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from the entrapment of the inert atmosphere gas or the alloy vapors 
inside the molten pool.  

c Lack of fusion (LOF): Inadequate penetration of the molten pool 
into the substrate material or the previously printed layer results in 
LOF defects [8]. Unlike keyholing or entrapped gas porosity, LOF 
defects generally follow a geometrical pattern defined by the scan
ning strategy and are easier to discern. Porosity occurring due to LOF 
typically has sharp edges, and can have a more significant impact on 
ductility compared to porosity formed due to gas entrapment [2]. 

In addition to these porosity generation mechanisms, balling is 
another defect formation mechanism in metal AM. Balling occurs when 
single-tracks printed at high scan speeds form molten droplets instead of 
a continuous molten pool. During laser powder bed fusion (L-PBF) and 
direct energy deposition (DED) metal AM processes, an increase in the 
scanning speed results in the elongation of the melt pool. At high enough 
speeds, the melt pool becomes unstable and may break up into small 
droplets to maintain uniform capillary pressure due to the Plateau- 
Rayleigh instability [2]. Balling disrupts the continuity of the 
single-tracks during fabrication resulting in defective parts with poor 
surface roughness, porosity, and even delamination [9]. 

Determining AM process parameters for new materials that will yield 
fully dense parts with minimal defects is a lengthy and costly process. 
Fortunately, computer simulations can provide AM operators with 
practical predictions on a material’s response to variations in process 
parameters, which can aid the parameter selection process [10–12]. The 
Eagar-Tsai (E-T) analytical model is a simplified heat transfer model that 
was originally used in the welding community and has shown to be 
simple and efficient for predicting the melt pool geometries during se
lective laser melting (SLM) [13–16]. In this study, the E-T model is 
employed to assist with the selection of processing parameters for a 
L-PBF metal AM process. The model uses a dimensionless form of a 
travelling Gaussian heat distribution to determine the shape and di
mensions of melt pools, and assumes that the heat source is providing 
constant energy at a constant speed on an infinite substrate. Some lim
itations for this model’s applicability to AM are that it does not account 
for heat convection, the presence of metallic powder on the surface of 
the substrate, and vaporization-based processes such as keyhole mode 
melting. Nonetheless, the model can predict the melt pool size (length, 
width, and depth) as well as calculate the associated temperature fields 
[14,17]. One of the goals of the present study is to use this model to 
define a range of laser power (P) and scanning speed (v) parameters that 
will enable printing of parts with minimal defects and thereby reduce 
the number of trial and error runs. The output of melt pool size can then 
be used to develop design of experiments to determine a range of process 
parameters to test with single-track experiments. The output of tem
perature fields is useful for determining how much of the melt pool 
reaches boiling temperature since significant boiling will lead to the 
evaporation of elements and undesirable/uncontrolled material prop
erties. The advantage of using the E-T model is that it is computationally 
inexpensive and many simulations can be run in a relatively short 
amount of time. Furthermore, it is an analytical model that does not 
necessitate the use of proprietary codes that might not be accessible to 
all users. 

This study investigates the process, structure, and property re
lationships in a Ni-5 wt.%Nb alloy, as a model material system, fabri
cated with selective laser melting (SLM). NiNb5 can be used as a binary 
proxy for Ni-based superalloys [18–22], which have attracted significant 
interest in AM community due to their excellent mechanical properties 
in harsh environments [20,23]. A focus is set on the solidification phe
nomenon at the single-track level during the L-PBF process, followed by 
a discussion on how processing parameters govern the porosity and 
variability in mechanical properties of the built parts. It is demonstrated 
that with the proper selection of the process parameters to minimize 
porosity in a wide process parameter space, it is possible to achieve 
tensile mechanical properties with minimum variability. 

2. Experimental and computational methods 

2.1. Materials 

Gas atomized Ni95Nb5 (wt. %) powder used in this study was ac
quired from Nanoval GmbH (Germany). A Cameca SX Five scanning 
electron microscope (SEM) was used to conduct wavelength dispersive 
spectroscopy (WDS) on powders and built parts. Ni and Nb contents of 
the powder were measured as 94.7 (± 0.7) and 5.1 (± 0.1) wt. %, 
respectively. The average particle size of the powder was reported by the 
manufacturer as d10 = 6.7 μm, d50 = 19.8 μm and d90 = 43.0 μm where 
dxx denotes the cumulative size percentile of particles that have di
ameters equal to the number provided. Back scattered electron micro
scopy images of the as-received powder, recorded using an FEI Quanta 
600 SEM, showed spherical particles (Fig. 1a). Cross sectional images of 
the powder revealed some porosity within the particles (Fig. 1b). 

2.2. Additive manufacturing (AM) experiments 

AM experiments were conducted on a 3D Systems ProX 200™ laser 
powder bed fusion (L-PBF) system, equipped with a fiber laser beam 
having a Gaussian profile, wavelength λ = 1070 nm, beam spot size of 
70 μm in diameter, and a maximum power of 300 W. The experiments 
were carried out under a protective atmosphere of industrial grade 
argon during fabrication. 

2.3. Thermal model 

The Eagar-Tsai (E-T) analytical model is used in this study primarily 
to predict the melt pool dimensions and temperature profile. The model 
requires two sets of inputs: (1) material properties and (2) process pa
rameters. In terms of material properties, the model requires the 
following thermophysical properties of the powder material: melting 
temperature, Tm; thermal conductivity, k; specific heat capacity, C, and 
absorptivity, η as well as the bulk density, ρ. E-T model also requires 
three process parameters: laser power (P), scanning speed (v), and the 
size of the laser beam at four standard deviations. Tm and ρ were ob
tained from the manufacturer as 1703 K and 8909 kg/m3, respectively, 
whereas the values for k and C were determined as 70.4 W/mK and 
636.2 J/kg.K, respectively by using the rule of mixtures for the weighted 
averages of Ni (95 %) and Nb (5 %) [24]. The absorptivity value of 
NiNb5 was approximated from the values reported for pure Ni powder 
(0.501) measured using a 1 μm light source and a layer thickness of 
100 μm [25]. Two sets of information can be extracted as the outputs of 
the E-T model: the melt pool dimensions (length, width, and depth) and 
the temperature field of the melt pool, the example of which shown in 
Fig. 2. The mathematical equations defined in the E-T analytical model 
can be found in the original paper [13]. 

2.4. Single-track sampling 

The objective of printing single-tracks of NiNb5 is to observe the 
effects of different processing parameters on the resulting melt pool 
integrity, quality, and dimensions. Once parameters that yield a 
continuous melt pool without balling and porosity defects are identified, 
it is relatively easy to build 3D parts which are simply collection of 
single-tracks and layers. Based on the melt pool temperature distribution 
data obtained from the E-T model using the thermophysical properties of 
the powder, the minimum laser power to apply was calculated as 65 W 
in order to melt a single layer of powder (30 μm in thickness in the 
present study), assuming an almost stationary laser beam with the scan 
speed of 0.0001 mm/s. In other words, 65 W was selected as the lower 
bound of power used while printing the single-tracks, whereas the upper 
bound was set at 260 W which was the limit of the available L-PBF 
system. Scanning speed was varied between 50 and 2500 mm/s, where 
the former is simply a very slow scanning speed from practical point of 
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