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ABSTRACT 27 

It is well known that species across the world are expanding or shifting their ranges because of 28 

climate change. Yet, we know little about their impact on the habitats they colonize. In an 29 

observational study, we examined the effect of the fiddler crab Minuca pugnax (Smith, 1870) on 30 

benthic microalgal biomass in salt marshes in its expanded range (northeastern Massachusetts, 31 

USA). We found that plots with M. pugnax had, on average, 74% lower diatom biomass and 32 

77% lower cyanobacteria biomass than plots without M. pugnax. Our results indicate that this 33 

climate migrant can impact saltmarsh functioning by limiting benthic microalgal biomass.    34 

 35 
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Climate migrants are populations within a species that colonize a new habitat or range due to the 45 

climate-driven range expansions or shifts of that species (Johnson et al., 2020). Ecologists and 46 

biogeographers have identified thousands of climate migrants, from fishes to insects to crabs 47 

(Parmesan & Yohe, 2003; Sorte et al., 2010; Johnson, 2015; Hale et al., 2017). Yet, we know 48 

little about how climate migrants influence the functioning of the ecosystems that they colonize. 49 

Fiddler crabs are excellent species to examine the impact of climate migrants because they are 50 

found in intertidal habitats throughout the world (Rosenberg, 2020), they can strongly influence 51 

ecosystem functioning (Katz, 1980; Moore, 2019), and poleward range expansions due to ocean 52 

warming have been documented for some species (Johnson, 2014; Peer et al., 2015; Rosenberg, 53 

2018; Truchet et al., 2019). 54 

The fiddler crab, Minuca pugnax (Smith, 1870) (formerly Uca pugnax), has expanded its 55 

range north of its historical northern limit of Cape Cod, Massachusetts (MA) to Maine, USA 56 

(Johnson, 2014; Rosenberg, 2020; DSJ, unpublished data). It lives in salt marshes, which are 57 

intertidal grasslands. As a burrowing ecosystem engineer (sensu Jones et al., 1994), M. pugnax 58 

has a strong influence on saltmarsh functioning, physical structure, and biodiversity (Katz, 1980; 59 

DePatra & Levin 1989; Gittman & Keller, 2013). While many researchers have focused on the 60 

role of M. pugnax as an ecosystem engineer in salt marshes (e.g., Gittman & Keller, 2013; 61 

Moore, 2019), its role as a consumer has been overlooked. Minuca pugnax is a deposit feeder 62 

and like most species of fiddler crabs, it grazes benthic microalgae (also known as 63 

“microphytobenthos” (e.g., MacIntyre et al., 1996)) mostly diatoms and cyanobacteria, from the 64 

sediment surface (Shanholtzer, 1973; Haines & Montague, 1979; Bursey, 1985). To our 65 

knowledge, no one has explicitly tested the impact of M. pugnax on benthic microalgae in either 66 

its historical or expanded range. Darley et al. (1981) saw chlorophyll a biomass increases when 67 
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they excluded fiddler crabs in a Georgia (USA) salt marsh. Because three species of fiddler crabs 68 

(M. pugnax, the red-jointed fiddler crab M. minax (Le Conte, 1885), and the sand fiddler crab 69 

Leptuca pugilator (Bosc, 1802)) co-exist in this marsh (Teal, 1958), their experiment likely 70 

shows the impact of the fiddler crab community, not of a single species.   71 

There are several reasons that salt marshes found in the expanded range of M. pugnax 72 

(i.e., north of Cape Cod, MA, USA) are excellent living laboratories to test the effects of this 73 

climate migrant on benthic microalgal biomass. First, the grazing impacts of fiddler crabs on 74 

benthic microalgae can be isolated to a single species, M. pugnax, because it is the only fiddler 75 

crab present in this part of its range (Johnson, 2014; Wasson et al. 2019; Rosenberg, 2020). 76 

