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We characterize those finitely generated commutative rings which are (parametrically)

bi-interpretable with arithmetic: a finitely generated commutative ring A is bi-

interpretable with (N, +, ×) if and only if the space of non-maximal prime ideals of

A is nonempty and connected in the Zariski topology and the nilradical of A has

a nontrivial annihilator in Z. Notably, by constructing a nontrivial derivation on a

nonstandard model of arithmetic we show that the ring of dual numbers over Z is not

bi-interpretable with N.

Introduction

We know since Gödel that the class of arithmetical sets, that is, sets definable in the

semiring (N, +, ×), is very rich; in particular, the first-order theory of this structure

is undecidable. One expects other mathematical structures which are connected to
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Logical Complexity of Rings 113

arithmetic to share this feature. For instance, since the subset N of Z is definable in

the ring Z of integers (Lagrange’s Four Square Theorem), every subset of Nm which

is definable in arithmetic is definable in Z. The usual presentation of integers as

differences of natural numbers (implemented in any number of ways) shows conversely

that Z is interpretable in N; therefore every Z-definable subset of Zn also corresponds

to an N-definable set. Thus the semiring N is interpretable (in fact, definable) in the ring

Z, and conversely, Z is interpretable in N; that is, N and Z are mutually interpretable.

However, something much stronger holds: the structures N and Z are bi-interpretable.

Bi-interpretability is an equivalence relation on the class of first-order struc-

tures which captures what it means for two structures (in possibly different languages)

to have essentially have the same categories of definable sets and maps. (See [1] or

[11, Section 5.4].) Thus in this sense, the definable sets in structures which are bi-

interpretable with arithmetic are just as complex as those in (N, +, ×). We recall

the definition of bi-interpretability and its basic properties in Section 2 below. For

example, we show there that a structure A with underlying set A is bi-interpretable

with arithmetic if and only if there are binary operations ⊕ and ⊗ on A such

that (Z, +, ×) ∼= (A, ⊕, ⊗), and the structures (A, ⊕, ⊗) and A = (A, . . . ) have the

same definable sets. The reader who is not yet familiar with this notion may simply

take this equivalent statement as the definition of “A is bi-interpretable with N.”

Bi-interpretability between general structures is a bit subtle and sensitive, for example,

to whether parameters are allowed. Bi-interpretability with N is more robust, but we

should note here that even for natural algebraic examples, mutual interpretability with

N does not automatically entail bi-interpretability with N: for instance, the Heisenberg

group UT3(Z) of unitriangular 3 × 3 matrices with entries in Z, although it interprets

arithmetic [21], is not bi-interpretable with it; see [12, Théorème 6] or [25, Theorem 7.16].

See [17] for interesting examples of finitely generated simple groups which are bi-

interpretable with N.

Returning to the commutative world, the consideration of N and Z above

leads to a natural question: are all infinite finitely generated commutative rings bi-

interpretable with N? Indeed, each finitely generated commutative ring is interpretable

in N (see Corollary 2.14 below), and it is known that conversely each infinite finitely

generated commutative ring interprets arithmetic [27]. However, it is fairly easy to see

as a consequence of the Feferman–Vaught Theorem that Z×Z is not bi-interpretable with

N. Perhaps more surprisingly, there are nontrivial derivations on nonstandard models

of arithmetic and it follows, for instance, that the ring Z[ε]/(ε2) of dual numbers over Z

is not bi-interpretable with N. (See Section 6.)
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114 M. Aschenbrenner et al.

The main result of this paper is a characterization of the finitely generated

commutative rings which are bi-interpretable with N. To formulate it, we need some

notation. Let A be a commutative ring (with unit). As usual, we write Spec(A) for the

spectrum of A, that is, the set of prime ideals of A equipped with the Zariski topology,

and Max(A) for the subset of Spec(A) consisting of the maximal ideals of A. We put

Spec
◦
(A) := Spec(A)\Max(A), equipped with the subspace topology. (In the context of

a local ring (A,m), the topological space Spec◦(A) = Spec(A) \ {m} is known as the

“punctured spectrum” of A.)

Theorem. Suppose the ring A is finitely generated, and let N be the nilradical of A.

Then A is bi-interpretable with N if and only if A is infinite, Spec
◦
(A) is connected, and

there is some integer d ≥ 1 with dN = 0. �

The proof of the theorem is contained in Sections 3–6, preceded by two preliminary

sections, on algebraic background and on interpretations, respectively. Let us indicate

the strategy of the proof. Clearly if A is bi-interpretable with N, then necessarily A is

infinite. Note that the theorem says in particular that if A is an infinite integral domain,

then A is bi-interpretable with N. We prove this fact in Section 3 using techniques of [37]

which are unaffected by the error therein [38], as sufficiently many valuations on the

field of fractions of A may be defined via ideal membership conditions in A. Combining

this fact with Feferman–Vaught-style arguments, in Section 4 we then establish the

theorem in the case where A is infinite and reduced (i.e., N = 0): A is bi-interpretable

with N iff Spec
◦
(A) is connected. To treat the general case, we distinguish two cases

according to whether or not there exists an integer d ≥ 1 with dN = 0. In Section 5,

assuming that there is such a d, we use Witt vectors to construct a bi-interpretation

between A and its associated reduced ring Ared = A/N. Noting that A is finite if and only

if Ared is finite, and Spec
◦
(A) and Spec

◦
(Ared) are homeomorphic, this allows us to appeal

to the case of a reduced ring A. Finally, by constructing suitable automorphisms of an

elementary extension of A we prove that if there is no such integer d, then A cannot be

bi-interpretable with N. (Section 6.)

Structures bi-interpretable with arithmetic are “self-aware”: they know their

own isomorphism type. More precisely, if a finitely generated structure A in a finite

language L is bi-interpretable with N, then A is quasi-finitely axiomatizable (QFA),

that is, there is an L-sentence σ satisfied by A such that every finitely generated

L-structure satisfying σ is isomorphic to A ; see Proposition 2.28 below. (This notion

of quasi-finite axiomatizability does not agree with the one commonly used in Zilber’s

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/1/112/4912395 by guest on 12 M
ay 2021



Logical Complexity of Rings 115

program, e.g., in [1]. Also note that the restriction to finitely generated structures is

necessary: by the Löwenheim–Skolem Theorem, for every infinite L-structure there is an

elementarily equivalent but non-isomorphic L-structure.) In [24], Nies first considered

the class of QFA groups, which has been studied extensively since then; see, for

example [16–19, 26, 29, 30].

In 2004, Sabbagh [25, Theorem 7.11] gave a direct argument for the quasi-finite

axiomatizability of the ring of integers. Belegradek [25, §7.6] then raised the question

which finitely generated commutative rings are QFA. Building on our result that finitely

generated integral domains are bi-interpretable with N, in the last section of this paper

we prove the following:

Corollary. Each finitely generated commutative ring is QFA. �

This paper had a rather long genesis, which we briefly summarize. Around 2005, A. K.

and T. S. independently realized that bi-interpretability with N entails QFA. T. S. was

motivated by Pop’s 2002 conjecture [33] that finitely generated fields are determined

up to isomorphism by their elementary theory. In [37], he attempted to establish

this conjecture by showing that they are bi-interpretable with N; however, later, Pop

found a mistake in this argument, and his conjecture remains open [38]. (Note that

our main theorem does not imply that every infinite finitely generated field is bi-

interpretable with N; see Lemma 1.2 below.) Influenced by [37] and realizing that not

all finitely generated commutative rings are bi-interpretable with N, in 2006, M. A.

became interested in algebraically characterizing those which are. The corollary above

was announced in [12], where a proof based on the main result of [37] was suggested.

In his Ph. D. thesis [23], E. N. later gave a proof of this corollary circumventing

the flaws of [37].

We conclude this introduction with an open question suggested by our theorems above.

Recall that a group G is said to be metabelian if its commutator subgroup G′ = [G, G]

is abelian. If G is a metabelian group, then the abelian group G/G′ can be made into

a module M over the group ring A = Z[G′] in a natural way; if moreover G is finitely

generated, then the commutative ring A is finitely generated, and so is the A-module M,

hence by the above, the two-sorted structure (A, M) is QFA. (Lemma 7.2.) However, no

infinite abelian group is QFA [25, §7.1], and we already mentioned that the metabelian

group UT3(Z) is not bi-interpretable with N, though it is QFA [25, §7.2]. A. K. has shown

that every non-abelian free metabelian group is bi-interpretable with N [13]. Each non-

abelian finitely generated metabelian group interprets N [28].
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116 M. Aschenbrenner et al.

Question. Which finitely generated metabelian groups are QFA? Which finitely gener-

ated metabelian groups are bi-interpretable with N? �

Notations and conventions

We let m, n range over N = {0, 1, 2, . . . }. “Ring” always means “commutative ring with

unit.” Rings are always viewed as model-theoretic structures in the language {+, ×} of

rings; unless otherwise specified, “formula” means “formula in the language of rings.”

We usually abbreviate “finitely generated” by “f.g.” The adjective “definable” will always

mean “definable (by a formula in first-order logic), possibly with parameters.”

1 Preliminaries: Algebra

In this section we gather some basic definitions and facts of a ring-theoretic nature

which are used later.

1.1 Radicals

Let A be a ring and I be an ideal of A. We denote by Nil(I) the nilradical of I, that is, the

ideal

Nil(I) := {
a ∈ A : ∃n an ∈ I

}
of A, and we write

Jac(I) := {a ∈ A : ∀b ∈ A ∃c ∈ A (1 − ab)c ∈ 1 + I}

for the Jacobson radical of I. It is well-known that Nil(I) equals the intersection of all

prime ideals of A containing I, and Jac(I) equals the intersection of all maximal ideals

of A which contain I. Evidently, I ⊆ Nil(I) ⊆ Jac(I). The ideal I is said to be radical if

Nil(I) = I. For our purposes it is important to note that although the nilradical is not

uniformly definable for all rings, the Jacobson radical is; more precisely, we have if ϕ(x)

is a formula defining I in A, then the formula

Jac(ϕ)(x) := ∀u∃v∃w ((1 − xu)v = 1 + w & ϕ(w))

defines Jac(I) in A. We denote by N(A) the nilradical of the zero ideal of A. Thus N(A) =⋂
p∈SpecA p. One says that A is reduced if N(A) = 0. The ring Ared := A/N(A) is reduced,

and called the associated reduced ring of A. We say that I is nilpotent if there is some
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Logical Complexity of Rings 117

integer e ≥ 1 such that Ie = 0. The smallest such e is the nilpotency index of I (not to be

confused with the index [A : I] of I as an additive subgroup of A). If N(A) is f.g., then it is

nilpotent.

