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ABSTRACT
It is well known that species across the world are expanding or shifting their ranges because of
climate change. Yet, we know little about their impact on the habitats they colonize. In an
observational study, we examined the effect of the fiddler crab Minuca pugnax (Smith, 1870) on
benthic microalgal biomass in salt marshes in its expanded range (northeastern Massachusetts,
USA). We found that plots with M. pugnax had, on average, 74% lower diatom biomass and
77% lower cyanobacteria biomass than plots without M. pugnax. Our results indicate that this

climate migrant can impact saltmarsh functioning by limiting benthic microalgal biomass.

Key Words: climate change; microphytobenthos; range expansion; range shift; top-down

control; Uca pugnax
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Climate migrants are populations within a species that colonize a new habitat or range due to the
climate-driven range expansions or shifts of that species (Johnson et al., 2020). Ecologists and
biogeographers have identified thousands of climate migrants, from fishes to insects to crabs
(Parmesan & Yohe, 2003; Sorte et al., 2010; Johnson, 2015; Hale et al., 2017). Yet, we know
little about how climate migrants influence the functioning of the ecosystems that they colonize.
Fiddler crabs are excellent species to examine the impact of climate migrants because they are
found in intertidal habitats throughout the world (Rosenberg, 2020), they can strongly influence
ecosystem functioning (Katz, 1980; Moore, 2019), and poleward range expansions due to ocean
warming have been documented for some species (Johnson, 2014; Peer ef al., 2015; Rosenberg,
2018; Truchet et al., 2019).

The fiddler crab, Minuca pugnax (Smith, 1870) (formerly Uca pugnax), has expanded its
range north of its historical northern limit of Cape Cod, Massachusetts (MA) to Maine, USA
(Johnson, 2014; Rosenberg, 2020; DSJ, unpublished data). It lives in salt marshes, which are
intertidal grasslands. As a burrowing ecosystem engineer (sensu Jones et al., 1994), M. pugnax
has a strong influence on saltmarsh functioning, physical structure, and biodiversity (Katz, 1980;
DePatra & Levin 1989; Gittman & Keller, 2013). While many researchers have focused on the
role of M. pugnax as an ecosystem engineer in salt marshes (e.g., Gittman & Keller, 2013;
Moore, 2019), its role as a consumer has been overlooked. Minuca pugnax is a deposit feeder
and like most species of fiddler crabs, it grazes benthic microalgae (also known as
“microphytobenthos” (e.g., Maclntyre et al., 1996)) mostly diatoms and cyanobacteria, from the
sediment surface (Shanholtzer, 1973; Haines & Montague, 1979; Bursey, 1985). To our
knowledge, no one has explicitly tested the impact of M. pugnax on benthic microalgae in either

its historical or expanded range. Darley et al. (1981) saw chlorophyll a biomass increases when
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they excluded fiddler crabs in a Georgia (USA) salt marsh. Because three species of fiddler crabs
(M. pugnax, the red-jointed fiddler crab M. minax (Le Conte, 1885), and the sand fiddler crab
Leptuca pugilator (Bosc, 1802)) co-exist in this marsh (Teal, 1958), their experiment likely
shows the impact of the fiddler crab community, not of a single species.

There are several reasons that salt marshes found in the expanded range of M. pugnax
(i.e., north of Cape Cod, MA, USA) are excellent living laboratories to test the effects of this
climate migrant on benthic microalgal biomass. First, the grazing impacts of fiddler crabs on
benthic microalgae can be isolated to a single species, M. pugnax, because it is the only fiddler
crab present in this part of its range (Johnson, 2014; Wasson et al. 2019; Rosenberg, 2020).
Second, the distribution of M. pugnax colonies in the expanded range is patchy with tens of
meters between colonies (Martinez-Soto & Johnson, 2020). Finally, unlike M. pugnax in the
historical range, individuals of M. pugnax in the expanded range remain close to their burrows
and do not appear to drove, where high-density scuttles of crabs move through the marsh to
graze (DSJ, personal observation). This restricted movement likely results in patches of
saltmarsh benthos between the colonies untouched by crabs. This allowed us to compare benthic
microalgal biomass between patches with and without M. pugnax. We hypothesized that the
biomass of benthic microalgae would be lower in patches with M. pugnax compared to those

without M. pugnax.

