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ABSTRACT

An algorithm for clustering hyperspectral images
(HSI) based on diffusion geometry in the space of
high-dimensional image patches is proposed. By us-
ing the patch structure of the HSI, robustness to noise
is achieved in the clustering process. Results on real
hyperspectral data indicate the effectiveness of working
in the space of HSI patches, compared to working in the
space of HSI pixels.

Index Terms— Hyperspectral images, unsuper-
vised learning, clustering, image patches, diffusion ge-
ometry

1 INTRODUCTION

As remote sensors capture increasing quantities of high-
dimensional hyperspectral imagery (HSI), the need to
develop efficient machine learning algorithms for these
data streams grows apace. The data captured is usually
unlabeled, and it is infeasible for humans to produce suf-
ficient labeled annotations to make use of traditional su-
pervised learning on the entirety of this deluge of HSI
data. There is consequently a pertinent need for efficient
unsupervised and semisupervised machine learning al-
gorithms to glean insight from these data streams.

This paper proposes a clustering algorithm for HSI
based on diffusion geometry in the space of image
patches. This method, a significant extension of the
diffusion learning (DL) framework for HSI clustering
[1, 2, 3, 4], gains robustness to noise and outliers by
making comparisons not between individual pixels, but
between averages across spatial patches of pixels. This
is of particular value for HSI, which are often noisy and
suffer from corruption due to poor atmospheric con-
ditions. The proposed spectral-spatial patch diffusion
learning (DLSSP) algorithm captures the intrinsic ge-
ometry of patch space, and efficiently labels all pixels
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in a manner that scales quasilinearly in the number of
pixels in the image.

The structure of the rest of this article is as fol-
lows. Section 2 presents background on spaces of image
patches and diffusion geometry. The proposed algo-
rithm is presented in Section 3. Experimental results are
given in Section 4, and conclusions and future work are
discussed in Section 5.

2 BACKGROUND
In order to capture the latent structure of an HSI, we con-
sider the diffusion geometry [5, 6] of patch space [7, 8].
Let X = {xi}n

i=1 ⊂RD be a point cloud representation of
an M×N×D hyperspectral image with n = MN pixels
and D spectral bands. For p ∈ {1,2, . . .}, let Xp be the
space of p× p square image patches of X . Owing to size
restrictions near the border, Xp has slightly fewer ele-
ments than X , but is substantially higher dimensional—
X is D-dimensional, while Xp is p2D dimensional. In
this article, we perform analysis on Xp in order to lever-
age the smoothing properties of working in patch space.

Indeed, once the patches are constructed, we can de-
noise and cluster by applying a variant of the non-local
means denoising (NLMD) algorithm [7, 8] followed by
the spectral-spatial diffusion learning (DLSS) algorithm
[2, 4]. More precisely, for x ∈ Xp, let NNk(x) be the set
of k-nearest neighbors of x in Xp. We denoise Xp by
replacing x with its local average over NNk(x) in patch
space: x̃ = 1

k ∑y∈NNk(x) y. This has the effect of denoising
x in a manner that respects the spatial properties of the
local neighborhood around x.

Once the patch geometry has been used to smooth
the data, the DLSS algorithm [2] is used to cluster it.
At a high level, the DLSS algorithm learns modes in the
underlying data that can be used to propagate labels to
the remaining data points. In order to learn modes in a
manner that is robust to the high dimensionality of the
data and the nonlinear structure of its latent clusters, dif-
fusion distances [5, 6] are used to make pairwise com-
parisons between pixels. More precisely, for any dataset
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{xi}n
i=1 = X ⊂ RD, let G = (X ,W ) be a weighted graph

on X with symmetric weight matrix W ∈ [0,1]n×n; W
is commonly constructed as Wi j = K (xi,x j) for an ap-
propriate kernel function K . The weights W generate a
diffusion process on X by normalizing the rows of W to
sum to 1. Indeed, let P=D−1W , where D is the diagonal
degree matrix with Dii = ∑

n
j=1Wi j. Then as long as G is

connected and aperiodic, P is an irreducible Markov ma-
trix with a unique stationary distribution π ∈R1×n satis-
fying πP = π. The diffusion distance between xi,x j ∈ X
at time t ∈ [0,∞) is

Dt(xi,x j) =

√
n

∑
`=1

(Pt
i`−Pt

j`)
2 1

π`
.