Lemma 1.1. A is finite if and only if it contains an f.g. nilpotent ideal of finite index in

A. (In particular, if N(A) is f.g., then A is finite iff Ared is finite.) �

Proof. Let N be an f.g. ideal of A such that A/N is finite, and e ≥ 1 such that Ne = 0. We

show, by induction on i = 1, . . . , e, that A/Ni is finite. The case i = 1 holds by assumption.

Suppose now that we have already shown that A/Ni is finite, where i ∈ {1, . . . , e − 1}.
Then Ni/Ni+1 is an A/N-module in a natural way, and f.g. as such, hence finite. Since

A/Ni ∼= (A/Ni+1)/(Ni/Ni+1), this yields that A/Ni+1 is also finite. �

1.2 Jacobson rings

In this subsection we let A be a ring. One calls A a Jacobson ring (also sometimes a

Hilbert ring) if every prime ideal of A is an intersection of maximal ideals; that is, if

Nil(I) = Jac(I) for every ideal I of A. The class of Jacobson rings is closed under taking

homomorphic images: if A → B is a surjective ring morphism and A is a Jacobson

ring, then B is a Jacobson ring. Examples for Jacobson rings include all fields and the

ring Z of integers, or more generally, every principal ideal domain with infinitely many

pairwise nonassociated primes. The main interest in Jacobson rings in commutative

algebra and algebraic geometry is their relation with Hilbert’s Nullstellensatz, an

abstract version of which states that if A is a Jacobson ring, then so is any f.g. A-algebra

B; in this case, the pullback of any maximal ideal n of B is a maximal ideal m of A, and

B/n is a finite extension of the field A/m. In particular, every f.g. ring is a Jacobson ring.

Lemma 1.2. Suppose A is a field which is f.g. as a ring. Then A is finite. �

Proof. The pullback m of the maximal ideal {0} of A is maximal ideal of Z, that is,

m = pZ for some prime number p, and A is a finite extension of the finite field Z/pZ,

hence finite. �

Corollary 1.3. Suppose A is f.g. Then A is finite if and only if Spec
◦
(A) = ∅, that is, every

prime ideal of A is maximal. �

Proof. We may assume that A is nontrivial. A nontrivial ring is called zero-

dimensional if it has no non-maximal prime ideals. Every finite integral domain is
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118 M. Aschenbrenner et al.

a field, so each nontrivial finite ring is zero-dimensional. Conversely, assume that A is

zero-dimensional. Then A (being noetherian) has only finitely many pairwise distinct

maximal ideals m1, . . . ,mk, and setting N := N(A), we have N = m1 ∩ · · · ∩ mk. Each of

the fields A/mi is f.g. as a ring, hence finite, by Lemma 1.2. By the Chinese Remainder

Theorem, A/N ∼= (A/m1) × · · · × (A/mk), thus A/N is finite. Hence by Lemma 1.1, A is

finite.
�

Given an element a of a ring, we say that a has infinite multiplicative order if am �= an

for all m �= n.

Corollary 1.4. Every infinite f.g. ring contains an element of infinite multiplicative

order. �

Proof. Let A be f.g. and infinite, and let p be a non-maximal prime ideal of A, according

to the previous corollary. Take a ∈ A \ p such that 1 /∈ (a, p). Then a has infinite

multiplicative order.
�

It is a classical fact that if A is noetherian of (Krull) dimension at most n, then every

radical ideal of A is the nilradical of an ideal generated by n + 1 elements. (This is due

to Kronecker [14] in the case where A is a polynomial ring over a field, and to van der

Waerden in general; see [7].) Given a formula ϕ(x1, . . . , xm, y1, . . . , yn) in the language of

rings, where x1, . . . , xm, y1, . . . , yn are distinct variables, as well as a ring A and a tuple

b ∈ An, we set ϕ(Am, b) := {a ∈ Am : A |� ϕ(a, b)}.

Lemma 1.5. There exist formulas

πn(y1, . . . , yn+1), μn(y1, . . . , yn+1), �n(x, y1, . . . , yn+1)

with the following property: if A is a noetherian Jacobson ring of dimension at most n,

then

Spec A =
{
�n(A, a) : a ∈ πn(An+1)

}
Max A =

{
�n(A, a) : a ∈ μn(An+1)

}
.

�

Proof. For every n let

γn(x, y1, . . . , yn) := ∃z1 · · · ∃zn(x = y1z1 + · · · + ynzr),

Jacn(x, y1, . . . , yn) := Jac(γn).
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Logical Complexity of Rings 119

Then for every n-tuple a = (a1, . . . , an) of elements of A, the formula γ n(x, a) defines the

ideal of A generated by a1, . . . , an, and Jacn(x, a) defines its Jacobson radical. Writing y

for (y1, . . . , yn+1), the formulas

πn(y) := ∀v∀w
(
Jacn+1(v · w, y) → (Jacn+1(v, y) ∨ Jacn+1(w, y)

)
,

μn(y) := ∀v∃w
(
Jacn+1(v, y) ∨ Jacn+1(1 − vw, y)

)
,

�n(x, y) := Jacn+1(x, y)

have the required property, by Kronecker’s Theorem.
�

Remarks.

1. The previous lemma holds if the noetherianity hypothesis is dropped and

Spec A and Max A are replaced with the set of f.g. prime ideals of A and the

set of f.g. maximal ideals of A, respectively, by a non-noetherian analog of

Kronecker’s Theorem due to Heitmann [9, Corollary 2.4, (ii) and Remark (i)

on p. 168].

2. Let πn, µn, �n be as in Lemma 1.5, and set π◦
n := πn ∧ ¬μn. Then for every

noetherian Jacobson ring A of dimension at most n we have

Spec◦A =
{
�n(A, a) : a ∈ π◦

n(An+1)
}

.

Hence for every such ring A, we have A |� ∀y1 · · · ∀yn+1¬π◦
n iff dim A < 1.

(Using the inductive characterization of Krull dimension from [6], one can

actually construct, for each n, a sentence dim<n such that for all Jacobson

rings A, we have A |� dim<n iff dim A < n.) �

1.3 Subrings of a localization

In this subsection we let R be a ring and D be a subring of R.

Proposition 1.6. Suppose that D is a Dedekind domain and D[c−1] = R[c−1] for some

c ∈ D \{0}. Then R is an f.g. D-algebra. �

This can be deduced from [31, Theorem 2.20], but we give a direct proof based on a

simple lemma from this paper:

Lemma 1.7. (Onoda [31]) Suppose R is an integral domain. Then the set of c ∈ R such

that c = 0 or c �= 0 and R[c−1] is an f.g. D-algebra is an ideal of R. �
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120 M. Aschenbrenner et al.

Proof. Since this set clearly is closed under multiplication by elements of R, we only

need to check that it is closed under addition. Let a1, a2 ∈ R \{0} be such that a1 +a2 �= 0

and the D-algebra R[a−1
i ] is f.g., for i = 1, 2. So we can take an f.g. D-algebra B ⊆ R such

that ai ∈ B and B[a−1
i ] ⊇ R[a−1

i ], for i = 1, 2. Given x ∈ R, take n ≥ 1 such that an
i x ∈ B;

then (a1+a2)2n−1x ∈ B, so x ∈ B[(a1+a2)−1]. Thus R[(a1+a2)−1] = B[(a1+a2)−1] is an f.g.

D-algebra. �

Proof of Proposition 1.6 Let c be as in the statement of the proposition, and first let S

be a multiplicative subset of D with R[S−1] = D[S−1]; we claim that then there is some s

∈ S such that R[s−1] = D[s−1]. To see this note that for each Q ∈ Spec(D) with DQ �⊇ R we

have c ∈ Q, since otherwise DQ ⊇ D[c−1] = R[c−1] ⊇ R, and for a similar reason we have

Q ∩ S �= ∅. Let Q1, . . . , Qm be the prime ideals Q of D with DQ �⊇ R. For i = 1, . . . , m pick

some si ∈ Qi ∩ S and set s := s1· · · sm ∈ S ∩ Q1 ∩· · · ∩ Qm. Then we have DQ ⊇ R for each

Q ∈ Spec(D) with s /∈ Q, and hence D[s−1] = ⋂
s/∈Q DQ ⊇ R. Therefore D[s−1] = R[s−1].

Let now I be the ideal of R defined in Lemma 1.7; we need to show that 1 ∈ I.

Toward a contradiction assume that we have some prime ideal P of R which contains I.

Put Q := D ∩ P ∈ Spec(D) and S := D \ Q. Then DQ = RP (there is no proper intermediate

ring between a DVR and its fraction field). In fact, we have D[S−1] = DQ = R[S−1], so by

the above there is some s ∈ S with R[s−1] = D[s−1]. Hence s ∈ I \ P, a contradiction. �

Remark. We don’t know whether the conclusion of Proposition 1.6 can be strength-

ened to R = D[r−1] for some r ∈ R \{0}. �

For a proof of the next lemma see, for example, [3, Proposition 7.8].

Lemma 1.8. (Artin–Tate [2]) Suppose D is noetherian and R is contained in an f.g.

D-algebra which is integral over R. Then the D-algebra R is also f.g.

The following fact is used in Section 3.

Corollary 1.9. Suppose D is a one-dimensional noetherian integral domain whose

integral closure D̃ in the fraction field K of D is an f.g. D-module. If D[c−1] = R[c−1]

for some c ∈ D \{0}, then R is an f.g. D-algebra. �

Proof. Let R̃ be the integral closure of R in K. Suppose c ∈ D \{0} satisfies D[c−1] =
R[c−1]. Then D̃ is a Dedekind domain and D̃[c−1] = R̃[c−1]. By Proposition 1.6, R̃ is an

f.g. D̃-algebra, and hence also an f.g. D-algebra. Lemma 1.8 implies that R is an f.g.

D-algebra. �
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Logical Complexity of Rings 121

1.4 Annihilators

Let A be a ring. Given an A-module M we denote by

annA(M) := {a ∈ A : aM = 0}

the annihilator of M (an ideal of A), and if x is an element of M we also write annA(x) for

the annihilator of the submodule Ax of M, called the annihilator of x. The annihilator

annZ(A) of A viewed as a Z-module is either the zero ideal, in which case we say that the

characteristic of A is 0, or contains a smallest positive integer, called the characteristic

of A. (Notation: char(A).)

