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Pairwise interactions of surfactant-covered drops in a uniform electric field
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We study the effect of surfactant on the pairwise interactions of drops in an applied
uniform dc electric field using a combination of numerical simulations based on a boundary
integral formulation and an analytical theory assuming small drop deformations. The
surfactant is assumed to be insoluble in the bulk-phase fluids. We show that the surfactant
weakens the electrohydrodynamic flow, and thus dielectrophoretic interactions play a more
prominent role in the dynamics of surfactant-covered drops compared to clean drops. If
drop conductivity is the same as the suspending fluid, a nondiffusing surfactant can arrest
the drops’ relative motion thereby effectively preventing coalescence.
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I. INTRODUCTION

Electric fields are widely used to manipulate particles and fluids. For example, separation of
emulsified water from crude oil in the petroleum refining process is achieved by the application
of electric fields, which facilitate drop coalescence [1,2]. An important question pertains to the
influence of surface-active substances (surfactants, i.e., compounds that lower the surface tension
between liquids), which are naturally present in the crude oil (asphaltenes, resins, acids), on the
process of droplet attraction and coalescence.

The effect of surfactant (no electric field) has been studied using simulations based on the
boundary integral method [3–11], the diffuse-interface-method [12], a front-tracking method [13],
or a conserving volume-of-fluid method [14]. The effect of electric fields on clean drops (no
surfactant) has been studied theoretically, numerically, and experimentally both for single and
multiple drops [15–27], and we refer the interested reader to our recent work [28] for a more
extensive bibliography. In that paper, we presented a detailed analysis of the three-dimensional
interaction of a drop pair in a uniform electric field. We showed that the pair dynamics are not
simple attraction or repulsion; depending on the angle between the center-to-center line with the
undisturbed electric field, the relative motion of the two particles can be quite complex. For example,
they can attract in the direction of the field and move toward each other, pair up, and then separate
in the transverse direction.

The combined effect of surfactants and electric fields is a virtually unexplored problem in terms
of numerical experiments, especially when considering multiple drops. This is due to the numerous
computational challenges associated with the complex moving geometries and the multiphysics
nature of the problem. As a result, numerical simulations are limited to axisymmetric geometries
[29,30]. Other theoretical studies developed asymptotic analyses [31–33] to investigate the defor-
mation and the effects of surfactant transport on the deformation of a single viscous drop under a dc
electric field.

In this paper, we build upon our previous work [28,34] and explore the effect of an insoluble
surfactant on the electrohydrodynamics of a drop pair.
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FIG. 1. Two initially spherical identical drops with radius a, permittivity εd, and conductivity σd suspended
in a fluid permittivity εs and conductivity σs and subjected to a uniform dc electric field E∞ = E0ẑ. The angle
between the line-of-centers vector and the field direction is � = arccos(ẑ · d̂).

II. PROBLEM FORMULATION

Let us consider two identical neutrally buoyant and charge-free drops with radius a, viscosity
ηd, conductivity σd, and permittivity εd suspended in a fluid with viscosity ηs, conductivity σs,
and permittivity εs. The mismatch in drop and suspending fluid properties is characterized by the
conductivity, permittivity, and viscosity ratios

R = σd

σs
, S = εd

εs
, λ = ηd

ηs
. (1)

A monolayer of insoluble surfactant is adsorbed on the drop interfaces. At rest, the surfactant
distribution is uniform and the equilibrium surfactant concentration is �eq; the corresponding
interfacial tension is γeq. The distance between the drops’ centroids is d , and the angle between
the drops’ line-of-centers with the applied field direction is �. The unit separation vector between
the drops is defined by the difference between the position vectors of the drops’ centers of mass
d̂ = (xc2 − xc1)/d . The unit vector normal to the drops’ line-of-centers and orthogonal to d̂ is t̂. The
problem geometry is sketched in Fig. 1.

