list the diversity of A and B, d(A,B) in the context
of the following fifteen measurements related to this section.
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TABLE 2. Score functions and Rank functions of A,B; Score combinations SC(A,B); and Rank combination RC(A,B).

FIGURE 5. Scoring systems A and B: score functions sA and sB with
corresponding rank functions rA and rB; RSC functions fA and fB;
Pearson’s score correlations (PC), Kemeny rank correlation (KC) and
cognitive diversity (CD) (see [67] for ranking without ties).

See V-A and V-B. The first eight in Table 1(a) are in terms of
statistical data correlations:

1) Pearson correlation r = 0.4214
2) Kendall-τa = 0.4667
3) Kendall-τb = 0.4667
4) Spearman ρ = 0.6606
5) τx = 0.4666667
6) KS-statistic D = 0.7
7) KL-divergence (x||y) = −17.0104
8) Cramér-von Mises statistic ω2

= 0.2803

The second group, in Table 1(b), consists of seven computa-
tional information diversities [40], [46], [48], [50]–[52], [56],
[65], [68]–[70]. For each measure, we also indicate the range
of measurement and its reference in the table.

V. COMBINATORIAL FUSION ANALYSIS
In this section, we review the field of Combinatorial Fusion
Analysis (CFA) proposed by [1], [18] for optimally com-
bining multiple scoring systems. CFA was founded upon
the concept of using the ‘‘rank-score characteristic (RSC)
function,’’ to characterise a predictive engine, and the con-
cept of ‘‘cognitive diversity’’ was introduced to measure the
dissimilarity betweenmultiple scoring systems [1], [18], [67].
One of the novelties of the CFA approach is the use of various

combinatorial methods including both rank and score combi-
nation [18], [67] to produce predictive model combinations
whose predictions are both more accurate and more robust to
cross-validation [30].
Combiningmultiple scoring systems (MSS) has become an

emerging field of machine learning, AI, forecasting, and pre-
dictive analytics. It has been shown to be useful in a variety of
domains, such as combining pattern classifiers [59], weighted
score and rank combination [18], [67], ensemble methods
[47], data fusion in information retrieval [7], multi-indicator
systems [70], and online learning algorithms [71].
Given t scoring systems Aj, j = 1, 2, · · · , t with score

functions sAj and rank functions rAj respectively, we have
either score combination SC(A1,A2, · · · ,At ) = SC(A∗j ) or
rank combination RC(A1,A2, · · · ,At ) = RC(A∗j ). Allowing
SC = SC(A∗j ) and RC = RC(A∗j ) to be the score combi-
nations and rank combinations of A∗j = {A1,A2, · · · ,At },
we have

sSC (di) =
1
t

t∑
j=1

(s(Aj)(di)), i ∈ [1, n] (15)

and

sRC (di) =
1
t

t∑
j=1

(r(Aj)(di)), i ∈ [1, n] (16)

as the score functions of SC = SC(A∗j ) and RC = RC(A∗j ),
respectively. Performance of said scores are evaluated using
the permutation distance between the target permutations
and the model combination permutations, by means of the
Kemenymetric (see SectionVI). TheKemenymetric resolves
the biased performance of the Kendall’s τb distance as deter-
mined in [42], [43], allowing for a performance evaluation
and probability distribution to be determined for any mono-
tonically non-decreasing cumulative distribution of scores
and score combinations.

A. METHOD AND PRACTICE OF COMBINING MULTIPLE
SCORING SYSTEMS
Let CFA(M; n, t) be the combinatorial fusion analysis (CFA)
algorithm which combines t scoring systems on the dataset
items d1, d2, · · · , dn, using the set of combination methods
M: (1) average combination (AC), (2) weighted combination
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TABLE 3. Rank-score characteristic (RSC) functions fA and fB with data
items.

FIGURE 6. Performance of combinatorial fusion.

by performance (WCP) (3) weighted combination by diver-
sity strength(WCDS), (4) geometric mean, (5) mixed group
rank, and/or (6) other combinationmethod, on the bubble-sort
Cayley graph Bn and the Euclidean space En = Rn for rank
combination and score combination, respectively. Each of
these methods (1)–(4) has both rank and score combinations
while method (5) has rank combination only.