In the following we let N := N(A). We also set AQ := A ⊗Z Q, with natural morphism

a �→ ι(a) := a ⊗ 1: A → AQ.

Its kernel is the torsion subgroup

Ator := {
a ∈ A : annZ(a) �= 0

}
of the additive group of A. Suppose that the ideal Ator of A is finitely generated. Then

there is some integer e ≥ 1 such that eAtor = 0; the smallest such e is called the exponent

of Ator. One checks easily that then

ι−1N(AQ) = (N : e) := {a ∈ A : ea ∈ N},
ι−1annAQ

(ι(a)) = annA(ea) for each a ∈ A.

The following lemma on the existence of nilpotent elements with prime annihilators is

used in Section 6. (Note that if ε is as in the conclusion of the lemma, then ε2 = 0 and

A/annA(ε) is an integral domain of characteristic zero.)

Lemma 1.10. Suppose that A is noetherian and annZ(N) = 0. Then there is some ε ∈ N

with annA(ε) prime and annZ(ε) = 0. �

Proof. Note that the hypothesis annZ(N) = 0 implies not only that N is nonzero, but

also that some nonzero element of N remains nonzero under ι; in particular, N(AQ) �= 0.

Let A be the set of annihilators of nonzero elements of N(AQ). Then A �= ∅, and as AQ

is noetherian, we may find a maximal element P ∈ A. Scaling if need be, we may assume
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122 M. Aschenbrenner et al.

that P = annAQ
(ι(a)) where a ∈ ι−1N(AQ) = (N : e), e = exponent ofAtor. The ideal P

is prime, as if xyι(a) = 0 while neither xι(a) = 0 nor yι(a) = 0, then P ⊆ annAQ
(yι(a))

with x ∈ annAQ
(yι(a)) \ P, contradicting maximality. Thus, annA(ea) = ι−1P is prime and

annZ(ea) = 0, so ε := ea does the job. �

1.5 A bijectivity criterion

In the proof of Proposition 7.1 we apply the following criterion:

Lemma 1.11. Let φ: A → B be a morphism of additively written abelian groups. Let N

be a subgroup of A. Suppose that the restriction of φ to N is injective, and the morphism

φ : A/N → B/φ(N) induced by φ is bijective. Then φ is bijective. �

Proof. Let a ∈ A, a �= 0. If a ∈ N, then φ(a) �= 0, since the restriction of φ to N is

injective. Suppose a /∈ N. Then φ(a) /∈ φ(N) since φ is injective; in particular, φ(a) �= 0.

Hence φ is injective. To prove that φ is surjective, let b ∈ B. Since φ is onto, there is some

a ∈ A such that b − φ(a) ∈ φ(N), so b ∈ φ(A) as required. �

2 Preliminaries: Interpretations

In this section we recall the notion of interpretation, and record a few consequences

(some of which may be well-known) of bi-interpretability with N. We begin by discussing

definability in quotients of definable equivalence relations. Throughout this section, we

let A = (A, . . . ) be a structure in some language L = LA and B = (B, . . . ) be a structure

in some language LB .

2.1 Definability in quotients

Let E be a definable equivalence relation on a definable set S ⊆ Am, with natural

surjection πE: S → S/E. Note that for X ⊆ S we have X = π−1
E (πE(X)) iff X is E-invariant,

that is, for all (a, b) ∈ E we have a ∈ X iff b ∈ X. A subset of S/E is said to be definable

in A if its preimage under πE is definable in A ; equivalently, if it is the image of some

definable subset of S under πE. A map S/E → S′/E′, where E′ is a definable equivalence

relation on some definable set S′ in A , is said to be definable in A if its graph, construed

as a subset of (S/E) × (S′/E′), is definable. Here and below, given an equivalence relation

E on a set S and an equivalence relation E′ on S′, we identify (S/E) × (S/E′) in the natural

way with (S × S′)/(E × E′), where E × E′ is the equivalence relation on S × S′ given by

(a, a′) (E × E′) (b, b′) :⇐⇒ aEb and a′E′b′ (a, b ∈ S, a′, b′ ∈ S).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/1/112/4912395 by guest on 12 M
ay 2021



Logical Complexity of Rings 123

2.2 Interpretations

A surjective map f : M → B, where M ⊆ Am (for some m) is an interpretation of B in A

(notation: f : A � B ) if for every set S ⊆ Bn which is definable in B , the preimage f −1(S)

of S under the map

(a1, . . . , an) �→ (
f (a1), . . . , f (an)

)
: Mn → Bn,

which we also denote by f , is a definable subset of Mn ⊆ (Am)n = Amn. It is easy to verify

that a surjective map f : M → B (M ⊆ Am) is an interpretation of B in A iff the kernel

ker f := {(a, b) ∈ M × M : f (a) = f (b)} (2.1)

of f , as well as the preimages of the interpretations (in B ) of each relation symbol and

the graphs of the interpretations of each function symbol from LB , are definable in A . If

the parameters in the formula defining ker f and in the formulas defining the preimages

of the interpretations of the symbols of LB in A can be chosen to come from some set

X ⊆ A, then we say that f is an X-interpretation of B in A , or an interpretation of B in A

over X. An interpretation A � A is called a self-interpretation of A . (A trivial example

is the identity interpretation idA : A → A.)

We say that B is interpretable in A if there exists an interpretation of B in A .

Given such an interpretation f : M → B of B in A , we write M := M/ ker f for the set of

equivalence classes of the equivalence relation ker f , and f for the bijective map M → B

induced by f . Then M is the universe of a unique LB -structure f ∗(B ) such that f becomes

an isomorphism f ∗(B ) →B . We call the LB -structure f ∗(B ) the copy of B interpreted in

A via the interpretation f.

The composition of two interpretations f : A � B and g: B � C is the

interpretation g ◦ f : A � C defined in the natural way: if f : M → B and g: N → C,

then g ◦ f : f −1(N) → C is an interpretation of C in A . In this case, the restriction of

f to a map f −1(N) → N induces an isomorphism (g◦f )∗(C ) → g∗(C ) between the copy

(g◦f )∗(C ) = f −1(N)/ ker(g◦f ) of C interpreted in A via g ◦ f and the copy g∗(C) = N/ ker g

of C interpreted in B via g which makes the diagram
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commute. One verifies easily that the composition of interpretations makes the class

of all first-order structures into the objects of a category whose morphisms are the

interpretations.

Suppose B is interpretable in A via an ∅-interpretation f : M → B. Then every

automorphism σ of A induces a permutation of M and of ker f , and there is a unique

permutation σ of B such that σ ◦ f = f ◦ σ ; this permutation σ is an automorphism

of B . The resulting map σ �→ σ : Aut(A) → Aut(B) is a continuous group morphism

[11, Theorem 5.3.5], denoted by Aut(f ). We therefore have a covariant functor Aut from

the category of structures and ∅-interpretations to the category of topological groups

and continuous morphisms between them. (Here the topology on automorphism groups

is that described in [11, Section 4.1].)

If B and B ′ are structures which are interpretable in A , then their direct product B × B ′

is also interpretable in A ; in fact, if f : M → B (M ⊆ Am) is an interpretation A � B , and

f′: M ′ → B′ (M ′ ⊆ Am′
) is an interpretation A � B ′, then f × f′: M × M ′→ B × B′ is an

interpretation A � B × B ′.
The concept of interpretation allows for an obvious uniform variant: let A be a class

of L-structures and B be a class of structures in a language L′, for simplicity of

exposition assumed to be relational. A uniform interpretation of B in A is given by the

following data:

1. L-formulas σ (z), µ(x;z), and ε(x, x′;z); and

2. for each n-ary relation symbol R of L′ an L-formula ρR(yR;z).

Here x, x′ are m-tuples of variables (for some m), yR as in (2) is an mn-tuple of variables,

and z is a p-tuple of variables (for some p). All variables in these tuples are assumed to

be distinct. For A ∈ A set SA := {
s ∈ Ap : A |� σ(s)

}
. We require that

(U1) for each A ∈ A and s ∈ SA , the set Ms := {
a ∈ Am : A |� μ(a; s)

}
is nonempty,

ε(x, x′;s) defines an equivalence relation Es on Ms, and for each R ∈ L′, the set

Rs defined by ρ(yR;s) in A is Es-invariant.

Letting πs: Ms → Ms/Es be the natural surjection, the quotient Ms/Es then becomes the

underlying set of an L′-structure B s interpreted in A by πs. We also require that

(U2) B s ∈ B for each A ∈ A, s ∈ SA , and for each B ∈ B there are some A ∈ A,

s ∈ SA such that B ∼= B s.

We say that B is uniformly interpretable in A if there exists a uniform interpretation

of B in A. Clearly the relation of uniform interpretability is transitive. If B = {B} is a

singleton, we also say that B is uniformly interpretable in A; similarly if A is a singleton.
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2.3 Homotopy and bi-interpretations

Following [1], we say that interpretations f : M → B and f ′: M ′ → B of B in A are

homotopic (in symbols: f � f ′) if the pullback

[ f = f ′] := {
(x, x′) ∈ M × M ′ : f (x) = f ′(x′)

}
of f and f ′ is definable in A ; equivalently, if there exists an isomorphism

α : f ∗(B) → (f ′)∗(B)

which is definable in A such that f ′ ◦α = f . So for example if f is a self-interpretation of

A , then f � idA if and only if the isomorphism f : f ∗(A) → A is definable in A . Homotopy

is an equivalence relation on the collection of interpretations of B in A . Given X ⊆ A,

we say that interpretations f : A � B and f ′: A � B are X-homotopic if [ f = f ′] is

X-definable. It is easy to verify that if the ∅-interpretations f , f ′: A � B are ∅-homotopic,

then Aut(f ) = Aut(f ′).

