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Abstract: We propose a method for the unsupervised clustering of hyperspectral images based on
spatially regularized spectral clustering with ultrametric path distances. The proposed method
efficiently combines data density and spectral-spatial geometry to distinguish between material
classes in the data, without the need for training labels. The proposed method is efficient, with quasi-
linear scaling in the number of data points, and enjoys robust theoretical performance guarantees.
Extensive experiments on synthetic and real HSI data demonstrate its strong performance compared
to benchmark and state-of-the-art methods. Indeed, the proposed method not only achieves excellent
labeling accuracy, but also efficiently estimates the number of clusters. Thus, unlike almost all existing
hyperspectral clustering methods, the proposed algorithm is essentially parameter-free.

Keywords: unsupervised clustering; hyperspectral images; ultrametric path distances; spectral graph
theory; parameter estimation

1. Introduction

Remote sensing image processing has been revolutionized by machine learning, in par-
ticular the labeling of material classes in remotely sensed images. This can take the form
of supervised classification, when many labeled pixels are available to help guide the
algorithm, or unsupervised clustering, when no labeled pixels are available to the algo-
rithm. When large labeled training sets are available, supervised methods such as kernel
methods [1–3] and deep neural networks [4–6] accurately label pixels in a wide range of
imaging modalities. However, it is often impractical to acquire the large training sets
necessary for these methods to work well. When human-annotated data is limited, it is
necessary to develop unsupervised clustering methods which label the entire data set
without the need for training data.

Unsupervised clustering is a classical problem in machine learning, and many methods
for unsupervised clustering have been proposed [7]. However, most only enjoy theoretical
performance guarantees under very restrictive assumptions on the underlying data. For
example, K-means clustering works well for clusters that are roughly spherical and well-
separated, but provably fails when the clusters become nonlinear or poorly separated [8].
Clustering methods based on deep learning may perform well in some instances, but are
sensitive to metaparameters and lack robust mathematical performance guarantees even in
highly idealized settings [9–11].

Clustering of remotely sensed hyperspectral images (HSI) is particularly challenging,
due to their high-dimensionality, noise, and often poor spatial resolution. Moreover, most
existing HSI clustering methods require the number of clusters to be input as a parameter
to the algorithm, which is impractical in the unsupervised setting. Despite their challenges,
unsupervised HSI clustering methods are increasingly important, because the lack of large
training sets prevents supervised learning from being effective on the deluge of HSI data
being collected.
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Recently, ultrametric path distances (UPD) have been proven to provide state-of-the-
art theoretical results for clustering high-dimensional data [12]. In particular, only very
weak assumptions on the data are required, namely that the underlying clusters exhibit
intrinsically low-dimensional structure and are separated by regions of low density. This
suggests UPD are well-suited for HSI [13], which while very high-dimensional, are typically
such that each class in the data depends (perhaps nonlinearly) on only a small number of
latent variables, and in this sense are intrinsically low-dimensional.

In this paper, we develop an HSI clustering algorithm based on ultrametric spectral
clustering. Taking advantage of recent theoretical developments, our approach constructs
a weighted graph with nodes corresponding to HSI pixels and edge weights determined
by the UPD metric. Crucially, the proposed method spatially regularizes the graph in
order to capture important spatial correlations in the HSI. After constructing this spatially
regularized UPD graph, the proposed method runs K-means clustering on the lowest
frequency eigenfunctions of the graph Laplacian. We call the proposed method spatially
regularized ultrametric spectral clustering (SRUSC). SRUSC scales quasilinearly in the
number of data points, and has few tunable parameters. Moreover, the proposed method
outperforms a range of benchmark and state-of-the-art unsupervised and even supervised
classification methods on several synthetic and real HSI in terms of clustering accuracy
and efficient estimation of the number of latent clusters. The detection of the number
of clusters is particularly significant, because it makes the proposed method essentially
parameter-free, unlike nearly all existing methods for clustering HSI.

To summarize, this paper makes three major contributions:

• We propose the SRUSC algorithm for HSI clustering. This method enjoys rich theoret-
ical justification and is intuitively simple, with few sensitive parameters to tune. In
particular, SRUSC detects the number of clusters in the HSI.

• We prove performance guarantees on the runtime of SRUSC. This ensures fast perfor-
mance of SRUSC on high-dimensional data that exhibits intrinsically low-dimensional
structure, allowing the proposed method to scale.

• We demonstrate that SRUSC effectively clusters synthetic and real HSI with higher
accuracy than a range of benchmark and state-of-the-art methods. Moreover, we show
that SRUSC efficiently estimates the number of clusters in these datasets, thereby
addressing a major outstanding problem in the HSI clustering literature.

The remainder of this article is organized as follows. In Section 2, we provide back-
ground on unsupervised HSI clustering and ultrametric path distances. In Section 3, we
motivate and detail the proposed algorithm and discuss its theoretical properties and com-
plexity. In Section 4, we introduce several data sets and perform comparisons between the
proposed method and related methods, demonstrating the strong performance of SRUSC
not only compared to state-of-the-art unsupervised methods, but compared to supervised
methods as well. This section investigates both clustering accuracy and estimation of the
number of clusters. We conclude and discuss potential directions for future research in
Section 5.