MATERIALS AND METHODS
Site description
This study was conducted in the salt marshes flooded by West Creek in the Plum Island Estuary

in Rowley, MA, USA (42°44'16.0"N, 70°50'53.2"W) (Fig. 1). These salt marshes are part of the
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Great Marsh, which is the largest expanse of salt marshes in the northeastern USA. The estuary
is mesotidal with mean tides ~2.6 m and spring tides of 3 m (Johnson et al., 2007). The
expansive marshes are largely above mean high water (so-called “high marsh”), which is
dominated by salt hay, Spartina patens ((Aiton) Muhl, 1817) (~45 cm shoot height), and
punctuated by isolated patches of stunted Spartina alterniflora (Loisel, 1807) (~40 cm shoot
height). The low marsh (below mean high water) is a 1-3 m wide band of tall-form S.
alterniflora (up to 150 cm shoot height; Johnson ef al., 2016). Unlike marshes found in the
historical range (i.e., south of Cape Cod, MA, USA), where M. pugnax can inhabit both S. patens
and S. alterniflora habitats (Luk & Zajac, 2013; Wasson et al., 2019), M. pugnax is found
exclusively in the low marsh in the expanded range (Johnson 2014; Martinez-Soto & Johnson,
2020).
<Fig. I>

Other burrowing species present in the tall-form S. alterniflora zone in the Great Marsh
include infaunal polychaetes and amphipods with burrows < 1 mm in diameter (Johnson ef al.,
2007). Burrowing crabs found in salt marshes in the historical range, such as the red-jointed
fiddler crab M. minax, the sand fiddler crab L. pugilator, and the purple marsh crab Sesarma
reticulatum (Say, 1817), are absent from these marshes (Johnson, 2014; Wasson et al., 2019;
Rosenberg, 2020). As a result, it is easy to distinguish M. pugnax burrows from those of other

species.

Data collection
To test the hypothesis that M. pugnax reduced benthic microalgal biomass, we selected ten plots

(0.0625 m?) with fiddler crabs present (determined by the presence of burrows and either feeding
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pellets or crabs) and counted burrows within the plot. Each crab plot was paired with a reference
plot (lacking burrows, feeding pellets, or crabs) that was 1-2 m away, for a total of 20 plots. Plot
pairs were at least 10 m apart from each other due to the patchiness of M. pugnax colonies. We
estimated the biomass of benthic microalgal functional groups (diatoms, cyanobacteria, and
green algae) on the sediment surface with a handheld fluorometer (BenthoTorch, BBe
Moldaenke, Germany) in duplicate samples within each plot. Measurements within crab plots
were taken adjacent to crab burrows, but not over them. Data were collected at low tide on a

sunny afternoon on 22 August 2019.

Statistical analysis

To determine if there was a statistical difference for the biomass of diatom and cyanobacteria
between plots with and without fiddler crabs, we conducted a two-tailed paired t-test for unequal
variances in R version 4.0.0 (R Core Team 2020). Green algae were not detected in any plot.

Prior to analysis, the duplicate samples from each plot were averaged.

RESULTS
On average, diatom biomass was 64% lower and cyanobacteria biomass was 77% lower in plots
with M. pugnax burrows than in plots without burrows (P < 0.02) (Fig. 2). Burrow densities in
plots with M. pugnax ranged from 16-96 m2.

<Fig. 2>

DISCUSSION
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Our results demonstrate that the fiddler crab M. pugnax in its expanded range lowers the biomass
of benthic microalgae in salt marshes. Similar results have been found for other species of fiddler
crabs. For instance, the sand fiddler L. pugilator can reduce sediment biomass of chlorophyll a (a
proxy of benthic microalgae) by 20—70% on beaches on the east coast of the USA during a single
low tide (Robertson et al., 1980; Reinsel, 2004). Based on a mesocosm study in Australia,
Kristensen & Alongi (2006) found that the calling fiddler crab Gelasimus vocans (Linnaeus,
1758) reduced sediment chlorophyll a by 75% at the surface (0—1 cm), but had no impact on
deeper layers. This is consistent with feeding in fiddler crabs, which occurs on the top 1-2 cm of
sediment (Wolfrath, 1992).