Lemma 2.1. Let f , f ′: A � B and g, g′: B � C . Then

f � f ′ and g � g′ ⇒ g ◦ f � g′ ◦ f ′.
�

Proof. It suffices to show that g � g′⇒ g ◦ f � g′◦ f and f � f ′⇒ g ◦ f � g ◦ f ′. For the

first implication, note that if [g = g′] is definable in B , then [g ◦ f = g′ ◦ f ] = f −1
(
[g = g′]

)
is definable in A . To show the second implication, suppose f � f ′. Then [ f = f ′] and

(f ′)−1(ker g) are definable in A , and

(x, x′) ∈ [ g ◦ f = g ◦ f ′] ⇐⇒ ∃x′′ ((x, x′′) ∈ [ f = f ′] & (x′, x′′) ∈ ( f ′)−1(ker g)
)

,

thus [g ◦ f = g ◦ f ′] is also definable in A , that is, g ◦ f � g ◦ f ′. �

Let f : A � B and g: B � A . One says that the pair (f , g) is a bi-interpretation between

A and B if g ◦ f � idA and f ◦ g � idB ; that is, if the isomorphism g ◦ f : (g ◦ f )∗(A) → A

is definable in A , and the isomorphism f ◦ g : (f ◦ g)∗(B) → B is definable in B . (See

Figure 1.) The relation of bi-interpretability is easily seen to be an equivalence relation

on the class of first-order structures. A bi-interpretation (f , g) between A and B is an

∅-bi-interpretation if f , g are ∅-interpretations and g ◦ f and f ◦ g are ∅-homotopic to

the respective identity interpretations. If (f , g) is such an ∅-bi-interpretation between A

and B , then Aut(f ) is a continuous isomorphism Aut(A ) →Aut(B ) with inverse Aut(g).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/1/112/4912395 by guest on 12 M
ay 2021



126 M. Aschenbrenner et al.

FIG. 1. Composition g ◦ f of f : A � B and g: B � A .

Lemma 2.2. Let (f , g) be a bi-interpretation between A and B . Then for every subset S

of Bk (k ≥ 1) we have

S is definable in B ⇐⇒ f −1(S) is definable in A .
�

Proof. The forward direction follows from the definition of “f is an interpretation of B

in A .” For the converse, suppose f −1(S) is definable in A ; then the set S′ := (f ◦ g)−1(S) =
g−1

(
f −1(S)

)
is definable in B (since g is an interpretation of A in B ). For y ∈ Bk we have

y ∈ S iff (f ◦ g)(x) = y for some x ∈ S′. Therefore, since [f ◦ g =idB] and S′ are definable in

B , so is S. �

The previous lemma may be refined to show that a bi-interpretation between A and

B in a natural way gives rise to an equivalence of categories between the category of

definable sets and maps in A and the category of definable sets and maps in B . (See [20].)

Corollary 2.3. Let (f , g) be as in Lemma 2.2, and f ′, f ′′: A � B . If f ′◦ g � f ′′ ◦ g,

then f ′� f ′′. �

Proof. Note that g−1
(
[f ′ = f ′′]

) = [f ′ ◦ g = f ′′ ◦ g] and use Lemma 2.2. �

2.4 Weak homotopy and weak bi-interpretations

The notion of bi-interpretability allows for a number of subtle variations, one of which

(close to the notion of bi-interpretability used in [11, Chapter 5]) we introduce in this

subsection. Given two interpretations f : A � B and f ′: A � B ′ of (possibly different) LB -

structures in A , we say that f and f ′ are weakly homotopic if there is an isomorphism

f ∗(B ) → (f ′)∗(B ′) which is definable in A ; notation: f ∼ f ′. Clearly ∼ is an equivalence

relation on the class of interpretations of LB -structures in A , and “homotopic” implies

“weakly homotopic.” (Note that f � f ′ only makes sense if B = B ′, whereas f ∼ f ′ merely
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implies B ∼= B ′.) The following is easy to verify, and is a partial generalization of the fact

that f � f ′ implies Aut(f ) = Aut(f ′):

Lemma 2.4. Let f : A � B and f ′: A � B ′, and let β: f ∗(B ) → (f ′)∗(B ′) be an isomorphism,

definable in A . Put

γ := f ′ ◦ β ◦ f
−1

: B
∼=−→ B ′.

Then Aut(f ) = γ Aut(f ′) γ −1. �

We say that a pair (f , g), where f : A � B and g: B � A , is a weak bi-interpretation

between A and B if g ◦ f ∼ idA and f ◦ g ∼ idB . The equivalence relation on the

class of first-order structures given by bi-interpretability is finer than that of weak

bi-interpretability, and in general, might be strictly finer. In Section 2.7 below we see,

however, that as far as bi-interpretability with N is concerned, there is no difference

between the two notions.

2.5 Injective interpretations

An injective interpretation of B in A is an interpretation f : A � B where f : M → B

(M ⊆ Am) is injective (and hence bijective). (See [11, Section 5.4 (a)].) We also say that the

structure B is injectively interpretable in A if B admits an injective interpretation in A .

An important special case of injective interpretations is furnished by relativized

reducts. Recall (cf. [11, Section 5.1]) that B is said to be a relativized reduct of A if the

universe B of B is a subset of Am, for some m, definable in A , and the interpretations

of the function and relation symbols of LB in B are definable in A. In this case, B is

injectively interpretable in A , with the interpretation given by the identity map on B.

Example 2.5. The semiring (N, +, ×) is a relativized reduct of the ring (Z, +, ×).

(By Lagrange’s Four Squares Theorem.) �

The structure A is said to have uniform elimination of imaginaries if every ∅-definable

equivalence relation on Am is the kernel of an ∅-definable map Am → An (for some n).

If A has uniform elimination of imaginaries, then every interpretation of B in A is

homotopic to an injective interpretation of B in A [11, Theorem 5.4.1]. The following is

well-known:

Lemma 2.6. Every interpretation of an infinite structure A in the ring Z of integers is

homotopic to an injective interpretation of A in Z whose domain is Z. �

Proof. It is well-known that Z has uniform elimination of imaginaries: given a

definable equivalence relation E on Zm we have E = ker f if for a ∈ Zm we let f (a) be
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the smallest element of the E-equivalence class of a, with respect to the well-ordering

on Zm defined by b < b′ : ⇔ |b| < |b′|, or |b| = |b′| and b is smaller than b′ in the

lexicographic ordering on Zm. The lemma now follows by the remarks preceding it

in combination with the fact that every infinite definable subset of Zm is in definable

bijection with Z.
�

So for example, if an infinite semiring S is interpretable in Z, then there are definable

binary operations ⊕ and ⊗ on Z such that (Z, ⊕, ⊗) is isomorphic to S.

Lemma 2.7. Every self-interpretation of Z is homotopic to the identity inter-

pretation. �

Proof. Let f : M → Z be a self-interpretation of Z, where M ⊆ Zm. By Lemma 2.6 we

may assume that f is bijective, m = 1, and M = Z. Hence the copy of Z interpreted

in itself via f has the form Z = (Z, ⊕, ⊗) where ⊕ and ⊗ are binary operations on Z

definable in Z. Let 0Z and 1Z denote the additive and multiplicative identity elements of

the ring Z. The successor function k �→ σ(k) := k⊕1Z : Z → Z in the ring Z is definable in

Z. Therefore the unique isomorphism Z → Z, given by k �→ σ k(0Z) for k ∈ Z, is definable

in Z; its inverse is f .
�

Due to the previous lemma, the task of checking that a pair of interpretations forms a

bi-interpretation between A and Z simplifies somewhat: a pair (f , g), where f : A � Z

and g : Z � A , is a bi-interpretation between A and Z iff g ◦ f � idA .

Corollary 2.8. If A and Z are bi-interpretable, then any two interpretations of Z in A

are homotopic. �

Proof. Suppose (f , g), where f : A � Z and g : Z � A , is a bi-interpretation between

A and Z. Let f ′ be an arbitrary interpretation A � Z. Then f ◦ g and f ′◦ g are

self-interpretations of Z. Therefore f ◦ g � f ′◦ g by Lemma 2.7 and thus f � f ′ by

Corollary 2.3. �

2.6 Interpretations among rings

In this subsection we let A be a ring. Familiar ring-theoretic constructions can be seen

as interpretations:

Examples 2.9.

1. Let S be a commutative semiring, and suppose A is the Grothendieck ring

associated to S, that is, A = (S × S)/E where E is the equivalence relation
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on S × S given by (x, y)E(x′, y′) : ⇔ x + y′ = x′ + y. Then the natural map

S × S → A is an interpretation of A in S.

2. For an ideal I of A which is definable in A (as a subset of A), the residue

morphism A → A/I is an interpretation of A/I in A.

3. Suppose A = A1 × A2 is the direct product of rings A1, A2. Then both factors

A1 and A2 are interpretable in A. (By the last example applied to the ideals

I1 = Ae2 respectively I2 = Ae1, where e1 = (1, 0), e2 = (0, 1).)

4. Let S be a multiplicative subset of A (i.e., 1 ∈ S, 0 /∈ S, and S · S ⊆ S). Suppose

S is definable. Then the map

M := A × S → A[S−1] : (a, s) �→ a/s

is an interpretation of the localization A[S−1] of A at S in A. Its kernel is the

equivalence relation

(a, s) ∼ (a′, s′) ⇐⇒ ∃t ∈ S
(
t · (as′ − a′s) = 0

)
on M. In particular, if A is an integral domain, then its fraction field is

interpretable in A.

Let S be a multiplicative subset of A. One says that S is saturated if for all a, b ∈ A with

ab ∈ S we have a ∈ S and b ∈ S. Equivalently, S is saturated iff A \ S is a union of prime

ideals of A. There is a smallest saturated multiplicative subset S of A which contains S

(called the saturation of S); here A \ S is the union of all prime ideals of A which do not

intersect S, and A[S−1] = A[S−1]. (See [3, Chapter 3, exercises].)

Lemma 2.10. Suppose A is a finite-dimensional noetherian Jacobson ring, and c ∈ A.

Then A[c−1] is interpretable in A. �

Proof. By Lemma 1.5, the union of all prime ideals of A which do not contain c is

definable in A, hence so is the saturation S of the multiplicative subset cN = {cn : n =
0, 1, 2, . . . } of A. Thus A[c−1] = A[S−1] is interpretable in A by Examples 2.9, (4). �

Suppose A is noetherian. Then every finite ring extension B of A is interpretable in A:

choose generators b1, . . . , bm of B as an A-module, and let K be the kernel of the surjective

A-linear map π : Am → B given by (a1, . . . , am) �→ ∑
i aibi. Then K is an f.g. A-submodule

of Am, hence definable in A. The multiplication map on B may be encoded by a bilinear

form on Am. Thus π is an interpretation of B in A.
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One says that A has finite rank n if each f.g. ideal of A can be generated by n

elements. In this case, every submodule of Am can be generated by mn elements [5].

Hence we obtain the following:

Lemma 2.11. Suppose A is noetherian of finite rank. Then the class of finite ring

extensions of A generated by m elements as A-module is uniformly interpretable

in A. �

This fact together with its corollary below are used in the proof of Theorem 3.1.