2. Background

We present a problem statement and background on clustering in Section 2.1 before
reviewing UPD and spectral clustering in Sections 2.2 and 2.3, respectively.

2.1. Background on Unsupervised Clustering

The problem of unsupervised clustering consists in providing a data set X = {xi}n
i=1 ⊂

RD with natural group labels corresponding to clusters formed by the data points. Mathe-
matically, there is a set of latent labels {yi}n

i=1, where each yi ∈ {1, 2, . . . , K} and K is the
number of latent classes in X. The goal of unsupervised clustering is to learn these labels
given X alone; in particular, no training pairs of the form (xi, yi) are provided to guide
the process. So, labeling decisions must be made entirely based on latent geometrical and
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statistical properties of the data. The lack of training pairs of the form (xi, yi) is the primary
challenge of unsupervised clustering, and differentiates it from supervised classification.

A range of methods for clustering data have been developed, including K-means
clustering and Gaussian mixture models, which assume the underlying data is a mixture of
well-separated, roughly spherical Gaussians [7]; density-driven methods that characterize
clusters as high-density regions separated from other high-density regions by regions
of low density [14,15]; and spectral graph methods that attempt to find communities in
networks generated from the underlying data [8,16].

In the case of HSI, the data may be understood as an M × N × D tensor, so that
n = M × N is the number of D-dimensional pixels in the data set and D is the num-
ber of spectral bands. For clustering HSI, methods taking advantage of the intrinsically
low-dimensional (though potentially nonlinear) structure of the HSI clusters [17,18] are
particularly important, because capturing such low-dimensional structures significantly
lowers the sampling complexity necessary to defeat the curse of dimensionality [7]. This ob-
servation is leveraged by state-of-the-art techniques based on subspace clustering [19–21],
matrix factorizations [22,23] and nonlinear manifold learning techniques [24–27]. Recent
deep-learning methods can achieve high clustering accuracy [28,29] by computing low-
dimensional features using overparametrized neural networks. However, these approaches
may perform poorly if the metric used by the deep network to compare pixels cannot
discriminate between pixels in the same and different classes, or if the spatial structure of
the HSI is not accounted for.

We note that the proposed approach is most comparable with manifold learning
methods, though crucially our approach integrates UPD and spatial regularization into the
manifold estimation procedure.

2.2. Background on Ultrametric Path Distances

In many clustering algorithms, decisions are based on pairwise distances between data
points. The choice of distance metric is thus critical, and a range of non-Euclidean metrics
have been developed for high-dimensional HSI, including those based on global covariance
matrices [30,31], `1 geodesic distances [17,32], Laplacian eigenmap distances [33], and
diffusion distances [27,34]. Crucially, the selected metric should have the property that
points in the same cluster appear close together, while points in different clusters appear far
apart. For this reason, we propose to use UPDs, which achieve the desired within-cluster
and between-cluster distance properties for a wide class of data.

Let G0 = (X, W) be an undirected Euclidean k-nearest neighbor graph on X, with
k ∼ log(n). In the case that G0 is a disconnected graph, edges (weighted by the Euclidean
norm) are introduced between the closest points in distinct connected components. For
any xi, xj ∈ X, let P(xi, xj) be the set of paths connecting xi, xj in G0. So, a path {γ`}L

`=1 ∈
P(xi, xj) is such that γ1 = xi and γL = xj. Define the Euclidean ultrametric path distance
(UPD) between xi, xj ∈ X as

ρ∞(xi, xj) = min
{γ`}L

`=1∈P(xi ,xj)

(
max

`=1,...,L−1
‖γ`+1 − γ`‖2

)
. (1)

Intuitively, UPD computes the maximal edge length in each path, then minimizes
this quantity over all paths. It may be understood as an `∞-geodesic, while the classical
shortest path is the `1-geodesic. Two points are far apart in the UPD if every path between
them has at least one large edge. Compared to the `1 geodesic, which is density-agnostic,
the UPD prefers paths that avoid low-density regions. Like classical shortest paths, it may
be computed efficiently using a Dijkstra-type algorithm [35]. A comparison of Euclidean
distances and UPD is in Figure 1.
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Figure 1. The standard two moons dataset [8] is shown, with distances from a circled point shown in Euclidean distances
(a) and UPD (b). We see that the UPD is much more effective at distinguishing between the two clusters. This is because
there is a large density gap between the two clusters, while the density within each moon is roughly uniform. So, all the
points in the top moon look close to the circled point, while all the points in the bottom moon look far.

For clustering data generated from mixtures of manifolds, the UPD is extremely
robust to diffuse background noise (e.g., uniformly sampled background points), and
enjoys excellent performance guarantees for distinguishing between points in the same
and different clusters [12]. Indeed, UPD have the property that for separated clusters with
sufficiently many points, ρ∞(x, y) is uniformly small when x, y lie in the same cluster and
uniformly large when x and y lie in distinct clusters. This holds even for high-dimensional
data, as long as the underlying clusters are low-dimensional (e.g., localize near noisy
subspaces or Riemannian manifolds) and background noise does not concentrate in high
density regions. These desirable properties are not held by classical metrics such as
Euclidean distances, and suggest the utility of UPD for HSI clustering. In particular, we
propose to leverage the desirable properties of UPD by incorporating it into the spectral
clustering algorithm.