We adopt the leaky dielectric model [35], which assumes creeping flow and charge-free bulk
fluids acting as Ohmic conductors. The assumption of charge-free fluids decouples the electric and
hydrodynamic fields in the bulk. Accordingly,

η∇2u − ∇p = 0, ∇ · E = 0, (2)

where u and p are the fluid velocity and pressure, and E is the electric field. Far away from the
drops, Es → E∞ = E0ẑ and u → 0.

The coupling of the electric field and the fluid flow occurs at the drop interfaces D, where the
charges brought by conduction accumulate. Gauss’ law dictates that while the electric field in the
electroneutral bulk fluids is solenoidal, at the drop interface the electric displacement field, εE, is
discontinuous and its jump corresponds to the surface charge density

ε
(
E s
n − SEd

n

) = q, x ∈ D, (3)
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where En = E · n, and n is the outward pointing normal vector to the drop interface. The surface
charge density adjusts to satisfy the current balance

∂q

∂t
+ ∇s · (uq) = σs

(
E s
n − REd

n

)
, x ∈ D. (4)

In this study, we neglect charge relaxation and convection, thereby reducing the charge conservation
equation to continuity of the electrical current across the interface, as originally proposed by [36],

E s
n = REd

n . (5)

This simplification implies ε2sE
2
0 /(ηsσs) � 1. This condition is satisfied for the typical fluids used

in experiments, such as castor oil (conductivity is ∼10−11 S/m, viscosity is ∼1 Pa s), and low field
strengths E0 ∼ 104 V/m.

The electric field acting on the induced surface charge gives rise to electric shear stress at the
interface. The tangential stress balance yields

(I − nn) · (Ts − Td ) · n + qEt = −∇sγ , x ∈ D, (6)

where Ti j = −pδi j + η(∂ jui + ∂iu j ) is the hydrodynamic stress, and δi j is the Kronecker
delta function. The electric tractions are calculated from the Maxwell stress tensor T el

i j =
ε(EiEj − EkEkδi j/2). γ is the interfacial tension, which depends on the local surfactant concentra-
tion �. Et = E − Enn is the tangential component of the electric field, which is continuous across
the interface, and I is the idemfactor. The normal stress balance is

n · (Ts − Td ) · n + 1
2

((
E s
n

)2 − S
(
Ed
n

)2 − (1 − S)E2
t

) = γ ∇s · n, x ∈ D, (7)

where γ is the interfacial tension, which depends on the local surfactant concentration �.
The evolution of the distribution of an insoluble, diffusing, charge-neutral surfactant is governed

by a time-dependent convective equation [37,38]

∂�

∂t
+ ∇s · (us�) + �(u · n)∇s · n − D∇2

s � = 0 at r = rs, (8)

where ∇s is the surface gradient operator, ∇s = (I − nn) · ∇.
We adopt a linear equation of state for the interfacial tension,

γ (�) = γeq − ∂γ

∂�

∣∣∣∣
eq

(� − �eq ). (9)

Henceforth, all variables are nondimensionalized using the radius of the undeformed drops a,
the undisturbed field strength E0, a characteristic applied stress τc = εsE2

0 , and the properties of
the suspending fluid. Accordingly, the timescale is tc = ηs/τc and the velocity scale is uc = aτc/ηs.
The surfactant concentration is normalized by �eq and the interfacial tension by γeq. The ratio of
the magnitude of the electric stresses and surface tension defines the electric capillary number,
the relative strength of the distorting viscous and restoring Marangoni stresses is reflected by the
Marangoni number, and the importance of surfactant diffusion is given by the Peclet number,

Ca = εsE2
0 a

γeq
, Ma−1 = εsE2

0 a

�γ
, Pe = εsE2

0 a
2

ηsD
. (10)

The characteristic magnitude of the surface-tension variations that result from perturbations of the
local surfactant concentration � about the equilibrium value �eq is

�γ = −�eq

(
∂γ

∂�

)
�=�eq

.
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It is convenient to define the elasticity number, which is independent of the externally applied
stresses