Corollary 2.12. Suppose A is noetherian of finite rank, and let A′ be a flat ring extension

of A in which A is definable. Then the class of rings of the form A′⊗AB, where B is a finite

ring extension of A generated by m elements as an A-module, is uniformly interpretable

in the two-sorted structure (A′, A). �

Proof. Let B be a ring extension of A generated as an A-module by b1, . . . , bm. With π ,

K as before we have an exact sequence

0 → K
⊆−−→ Am π−−→ B → 0.

By flatness, tensoring with A′ yields an exact sequence

0 → A′ ⊗A K −→ (A′)m 1⊗π−−−→ A′ ⊗A B → 0.

The image of K under x �→ 1 ⊗ x generates the A′-module A′⊗A K, and the extension

of the bilinear form on the A-module Am which describes the ring multiplication on

B to a bilinear form on the A′-module (A′)m also describes the ring multiplication

on A′⊗A B.
�

We finish this subsection by recording a detailed proof of the well-known fact that all

finitely generated rings are interpretable in Z. The proof is a typical application of Gödel

coding in arithmetic, and we assume that the reader is familiar with the basics of this

technique; see, for example, [40, Section 6.4]. (Later in the paper, such routine coding

arguments will usually only be sketched.) Let β be a Gödel function, that is, a function

N2 → N, definable in Peano Arithmetic (in fact, much weaker systems of arithmetic are

enough), so that for any finite sequence (a1, . . . , an) of natural numbers there exists a ∈ N

such that β(a, 0) = n (the length of the sequence) and β(a, i) = ai for i = 1, . . . , n. It is

routine to construct from β a function γ : N2 → Z which is definable in Z and which

encodes finite sequences of integers, that is, such that for each (a1, . . . , an) ∈ Zn there

exists a ∈ N with γ (a, 0) = n and γ (a, i) = ai for i = 1, . . . , n.
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Lemma 2.13. Suppose A is interpretable in Z, and let X be an indeterminate over A.

Then A[X] is also interpretable in Z. �

Proof. For simplicity we assume that A is infinite (the case of a finite A being similar).

Let g : Z → A be an injective interpretation of A in Z. (Lemma 2.6.) Let

N := {
a ∈ N : γ (a, 0) ≥ 1, and γ (a, 0) ≥ 2 ⇒ γ (a, γ (a, 0)) �= 0

}
be the set of codes of finite sequences (a0, . . . , an) ∈ Zn+1 such that an �= 0 if n ≥ 1.

Clearly N is definable in Z. It is easy to check that then the map

N → A[X] : a �→
γ (a,0)−1∑

i=0

g
(
γ (a, i + 1)

)
Xi

is an injective interpretation of A[X] in Z.
�

The previous lemma in combination with Examples 2.9, (2) and (4) yields the following:

Corollary 2.14. Every f.g. ring and every localization of an f.g. ring at a definable

multiplicative subset are interpretable in Z. �

The proof of the previous corollary even shows that each f.g. ring is computable, that is,

isomorphic to a ring (N, ⊕, ⊗) with underlying set N and computable binary operations

⊕, ⊗ on N. (Recall that “computable” properly implies “arithmetic,” i.e., definable in the

semiring (N, +, ×).) This and the following remarks are not used later in this paper.

Remarks (Uniform interpretations in and of Z). The proof of Corollary 2.14 can

be refined to show that the class of f.g. rings is uniformly interpretable in Z. See

[37, Section 2] for a proof that Z is uniformly interpretable in the class of infinite f.g.

fields. By (2) and (4) of Examples 2.9, if p is a prime ideal of A, then the fraction field

of A/p is interpretable in A. Using remark (2) following Lemma 1.5 this implies that

for each n, the class of infinite fields generated (as fields) by n elements is uniformly

interpretable in the class An of infinite rings generated by n elements. Hence for each n,

Z is uniformly interpretable in An. We do not know whether Z is uniformly interpretable

in the class
⋃

n An of infinite f.g. rings. (This question was also asked in [12].)

2.7 Bi-interpretability with Z

In this subsection we deduce a few useful consequences of bi-interpretability with

Z. Suppose first that A and Z are weakly bi-interpretable, and let (f , g′) be a weak
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bi-interpretation between A and Z. By Lemma 2.6 there is an injective interpretation

g : Z → A of A in Z with g � g′. By Lemma 2.1 we have g ◦ f � g′◦ f ∼ idA , and by

Lemma 2.7 we have f ◦ g � idZ. Hence (f , g) is a weak bi-interpretation between A and

Z, and if (f , g′) is even a bi-interpretation between A and Z, then so is (f , g). Thus, if

there is a weak bi-interpretation between A and Z at all, then there is such a weak bi-

interpretation (f , g) where g is a bijection Z → A; similarly with “bi-interpretation” in

place of “weak bi-interpretation.”

As a first application of these remarks, we generalize Lemma 2.7 from Z to all structures

bi-interpretable with Z.

Corollary 2.15. If A and Z are bi-interpretable, then every self-interpretation of A is

homotopic to idA . (Hence if A and Z are bi-interpretable, then any pair of interpretations

A � Z and Z � A is a bi-interpretation between A and Z.) �

Proof. Let (f , g) be a bi-interpretation between A and Z where g is a bijection Z → A,

and let h: A � A . Then f ◦ h ◦ g � idZ by Lemma 2.7, thus h ◦ g � g by Lemma 2.1, and

so h � idA by Corollary 2.3. �

For the following corollary (used in the proof of Theorem 3.1 below), suppose we are

given an isomorphism α : A → Ã of L-structures. Then α acts on definable objects in

the natural way. For example, if i: M → D (M ⊆ Am) is an interpretation of D in A ,

then i ◦ α−1: α(M) → D is an interpretation of D in Ã , and α induces an isomorphism

α : i∗(D) → (i◦α−1)∗(D). Note that the underlying set of (i◦α−1)∗(D ) is α(M)/ ker(i◦α−1) =
α(M)/α(ker i).

Corollary 2.16. Let i: A � D and j : D � A , and let Ã := (j ◦ i)∗(A) and α denote the

inverse of the isomorphism j ◦ i : Ã → A . Suppose D is bi-interpretable with Z. Then

α : i∗(D) → (i ◦ α−1)∗(D) is definable in A . �

Proof. One checks that i induces an isomorphism (i◦α−1)∗(D ) → (i◦j)∗(D ) which makes

the diagram

commutative. By Corollary 2.15, the self-interpretation i ◦ j of D is homotopic to idD ,

that is, i ◦ j is definable in D , and so α = (j ◦ i)−1 is definable in A . �
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Let now f : A � Z and g : Z � A , where f : M → Z (M ⊆ Am), and g is a bijection

Z → A. We are going to analyze this situation in some more detail. Let Z̃ = f ∗(Z) and

Ã = (g ◦ f )∗(A). We have isomorphisms g ◦ f : Ã → A and f : Z̃ → Z. From (2.1) in

Section 2.2 recall the definition of the kernel of a map. Note that as g is bijective, we have

Ã = f −1(Z)/ ker(g ◦ f ) = M/ ker f ,

so Ã and Z̃ have the same underlying set, and we have a commutative diagram

which shows the subtle fact that the identity map Z̃ → Ã is an interpretation of Ã in Z̃.

For the next lemma, we say that a structure with the same universe as A is interdefinable

with A if both structures have the same definable sets.

Lemma 2.17. The following are equivalent:

1. A is bi-interpretable with Z;

2. A is weakly bi-interpretable with Z;

3. There are binary operations ⊕ and ⊗ on A such that

(a) (Z, +, ×) ∼= (A, ⊕, ⊗);

(b) (A, ⊕, ⊗) is interdefinable with A = (A, . . . ). �
Proof. It is clear that if we have binary operations ⊕ and ⊗ on A satisfying

conditions (a) and (b) in (3), then (f , g), where f : A → Z is the unique isomorphism

(A, ⊕, ⊗) → (Z, +, ×) and g = f −1, is a bi-interpretation between A and Z. Conversely,

suppose A is weakly bi-interpretable with Z via a weak bi-interpretation (f , g) where g

is a bijection Z → A. Let α be an isomorphism Ã = (g◦ f )∗(A) → A , definable in A . Let ⊕
and ⊗ be the binary operations on A such that α is an isomorphism (Z̃, +, ×) → (A, ⊕, ⊗).

(Recall that Z̃ = Ã as sets.) The operations ⊕ and ⊗ are then definable in A ; conversely,

since α is also an isomorphism of L-structures Ã → A and the identity Z̃ → Ã is an

interpretation of Ã in Z̃, the interpretations of the function and relation symbols of L
in A are definable in (A, ⊕, ⊗).

�

As an illustration of this analysis, next we show the following:

Lemma 2.18. Suppose A is bi-interpretable with Z. Let �: A → A be definable, and let

a ∈ A. Then the orbit

�N(a) := {
�◦n(a) : n = 0, 1, 2, . . .

}
(�◦n = nth iterate of �)

of a under � is definable. �
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Proof. Via Gödel coding of sequences, it is easy to see that the lemma holds if A = Z.

In the general case, suppose ⊗, ⊕ are binary operations on A satisfying conditions (a)

and (b) of the previous lemma. Then the map � is also definable in (A, ⊕, ⊗), hence �N(a)

is definable in (A, ⊕, ⊗), and thus also in A .
�

Let us note two consequences of Lemma 2.18 for rings.

Corollary 2.19. Let A be a ring of characteristic zero which is bi-interpretable with Z.

Then the natural image of Z in A is definable as a subring of A. �

Proof. The image of Z is (x �→ x + 1)N(0) ∪ (x �→ x − 1)N(0). Apply Lemma 2.18. �

Corollary 2.20. Let A be a ring which is bi-interpretable with Z, and a ∈ A. Then

the set

aN := {an : n = 0, 1, 2, . . . }
of powers of a is definable.

Proof. The set aN is (x �→ ax)N(1). Apply Lemma 2.18. �

Here is a refinement of Lemma 2.18. For an interpretation f of Z in A , the restriction of f

to a map f −1(N) → N is an interpretation of N in A , and by abuse of notation we denote

the copy of N interpreted in A via this interpretation by f ∗(N), and we write n �→ n for

the inverse of the isomorphism f ∗(N) → N.