We remark that UPD are not universally appropriate as a metric for clustering, and
in particular will fail to distinguish overlapping clusters that are generated by sampling
uniformly (i.e., the overlapping clusters with approximately constant density). However,
overlapping clusters in which the overlapping regions are low-density are suitable for
UPD [36], for example overlapping Gaussian clusters.

2.3. Background on Spectral Clustering

Spectral clustering uses low-frequency eigenfunctions of a graph Laplacian as new co-
ordinates for high-dimensional, nonlinear data, on which a traditional clustering algorithm
can be run (e.g., K-means or Gaussian mixture models) [37]. For data X = {xi}n

i=1 ⊂ RD

and metric ρ : RD ×RD → [0, ∞), define a weighted, undirected graph G with nodes X
and weighted edges Wij = exp(−ρ(xi, xj)

2/σ2). The scaling parameter σ can be tuned
manually, or set automatically [38]. Intuitively, there will be a strong edge between xi, xj in
G if and only if ρ(xi, xj) is small relative to σ.

A natural approach to clustering is to partition G into K communities that are inter-
nally large and well-connected and externally weakly connected. This may be formulated
precisely in terms of the normalized cuts functional, which leads to an NP-hard computa-
tional problem [16]. This graph cut problem may be relaxed by considering eigenvectors of
the graph Laplacian, which determine natural clusters in G in polynomial time [8,16]. In-
deed, let D be the diagonal degree matrix with Dii = ∑n

j=1 Wij. Let L = I − D−1/2WD−1/2

be the (symmetric normalized) graph Laplacian. Note L ∈ Rn×n is positive semi-definite,
with a number of zero eigenvalues equal to the number of connected components in G .
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The spectral clustering algorithm (Algorithm 1) computes the lowest frequency eigen-
vectors {φk}K

k=1 of L (those with smallest eigenvalues) and uses them as features in K-means
clustering [8]. Note that we formulate Algorithm 1 as taking only W and a number of
clusters K as an input. In practice, W must be computed using some metric ρ. While the
Euclidean metric ρ(xi, xj) = ‖xi − xj‖2 is common, other metrics may provide superior
performance [12,39,40]. Indeed, the metric should be chosen so that points in the same clus-
ter appear well-connected, while points in different clusters are well-separated [41]. Our
approach recognizes that spatially-regularized UPD achieves this for high-dimensional,
noisy HSI.

Algorithm 1 Spectral Clustering (SC)
Input: W, K;
Output: {yi}n

i=1

1: Compute the diagonal degree matrix D ∈ Rn×n.

2: Compute L = I − D−
1
2 WD−

1
2 .

3: Compute the K lowest-frequency eigenvector and eigenvalue pairs {(φk, λk)}K
k=1,

sorted so that 0 = λ1 ≤ λ2 ≤ · · · ≤ λK.

4: For 1 ≤ i ≤ n, let

φ̃(xi) =
(φ1(xi), φ2(xi), . . . , φK(xi))

||(φ1(xi), φ2(xi), . . . , φK(xi))||2
.

5: Compute labels {yi}n
i=1 by running K-means on the data {φ̃(xi)}n

i=1 using K as the
number of clusters.

3. Algorithm

The proposed SRUSC method (Algorithm 2) consists in performing spectral clustering
using the UPD ρ∞ and a spatially regularized graph Laplacian. The use of ρ∞ makes points
in the same cluster appear close together, as long as there is a high-density path connecting
them, while pushing apart points in distinct clusters separated by a density gap. The
spatial regularization accounts for the image structure of the HSI and the latent spatial
smoothness of the labels on the HSI.

Mathematically, let

Wij =

{
exp(−ρ∞(xi, xj)

2/σ2), xi ∈ Br(xj),
0, xi /∈ Br(xj),

(2)

where Br is the set of all pixels in the full image whose spatial coordinates lie inside
the square with side lengths r centered at xi. For points within spatial distance r of an
image boundary, no periodic extension of the spatial square is applied; these points are
simply connected to fewer points than interior points. The constraint that Wij = 0 if
xi /∈ Br(xj) or xj /∈ Br(xi) enforces spatial regularity in the graph: a pixel can only be
connected to spatially proximal pixels. Spatial regularization has been shown to improve
clustering performance for HSI, by producing clusters that are smoother with respect to the
underlying spatial structure [24,34]. It also has a sparsifying effect, since W has only ∼ r2n
non-zero entries. This affords a substantial computational advantage in the subsequent
eigenvector calculation when r2 � n. Note also that outlier denoising may be performed
as a pre-processing step, by removing any points whose kth nearest neighbor distance in
ρ∞ exceeds a threshold T > 0. This accounts for high-dimensional outliers that are known
to be problematic for spectral clustering [36]. The labels of these (typically very few) points
are computed by a majority vote in a local spatial neighborhood at the final step. In some of
our experiments, we found this a helpful pre-processing step. While not strictly necessary,
we include this optional pre-processing step as part of Algorithm 2.
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Algorithm 2 Spatially Regularized Ultrametric SC (SRUSC), K, σ known
Input: {xi}n

i=1, r, σ, K; (Optional: k, T, rv);
Output: {yi}n

i=1

1: (Optional) Denoise the data by removing all points whose kth nearest neighbor distance
in ρ∞ exceeds T.