E = γ0 − γeq

γeq
= CaMa. (11)

III. NUMERICAL METHOD

We utilize the boundary integral method to solve for the flow and electric fields. Details of our
three-dimensional formulation can be found in [34]. In brief, the electric field is computed as follows
[15,22]:

E∞ +
2∑
j=1

∫
D j

x̂
4πr3

(Es − Ed ) · ndS(y) =

⎧⎪⎨
⎪⎩
Ed(x) if insideD,

1
2 (E

d(x) + Es(x)) if x ∈ D,

Es(x) if outsideD,

(12)

where x̂ = x − y and r = |x̂|. The normal and tangential components of the electric field are
calculated from the above equation,

En(x) = 2R

R + 1
E∞ · n + R − 1

R + 1

2∑
j=1

n(x) ·
∫
D j

x̂
2πr3

En(y)dS(y),

Et (x) = Es + Ed

2
− 1 + R

2R
Enn. (13)

For the flow field, we have developed the method for fluids of arbitrary viscosity, but for the sake of
brevity here we list the equation in the case of equiviscous drops and suspending fluids. The velocity
is given by

2u(x) = −
2∑
j=1

(
1

4π

∫
D j

(
f (y)
Ca

− fE (y)
)

·
(
I
r

+ x̂x̂
r3

)
dS(y)

)
, (14)

where f and fE are the interfacial stresses due to surface tension and electric field,

f = γ (x)n∇ · n − ∇sγ , (15)

fE = (Es · n)Es − 1
2 (E

s · Es)n − S
((
Ed · n)

Ed − 1
2

(
Ed · Ed

)
n
)
. (16)

For a clean drop, the surface tension coefficient γ (x) is constant, and the second term in (15), the
so-called Marangoni force, vanishes.

Drop velocity and centroid are computed from the volume averages

U j = 1

V

∫
Vj

u dV = 1

V

∫
D j

n · (ux)dS, xcj = 1

V

∫
Vj

x dV = 1

2V

∫
D j

n(x · x)dS. (17)

To solve the system of equations (13), (14), and (8), we use the Galerkin formulation based on
a spherical harmonics representation presented in [34]. In the current study, we update the time
scheme to the adaptive fourth-order Runge-Kutta introduced in [39]. This choice allows us to treat
the convective term that appears in the surfactant evolution equation (8) explicitly, and the diffusive
term implicitly. To make the implicit part of the solver efficient also for large diffusion coefficients
(i.e., small Péclet numbers), a preconditioner designed in [40] turns out to be fundamental to reduce
the number of iterations for the convergence. All variables (position vector, velocities, electric field,
surfactant concentration, etc.) are expanded in spherical harmonics, which provides an accurate
representation even for relatively low expansion order. In this respect, to make sure that all the
geometrical quantities of interest (e.g., mean curvature) are computed with high accuracy as well,
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we use the adaptive up-sampling procedure proposed by [41]. A specialized quadrature method for
the singular and nearly singular integrals that appear in the formulation and a reparametrization
procedure able to ensure a high-quality representation of the drops also under deformation are used
to ensure the spectral accuracy of the method [42].

Our numerical method and the asymptotic theory for clean drops were presented and validated in
[28]. Here we extend the small-deformation theory and the numerical method to include the effect
of the insoluble surfactant.

IV. THEORY: FAR-FIELD INTERACTIONS

An isolated, charge-neutral drop in a uniform electric field experiences no net force. However, a
drop pair moves in response to mutual electrostatic (due to polarization) and hydrodynamic (due to
the flow driven by surface electric stresses) interactions.