Minuca pugnax reduces benthic microalgal biomass in salt marshes, and as a result it may
have indirect effects on the functioning and food webs of salt marshes. Other saltmarsh animals,
including polychaetes, gastropods, copepods, and amphipods, rely on benthic microalgae for
food (Galvén et al., 2008, 2011; Pascal et al., 2013). Minuca pugnax may indirectly influence the
small-scale (as measured in meters) distribution of these animals through exploitative
competition for benthic microalgae. Further, diatoms and cyanobacteria excrete extracellular
polymeric substances that create biofilms on the sediment surface (Decho, 2000). These biofilms
can stabilize sediments and reduce tidal erosion (Paterson, 1989; Fagherazzi et al., 2013). Fiddler
crabs may enhance erosion, not only through burrow construction and maintenance (Smith &
Green, 2015), but also by grazing benthic microalgae, a sediment stabilizer. Lastly, benthic
microalgae are important sinks for water-column nitrogen and can mitigate the impacts of
nitrogen pollution (Drake et al., 2009; Hope et al., 2020; Oakes et al., 2020). By reducing
benthic microalgae, fiddler crabs may impact the metabolism of the ecosystem and limit the

ability of the marsh to uptake excess nitrogen. Minuca pugnax may also enhance nitrogen uptake
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by the marsh by stimulating algal production through grazing and converting nitrogen into
secondary (i.e., crab) production.

Our results should be interpreted within the limitations of our study. We found that
benthic microalgal biomass was lower in plots with M. pugnax versus plots without M. pugnax
during a single low tide. Our sampling does not account for temporal dynamics of benthic
microalgae production. For instance, in a salt marsh in Argentina, Ribeiro & Iribarne (2011)
found that during flooding tides, benthic microalgae could replenish up to 100% of its biomass
within a day of feeding by the Uruguayan fiddler crab Leptuca uruguayensis (Nobili, 1901). In a
12-day experiment in South African mangroves, Peer et al. (2019) found that selective grazing
by the fiddler crab Austruca occidentalis (Naderloo, Schubart & Shih, 2016) lowered diatom and
cyanobacteria biomass, which allowed green algae to flourish and resulted in no overall net
effect on the grazing by fiddler crabs on benthic microalgal biomass. That said, Spivak &
Ossolinki (2016), found that the average turnover of benthic microalgae (measured as the
biomass to production ratio) was 59 days in August for the habitats we sampled. This slow
turnover time suggests that the effect of M. pugnax on benthic microalgal biomass in this marsh
will persist for days.

Individuals of M. pugnax may have greater per-capita grazing on benthic microalgal
biomass in the expanded range than in the historical range because individuals are larger in the
expanded range than in the historical range (Johnson et al., 2019). The population-level impacts
of M. pugnax on benthic microalgal biomass in the expanded range, however, are likely small
relative to populations in the historical range. The densities of the burrows of M. pugnax in the
expanded range average fewer than 10 burrows m 2 (Martinez-Soto & Johnson, 2020), whereas,

burrow densities in the historical range can be as high as 300 burrows m 2 (McCraith et al.,
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2003). Although M. pugnax populations are currently small in the expanded range, they are
growing (Martinez-Soto & Johnson, 2020). Our results suggest that as M. pugnax populations

grow in their expanded range, so too will their impact on benthic microalgae.
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FIGURE CAPTIONS
Figure 1. Sampling location. Measurements were taken along the marsh edge in the area defined

by the white box. This figure is available in color at Journal of Crustacean Biology online.
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Figure 2. Mean biomass of benthic diatoms and cyanobacteria in the presence (“Crabs’) and
absence (“No crabs”) of the fiddler crab, Minuca pugnax. Error bars represent standard error of

the mean (N = 10).