Second, the distribution of M. pugnax colonies in the expanded range is patchy with tens of 77 

meters between colonies (Martínez-Soto & Johnson, 2020).  Finally, unlike M. pugnax in the 78 

historical range, individuals of M. pugnax in the expanded range remain close to their burrows 79 

and do not appear to drove, where high-density scuttles of crabs move through the marsh to 80 

graze (DSJ, personal observation). This restricted movement likely results in patches of 81 

saltmarsh benthos between the colonies untouched by crabs. This allowed us to compare benthic 82 

microalgal biomass between patches with and without M. pugnax. We hypothesized that the 83 

biomass of benthic microalgae would be lower in patches with M. pugnax compared to those 84 

without M. pugnax.   85 

  86 

MATERIALS AND METHODS 87 

Site description 88 

This study was conducted in the salt marshes flooded by West Creek in the Plum Island Estuary 89 

in Rowley, MA, USA (42°44'16.0"N, 70°50'53.2"W) (Fig. 1). These salt marshes are part of the 90 
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Great Marsh, which is the largest expanse of salt marshes in the northeastern USA. The estuary 91 

is mesotidal with mean tides ~2.6 m and spring tides of 3 m (Johnson et al., 2007). The 92 

expansive marshes are largely above mean high water (so-called “high marsh”), which is 93 

dominated by salt hay, Spartina patens ((Aiton) Muhl, 1817) (~45 cm shoot height), and 94 

punctuated by isolated patches of stunted Spartina alterniflora (Loisel, 1807) (~40 cm shoot 95 

height). The low marsh (below mean high water) is a 1–3 m wide band of tall-form S. 96 

alterniflora (up to 150 cm shoot height; Johnson et al., 2016). Unlike marshes found in the 97 

historical range (i.e., south of Cape Cod, MA, USA), where M. pugnax can inhabit both S. patens 98 

and S. alterniflora habitats (Luk & Zajac, 2013; Wasson et al., 2019), M. pugnax is found 99 

exclusively in the low marsh in the expanded range (Johnson 2014; Martínez-Soto & Johnson, 100 

2020).  101 

          <Fig. 1> 102 

Other burrowing species present in the tall-form S. alterniflora zone in the Great Marsh 103 

include infaunal polychaetes and amphipods with burrows < 1 mm in diameter (Johnson et al., 104 

2007). Burrowing crabs found in salt marshes in the historical range, such as the red-jointed 105 

fiddler crab M. minax, the sand fiddler crab L. pugilator, and the purple marsh crab Sesarma 106 

reticulatum (Say, 1817), are absent from these marshes (Johnson, 2014; Wasson et al., 2019; 107 

Rosenberg, 2020). As a result, it is easy to distinguish M. pugnax burrows from those of other 108 

species.  109 

 110 

Data collection  111 

To test the hypothesis that M. pugnax reduced benthic microalgal biomass, we selected ten plots 112 

(0.0625 m2) with fiddler crabs present (determined by the presence of burrows and either feeding 113 
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pellets or crabs) and counted burrows within the plot. Each crab plot was paired with a reference 114 

plot (lacking burrows, feeding pellets, or crabs) that was 1–2 m away, for a total of 20 plots. Plot 115 

pairs were at least 10 m apart from each other due to the patchiness of M. pugnax colonies. We 116 

estimated the biomass of benthic microalgal functional groups (diatoms, cyanobacteria, and 117 

green algae) on the sediment surface with a handheld fluorometer (BenthoTorch, BBe 118 

Moldaenke, Germany) in duplicate samples within each plot. Measurements within crab plots 119 

were taken adjacent to crab burrows, but not over them. Data were collected at low tide on a 120 

sunny afternoon on 22 August 2019.   121 

 122 

Statistical analysis 123 

To determine if there was a statistical difference for the biomass of diatom and cyanobacteria 124 

between plots with and without fiddler crabs, we conducted a two-tailed paired t-test for unequal 125 

variances in R version 4.0.0 (R Core Team 2020). Green algae were not detected in any plot. 126 

Prior to analysis, the duplicate samples from each plot were averaged.  127 

 128 

RESULTS 129 

On average, diatom biomass was 64% lower and cyanobacteria biomass was 77% lower in plots 130 

with M. pugnax burrows than in plots without burrows (P < 0.02) (Fig. 2). Burrow densities in 131 

plots with M. pugnax ranged from 16–96 m–2.  132 

          <Fig. 2> 133 

 134 

DISCUSSION 135 
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Our results demonstrate that the fiddler crab M. pugnax in its expanded range lowers the biomass 136 

of benthic microalgae in salt marshes. Similar results have been found for other species of fiddler 137 

crabs. For instance, the sand fiddler L. pugilator can reduce sediment biomass of chlorophyll a (a 138 

proxy of benthic microalgae) by 20–70% on beaches on the east coast of the USA during a single 139 

low tide (Robertson et al., 1980; Reinsel, 2004). Based on a mesocosm study in Australia, 140 