We first evaluate the electrostatic interaction of two widely separated spherical drops. In this
case, the drops can be approximated by point dipoles. The disturbance field E1 of the drop dipole
P1 induces a dielectrophoretic (DEP) force on the dipole P2 located at xc2 = dd̂, given by F(d ) =
(P2 · ∇E1)|r=d . The drop velocity under the action of this force can be estimated from Stokes’
law, U = F/ζ , where ζ is the friction coefficient. For a surfactant-covered drop, ζ = 6π (3λ + 2 +
χ )/[3(λ + 1) + χ ], where χ = PeMa. Thus,

Udep
2 = 2

βD

d4

(
χ + 3(1 + λ)

χ + 2 + 3λ

)
[(1 − 3 cos2 �)d̂ − sin(2�)t̂], βD =

(
R − 1

R + 2

)2

. (18)

The velocity reduces to the result for clean drops if χ = 0 [28], and for solid spheres if χ → ∞.
In addition to the dipole-dipole interaction, drops interact hydrodynamically. Assuming a spheri-

cal drop, the electric shear drives a flow, which for an isolated drop is a combination of a stresslet and
a quadrupole [36]. This electrohydrodynamic (EHD) flow redistributes the surfactant. The resulting
gradients in surface tension (Marangoni stresses) drive a flow. In general, the Marangoni flow further
redistributes the surfactant, making the problem nonlinear. However, the feedback can be neglected
for small surfactant redistribution, i.e., Ma−1 � 1, and considering� = 1 + Ma−1g(−1 + 3 cos2 θ ).
In this case, Marangoni flow has the same symmetry as the flow driven by the electric stresses, and
the combined EHD and Marangoni flow outside the drop is

u = β

r2
(−1 + 3 cos2 θ )r̂ − β

r4
((−1 + 3 cos2 θ )r̂ + sin(2θ )θ̂ ), (19)

where

β = βT − 3

5(1 + λ)
g, where βT = 9

10

R − S

(1 + λ)(R + 2)2
. (20)

The surfactant weakens the EHD flow, because the Marangoni stresses due to nonuniform surfactant
concentration oppose the shearing electric traction.

If the drops’ migration is much slower than the Marangoni timescale, a/U � η/(a�σ ), the
surfactant distribution reaches steady state, where surfactant convection by the EHD flow is balanced
by surfactant diffusion, ∇s · (u�) = Pe−1∇2�. At leading order, the equation reduces to ∇s · u =
−3 Pe−1 Ma−1g(1 + 3 cos 2θ ). Inserting u from Eq. (19) yields

g = χ
5(1 + λ)

3[5(1 + λ) + χ ]
βT , (21)

and thus

β = 9(R − S)

2(R + 1)2
1

5(1 + λ) + χ
, χ = PeMa. (22)

Note that the surfactant distribution depends nonlinearly on χ (and thus on Pe). The parameter
χ characterizes the magnitude of the surfactant effect on the EHD flow. In the limit χ = 0, the
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result reduces to the clean drop solution. In the case of nondiffusing surfactant Pe → ∞ (χ → ∞),
the surfactant completely immobilizes the interface and suppresses the EHD flow, similarly to
the problem of a surfactant-covered drop in an applied straining flow [43,44]. In this case, the
theory predicts that the drops will interact only electrostatically. Moreover, if R = 1, even the
DEP interaction vanishes. Thus a pair of spherical droplets covered with insoluble, nondiffusing
surfactant and conductivity ratio R = 1 will not interact in a uniform electric field.

The drop translational velocity due to a neighbor drop is found from Faxen’s law [45,46],

Uehd
2 =

(
1 + λ

2(3λ + 2)
∇2

)
u|x=dd̂. (23)

Inserting Eq. (19) in the above equation leads to

Uehd
2 = β

[
1

d2
− 2

d4

(
1 + 3λ

2 + 3λ

)](−1 + 3 cos2 �
)
d̂ − 2β

d4

(
1 + 3λ

2 + 3λ

)
sin(2�)t̂ + O(d−5). (24)

Combining the electrohydrodynamic and the dielectrophoretic velocities yields

U2 = β

d2
(−1 + 3 cos2 �)d̂ − �s(λ,R, S, χ )

2

d4
((−1 + 3 cos2 �)d̂ + sin(2�)t̂), (25)

where

�s = 1 + 3λ

2 + 3λ
β + βD

3(1 + λ) + χ

2 + 3λ + χ
. (26)

The discriminant �s quantifies the drop pair alignment with the field and the interplay of EHD
and DEP interactions in drop attraction or repulsion.