2: Construct W on the remaining points as in (2).

3: Run Algorithm 1 with inputs W, K.

4: (Optional) Assign labels to the points removed by denoising according to a majority
vote in a spatial neighborhood of radius rv.

By connecting pixels with strong edges only if they are (i) spectrally close in UPD and
(ii) spatially proximal, the resulting graph Laplacian detects communities corresponding
to well-connected and spatially coherent clusters. This makes it well-suited to HSI, which
often exhibit classes with those properties.

3.1. Discussion of Parameters

The parameters of Algorithm 2 are r, σ, and K, along with the optional denoising
parameters k, T, rv. Spatially regularized spectral graph methods are typically robust to
the choice of spatial radius r, and many automated methods exist for determining the
scaling parameter σ in spectral clustering [38]. Theoretically, the denoising is highly robust
to the choice of k and T, because there is a clear gap between inliers and outliers when
using ρ∞ [12]. In practice on the datasets for which we denoised, we set k = 20 and the
voting radius rv to be as small as possible while maintaining that at least 10 non-denoised
points are in each ball.

Estimation of K

On the other hand, the number of clusters K is notoriously challenging to estimate,
particularly for data with nonlinear or elongated shapes. A commonly employed heuristic
in spectral clustering is the eigengap heuristic, which estimates K̂ = arg maxk λk+1 − λk.
However, this depends strongly on the scaling parameter σ used to construct the underlying
graph. One can instead consider a multiscale eigengap [12,42], which simultaneously
maximizes over the eigenvalue index and over σ:

(K̂, σ̂) = arg max
σ∈S,k∈{1,...,K0}

(λk+1(σ)− λk(σ)), (3)

where S = {σj}J
j=1 is a predetermined range of scaling parameter values, K0 is an upper

bound on the number of clusters, and λk(σ) is the kth-largest eigenvalue of the graph
Laplacian L when it is computed using a weight matrix W with scaling parameter σ. The
estimated optimal parameters (K̂, σ̂) are chosen to maximize this multiscale eigengap by
varying over k and σ simultaneously. This yields a nearly totally unsupervised algorithm,
in which the user need only specify the spatial radius r, a range S of candidate σ values,
and an upper bound on the number of clusters K0. Making the choices suggested above,
this nearly parameter-free algorithm is summarized in Algorithm 3.
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Algorithm 3 Spatially Regularized Ultrametric SC (SRUSC), K, σ unknown
Input: {xi}n

i=1, r, S, K0;
Output: {yi}n

i=1

1: For σ ∈ S, construct Wσ as in (2).

2: For σ ∈ S, compute the eigenvalues {λk(σ)}K0
k=1 of the Laplacian constructed from Wσ.

3: Compute (K̂, σ̂) = arg max
σ∈S,k∈{1,...,K0}

(λk+1(σ)− λk(σ)).

4: Run Algorithm 1 with inputs Wσ̂, K̂.

Computationally, Algorithm 3 loops over the elements of S, and is therefore slower
than Algorithm 2. However, under the very reasonable assumptions that |S| = O(1) with
respect to n (i.e., the number of candidate scaling parameters does not increase with n) and
that K0 = O(1) with respect to n (i.e., the number of clusters is constant with respect to
n) the computational complexity of Algorithm 3 is still quasilinear in n. In practice, we
set K0 = 20 for all experiments and S to be 20 equally spaced points covering the range of
ρ∞-distances in the data.

3.2. Computational Complexity

A benefit of the proposed method is that when r is small and the number of clusters K
does not grow with n, Algorithm 2 (and similarly Algorithm 3) is fast, as quantified in the
following theorem.

Theorem 1. The computational complexity of Algorithm 2 is O(r2n log(n)).

Proof. Note that the graph Laplacian L constructed in the proposed method is r2-sparse.
Since the cost of computing ρ∞(xi, xj) is proportional to the number of edges in the under-
lying graph G0, the complexity of computing L is O(r2nk), where k is the number of nearest
neighbors in G0. It is known that k ∼ log(n) is sufficient to ensure that with high probability
the UPD on a k-nearest neighbors graph and UPD on the fully connected graph are the
same [12,43]. For such a k, the computation of L is O(r2n log(n)). Once L is computed,
getting the K = O(1) lowest frequency eigenvectors is O(r2n) using iterative methods [44].
Finally, running K-means via Lloyd’s algorithm on these eigenvectors is O(n) when the
number of iterations is constant with respect to n. This gives an overall complexity of

O(r2n log(n) + r2n + n) = O(r2n log(n)).