Lemma 2.21. Suppose A is bi-interpretable with Z, and let f : A � Z. Let �: A → A be

definable. Then the map

(a, n) �→ �◦n(a) : A × f ∗(N) → A

is definable. �

Proof. Let g : Z → A be an injective interpretation Z � A ; then (f , g) is a bi-

interpretation between A and Z. (Corollary 2.15.) Let ⊕ and ⊗ be the binary operations

on A making g an isomorphism (Z, +, ×) → (A, ⊕, ⊗). Then ⊕ and ⊗ satisfy (a) and (b) in

Lemma 2.17 (by the proof of said lemma). The map � is definable in (A, ⊕, ⊗), and thus

(a, b) �→ �◦g−1(b)(a) : A × g(N) → A

is definable in (A, ⊕, ⊗), and hence also in A . Therefore, since [g ◦ f =idA] is definable in

A , so is (the graph of) the map

(a, b) �→ �◦f (b)(a) : A × f −1(N) → A.

The lemma follows. �
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The last lemma immediately implies the following:

Corollary 2.22. Let A be a ring which is bi-interpretable with Z, and let f : A � Z. Then

the map

(a, n) �→ an : A × f ∗(N) → A

is definable. �

2.8 A test for bi-interpretability with Z

Suppose that (f , g) is a weak bi-interpretation between A and Z where g is a bijection

Z → A. As remarked in the previous subsection, we then have f ∗(Z) = (g ◦ f )∗(A) as

sets, so the inverse of any definable isomorphism (g◦f )∗(A ) →A (which exists since

g ◦ f ∼ idA ) is a bijection A → f ∗(Z) which is definable in A. The following proposition

is a partial converse of this observation:

Proposition 2.23. Suppose that A is f.g. and the language L = LA of A is finite. Let

f : A � Z and g : Z � A . Suppose also that there exists an injective map A → f ∗(Z)

which is definable in A . Then (f , g) is a weak bi-interpretation between A and Z. �

An important consequence of this proposition (and Lemma 2.17) is that under rea-

sonable assumptions on A and L, establishing bi-interpretability of A with Z simply

amounts to showing that A is interpretable in Z, and Z is interpretable in A in such a

way that there is a definable way to index the elements of A with elements of the copy

of Z in A :

Corollary 2.24. (Nies) If A is f.g. and L is finite, then the following are equivalent:

1. A is (weakly) bi-interpretable with Z;

2. A is interpretable in Z, and there is an interpretation f of Z in A and an

injective definable map A → f ∗(Z). �

A proof of this corollary of Proposition 2.23 is sketched in [25, Proposition 7.12].

However, we feel that a more detailed argument is warranted. (Also note that loc. cit.

does not assume A to be f.g.) Before we give a proof of Proposition 2.23, we show two

auxiliary facts:

Lemma 2.25. Let f be a self-interpretation of A which is homotopic to the identity.

Then every set X ⊆ f ∗(A)n which is definable in A is definable in f ∗(A ). �
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Proof. Suppose f is given by M → A where M ⊆ Am is definable. Let ξ(x1, . . . , xn)

be an L-formula, possibly involving parameters, which defines X in A ; that is, for all

a ∈ Mn ⊆ (Am)n we have

A |� ξ(a) ⇐⇒ a ∈ X.

By hypothesis, the isomorphism f : f ∗(A) → A is definable in A . Let ϕ(x, y) define its

graph; that is, for a ∈ M and b ∈ A we have

A |� ϕ(a, b) ⇐⇒ f (a) = b.

Set

ξ∗(y1, . . . , yn) := ∃x1 · · · ∃xn

(
ξ(x1, . . . , xn) &

n∧
i=1

ϕ(xi, yi)

)
.

Then for a ∈ Mn we have

f ∗(A) |� ξ∗(a) ⇐⇒ A |� ξ∗(f (a))

⇐⇒ A |� ∃x1 · · · ∃xn

(
ξ(x1, . . . , xn) &

n∧
i=1

ϕ
(
xi, f (ai)

))

⇐⇒ A |� ξ(a) ⇐⇒ a ∈ X,

hence ξ∗ defines X in f ∗(A ). �

Lemma 2.26. Let A be an f.g. structure in a finite language. Then any two interpreta-

tions of A in Z are homotopic. �

Proof. Let f , g : Z � A ; by Lemma 2.6 we may assume that f and g are injective with

domain Z. Let a1, . . . , an ∈ A be generators for A and let bi := f −1(ai), ci := g−1(ai), for

i = 1, . . . , n, be the corresponding elements of f ∗(A) and g∗(A), respectively. The unique

isomorphism f ∗(A ) → g∗(A ) given by bi �→ ci (i = 1, . . . , n) is relatively computable and

hence definable in Z. �

We now show Proposition 2.23. Thus, let f : A � Z and g : Z � A , and let φ : A → f ∗(Z)

be an injective map, definable in A . By Lemma 2.7 we have f ◦ g � idZ, so it is enough

to show that g ◦ f ∼ idA . Recall that g induces an isomorphism (f ◦ g)∗(Z) → f ∗(Z), and
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thus, pulling back φ under g we obtain a g∗(A )-definable injective map g∗(φ) : g∗(A) →
(f ◦ g)∗(Z) making the diagram

commute. We make its image g∗(φ)
(
g∗(A)

)
the universe of an L-structure, which we

denote by g∗(φ)
(
g∗(A)

)
, such that g∗(φ) becomes an isomorphism. Note that both the

underlying set g∗(φ)
(
g∗(A)

)
as well as the interpretations of the function and relation

symbols of L in this structure are definable in g∗(A ), hence in Z, and so, by Lemma 2.25,

also in (f ◦ g)∗(Z). Thus we obtain an interpretation h of A in (f ◦ g)∗(Z) with h∗(A) =
g∗(φ)

(
g∗(A)

)
. On the other hand, suppose g is given by N → A where N ⊆ Zn; then setting

N′ := (f ◦ g)−1(N), g′ := g ◦ (f ◦ g) � N′,

we have another interpretation g′ : (f ◦ g)∗(Z) � A . By Lemma 2.26, the interpretations

h and g′ are homotopic. Thus we have an isomorphism h∗(A ) → (g′)∗(A ) which is

definable in (f ◦ g)∗(Z), and hence in g∗(A ). Composing this isomorphism with the iso-

morphism g∗(φ): g∗(A ) → h∗(A ), which is also definable in g∗(A ), yields an isomorphism

g∗(A ) → (g′)∗(A ) which is definable in g∗(A ). It is routine to verify that the isomorphism

g : g∗(A) → A maps the domain N′ of g′ bijectively onto the domain f −1(N) of g ◦ f ,

and that this bijection induces a bijection (g′)∗(A) → (g◦f )∗(A) which is compatible

with g′ and g ◦ f , and hence an isomorphism (g′)∗(A ) → (g◦f )∗(A ). Thus our definable

isomorphism g∗(A ) → (g′)∗(A ) gives rise to an isomorphism A → (g◦f )∗(A ) which fits into

the commutative diagram

and which is definable in A , as required. �

2.9 Quasi-finite axiomatizability

In this subsection we assume that L is finite and A = (A, . . . ) is f.g. We say that an

L-formula ϕA (x1, . . . , xn) is a QFA formula for A with respect to the system of generators
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a1, . . . , an of A if the following holds: if A ′ is any f.g. L-structure and a′
1, . . . , a′

n ∈ A′, then

A ′ |� ϕA (a′
1, . . . , a′

n) iff there is an isomorphism A →A ′ with ai �→ ai
′ for i = 1, . . . , n.

Any two QFA formulas for A with respect to the same system of generators of A are

equivalent in A . Moreover:

Lemma 2.27. Let ϕA (x1, . . . , xn) be a QFA formula for A with respect to the system of

generators a1, . . . , an of A . Then for each system of generators b1, . . . , bm of A there is a

QFA formula for A with respect to b1, . . . , bm. �

Proof. For notational simplicity we assume that m = n = 1 (the general case is only

notationally more complicated). Let b be a generator for A. Let s(x), t(y) be L-terms such

that a = tA (b) and b = sA (a). Put ψ (y) := ϕ(t(y)) ∧ y = s(t(y)). Then ψ is a QFA formula for

A with respect to b.
�

A QFA formula for A is a formula ϕA (x1, . . . , xn) which is QFA for A with respect to some

system of generators a1, . . . , an of A . Note that if there is a QFA formula ϕA (x1, . . . , xn)

for A , then A is QFA, that is, there is an L-sentence σ such that for every L-structure A ′,
we have A ′ |� σ iff A ∼= A ′. (Take σ = ∃x1· · · ∃xnϕA .) We do not know whether conversely

each QFA structure has a QFA formula. If A is finite, then there clearly is a QFA formula

for A . In this subsection we are going to show the following (see [25, Theorem 7.14]):

Proposition 2.28. If A is bi-interpretable with Z, then there is a QFA formula for A . �

Before we give the proof of this proposition, we make some observations. For these,

we assume that the hypothesis of Proposition 2.28 holds, that is, that we have binary

operations ⊕ and ⊗ on A as in (a) and (b) of Lemma 2.17. We take L-formulas ϕ⊕(x1, x2,

y, z) and ϕ⊗(x1, x2, y, z), where z = (z1, . . . , zk) for some k ∈ N, and for each function

symbol f of L, of arity m, and for each relation symbol R of L, of arity n, we take

formulas ϕf (x1, . . . , xm, y) and ϕR(x1, . . . , xn) in the language of rings, and some c ∈ Ak,

such that

1. ϕ⊕(x1, x2, y, c) and ϕ⊗(x1, x2, y, c) define ⊕ and ⊗ in A , respectively;

2. ϕf (x1, . . . , xm, y) and ϕR(x1, . . . , xn) define f A and RA , respectively,

in (A, ⊕, ⊗).

We now let α0(z) be an L-formula for which A |� α0(c), and for which the following

properties hold for all L-structures A ′ and c′∈ (A′)k such that A ′ |� α0(c′):

1. ϕ⊕(x1, x2, y, c′) and ϕ⊗(x1, x2, y, c′) define binary operations ⊕′ and ⊗′,
respectively, on A′; and
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2. ϕf (x1, . . . , xm, y) and ϕR(x1, . . . , xn) define f A ′
and RA ′

, respectively, in

(A′, ⊕′, ⊗′), for all function symbols f and relation symbols R of L.

We also require that if A ′ |� α0(c′), then

(3) (A′, ⊕′, ⊗′) is a ring which is a model of a sufficiently large (to be specified)

finite fragment of Th(Z).