Drops with �s > 0 move to align their line-of-centers with the applied electric field, since
�̇ = U2 · t̂ ∼ −�s. If �s < 0 (which occurs only for R/S < 1 drops), the line-of-centers between
the drops rotates toward a perpendicular orientation with respect to the applied electric field. The
presence of surfactant reduces the parameter range where misalignment is predicted. Figure 2
summarizes the regimes of alignment and deformation.

In axisymmetric configurations, � = 0 or � = π/2, the drops’ interaction only involves a
change in their separation. In a nonaxisymmetric configuration, where the drops’ line-of-centers
is neither parallel nor perpendicular to the applied field direction, in addition to motions toward
or away from each other, the drops’ line-of-centers rotate toward or away from the applied field
direction. The sign of the EHD and DEP interactions depends on �. Equation (18) shows that DEP
is attractive only if � < �c = arccos (1/

√
3) ≈ 54.7◦. The EHD interaction also changes sign at

�c, as seen from Eq. (24). R/S < 1 drops attract if � < �c, and repel otherwise. This scenario
is reversed for drops with R/S > 1. As a result, as the drops’ line-of-centers rotates, the drops’
interactions can change from attractive to repulsive or vice versa. Accordingly, the drop trajectories
can be quite complex, as illustrated in Fig. 8.

The relative radial motion of the two drops at a given separation depends on �s and βT . There is
a critical separation dc corresponding to U2(dc) · d̂ = 0 at which drop the relative radial motion can
change sign,

d2
c = 2(1 + 3λ)

2 + 3λ
+ (R − 1)2

R − S

(
4[3(1 + λ) + χ ][5(1 + λ) + χ ]

9(2 + 3λ + χ )

)
. (27)

For �s > 0 and R/S < 1 (β < 0), dc does not exist, and EHD and DEP interactions are cooper-
ative and act in the same direction (note that a system with �s < 0 and R/S > 1 cannot exist). For
�s > 0 and R/S > 1 or �s < 0 and R/S < 1, there is competition between EHD and DEP, with the
quadrupolar DEP winning out closer to the drops and the EHD taking over via the stresslet flow in
the far-field. The critical distance is affected by the presence of surfactant. It increases with χ , since
the surfactant weakens the EHD flow and expands the region of dominance of DEP. In the limit of
nondiffusing surfactant, χ → ∞, the drop interactions are entirely dominated by DEP.
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FIG. 2. (a) Phase diagram of drop deformations and alignment with the field for viscosity ratio λ = 1
and different values of the parameter χ = PeMa. The solid lines correspond to �s(λ,R, S, χ ) = 0 given by
Eq. (26); in the parameter space above, the line of centers of the two drops rotates away from the applied field
direction � < 0. The dashed lines correspond to the modified Taylor discriminating function Eq. (A6); in the
parameter space above it, drop deformation is oblate, and below it, prolate. Above the dot-dashed magenta line
S = R, the surface flow is pole-to-equator (β < 0), while below this line the surface flow is equator-to-pole
(β > 0).

V. RESULTS AND DISCUSSION

We consider two identical drops with viscosity ratio λ = 1, and we focus on the effect of
surfactant on drop dynamics under variable R, S and initial configuration.

First we compare the drop velocity obtained from simulations and the asymptotic theory for a
drop pair aligned with the field. After an initial transient, see Fig. 4, drop velocity reaches a nearly
steady state. We compare this long-time velocity with the theoretical prediction Eq. (25). Figure 3
shows that theory and simulations are in excellent agreement, especially at large separations, and
the theory is able to capture the steady velocity even for a relatively high Ca = 1. As the surfactant
effect strengthens and χ increases, either by an increase in the surfactant elasticity or decreasing
diffusivity, the drops’ relative velocity switches from EHD to DEP dominated at the critical distance
given by Eq. (27). Accordingly, the slope dependence on distance changes from d−2 to d−4. This
is most obvious for the χ = 100 case, where dc = 7.14. In the limit χ → ∞, the drop motion is
entirely due to DEP.