Combinatorial fusion consists of a scoring system A on
the domain set D = {d1, d2, · · · , dn}, consists of a score
function sA : D → R which assigns a score (real num-
bers in R) to each item di of the domain set D and a rank
function rA : D → N which assigns a rank (natural
numbers in N : [1, 2, · · · , n] , n = |D|). The rank func-
tion rA(di) is the result of sorting the score values sA(di)
in descending order and assigning rank to each data item
accordingly. In Subsection V-B, we illustrate more details
using two domain examples from cognitive neuroscience:
preference detection based on eye movement in V-B1 [30],
and joint decision making using visual cognitive systems,
found in V-B2 [28].

B. DOMAIN EXAMPLES
We first illustrate the above discussion with an example in
the information retrieval domain before we get to the two
examples in V-B1 and V-B2. Let D = {di} be the domain
space where i ∈ [1, n], n = 20. Let A,B,C be three retrieval
systemswith score functions sA, sB, and sC and rank functions
rA, rB and rC , respectively. Table 4 lists the score functions
and rank functions. Table 5 gives the list of normalised
score functions s′A, s

′
B, s
′
C , along with respective ranks, while

Table 6 lists the RSC functions fA, fB and fC , respectively.
Figure 7 plots the RSC-function graphs for fA, fB, fC on the

FIGURE 7. RSC function graphs for fA, fB, fC , Table 4.

TABLE 4. Score function and rank function for scoring systems A,B, and C.

same space. Figure 6 illustrates the performance of all com-
binations by rank or by score.

1) PREFERENCE DETECTION BASED ON EYE MOVEMENT
Cognitive neuroscience researchers are similarly often inter-
ested in modelling and understanding decision processes,
which are reflected in neurological electrical activation and
eye movement capture, for contexts such as text comprehen-
sion. In eyemovement tracking [30], the ‘gaze cascade’ effect
was observed, in which a subject is given two images and
prompted to select their preference. The subject’s variance
in focus is initially evenly distributed, but the gaze focus is
found to follow a Pareto distribution and converges as time
increases, for which the focus modality corresponds to the
preferred image. In the eye tracking trials, the x,y coordinates
of the subjects’ gaze locations, along with the duration of
the gaze at the point, are collected. Based on this data, the
following features were constructed: duration of focus in the
last 200ms of a trial (A), total duration (B), gaze point count
(C), interest sustainability (D), and count of edges between
face regions (E).

Preliminary analysis found that, with 90% accuracy, the
selection of the individual face deemed most attractive by
the subject was determined by the visual focus in the
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TABLE 5. Normalised scores for scoring systems A,B, and C .

TABLE 6. RSC functions for scoring systems A,B, and C with data items
∈ D from Table 5.

final 200 milliseconds, which is represented by feature A.
From this observation followed the construction of the five
features recorded for each of 720 trials T = {t1, t2, . . . , t720}
(see features A, B, C, D, and E in Figure 8). Univariate
and pairwise score combinations for

(5
2

)
of the features are

recorded in Table 7, with precision recorded on the left-most
column for each approach with the corresponding RSC func-
tion found in Figure 8.

2) JOINT DECISION MAKING USING VISUAL COGNITIVE
SYSTEMS
In this section, we revisit the task of combining multiple
scoring systems in exploring the generalisable computational

FIGURE 8. Rank-Score characteristic graph for gaze attributes [30].

intelligence as a consequence of CD. It has been observed that
non-redundancy (i.e., dissimilarity) in well-performing scor-
ing systems tends to improve overall system performance.
This can be mathematically expressed by an algebraic dis-
tance formula. For example, the information, presented as
a posterior probability distribution of the scores, and the
corresponding integration over said space, thereby defining
both the probability distribution function (PDF) and cumu-
lative distribution function (CDF) of the two systems A and
B are compared and combined. Then the redundant learned
structure, or overlapping information, is removed from each
system, producing a measure of the distribution of distinct
information contained in these two systems, as reflected in
the differences in respective predictions.