This scaling is essentially optimal with respect to n, since loading the underlying data
into memory already has complexity O(n). Note, however, that sparsity of the underlying
matrix L is necessary to achieve quasilinear scaling. In particular, if r is too large, then
SRUSC may not scale to large data sets. We remark that the quasilinear scaling of SRUSC
matches the quasilinear scaling achieved by traditional spectral clustering on sparse graphs.

4. Experimental Analysis

To validate the proposed method, we perform clustering experiments on five data
sets: three synthetic HSI and two real HSI.

The first synthetic data set is denoted “Four Spheres" (FS), and is generated as follows.
Consider four centers in R2, (1, 3), (1, 5), (1, 7), and (5, 5), and a fixed radius 1.7. To
generate a synthetic pixel associated to one of these centers, 99 samples are generated
from the corresponding sphere with the given center and radius 1.7 + ε, ε generated
uniformly at random from [0, 1]. These 99 samples are concatenated to form a vector
in R198, with uniform samples from [0, 1]2 used to pad and create a vector in R200. We
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generate 4900 points associated to each center in this way. There are 2 clusters: the union
of points associated to the centers (1, 3), (1, 5) and (1, 7); and the points associated to the
center (5, 5). The idea is that each of the four centers generate samples that are separable
by a nonlinear boundary, but the fourth center is substantially further from the first three.
Thus, the most natural number of clusters is 2. It is expected that this data set will be
challenging due to the nonlinear cluster boundaries, lack of separability in the last two
coordinates, and large within-cluster variances. Each of the 4 groups of 4900 points are
spatially arrayed to be 140× 35, then are concatenated spatially into a 140× 140× 200
synthetic HSI; see Figure 2.

(a) Projection on the 1st PC (b) GT
Figure 2. The four spheres synthetic data is 140× 140× 200 and contains two clusters. The projection onto the first principal
component is in (a), the ground truth labels in (b). A spatial radius of r = 65 was used in SRUSC.

The second synthetic data set is denoted “Three Cubes” (TC) and consists of three
clusters, generated as follows. Vectors are sampled uniformly from [0, 1]3, then padded
with zeros to make vectors in R199. These points are then concatenated and rotated by an
orthogonal matrix sampled uniformly at random by performing a QR-decomposition on a
random Gaussian matrix. The data is then embedded in R200 by padding all the data with
0 in the 200th coordinate. Finally, the second cluster is translated by (0, 0, . . . , 0, .1) and the
third cluster by (0, 0, . . . , 0, .2). In this sense, the clusters are intrinsically 3-dimensional
cubes, embedded and separated in a high-dimensional ambient space [45]. Each cube
contains 13824 points, spatially arrayed to be 144× 96. These clusters are concatenated
spatially into a 144× 288× 200 synthetic HSI; see Figure 3. To demonstrate the necessity
of spatial regularization, we randomly select 30 points from the middles of cluster 1 and
cluster 3 and swap them. This can be understood as adversarial noise, to which we expect
spatially regularized methods to be robust. This presupposes a kind of spatial regularity in
this synthetic image that is often, but not always, reasonable for real data (e.g., it may be
reasonable for HSI of natural scenes, but not urban ones).

The third synthetic data set is generated by sampling 5000 data points from 10 different
overlapping Gaussians in R5, each with different mean and the same covariance matrix.
The means for ten Gaussian are of the form k√

5
(1, 1, 1, 1, 1), where k = 1, 2, . . . , 10 with

common covariance matrix 1
20
√

5
I5×5. The 5-dimensional data are then padded with 0s to

create data in R100, then rotated by a random orthogonal matrix, similar to the FS data.
We label each point according to which Gaussian mean it is nearest; this accounts for the
overlap in the Gaussians. The synthetic spectral data data is then arranged so that the
first 25× 20 rectangle of synthetic spectra are sampled from the first Gaussian, the second
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25× 20 rectangle are sampled from the second Gaussian, and so on. Therefore, the size of
the data is 25× 200 and each class has 500 pixels; see Figure 4.

(a) Projection on the 1st PC (b) GT
Figure 3. The three cubes synthetic data is 144× 288× 200 and contains 3 clusters. The projection onto the first principal
component is in (a), the ground truth labels in (b). A spatial radius of r = 95 was used in SRUSC.

(a) Projection on the 1st PC

(b) GT
Figure 4. The ten Gaussian synthetic data is 25× 200× 100 and contains 10 clusters. The projection onto the first principal
component is in (a), the ground truth labels in (b). A spatial radius of r = 20 was used in SRUSC.

We also consider two real HSI data sets: the Salinas A and Pavia U data sets (http:
//www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes, accessed
on 1 August 2019). Visualizations of the real HSI, along with their partial ground truth,
are in Figures 5 and 6, respectively. Note that both of these data sets contain a relatively
small number of classes; in the case of Pavia U we chose to crop a small subregion to use
for experiments, due to both the well-documented challenges of using too many ground
truth classes for unsupervised HSI clustering of real data [46], and in order to ensure that
most pixels in the image had ground truth labels.