However, even in this limit where the interface is immobilized by the surfactant, until the
steady DEP-dominated state is reached, there is EHD affected drop motion due to the transient
drop deformation and surfactant redistribution. As a result, the drops can initially repel and then
attract once steady drop shape and surfactant distribution are reached. This scenario is illustrated in
Fig. 4, which shows that the radial relative velocity in the case of a drop covered with nondiffusing
surfactant can change sign from positive (indicating drop repulsion) to negative (attraction). The
small-deformation theory that predicts this phenomenon is presented in the Appendixes. Drop
deformation and surfactant redistribution are quantified by the parameters D and D� defined as
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FIG. 3. Steady relative velocity of a pair of leaky dielectric drops aligned with the field (� = 0). R = 2,
S = 1, Ca = 1. Left: E = 1, Pe = 1 (blue); Pe = 10 (black); Pe = 100 (red); and Pe → ∞ (magenta). The
symbols are from our fully 3D code and the solid line is the theory Eq. (25). In the case of nondiffusing
surfactant, the interaction is dominated by DEP and the velocity shows 1/d4 dependence. Right: Pe = 1
and E = 0, 1, 10, 100, 1000 (green, blue, black, red, magenta). As χ = MaPe increases, the critical distance
beyond which the DEP dominates increases. Note that χ = 100 shows a change of slope from −4 and −2.
χ = 1000 slope −4 in the studied range.

D = a|| − a⊥
a|| + a⊥

, D� = �|| − �⊥
�|| + �⊥

, (28)

where a||, a⊥ and �||, �⊥ are, respectively, the drop lengths and the surfactant concentrations in
directions parallel and perpendicular to the applied field.

Our previous study of clean drops [28] found that drops initially misaligned with the field may
not experience monotonic attraction or repulsion; instead, their three-dimensional trajectories follow
three scenarios: motion in the direction of the field accompanied by either attraction followed by
separation or vice versa (repulsion followed by attraction), and attraction followed by separation
in a direction transverse to the field. Similar dynamics have been observed with polarizable
solid particles undergoing induced-charge electrophoresis as well as dielectrophoretic interactions
[47,48]. Surface contamination was found to reduce the strength of ICEP flow [49], similar to the
way surfactant suppresses the EHD flow in drops.

Next we address the question about the surfactant influence on these intricate dynamics in the
case of drops. The theory presented in Fig. 2 highlighted that the surfactant has two main effects:
first, it increases the range of distances where DEP dominates over EHD, and second, it decreases
the range of S and R parameters where the drops’ line-of-centers rotates away from the direction

FIG. 4. Effect of surfactant on the interaction of two identical drops with R = 2, S = 1, Ca = 1, E = 1
initially aligned with the field � = 0. Black dots correspond to Pe = 1 and red dots correspond to the limit
of nondiffusing surfactant Pe = 106. The surfactant suppresses the electrohydrodynamic repulsion, and after
initial transient due to shape deformation and surfactant redistribution the interaction can reverse sign.
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FIG. 5. R = 0.1, S = 5, � = 45. Initial distance d = 4. (a) Clean drops misaligning, (b) nondiffusing
surfactant-covered drops with E = 10 aligning with the field, and (c) center-of-mass trajectory in the x-z plane.
Arrows correspond to the velocity for the clean drops (black) and for the nondiffusing surfactant-covered drops
(red). See the Supplemental Material [50] for the movies.

of the applied field. Accordingly, clean and surfactant-covered drops with the same S and R, initial
configuration, and Ca may display opposite aligning behavior. Figure 5 illustrates such a case. While
the clean drops attract in the direction of the field and move toward each other, pair up, and then
separate in the transverse direction, the surfactant-covered drops only attract and move to align their
line-of-centers parallel to the field.