In joint decision making problems, a decision maker is
often presented with various expert decisions, for which they
must choose to combine together a subset of the recom-
mendations to make a decision. In a real case experiment,
the authors [28] selected two candidates, who observed a
small projectile being tossed onto an open grassy spot. The
observers were asked to indicate the location at which the
token landed, and to provide their confidence (as measured
by the size of radius of about their chosen location in which
they were most confident the token lay) in their decision.
For 96 distinct combinations of design factors, 34 cases
were equal or better performant than the best decision of the
two subjects. The results of this experiment are provided in
Table 8, with the different weighting systems assigned to the
confidence radius referred to asM0,M1 andM2.

VI. MULTI-LAYER COMBINATORIAL FUSION ON THE
KEMENY RANK SPACE
A. RANKING UPON THE BUBBLE-SORT CAYLEY
GRAPH Bn

Each of the scoring systems A and B on data items di ∈
D represents a respective score function sA and sB and
rank functions rA and rB. The rank function rA(or rB) :
D → N with rA(di) ∈ [1, n] is the rank order of
the data items di in D. In other words, the rank function
rA, rA = [rA(d1), rA(d2), · · · , rA(dn)], can be considered as a
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TABLE 7. Performance of feature scoring system combinations [30].

TABLE 8. Experimental results of 16 trials [28].

permutation of the data items [i = 1, 2, · · · , n]. As such, rA is
an element of the symmetric group of order n (i.e., Sn) which
consists of all permutations of the elements [1, 2, · · · , n]. Let
Ti be the operation which consists of any of the adjacent
swaps (i, i + 1), for i = 1, · · · , n − 1. The symmetric group
Sn together with the operations Ti, i = 1, 2, · · · , n− 1, form
a graph called the bubble-sort Cayley graph, (Sn;Ti, i =
1, 2, · · · , n−1) where two nodes (permutations) A and B are
adjacent to each other if and only if A ◦ Ti = B or Ti ◦ B = A
for any i ∈ [1, n − 1]. It is straightforward to show that the
distance between two nodesA andB is the number of adjacent
interchanges between A and B.

The RSC function of a scoring system A builds upon the
algebraic representation of the CDF, providing a comparative
basis across different fields reflecting the range of the learn-
ing functions in which we are interested. RSC functions that
are both ordered and scored identically are, unsurprisingly,
identical functions. For two rank functions rA and rB as two
permutation arrays of scoring systems A and B of the n ele-
ments [1, n] = {1, 2, 3, · · · , n}, the following are equivalent:

1) distance dist(A,B) = is the number of adjacency swaps
between systems A and B;

2) Kendall’s τa defined in Section III-B, formula 3;
3) the number of interchanges between adjacent elements

from arrayA to arrayB, by using bubble-sort algorithm.

Although statements (1) and (2) are equivalent, they have
different ranges of values. (1) is defined upon the support 0 to
(n(n− 1)/2), while (2) maps the distance of (1) onto [−1, 1].
If dist(A,B) = x, then τa(A,B) = y = 1 − 2x

n(n−1) . Likewise
if τa(A,B) = y, then dist(A,B) = x = n(n − 1)/4(1 −
y). Statement (3) indicates that the distance between node
(permutation) A and node (permutation) B can be computed
by sorting the array A to become B and counting the number
of interchanges between adjacent elements.

The embedding of a metric space upon a graph allows for
the visual depiction of relations between measurements and

predictions independent of the specific nature of the relations.
This graphical structure allows for a vast array of computa-
tional applications to be undertaken [72]–[74]. The domain of
knowledge and information representation [75]–[77] allows
for the network structure of the relations between nodes in
the graph to exist without a necessary linear parametric score
relation.