(a) Projection on the 1st PC (b) Salinas A Ground Truth
Figure 5. The Salinas A data set is a 83× 86 real HSI taken by the 224-band AVIRIS sensor over Salinas Valley, California.
There are 6 clusters in the ground truth. The projection onto the first principal component is in (a), the ground truth labels
in (b). A spatial radius of r = 65 was used in SRUSC.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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(a) Projection on the 1st PC (b) Pavia U Ground Truth
Figure 6. The Pavia U data set is a 40× 51 subset of the full HSI acquired by the 103-band ROSIS sensor over Pavia
University. There are 3 clusters in the ground truth. The projection onto the first principal component is in (a), the ground
truth labels in (b). A spatial radius of r = 30 was used in SRUSC.

4.1. Comparison Methods

We compare with four benchmark clustering methods, as well as five state-of-the-art
methods. The four benchmark methods are:

• K-Means (KM) clustering [47];
• K-Means clustering on data that has been dimension-reduced with PCA by projecting

the data onto the space defined by the first K principal components;
• Gaussian Mixture Models (GMM) [47];
• Spectral Clustering (SC) using Euclidean distance [8]

The five state-of-the-art methods are:

• Diffusion Learning (DL) (https://jmurphy.math.tufts.edu/Code/, accessed on 1 Jan-
uary 2020) [27,48];

• Density Peaks Clustering (DPC) (https://people.sissa.it/~laio/Research/Res_clustering.
php, accessed on 1 January 2020) [15];

• Hierarchical Nonnegative Matrix Factorization (NMF) (https://sites.google.com/site/
nicolasgillis/code, accessed on 1 January 2017) [22];

• Laplacian-Regularized Low-Rank Subspace Clustering (LLRSC) [20];
• Local Covariance Matrix Representation (LCMR) (https://github.com/henanjun/

LCMR, accessed on 1 January 2020) [49]

The DL and NMF methods have, in particular, shown excellent performance on HSI while
enjoying a high degree of theoretical interpretability. In Section 4.2, we assume the number
of clusters K is known a priori. In Section 4.4, we show how the proposed method can
estimate K.

We note the LCMR method is a supervised learning algorithm. After dimension
reduction, the algorithm uses the cosine distance to compute the local neighboring data
points, and applies the covariance matrix representation to each data point. Finally, an
SVM uses the covariance matrices as the inputs to label the images. The algorithm uses a
number of training labels equal to 5K, where as always K is the number of classes in the
ground truth. The purpose of including this supervised method amongst the unsupervised
comparison methods is to demonstrate the effectiveness of SRUSC even compared to
supervised ones which have access to labeled training data.

https://jmurphy.math.tufts.edu/Code/
https://people.sissa.it/~laio/Research/Res_clustering.php
https://people.sissa.it/~laio/Research/Res_clustering.php
https://sites.google.com/site/nicolasgillis/code
https://sites.google.com/site/nicolasgillis/code
https://github.com/henanjun/LCMR
https://github.com/henanjun/LCMR
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4.2. Clustering Accuracy

To perform quantitative comparisons, we align each clustered data set with the ground
truth by solving a linear assignment problem with the Hungarian algorithm [50]. Then,
three accuracy measures are computed: overall accuracy (ratio of correctly labeled pixels
to total number of pixels), denoted OA; average accuracy (the average OA on each class),
denoted AA; and Cohen’s κ statistic [51]. Numerical results are in Table 1, with visual
results in Figures 7–11. Note that the accuracy metrics are only computed on pixels that
have ground truth labels. Moreover, the alignments were made to maximize OA, and
different alignments may be realized if AA or κ are maximized.

Table 1. Results for clustering experiments. We see that across all methods and data sets, the proposed SRUSC method
gives the best clustering performance.

Data
set

FS
AA

TC
AA

TG
AA

SA
AA

PU
AA

FS
OA

TC
OA

TG
OA

SA
OA

PU
OA FS κ TC κ TG κ SA κ PU κ

KM 1.00 1.00 1.00 0.66 0.58 1.00 1.00 1.00 0.63 0.60 1.00 1.00 1.00 0.53 0.09
PCA 1.00 1.00 1.00 0.85 0.67 1.00 1.00 1.00 0.80 0.79 1.00 1.00 1.00 0.76 0.39
GMM 0.51 1.00 0.62 0.58 0.80 0.56 1.00 0.62 0.59 0.57 0.51 1.00 0.58 0.48 0.36

SC 1.00 1.00 0.58 0.72 1.00 1.00 1.00 0.58 0.76 1.00 1.00 1.00 0.53 0.69 1.00
DL 0.77 1.00 1.00 0.88 0.38 0.66 1.00 1.00 0.83 0.60 0.77 1.00 1.00 0.79 0.07