VI. CONCLUSIONS

The effect of surfactant on the three-dimensional interactions of a drop pair in an applied electric
field is studied using numerical simulations and a small-deformation theory based on the leaky
dielectric model. We present results for the case of a uniform electric field and arbitrary angle
between the drops’ line-of-centers and the applied field direction, where the nonaxisymmetric
geometry necessitates three-dimensional simulations.

The surfactant’s main effect is to decrease the electrohydrodynamic flow due to Marangoni
stresses compensating the electric shear. As a result, the drops’ interactions are more strongly
affected by DEP: the surfactant-covered drops tend to align with the applied field direction and
attract. The surfactant influence is quantified by the parameter χ = PeMa. The surfactant effect
is most pronounced for nondiffusing surfactant (Pe � 1) or high elasticity Ma � 1. The critical
separation at which the DEP overcomes the EHD interaction increases with χ . The interaction is
much weaker compared to the clean drops, because DEP decays with the drops’ separation as 1/d4

compared to the 1/d2 for EHD. The DEP also causes drops to align with the field, and the range
of R and S where the drops attract and move in the direction of the field and then separate in the
transverse direction is greatly diminished.
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APPENDIX A: ELECTROHYDRODYNAMIC VELOCITY OF A SURFACTANT-COVERED DROP
WITH TRANSIENT DEFORMATION

Let us consider drop dynamics upon the application of a uniform electric field in the limit of
small deformations Ca � 1. At leading order in Ca, the shape and surfactant concentration are de-
scribed by rs = 1 + f (t )(−1 + 3 cos2 θ ) and � = 1 + g(t )(−1 + 3 cos2 θ ). The shape deformation
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parameter is D = 3 f /2. Combining the small-deformation theories for a surfactant-covered drop in
applied flow [51,52] and electric field [53,54] yields

ḟ = 1

(3 + 2λ)(16 + 19λ)
[15(1 + λ)t eln + 9(2 + 3λ)t elt − Ca−1{4 f [10(1 + λ) + E(4 + λ)]

− 2Eg(4 + λ)}], (A1)

ġ = 1

(3 + 2λ)(16 + 19λ)
[9(2 + 3λ)t eln + 9(12 + 13λ)t elt − Ca−1{12 f [2(2 + 3λ) − E(8 + 7λ)]

+ 6Eg(8 + 7λ)}] + Pe−16(g− 2 f ), (A2)

where

t en = 1 + R2 − 2S

(R + 2)2
, t et = R − S

(R + 2)2
. (A3)

Steady-state deformation depends on the parameter χ = E Pe/Ca = PeMa,

f = 3Ca

8
FS (R, S, λ, χ ), (A4)

where [31]

FS (R, S, λ, χ ) = 1

(2 + R)2

(
R2 + 1 − 2S + (R − S)

3(2 + 3λ) + 2χ

5(λ + 1) + χ

)
. (A5)

The limit χ = 0 recovers the result for a clean drop fclean = 3FT /8, where FT is the Taylor
discriminating function

FT (R, S, λ) = 1

(2 + R)2

(
R2 + 1 − 2S + 3(R − S)

2 + 3λ

5(λ + 1)

)
. (A6)

The limit χ → ∞ recovers the insoluble surfactant result [32]

f = 3

8
Ca

(R + 1)2 − 4S

(R + 2)2
. (A7)

The velocity field outside the drop at distance r from the drop center and an angle θ with the
applied field direction is given by [52]

u =
(

α + β

r2
− β

r4

)
(−1 + 3 cos2 θ )r̂ − β

r4
sin(2θ )θ̂ , (A8)

where

α = 15(λ + 1)

(3 + 2λ)(16 + 19λ)

[
FT (R, S, λ) − Ca−1

(
8

3
f2(t ) + E

2(4 + λ)