The ring (A′, ⊕′, ⊗′) may be nonstandard, that is, not isomorphic to (Z, +, ×). However,

choosing the finite fragment of arithmetic in (3) appropriately, we can ensure that we

have a unique embedding (Z, +, ×) → (A′, ⊕′, ⊗′). From now on we assume that α0 has

been chosen in this way. Additionally we can choose α0 so that finite objects, such as

L-terms and finite sequences of elements of A′, can be encoded in (A′, ⊕′, ⊗′). This can

be used to uniformly define term functions in A ′, and leads to a proof of the following

(see [25, Claim 7.15] for the details):

Lemma 2.29. There is an L-formula α(z), which logically implies α0(z), such that

A |� α(c), and whenever A ′ is an f.g. L-structure and c′ ∈ (A′)k, then A ′ |� α(c′) iff

(A′, ⊕′, ⊗′) is standard. �

Let now t = (t1, . . . , tn) be a tuple of constant terms in the language of rings. Given

A ′ |� α0(c′), we denote by t(c′) = (
t1(c′), . . . , tn(c′)

)
the tuple containing the interpreta-

tions of the ti in the ring (A′, ⊕′, ⊗′). We also let α be as in the previous lemma.

Lemma 2.30. Let A ′ is an f.g. L-structure and c′∈ (A′)k with A′ |� α(c′). Then the orbit

of t(c′) under Aut(A ′) is ∅-definable in A ′. �

Proof. We claim that for a′ = (a′
1, . . . , a′

n) ∈ (A′)n we have

σ(t(c′)) = a′ for some σ ∈ Aut(A ′) ⇐⇒ t(c′′) = a′ for some c′′ with A ′ |� α(c′′).

Here the forward direction is clear. For the backward direction suppose A ′ |� α(c′′), and

let ⊕′′, ⊗′′ denote the binary operations on A′ defined by ϕ⊕(x1, x2, y, c′′), ϕ⊗(x1, x2, y, c′′),
respectively. We then have a unique isomorphism (A′, ⊕′, ⊗′) → (A′, ⊕′′, ⊗′′). This

isomorphism maps t(c′) onto t(c′′), and is also an automorphism of A ′, by condition (2) in

the description of α0 above. This shows the claim, and hence the lemma.
�

Proof of Proposition 2.28 Let a1, . . . , an ∈ A generate A , and let t1, . . . , tn be

the constant terms in the ring language corresponding to the images of a1, . . . , an,

respectively, under the isomorphism (A, ⊕, ⊗) → (Z, +, ×). Then for each f.g. L-structure

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/1/112/4912395 by guest on 12 M
ay 2021



140 M. Aschenbrenner et al.

A ′ and a′
1, . . . , a′

n ∈ A′, there is an isomorphism A →A ′ with ai �→ai
′ for each i iff there

is some c′ such that A ′ |� α(c′) and an automorphism of A ′ with ti(c
′) �→ ai

′ for each i. By

the lemma above, the latter condition is definable. �

3 Integral Domains

The goal of this section is to show the following theorem:

Theorem 3.1. Every infinite f.g. integral domain is bi-interpretable with Z. �

Combining this theorem with Proposition 2.28 immediately yields the following:

Corollary 3.2. Every f.g. integral domain has a QFA formula. �

Although Theorem 3.1 can be deduced from the main result of [37] (and is unaffected by

the error therein), we prefer to start from scratch and give a self-contained proof of this

fact.

In the rest of this section we let A be an integral domain with fraction field K.

The broad outline of the proof of Theorem 3.1 is similar to that of the main result of

[37]; we sketch the idea informally in what follows. First we observe that results of J.

Robinson, R. Robinson, and Rumely yield that if dim(A) = 1, then A is bi-interpretable

with N, and we’re done. In the general case, a theorem of Poonen allows us to define

a subring D of A with dim(D) = 1. Using some commutative algebra results of Onoda

we get that D is f.g. We aim to show that A is bi-interpretable with D (and thus with

Z). We can think of A as the coordinate ring of an algebraic variety V over D. Now A is

interpretable in D, and we let Ã be the copy of A interpreted in D interpreted in A. Then

Ã is the coordinate ring of an algebraic variety Ṽ over the subring D̃ of Ã defined by the

same formula as D in A. The graph of the isomorphism A → Ã is

� := {
(p, p̃) ∈ A × Ã : “p, p̃ evaluate in the same way on V and on Ṽ ′′}.

We then finish the proof and show that � is definable in A by evaluating in points

coming from a uniformly definable family of integral extensions of D. We suppress some

technical details here; for example, our reliance on Noether Normalization in the last

step of the argument forces us to work with suitable localizations A[c−1], D[c−1] (where

0 �= c ∈ D) instead of the original rings A, D.
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3.1 Noether Normalization and some of its applications

Our main tool is the Noether Normalization Lemma in the following explicit form (see

[22, Theorem 14.4]):

Proposition 3.3. Suppose that A is an f.g. D-algebra, where D is a subring of A. Then

there are nonzero c ∈ D and x1, . . . , xn ∈ A, algebraically independent over D, such that

A[c−1] is an f.g. D[c−1, x1, . . . , xn]-module. �

If the field K is f.g., we define the arithmetic (or Kronecker) dimension of A as

adim(A) :=
⎧⎨⎩trdegQ(K) + 1 if char(A) = 0,

trdegFp
(K) if char(A) = p > 0.

As a consequence of Proposition 3.3, if the integral domain A is f.g., then adim(A) equals

the Krull dimension dim(A) of A.

Proposition 3.3 is particularly useful when combined with the following fact (a basic

version of Grothendieck’s “generic flatness lemma”); see [42, Theorem 2.1].

Proposition 3.4. Suppose that A is an f.g. D-algebra, where D is a subring of A. Then

there is some c ∈ D \{0} such that A[c−1] is a free D[c−1]-module. �

The integral domain A is said to be Japanese if the integral closure of A in a finite-degree

field extension of K is always a finitely generated A-module. Every finitely generated

integral domain is Japanese; see [22, Theorem 36.5].

Lemma 3.5. Let D be a Japanese noetherian subring of A, x1, . . . , xn ∈ A be alge-

braically independent over D, and suppose that A is finite over R = D[x1, . . . , xn]. Then

every subring of A which contains D and is algebraic over D is finite over D. �

Proof. Let B be a subring of A with D ⊆ B which is algebraic over D. We first show that

B is integral over D. Let b ∈ B. Then b is integral over R, that is, satisfies an equation

of the form f (b) = 0 for some monic polynomial f ∈ R[Y ] in the indeterminate Y. With

α = (α1, . . . , αn) ranging over Nn, write

f =
∑
α

xαfα(Y) where xα = xα1
1 · · · xαn

n and fα(Y) ∈ D[Y].

Since B is algebraic over D, x1, . . . , xn remain algebraically independent over B. Hence,

f α(b) = 0 for all α. In particular, f o(b) = 0 and the polynomial f o is monic. Therefore, b is

integral over D.
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Next we note that K = Frac(A) is a finite-degree field extension of L := Frac(R).

Again because x1, . . ., xn are algebraically independent over B, each D-linearly inde-

pendent sequence b1, . . . , bm of elements of B is also R-linearly independent and hence

L-linearly independent, and so m ≤ [K : L]. Take D-linearly independent b1, . . . , bm ∈ B

with m maximal, and set M := D[b1, . . . , bm]. Then M is an f.g. D-submodule of B,

and the quotient module B/M is torsion. Hence Frac(B) = Frac(M), and the degree of

Frac(M) over Frac(D) is finite. Therefore the integral closure of D in Frac(B) is an f.g.

D-module; since this integral closure contains B and D is noetherian, B is an f.g.

D-module as well. �

With the following lemma we establish a basic result in commutative algebra. It bears

noting here that our hypothesis that the subring in question has arithmetic dimension 1

is necessary. It is not hard to produce non-finitely generated two-dimensional subrings

of finitely generated integral domains.

Lemma 3.6. Suppose A is finitely generated. Then every subring of A of arithmetic

dimension 1 is finitely generated. �

Proof. Let B be a subring of A with adim(B) = 1. If char(A) = 0, then let D := Z ⊆ B.

If char(A) = p > 0, pick some t ∈ B transcendental over Fp and set D := Fp[t] ⊆ B. By

Proposition 3.3 we can find some c ∈ D \{0} and x1, . . ., xn ∈ A which are algebraically

independent over D and for which A[c−1] is a finite integral extension of D[c−1, x1, . . .,

xn]. Since adim(B) = 1, B[c−1] is algebraic over D[c−1]. Hence by Lemma 3.5 applied to

A[c−1], D[c−1] in place of A, D, respectively, B[c−1] is a finitely generated D[c−1]-module.

Choose generators y1, . . ., ym of B[c−1] as D[c−1]-module. Scaling by a sufficiently high

power of c, we may assume that each yi belongs to B and is integral over D. Then setting

R := D[y1, . . ., ym] we have R ⊆ B ⊆ B[c−1] = R[c−1]. By Corollary 1.9, B is an f.g. R-algebra,

hence also an f.g. ring. �

3.2 Proof of Theorem 3.1

In this subsection we assume that A is f.g. We begin by showing that as an easy

consequence of results of J. Robinson, R. Robinson, and Rumely, each f.g. integral

domain of dimension 1 is bi-interpretable with Z. We deal with characteristic zero and

positive characteristic in separate lemmata:

Lemma 3.7. Suppose that char(A) = 0 and dim(A) = 1. Then A is bi-interpretable

with N. �
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Proof. The field extension K|Q is finite; set d := [K : Q]. J. Robinson showed [34] that

the ring OK of algebraic integers in K is definable in K and that the subset Z is definable

in OK ; hence Z is definable in A. Take an integer c > 0 such that A ⊆ OK [ 1
c ]. The map

n �→ cn : N → N is definable in A, and so is the map ν : A → N which associates to a ∈ A

the smallest n := ν(a) ∈ N such that cna ∈ OK . Fixing a basis ω1, . . . , ωd ∈ OK of the

free Z-module OK , we obtain a definable injective map A ↪→ Zd × N by associating to

a ∈ A the tuple
(
k1(a), . . . , kd(a), ν(a)

)
, where

(
k1(a), . . . , kd(a)

)
is the unique ele-

ment of Zd such that cν(a)a = ∑d
i=1 ki(a)ωi. Hence, A is bi-interpretable with Z by

Corollary 2.24. �

Lemma 3.8. Suppose that char(A) > 0 and dim(A) = 1. Then A is bi-interpretable

with N. �

Proof. Let p := char(A), and by Noether Normalization take some t ∈ A, transcendental

over Fp, such that A is a finite extension of Fp[t]. Rumely [36, Theorem 2] showed that k[t]

is definable in K, where k is the constant field of K (i.e., the relative algebraic closure of

Fp in K). R. Robinson [35, §§4a–b] specified a formula τ (x, y) with the property that for

each finite field F, τ (x, t) defines the set tN in F[t]. It follows that the binary operations

on tN making n �→ tn : N → tN an isomorphism of semirings are definable in F[t]. Thus,

the inverse of this isomorphism is an interpretation F[t] � N. Let N = Np be the set of

natural numbers of the form n = ∏
i≥1 pni

i with ni ∈{0, 1, . . ., p − 1}, all but finitely many

ni = 0, and pi is the ith prime number. Then tN := {tm : m ∈ N} is definable in A. We

have a bijection tN → Fp[t] which sends tn, where n = ∏
i≥1 pni

i , to
∑

i≥0 nit
i−1. Rumely

[36, p. 211] established the definability of this map in K (and hence in A). In particular,

Fp[t] is definable in A, and we have a definable injection Fp[t] ↪→ tN. Since A is an f.g.

free Fp[t]-module, we also have an Fp[t]-linear (hence definable) bijection A → Fp[t]d, for

some d ≥ 1. The lemma now follows from Corollary 2.24. �

With our lemmata in place, we complete the proof of Theorem 3.1. Thus, suppose A is

infinite, so dim(A) ≥ 1.