When performing either rank combination or score com-
bination, the resulting scoring system may have tied scores
among different data items. Hence the resulting rank function
of the combinations are not permutations and hence not in
the bubble-sort Cayley graph space G = (Sn;Ti, i ∈ [1, n]).
In this regard, Kemeny and Snell [78] formalised the metric
dK as the distance between rank functions A and B using the
τb characteristic score matrix (formula 4 in Section III-B) as
follows:

1
2

n∑
i=1

n∑
j=1

|aij − bij|, (17)

where the characteristic score matrix Mτb (A) is as defined in
formula 4. It was shown by [78] that this metric in formula 17
satisfies a list of axioms which lead to a metric space Hn
that includes rank functions of the scoring systems with ties.
However, since this computation involves absolute values
of differences, the application of this metric is hindered in
contexts for which large data sets are conventional [40].

B. THE KEMENY RANK SPACE HN
Emond and Mason [40] proposed formula 6 to characterise a
scoring system A and then constructed an alternative repre-
sentation of the correlation τx(A,B), as found in formula 6
with the score matrix in formula 7. They also showed by
defining the concept of ‘half-flip’ that the Kemeny rank space
Hn with τx(A,B) as the metric satisfies these axioms defined
by [78], by leveraging the Banach inner-product nature of the
ultrametric space. Figure 9 depicts the Kemeny rank space
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TABLE 9. The number of nodes in Hn,p(Hn), vs n! = p(Sn) [80].

H3 with half-flip as an unit of distance [78], [79]. We note
that H3, with 13 nodes and 18 edges, is an extension or
a sup-imposed version of the graph S3 which has 6 nodes
and 6 edges. We further note that the number of nodes p in
Hn is as follows [80]:

p(Hn) =
n∑

b=1

b!
(
n
b

)
, (18)

where
(n
b

)
is the Stirling number of the second kind, which is

the same as the number of ways to partition a set of n objects
into b non-empty subsets. Table 9 lists the numbers p(Hn) for
n = 2, · · · , 10.

C. MULTI-LAYER COMBINATORIAL FUSION (MCF) – THE
ER-ALGORITHM
With the Kemeny rank space Hn and the matrix dH =

τx(A,B) in place, we aim to provide an evolutionary algo-
rithm onHn using multi-layer combinatorial fusion.We focus
first on an expansion-reduction (ER) computational algo-
rithm, which consists of three steps.

The CLEAR(M;D; n, t, l) Framework: The framework
uses the multi-layer combinatorial fusion (MCF) to conduct
the expansion-reduction (ER)-algorithm on the Kemeny rank
space Hn:

1) Expansion:

a) Generate all the 2t − t − 1 combinations (2-com,
3-com,. . ., t-com) using a variety of combination
methods and diversity measures (e.g., methods
of combination M = {1, 2, 3, 4} and diversity
measurement D = {dH ,CD} in Section V-A).

b) Generate the mixed group rank combination [41].
c) Each of the four methods of combination uses

both weighted combination by performance and
geometric mean combination [81]. In total, 8(2t−
t − 1) new scoring systems are obtained.

2) Reduction: Pick top q rank orders, 0 ≤ q ≤ 2t , which
are better than the t rank orders in previous step, from
the 8(2t − t − 1)+ 1 rank order obtained in Step 1.

a) If q = 0, stop;
If 0 < q < t , go to Step 1;
If t ≤ q, go to Step 2.b;

b) Calculate diversity, using either dH or CD,
between each pair of the q · (q − 1)/2 pairs of
rank orders;

c) Calculate performance(using dH and diversity
strength (using either dH or CD) of each of the
q rank orders;

FIGURE 9. The rank space H3 = Cay(H3, τx ).

d) Using the sliding rule to pick the top t rank orders
that has the highest performance and diversity
strength.

3) Go to Step 1.
4) l is the number of iterations of the expansion process in

Step 1.
The CLEAR(M;D; n, t, l) framework works as follows.

Starting with t rank orders (with ties allowed) inHn, we begin
with expansion, generating e(t) = 2 × (2t − 1 − t) + 1 =
2t+1 − 2t − 1 rank orders, by three combination methods:
1) 2t − 1 − t weighted combinations using performance

as weights [63]
2) 2t − 1− t combinations by geometric mean [81]
3) combination by mixed group rank [41].