DPC 0.77 0.33 1.00 0.61 0.34 0.66 0.33 1.00 0.63 0.65 0.77 0.33 1.00 0.54 0.03
NMF 0.94 1.00 1.00 0.67 0.59 0.90 1.00 1.00 0.64 0.76 0.94 1.00 1.00 0.54 0.52
LLRSC 0.75 1.00 0.86 0.75 0.67 0.62 1.00 0.86 0.77 0.79 0.75 1.00 0.85 0.75 0.67
LCMR 0.94 0.62 0.89 0.79 0.99 0.94 0.62 0.89 0.76 0.99 0.95 0.62 0.88 0.71 0.98
SRUSC 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00 1.00 0.81 1.00

(a) GT (b) KM (c) PCA (d) GMM (e) SC

(f) DL (g) DPC (h) NMF (i) LLRSC (j) LCMR

(k) SRUSC

Figure 7. For the four spheres synthetic data set, several methods achieve perfect accuracy, including the proposed method.
Interestingly, the proposed unsupervised SRUSC achieves perfect accuracy, while the supervised LCMR algorithm does not.
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(a) GT (b) KM (c) PCA (d) GMM (e) SC

(f) DL (g) DPC (h) NMF (i) LLRSC (j) LCMR

(k) SRUSC

Figure 8. On the synthetic three cubes data set, only the proposed method is able to correctly label all data points.
In particular, the spatial regularization is necessary to gain robustness to the noise introduced. Note, however, that the
interpretation of the swapped points as noise relies on an assumption of spatial regularity in the pixel labels, which may not
be reasonable in some contexts. While the swapped noise points were chosen randomly, repeated trials over which points
were swapped did not change the numerical results significantly.

We see that across all datasets, SRUSC outperforms all comparison methods. While
many methods perform well on the synthetic data, only SRUSC performs well on both
of the real data sets as well. Generally, SC and DL perform second best, which makes
sense since they are also graph-based methods. Remarkably, the proposed method even
outperforms the supervised LCMR method, which makes use of labeled training data
to predict.

4.3. Discussion of Tunable Parameters

There are three major parameters to tune for the proposed method (Algorithm 3):
r, S, K0. The spatial radius r needs to be chosen large enough to capture important spatial
patterns in the data, but not so large that many spatially disparate pixels in the image are
connected. We found many choices of r were suitable for each data set, and that this was
not a parameter to which SRUSC was extremely sensitive. The range of σ values, S, should
be chosen to cover the range of ρ∞ values at a relatively fine sampling rate. We found
taking 20 equally sized steps between the minimal and maximal ρ∞-values worked well on
all examples. Note that the larger |S| is, the slower the proposed method. Similarly, we
found taking K0 = 12 allowed for efficient detection of K. Taking it larger would needlessly
increase runtime by requiring more eigenvalues to be computed at each σ ∈ S. We note
that no denoising was done on the Four Spheres and Three Cubes synthetic data, while
pre-processing denoising on the Ten Gaussians (T = .22), Salinas A (T = 290), and Pavia U
(T = 750) was performed. These cutoffs were performed by visual inspection, noting that
in all cases there was a clear gap between noisy outliers and inlying cluster points.

4.4. Estimation of Number of Clusters

While clustering accuracy when given K a priori is an important metric for clustering
algorithm evaluation, it is not entirely realistic. Indeed, the estimation of K is an important
yet poorly understood problem not just in HSI clustering, but in clustering more generally.
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(a) GT

(b) KM

(c) PCA

(d) GMM

(e) SC

(f) DL

(g) DPC

(h) NMF

(i) LLRSC

(j) LCMR

(k) SRUSC

Figure 9. On the synthetic ten Gaussian data set, several models achieve nearly perfect accuracy, including the proposed
method. However, both the SC and GMM methods fail to cluster properly. Note that our model only fails on a small number
of points on the boundary of two different class, where the spatial information is not clear.
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(a) GT (b) KM (c) PCA (d) GMM (e) SC

(f) DL (g) DPC (h) NMF (i) LLRSC (j) LCMR

(k) SRUSC

Figure 10. On the Salinas A data set, the proposed method performs strongly, with DL also performing well. Note that
SRUSC nearly correctly estimates the number of clusters. As shown in Figure 12, it estimates 7 clusters rather than 6. This
strong estimation is an additional advantage of SRUSC for the Salinas A dataset.

(a) GT (b) KM (c) PCA (d) GMM (e) SC

(f) DL (g) DPC (h) NMF (i) LLRSC (j) LCMR

(k) SRUSC

Figure 11. On the Pavia U data set, only the proposed method achieves perfect accuracy, though Euclidean spectral
clustering and LCMR perform well. Moreover, SRUSC correctly estimates K = 3 for this example; see Figure 12. This is a
further advantage of SRUSC over SC (which fails to estimate K correctly) and LCMR (which is supervised).
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Figure 12. For each of the data sets, eigenvalues are shown as a function of σ. The ones on the top are the SRUSC eigenvalues
(a–e), and on the bottom the Euclidean eigenvalues (f–j). The colors of the plots correspond to the eigenvalue index. The
first eigenvalue is blue, and is always 0; the second eigenvalue is red, the third is yellow, the fourth is purple, the fifth is
green, and so on. For a range of σ values, the largest gap for SRUSC is between the Kth and (K + 1)st eigenvalues for all three
synthetic data sets, as well as Pavia U, indicating that SRUSC is correctly estimates K for these data. The proposed method
estimates K̂ = 7 for Salinas A, rather than K = 6, which is perhaps a reasonable misestimation given the complexity of the
data and the fact that one of the classes is spectrally incoherent. On the other hand, the Euclidean eigenvalues completely
fail to correctly estimate K, even on the synthetic examples.