Kristensen & Alongi (2006) found that the calling fiddler crab Gelasimus vocans (Linnaeus, 141 

1758) reduced sediment chlorophyll a by 75% at the surface (0–1 cm), but had no impact on 142 

deeper layers. This is consistent with feeding in fiddler crabs, which occurs on the top 1–2 cm of 143 

sediment (Wolfrath, 1992).  144 

Minuca pugnax reduces benthic microalgal biomass in salt marshes, and as a result it may 145 

have indirect effects on the functioning and food webs of salt marshes. Other saltmarsh animals, 146 

including polychaetes, gastropods, copepods, and amphipods, rely on benthic microalgae for 147 

food (Galván et al., 2008, 2011; Pascal et al., 2013). Minuca pugnax may indirectly influence the 148 

small-scale (as measured in meters) distribution of these animals through exploitative 149 

competition for benthic microalgae. Further, diatoms and cyanobacteria excrete extracellular 150 

polymeric substances that create biofilms on the sediment surface (Decho, 2000). These biofilms 151 

can stabilize sediments and reduce tidal erosion (Paterson, 1989; Fagherazzi et al., 2013). Fiddler 152 

crabs may enhance erosion, not only through burrow construction and maintenance (Smith & 153 

Green, 2015), but also by grazing benthic microalgae, a sediment stabilizer. Lastly, benthic 154 

microalgae are important sinks for water-column nitrogen and can mitigate the impacts of 155 

nitrogen pollution (Drake et al., 2009; Hope et al., 2020; Oakes et al., 2020). By reducing 156 

benthic microalgae, fiddler crabs may impact the metabolism of the ecosystem and limit the 157 

ability of the marsh to uptake excess nitrogen. Minuca pugnax may also enhance nitrogen uptake 158 
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by the marsh by stimulating algal production through grazing and converting nitrogen into 159 

secondary (i.e., crab) production. 160 

Our results should be interpreted within the limitations of our study. We found that 161 

benthic microalgal biomass was lower in plots with M. pugnax versus plots without M. pugnax 162 

during a single low tide. Our sampling does not account for temporal dynamics of benthic 163 

microalgae production. For instance, in a salt marsh in Argentina, Ribeiro & Iribarne (2011) 164 

found that during flooding tides, benthic microalgae could replenish up to 100% of its biomass 165 

within a day of feeding by the Uruguayan fiddler crab Leptuca uruguayensis (Nobili, 1901). In a 166 

12-day experiment in South African mangroves, Peer et al. (2019) found that selective grazing 167 

by the fiddler crab Austruca occidentalis (Naderloo, Schubart & Shih, 2016) lowered diatom and 168 

cyanobacteria biomass, which allowed green algae to flourish and resulted in no overall net 169 

effect on the grazing by fiddler crabs on benthic microalgal biomass. That said, Spivak & 170 

Ossolinki (2016), found that the average turnover of benthic microalgae (measured as the 171 

biomass to production ratio) was 59 days in August for the habitats we sampled. This slow 172 

turnover time suggests that the effect of M. pugnax on benthic microalgal biomass in this marsh 173 

will persist for days. 174 

Individuals of M. pugnax may have greater per-capita grazing on benthic microalgal 175 

biomass in the expanded range than in the historical range because individuals are larger in the 176 

expanded range than in the historical range (Johnson et al., 2019). The population-level impacts 177 

of M. pugnax on benthic microalgal biomass in the expanded range, however, are likely small 178 

relative to populations in the historical range. The densities of the burrows of M. pugnax in the 179 

expanded range average fewer than 10 burrows m–2 (Martínez-Soto & Johnson, 2020), whereas, 180 

burrow densities in the historical range can be as high as 300 burrows m–2 (McCraith et al., 181 
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2003). Although M. pugnax populations are currently small in the expanded range, they are 182 

growing (Martínez-Soto & Johnson, 2020). Our results suggest that as M. pugnax populations 183 

grow in their expanded range, so too will their impact on benthic microalgae. 184 

 185 
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FIGURE CAPTIONS 333 

Figure 1. Sampling location. Measurements were taken along the marsh edge in the area defined 334 

by the white box. This figure is available in color at Journal of Crustacean Biology online.  335 
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Figure 2. Mean biomass of benthic diatoms and cyanobacteria in the presence (“Crabs”) and 336 

absence (“No crabs”) of the fiddler crab, Minuca pugnax. Error bars represent standard error of 337 

the mean (N = 10). 338 