Intuitively, the diffusion distance between xi and x j at
time t is small if the the diffusion process at time t pre-
scribes similar transition profiles to xi and x j, that is, if
the ith and jth rows of Pt are similar.

Diffusion distances are known to capture low-
dimensional, nonlinear structure in X even when D
is large [9, 10]. Unfortunately, computing Dt(xi,x j) for
fixed xi,x j has complexity O(n), which is prohibitive for
n large. However, one can compute the eigenvalues and
right eigenvectors of P, {(λ`,ψ`)}n

`=1, and show [6] that

Dt(xi,x j) =

√
n

∑
`=1

λ2t
` ((ψ`)i− (ψ`) j)2.

Moreover, when the underlying data is intrinsically
low-dimensional, P is approximately low rank and a
small subset of the spectrum of P is sufficient to well-
approximate diffusion distances. Indeed, suppose with-
out loss of generality that the eigenvalues of P (and
their corresponding right eigenvectors) are sorted so
that 1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0. Then for
some M� n, we may truncate the spectral expansion to
approximate diffusion distances:

Dt(xi,x j)≈

√
m

∑
`=1

λ2t
` ((ψ`)i− (ψ`) j)2.

3 THE DLSSP ALGORITHM
The proposed DLSSP algorithm for clustering the HSI
{xi}n

i=1 = X ⊂ RD proceeds in two major steps. First,
the set of p× p patches in X , denoted Xp, is computed
and smoothed according to the NLMD algorithm [7].

The collection of denoised patches X̃p = {x̃}x∈Xp implic-
itly denoises the original HSI X by projecting an image
patch onto its center coordinate; let X̃ be the image of
X̃p under such a projection. To mitigate the very high
dimensionality of patch space (p2D), nearest neighbor
calculations are performed on the projection of the patch
space data onto its first d principal components. The
construction of X̃ is detailed in Algorithm 1.

Algorithm 1: HSI Smoothing with NLMD

1 Input: X ; p,k,d.
1: Compute Xp ⊂ Rp2D the set of p× p patches in the

HSI X .
2: Project Xp onto its first d principal components,

call the result Xp,d ⊂ Rd .
3: For each x ∈ Xp,d , compute the k-nearest neighbors

NNk(x) in Xp,d .
4: For each x ∈ Xp,d , compute the denoised patch

x̃ = ∑y∈NNk(x) y.
5: Let X̃ ⊂ Rd be the projection of the denoised

patches onto their center pixel.
Output: X̃ .

The second major stage of DLSSP is to cluster the
smoothed HSI X̃ using DLSS [2]. This consists of de-
tecting modes in the data as points that are both high-
density and far in diffusion distance from other points of
high density. Indeed, let p : X̃ → (0,1) be a kernel den-
sity estimator for X̃ ; we use a Gaussian kernel on nearest
neighbors with an adaptive scaling parameter. Let

ρt(x) =

 min
{p(xi)≥p(x)}

Dt(xi,x), x 6= argmaxi p(xi)

maxxi Dt(xi,x), x = argmaxi p(xi)

be the diffusion distance of each point to its Dt-nearest
neighbor of higher density. The modes of the data are
determined as the maximizers of Dt(x) = p(x)ρt(x); the
p(x) factor ensures that outlier points are not estimated
as modes. The mode detection algorithm is summarized
in Algorithm 2.

Once the modes are detected, points are labeled it-
eratively in a manner that preserves spatial regularity.
The key notion to this labeling process is that of spa-
tial consensus neighbor, which is the same as the most
common label in a spatial neighborhood around a pixel,
where both labeled and unlabeled pixels vote. The la-
beling procedure is summarized in Algorithm 3; details
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Algorithm 2: Mode Detection Algorithm

1 Input: X̃ ,K; t.
1: Compute {p(xi)}n

i=1, {ρt(xi)}n
i=1.

2: Compute {x∗k}K
k=1, the K maximizers of

Dt(xi) = p(xi)ρt(xi).
Output: {x∗k}K

k=1,{p(xi)}n
i=1,{ρt(xi)}n

i=1.

may be found in [2].