The second step in the CLEAR framework, reduction, first
selects the top q(∼ 2t) performing subset from the e(t) rank
orders, computes the ‘‘diversity’’ between every pair of these
(q(q−1))/2 elements, and calculates the ‘‘diversity strength’’
for each of the q rank orders by the average of the CD between
this rank order and other q−1 rank orders. Step 2 produces the
top t rank orders from the two q rank orders using the ‘‘sliding
rule’’ upon the joint performance and diversity strength. The
reinforcement ER-algorithm continues as a multi-layer com-
binatorial fusion process in l number of times (layers) until
one of the following stopping rules is met:

1) none of the top q ∼ 2t rank orders in the expanded set
of rank orders is better than the best of the initial t rank
orders, or

2) the expanded set e(t) rank orders converges to less than
t rank orders.
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TABLE 10. H10 simulated Case with reported permutation performance [43].

Diversity between a pair of two rank orders A and B, d(A,B)
can be calculated either by the distance between A and B
on the Kemeny rank space, d(A,B) = dH (A,B), or by the
CD between the RSC functions, d(A,B) = d(fA, fB). For
the set of top q rank orders from the e(t) expanded rank
orders, diversity for each of the q(q− 1) pairs of rank orders
can be obtained. Diversity strength of each of the q rank
orders ds(A) is calculated as the number of pairs on which
A appears from the relatively top (meaning there is a sharp
drop, or scree) pairs with high diversity. The q rank orders
can be listed in two columns using performance and diversity
strength in descending order. A sliding rule is placed on each
row until t rank orders are obtained. In the ER-algorithm
process, performance is meant to be how close the rank order
is to the identity permutation by calculating the dH distance.
In case of a tie, the median rank is assigned to all three rank
positions.

This reinforcement learning algorithm is similar to an evo-
lutionary computational algorithms. An initial population of
scoring functions is generated, upon which the predictive per-
formance is then evaluated. The top performant rank orders
are selected.

Optimisation under any complete metric sub-space enables
linear transitive (or sub-additive) convexity to hold. This
allows for convex optimisation upon the entire space to
be established for any well-posed problem space with a
unique solution, with all requisite maximum likelihood prop-
erties (e.g., minimum error and maximum information; [14]).
As long as the variance-covariance matrix (reflective of the
statistical correlational matrix) is positive-definite, it follows
that the optimal combination of the learning systems, as pro-
posed in this system, is expected to be linearly convex and
well-posed, and is therefore resistant to over-fitting in the
mathematical sense, regardless of the parametric realisations
of the score distributions themselves in the Euclidean sub-
space.

D. SIMULATED AND EMPIRICAL EXAMPLES
An exploration of the CLEAR model was reported in
Zhong et al. (2019) [43]. It presented two simulations of
MCF in H10 and H300 and an empirical application
developed upon a protein-ligand virtual screening paper
using deep-learning neural networks [12] to demonstrate

the conceptual framework developed and expanded in the
CLEAR framework. These two simulated cases H10 and
H300 and the empirical example in virtual screening and
drug discovery are included in Tables 10,11, and 12 [43].
Specifically, we demonstrated how the recursive ultrametric
structure of the graph depicted in Figure 4, providing a convex
and relatively quickly solved framework from which results
a marked improvement of performance which surpasses the
initial input models. Here, Index denotes the 300 unique iden-
tifiers corresponding to the neural-network systems provided
by [12], and the Input denotes the system error for each
neural-network system, or their aggregate performance under
linear combination. These conventions hold for Tables 10,11,
and 12, with each numerical value denoting the total error
variance, with improved system performance reflected as the
value approaches 0 from the right.

For both H10 and H300, 125 rank orders upon the
bubble-sort Cayley graphwere selected with rank distance dH
greater than 40% and less than 50%, upon which 150 cases
were selected. These performance bounds were selected to
ensure that the worst case performance be explored, bounded
by error rates of between 40% and 50%. They would allow
us to characterise the worst-case performance improvement
observed within our Fusion framework, relative to In. The
empirical example utilised the 12 top performant functions
reported from the 100 in [12], which are all no less than 87%
accurate in performance, as they are the results of a deep
learning computing experiment.