In Figure 12, the eigenvalues of the SRUSC Laplacian are shown for a range of scales
σ. We see the eigengap (3) correctly estimates number of clusters for most of the data
sets considered, for a range of σ values. Only on Salinas A does the eigengap fail; it
estimates 7 rather than 6 clusters. We note, however, that in this case one of the classes
(in the bottom right) is obviously spectrally separable into two distinct regions. Since the
algorithm is provided only with the unlabeled data, returning 7 as the number of clusters
is arguably more reasonable than returning 6, the latter being the number of ground truth
classes. Indeed, it is essentially impossible to link the split class based on the spectral data
alone—supervision is required.

Overall, these results suggest that SRUSC is able to estimate (exactly or nearly) the
number of clusters even on challenging, high-dimensional HSI.

Note that we also estimated the number of clusters using multiscale eigenvalues
computed with the Euclidean Laplacian, with very poor results; see Figure 12f–j. Indeed,
the Euclidean multiscale eigenvalues fail to reasonably estimate K in any of the examples
considered. This suggests another important advantage of SRUSC compared to more
classical graph-based clustering methods: it can estimate the number of clusters, making it
nearly completely unsupervised.

4.5. Runtime

The runtimes for all algorithms are in Table 2. All experiments were performed on a
Macbook Pro with a 3.5GHz Intel Core i7 processor and 16GB RAM. We see that the graph-
based methods (SC, DL, SRUSC) are on a similar order of magnitude, and are considerably
slower than simpler and less effective methods like KM and GMM.
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Table 2. Running time for different methods measured in seconds. The methods that require the
computation of eigenvectors of a graph (SC, DL, SRUSC) are slower than methods that do not.
However, all methods require only at most minutes to run, even on the largest datasets.

Data Set FS TC TG SA PU

KM 0.7718 0.4352 0.1532 0.3206 0.1590
PCA 0.0472 0.0411 0.0372 0.0788 0.0479

GMM 3.4639 2.1814 0.6806 1.3530 0.1662
SC 563.8514 1832.7 9.3997 56.2373 2.0211
DL 870.0409 1036.8 23.7778 13.3009 1.2118

DPC 748.5418 1062.2 21.8215 9.6928 0.4860
NMF 0.4553 0.7978 0.6298 0.6593 0.3272

LLRSC 1.6171 1.0303 0.4702 1.15 0.4793
LCMR 240.5580 131.4040 4.55611 35.2812 3.5041
SRUSC 1402.1 2971.6 25.3597 97.4420 6.0195

5. Conclusions and Future Research

In this article, we showed that UPD are a powerful and efficient metric for the unsuper-
vised analysis of HSI. When embedded in the spectral clustering framework and combined
with suitable spatial regularization, state-of-the-art clustering performance is realized by
the SRUSC algorithm on a range of synthetic and real data sets. Moreover, ultrametric
spectral clustering is mathematically rigorous and enjoys theoretical understanding of its
accuracy and robustness to parameters that many unsupervised learning algorithms lack.

Based on the success of unsupervised learning with ultrametric path distances, it is of
interest to develop semisupervised UPD approaches for HSI. Path distances for semisuper-
vised learning are effective in several contexts [52], and it is of interest to understand how
the UPD perform in the context of high-dimensional HSI, specifically for active learning of
HSI [53,54].

A related line of work is to regularize the `∞ geodesic not through spatial regulariza-
tion, but through the addition of another metric (i.e., `1 geodesic or Euclidean distance).
This would have the effect of requiring the optimizing path in the HSI pixel space to be
short in multiple sense, and is expected to improve robustness. For both this form of
regularization and the spatial regularization proposed in this article, it is of interest to
develop mathematical clustering performance guarantees depending on, for example, the
joint spectral-spatial smoothness of the HSI.

It is also of interest to develop hierarchical clustering methods based on UPD, which
will mitigate the challenge of using incompletely-labeled ground truth data to do algorith-
mic validation. Indeed, allowing for soft clusterings and multiscale labelings is closer to
the practical use-case of HSI clustering algorithms, in which remote sensing scientists need
to explore real data for which they have little or no knowledge of the underlying material
classes. Developing methods and intrinsic clustering evaluation metrics (that do not require
labeled ground truth) are the topic of ongoing research. A related line of inquiry pertains to
intrinsic statistics that measure whether or not to split clusters or preserve them [55]. It is of
interest to apply both classical methods (e.g., silhouette scores [56] and the Davies–Bouldin
index (DBI) [57]) and also recent methods based on diffusion processes [58] to evaluate
intrinsic cluster structure in the context of SRUSC. Indeed, balancing cohesion within and
separation between clusters is an important underlying principle for clustering that will be
explored via hierarchical methods.
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