Algorithm 3: Spectral-Spatial Labeling Algo-
rithm
1 Input: {x∗k}K

k=1,{p(xi)}n
i=1, {ρt(xi)}n

i=1
1: Assign each mode a unique label.
2: Iterating through the remaining unlabeled points in

order of decreasing density among unlabeled
points, assign each point the same label as its
Dt-nearest spectral neighbor of higher density,
unless the spatial consensus label exists and differs,
in which case the point is left unlabeled.

3: Iterating in order of decreasing density among
unlabeled points, assign each point the consensus
spatial label, if it exists, otherwise the same label as
its nearest spectral neighbor of higher density.

Output:Labels {yi}n
i=1.

3.1 Computational Complexity

The proposed algorithm appears on first consideration
to be highly penalized by the curse of dimensionality:
even for small 3× 3 patches, working in patch space
increases the dimensionality (already very high) of the
HSI by nearly an order of magnitude. However, the
use of principal component analysis to project the p2D-
dimensional patch space into d dimensions significantly
mitigates this complexity. Indeed, computing the projec-
tion onto the first d principal components has complex-
ity O(d2 p4D2 + np4D2), which is O(nD2) when p,d =
O(1). Once the patch-space has been projected onto the
first d principal component directions, the subsequent
application of the DLSS algorithm is, under mild as-
sumptions [11, 2] O(Cd′d log2(n)n), where d′ ≤ d is the
intrinsic dimension of the projected patch space data.
This gives a total cost of O(n(D2 +Cd′ log2(n))) when
d =O(1) with respect to n,D. Crucially, the dependence
on n is quasilinear, so that the proposed method scales
to large datasets. Code implementing DLSSP is publicly

available 1.

4 EXPERIMENTAL RESULTS

We perform experiments on the Indian Pines dataset2;
experimental data is shown in Fig. 1. The proposed
DLSSP method is tested across a range of patch sizes p,
and is also compared to the DLSS algorithm, which may
be understood as the DLSSP algorithm in the special
case p = 1. Results appear in Fig. 2, where labels for
p = 5 are shown, along with the overall accuracy (OA),
average accuracy (AA), and Cohen’s κ score for DLSSP
as a function of p; these accuracy metrics are formally
defined in [2]. We see that when p = 5 is used, DLSSP
strongly outperforms DLSS, with DLSSP achieving re-
sults of OA = 0.4711, AA = 0.3846, κ = 0.4031, com-
pared to OA = 0.4286, AA = 0.2243, κ = 0.3141 for
DLSS.

Fig. 1. The Indian pines dataset was recorded in 1992 in Northwest
IN, USA by the AVRIS sensor. It has spatial dimensions 145×145
for a total of n = 21025 pixels, has spatial resolution 20m/pixel, and
has spectral dimension D = 200. It contains 16 classes of varying
sizes. Left: Sum of first 10 principal components. Right: ground
truth labels.
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Fig. 2. Results on the Indian Pines data. Left: DLSS results. Mid-
dle: DLSSP results. Right: Impact of the patch size on DLSSP
clustering accuracy.

We see that as a function of p, the proposed method

1https://jmurphy.math.tufts.edu/Code/
2http://www.ehu.eus/ccwintco/index.php?title=

Hyperspectral_Remote_Sensing_Scenes
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first improves, hitting an optimal value at p = 5, be-
fore declining. This can be interpreted in terms of
regularization—the large p is, the more emphasis on the
spatial regularization coming from considering spatial
patches.

5 CONCLUSIONS & FUTURE DIRECTIONS
The results of the DLSSP algorithm on the Indian Pines
dataset suggest its value for clustering HSI. While there
is a computational cost to working in patch space (di-
mension D data becomes p2D dimensional), projecting
onto a small number of principal components before per-
forming nearest neighbor searches and constructing the
diffusion process on the data reduce this cost signifi-
cantly.

It is of interest to develop unsupervised methods
that involve clustering directly on the space of patches.
There is a danger that such methods would be over-
whelmingly influenced by spurious geometric proper-
ties of the patches (e.g. the orientation of edges), but
such approaches may be feasible if a notion of distance
on the space of patches that is rotation invariant is in-
corporated. It is also of interest to extend the proposed
unsupervised framework to the semisupervised setting
of active learning, where diffusion methods have shown
strong theoretical and empirical results [12, 13, 14].
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