15(1 + λ)
[−2 f2(t ) + g2(t )]

)]
,

β = 1

(3 + 2λ)(16 + 19λ)

(
BT (R, S, λ) − Ca−1{12(2 + 3λ) f2(t ) + E(8 + 7λ)[−2 f2(t ) + g2(t )]}

)
,

(A9)

where

BT (R, S, λ) =9[λ(3R2 + 13R − 19S + 3) + 2(R2 + 6R − 8S + 1)]

2(R + 2)2
. (A10)

The shape evolution equation is obtained from the kinematic condition ṙs = ur (r = 1). The surfac-
tant evolution is obtained from �̇ = −∇s · u + Pe−1∇2

s �.
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FIG. 6. Evolution of the relative radial (left) and tangential (right) velocities for a drop pair with R = 2, S =
1. Initial angle � = 45◦ and distance d = 4. Symbols are numerical simulations, and the line is the theory.
χ = 1 (black) and χ = 106 (red). Note that the relative radial velocity changes sign for χ = 106 indicating a
change from repulsion to attraction. In both cases, drops move to align their line-of-centers with the applied
field direction.

If a second drop is present at location xc2 = dd̂, its migration velocity due to the electrohydrody-
namic flow of the first drop can be obtained using Faxen’s law [45],

Uehd
2 =

(
1 + λ

2(3λ + 2)
∇2

)
u(r = d ). (A11)

Inserting Eq. (A8) in the above equation yields

U ehd
2,r =

[
α + β

r2
− 1

r4

(
β + 3λ

2 + 3λ
(α + β )

)]
(−1 + 3 cos2 θ ),

U ehd
2,θ = − 1

r4

(
β + 3λ

2 + 3λ
(α + β )

)
sin(2θ ). (A12)

At steady state α = 0, and β reduces to the result for a spherical drop Eq. (24).
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FIG. 7. Trajectories of two identical surfactant-covered drops with (a) R = 0.1, S = 1; (b) R = 1, S = 10;
(c) R = 1, S = 0.1; and (d) R = 100, S = 1. Initially the drops are in the xz plane, the separation in all cases is
d = 4, and the angle with the applied field direction is (a)� = 60◦, (b)� = 45◦, (c)� = 65◦, and (d)� = 80◦.
Ca = 0.1, E = 1, and Pe = 106. Bottom: trajectories in the xz planes. The color map shows the surfactant
concentration
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FIG. 8. Dynamics of a pair of identical drops with initial separation d = 4 and different angles with
the applied field. Comparison between clean (dotted line) and surfactant-covered drops (solid line) with
E = 1 and Pe = 106. Ca = 0.1. (a) R = 0.1, S = 1 (repulsion-attraction, alignment with the field); (b) R = 1,
S = 10 (attraction-repulsion, misalignment with the field); (c) R = 1, S = 0.1 (attraction-repulsion, alignment
perpendicular to the field); and (d) R = 100, S = 1 (repulsion-attraction, alignment with the field).

Figure 6 shows the evolution of the radial and tangential velocity and compares the theory with
the numerical simulation.

APPENDIX B: 3D TRAJECTORIES OF SURFACTANT-COVERED DROPS IN A UNIFORM
ELECTRIC FIELD

Next we illustrate the pair dynamics at different initial configurations. Our previous work showed
that clean drops can undergo complex dynamics in an applied uniform electric field if they are
initially misaligned with the field: repulsion followed by attraction with centerline rotating toward
the applied field direction (a) and (d), attraction followed by repulsion with centerline rotating
toward the applied field direction (c), and attraction followed by repulsion with centerline rotating
away from the applied field direction (b). The drops remain in the plane defined by the initial
separation vector and the applied field direction, in this case the xz plane. The transient pairing
dynamics are clearly seen in the trajectories in the xz plane. Figures 7 and 8 show that in these cases,
the surfactant does not qualitatively change the dynamics, even though the surfactant concentration
does become nonuniform.
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