In the rank spaceH10, the 150 rank orders were partitioned
into 28 groups of 6 models each, with few duplications of
the models across all 28 groups. The initial distances from
the input models were found to be 44.4% – 48.9% accu-
rate, while producing results in [8.89%, 42.22%] achieved
in between 1 and 5 layers with computational time for all
cases (sec) in [1.47, 7.68]. These results for H10 are found
in Table 10. Upon the rank space H300 the 150 rank orders
were composed into 50 groups of 6 each, with some dupli-
cation. From this set of 50 groups, 5 were subset as given in
Table 11, for which the distances of the initial 6 were within
[49.949%, 49.996] distance performance, resulting in an out-
put distance of [46.253%, 48.495%] for either two or three
layers with computational time spent (min) in [20.29, 31.64],
as provided in Table 11.
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TABLE 11. H300 simulated Case with reported permutation performance [43].

TABLE 12. Empirical case of virtual screening [43].

The empirical case containing the top 12 performant mod-
els were found to possess a distance dH from the target in
[12.6466%, 13.4448%], from which 5 groups of 6 models
were chosen to reflect the best 6, worst 6, and a random subset
of six. These produced results of combination which were of
distance to the target dH in [11.766%, 12.022%], with only
two or three necessary layers which were found to converge
(in mins.) in [39.64, 47.74] as reported in Table 12.

It is important to note from these three examples that
even though the decrease in performance percentage from
40.01% in H10 to 3.74% in H300 is substantial, the number
of improved steps is quite high as the number of nodes in
H300 is much larger than those in H10. On the other hand,
we also note that systems which have better performance
converge to the target much faster because they possess less
cumulative redundancy in the convex cone which represents
the performance for each approximation. As the performance
increases, the relative diversity between said functions must
necessary decrease, thereby limiting the available uniqueness
that results upon the combinations.

VII. CONCLUDING REMARKS
Combinatorial fusion analysis (CFA) [18], uses the
rank-score characteristic (RSC) function [1] and cognitive
diversity (CD) [1], [18], [67] to combineMSSwith both score
combinations (in Euclidean space) and rank combinations
(in the bubble-sort Cayley graph based on the symmetric
group Sn). By extending the Bn to the Kemeny rank space
Hn which allows tied rankings and using the computationally
efficient τx distance metric [39], [40], [78], [79], multi-layer
combinatorial fusion (MCF) provides a robust computa-
tional and combinatorial framework on the metric space Hn

using RSC-function based cognitive diversity. Section III
contrasts the RSC function in data science and informatics
with the empirical CDF in statistics. Section IV compares
CD in data science and informatics with other data correla-
tions in statistics and information diversity in computation.
Section V reviews the field of CFA and illustrates two intel-
ligent biometric systems among a variety of domain appli-
cations. Section VI provides the multi-layer combinatorial
fusion (MCF) framework CLEAR(M;D; n, t, l) on Hn with
two simulated examples on H10 and H300 and an empirical
example on protein-ligand virtual screening and drug discov-
ery in H300. In the following, we summarise three distinctive
characteristics of the MCF approach (A) and suggest several
directions for future work (B).

A. MCF ON THE KEMENY RANK SPACE
Multi-layer combinatorial fusion (MCF) using cognitive
diversity has the following distinct features worthy of special
attention:

1) MCF uses the combinatorial fusion analysis (CFA) [1],
[18], [43], which has the following characteristics:

a) It considers a scoring system A as both a score
function sA in the Euclidean space Rn and the
derived rank function rA in the bubble-sort Cayley
graph space Bn. RSC function

fA(i) = (sA ◦ r
−1
A )(i) = sA(r−1(i))

was defined to characterise the scoring system A.
b) It combines scoring systems A and B in both score

and rank combinations. It was shown that under
certain conditions (involving cognitive diversity)
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rank combination can perform better than score
combination [38].

c) Cognitive diversity between scoring systems A
and B is defined using RSC functions fA and
fB. Empirical results on consensus scoring were
very useful for improving performance in virtual
screening and drug discovery [8].

d) CFA provides combinatorial fusion with (2t −
t−1 combinations for t original scoring systems)
for any combination methods, which are effi-
cient and effective in different domain applica-
tions in protein-structure predictions [13], stress
identification [20], text categorisation [21], target
tracking, robot mapping, and localisation [24],
[25], identification of degenerated motif [26],
CHIP-Seq peak detection [27], combining visual
cognitive systems [28], [29], preference detection
using eye movement [30], virtual screening [8],
microarray gene expression [32]–[34], portfolio
management [35], [36], classifier ensemble [63],
[64], and online learning [71].

2) MCF is based on the Kemeny rank space Hn which has
the following characteristics:

a) It is a natural extension from the symmetric group
Sn and the bubble-sort Cayley graph Bn [43], [73].

b) The nodes in Hn include rank orders with ties.
This property facilitates advances in the MCF
process when ties are the result of combinations.

c) It provides a distance metric dH which uses the
computationally efficient τx function.

d) The structure of a network can dictate and affect
function and application of the network. Hn has
Sn as its sub-network, andBn as its functional sub-
space. The structure of Sn has been well studied
[82]–[84]. The bubble-sort Cayley graph Bn has
many combinatorial properties including com-
bination of mutually independent Hamiltonian
cycles [84]. The symmetric group of order n,
Sn, has many useful combinatorial structures. For
example, the connectivity of S3 is 3 and there
are 3 disjoint paths between any pair of nodes
in the graph, as shown in Figure 4. See [83] for
general study of container width and length in a
variety of graphs and groups where a container
between two nodes A and B is a set of disjoint
paths between A and B.

3) The expansion property of Bn:

a) Since the Kemeny rank space Hn is a met-
ric space which embeds the bubble-sort Cayley
Bn as a subspace, structure and properties of
the graph Bn can facilitate the ER-algorithm in
the CLEAR(M;D; n, t, l) framework. In fact, the
graphBn has some good expansion properties (see
[85] for expander graphs). For example, it was
shown [86] that the second eigenvalue of Bn,

λ2(Bn), is at most 1 which is related to certain
expansion coefficients.

B. FUTURE WORK
A direction of our future work will focus on applying
the CLEAR framework to a variety of domain applica-
tions on the Kemeny rank space Hn with distance met-
ric dH . In this regard, Heiser and D’Ambrosio obtained
results on clustering and prediction of ranking using dH [87].
Beyond improvement in the simulated cases ofH10 andH300,
Tables 10 and 11, Table 12 exhibits a successful case, in the
empirical domain of virtual screening and drug discovery,
of the multi-layer combinatorial fusion (MCF) and deep rein-
forcement learning [12], [43].

Other than the work on various domain applications,
we will also work on problems which require multidisci-
plinary approaches to fundamental methods and intelligent
systems, including intelligent biometric systems and com-
putational intelligent systems, blending together the three
foundational fields for data science and informatics: statistics,
mathematics (including combinatorics and graph theory),
as well as computing and informatics (including machine
learning and AI) [15], [18], [22], [40], [43], [50], [63], [65],
[67], [70], [73], [76], [78], [86]. Recent results by experts
from diverse fields have made significant contributions, for
example, in the following areas: multi-modal biometric sys-
tems using rank level fusion for security systems [5], [6],
fusion of deep learning and combinatorics [88], emphasis-
ing the fusion of computer hardware and software, global
network architecture and web systems, proactive and reac-
tive investigation, and public-private collaboration in miti-
gating cyber attacks and cyber exploitations [89], calculat-
ing the thermodynamic limit for the Mallows model on the
bubble-sort Cayley graph Bn [90], harnessing fuzzy logic
and combinatorial fusion to make network selection sim-
ple and effective in the heterogeneous mobile user environ-
ment [91], and using model fusion algorithms for neural
networks with optimal transport [92]. Equipped with a robust
framework such as CLEAR, using multi-layer combinatorial
fusion (MCF) and cognitive diversity (CD), on a fundamental
metric space such as the Kemeny rank space Hn using the
distance metric dH [1], [18], [38], [40], [67], [78], [82], more
exciting results will be forthcoming to the benefit of secure,
healthy, and sustainable societies.
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