For each natural number n, Poonen [32] produced a formula θn(x1, . . ., xn) so that

for any finitely generated field F and any n-tuple a = (a1, . . ., an) ∈ Fn one has F |� θn(a)

if and only if the elements a1, . . ., an are algebraically independent. If char(A) = 0, let

D := A ∩ {a ∈ K : a is algebraic over Q} = {
a ∈ A : K |� ¬θ1(a)

}
.

If char(A) = p > 0, then pick some t ∈ A which is transcendental over Fp and set

D := A ∩ {
a ∈ K : a is algebraic over Fp[t]

} = {
a ∈ A : K |� ¬θ2(a, t)

}
.
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In both cases, D is an algebraically closed subring of A with adim(D) = 1, definable in

A. By Lemma 3.6, D is finitely generated, hence noetherian, and therefore a Dedekind

domain.

By Proposition 3.3 we take some nonzero c ∈ D and x1, . . ., xm ∈ A so that

x1, . . ., xm are algebraically independent over D and Ac := A[c−1] is a finite integral

extension of Dc[x1, . . ., xm], where Dc := D[c−1]. By Proposition 3.4, after further

localizing at another nonzero element of D, we can also assume that Ac is a free (and

hence flat) Dc-module. One verifies easily that if char(A) = 0, then

Dc = Ac ∩ {a ∈ K : a is algebraic over Q} = {
a ∈ Ac : K |� ¬θ1(a)

}
,

hence Dc is definable in Ac; similarly one also sees that if char(A) > 0, then Dc is definable

in Ac.

Let y1, . . ., yn ∈ A be generators of Ac as Dc[x1, . . ., xm]-module. Let X =
(X1, . . . , Xm), Y = (Y1, . . . , Yn) be tuples of indeterminates, and let p be the kernel of

the Dc-algebra morphism Dc[X, Y ] → Ac given by Xi �→ xi and Yj �→ yj for i = 1, . . . , m

and j = 1, . . . , n. Note that p ∩ Dc[X] = (0). Let P1, . . ., P� be a sequence of generators of

p and let V = V(p) ⊆ Am+n
Dc

be the affine variety defined by p, so Ac is the ring of regular

functions on V. For any point a ∈ Am(Dc) there is some integral domain D′ extending

Dc, as a Dc-module generated by at most n elements, and some point b ∈ An(D′) so that

(a, b) ∈ V (D′).
By Lemma 2.10 we have an interpretation D � Dc. (We could have also used

Lemma 3.7 or 3.8, in combination with Examples 2.9, (4) and Corollary 2.20.) Precom-

posing this interpretation with the interpretation A � D given by the inclusion D ⊆ A

yields an interpretation of Dc in A. Lemma 2.10 also shows that Ac is interpretable in A.

Every ideal of a Dedekind domain (such as Dc) is generated by two elements. (See, e.g.,

[3, Chapter 9, Exercise 7].) Hence by Lemma 2.11 the class D of integral extensions of

Dc generated by n elements as Dc-modules is uniformly interpretable in Dc (and hence

in A), and by Corollary 2.12, the class of rings Ac ⊗Dc
D′ where D′ ∈ D is uniformly

interpretable in the two-sorted structure (Ac, Dc), and hence in A. As a consequence the

following set is definable in A:

E := {
(a, D′, b, e, p) : a ∈ Am(Dc), D′ ∈ D, b ∈ An(D′),

(a, b) ∈ V(D′), e ∈ D′, p ∈ A, and p(a, b) = e
}
.

Indeed, the condition that (a, b) ∈ V (D′) may be expressed by saying that P1(a, b) = · · · =
P�(a, b) = 0. That p(a, b) = e is expressed by saying

(∃u1, . . . , um, v1, . . . , vn ∈ Ac ⊗Dc
D′)

(
p − e = ∑

i vi(xi − ai) + ∑
j uj(yj − bj)

)
.
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(To see this use that Ac ⊗Dc
D′ ∼= D′[X, Y]/pD′[X, Y] as D′-algebras, and for all (a, b) ∈

Am+n(D′), the kernel of the morphism p �→ p (a, b): D′[X, Y ] → D′ is generated by Xi − ai

and Yj − bj.) We also note that given p, q ∈ A, we have

p = q ⇐⇒

⎧⎪⎨⎪⎩
(∀a ∈ Am(Dc)

)
(∀D′ ∈ D)

(∀b ∈ An(D′)
)
(∀e ∈ D′)

(a, D′, b, e, p) ∈ E ⇔ (a, D′, b, e, q) ∈ E.
(3.1)

Let now (f , g) be a bi-interpretation between Dc and N, let i be an interpretation of Dc

in A, and let h be an interpretation of A in N (Corollary 2.14). Put j := h ◦ f : Dc � A.

Let Ã := (j ◦ i)∗(A) be the copy of A interpreted via j in the copy of Dc interpreted via i

in A. By Lemma 3.7 or 3.8, Dc is bi-interpretable with N, so by Corollary 2.15, the self-

interpretation i ◦ j of Dc is homotopic to the identity. Thus if we can show that the

isomorphism j ◦ i : Ã → A is definable in A, then the pair (i, j) is a bi-interpretation

between A and Dc. Let α denote the inverse of j ◦ i. Then i ◦ α is an interpretation of

Dc in Ã, and by Corollary 2.16, α induces an isomorphism i∗(Dc) → (i◦α)∗(Dc) which is

definable in A. We also denote this isomorphism by α, and also denote by α the induced

map on the various objects defined in i∗(Dc). With this convention, put Ẽ := α(E). Then

Ẽ is definable in Ã, and hence also in A. Therefore

� := {
(p, p̃) ∈ A × Ã :

(∀a ∈ Am(Dc)
)
(∀D′ ∈ D)

(∀b ∈ An(D′)
)
(∀e ∈ D′)

(a, D′, b, e, p) ∈ E ↔ (
α(a), α(D′), α(b), α(e), p̃

) ∈ Ẽ
}

is definable in A, and by (3.1), � is the graph of α : A → Ã. This implies that A is bi-
interpretable with Dc, and hence with N. �

4 Fiber Products

In this section we study finitely generated rings which can be expressed as fiber

products of other rings. We first review the definition, and then successively focus

on fiber products over finite rings and fiber products over infinite rings. The section

culminates with a characterization of those f.g. reduced rings which are bi-interpretable

with Z.

4.1 Definition and basic properties

Let α: A → C and β: B → C be two ring morphisms. The fiber product of A and B over C

is the subring

A ×C B = {
(a, b) ∈ A × B : α(a) = β(b)

}
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of the direct product A × B. The natural projections A × B → A and A × B → B restrict

to ring morphisms πA: A ×C B → A and πB: A ×C B → B, respectively. Note that if α

is surjective, then πB is surjective; similarly, if β is surjective, then so is πA. In the

following we always assume that α, β are surjective. We do allow C to be the zero ring;

in this case, A ×C B = A × B.

Example 4.1. Let I, J be ideals of a ring R. Then the natural morphism R/(I ∩ J) →
(R/I) × (R/J) maps R/(I ∩ J) isomorphically onto the fiber product A ×C B of A = R/I and

B = R/J over C = R/(I + J), where α: A = R/I → C = R/(I + J) and β: B = R/J → C = R/(I + J)

are the natural morphisms. �

Lemma 4.2. Suppose A and B are noetherian. Then A ×C B is noetherian. �

Proof. Let I = ker πA, J = ker πB, and R := A ×C B. Since I ∩ J = 0, we have a

natural embedding of R into the ring (R/I) × (R/J). The ring morphism πA, πB induce

isomorphisms R/I → A, R/J → B. Thus R/I and R/J are noetherian as rings and hence

as R-modules. So the product (R/I) × (R/J), and hence its submodule R, is a noetherian

R-module as well. �

Corollary 4.3. Suppose A and B are noetherian. Then πA is an interpretation of A in

A ×C B, and πB is an interpretation of B in A ×C B, and hence πA × πB is an interpretation

of A × B in A ×C B. �

Proof. By the previous lemma, the ideals I = ker πA and J = ker πB of A ×C B are f.g.,

and hence (existentially) definable in A ×C B. �

Lemma 4.4. Suppose A and B are interpretable in Z and C is f.g. Then A ×C B is

interpretable in Z. �

Proof. Let f : Z � A and g : Z � B; then f × g is an interpretation Z � A × B. Both

α ◦ f and β ◦ g are interpretations Z � C; so by Lemma 2.26 (and the assumption that

C is f.g.), the set

[α ◦ f = β ◦ g] = (f × g)−1(A ×C B)

is definable in Z. Hence the restriction of f × g to a map (f ×g)−1(A ×C B) → A ×C B is an

interpretation of A ×C B in Z. �
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4.2 Fiber products over finite rings

Every fiber product of noetherian rings over a finite ring is bi-interpretable with the

direct product of those rings:

Lemma 4.5. Let α: A → C and β: B → C be surjective morphisms of noetherian rings,

where C is finite. Then the pair (f , g), where f is the identity A × B ⊇ A ×C B → A ×C B

and g = πA × πB: (A×C B)2 → A × B, is a bi-interpretation between A × B and

A ×C B. �

Proof. We first observe that the subset M := A ×C B of A × B is definable in the ring A

× B (and hence that f is indeed an interpretation A × B � A ×C B). To see this first note

that the map �A: A × B → A × 0 given by (a, b) �→ (a, 0) = (a, b) · (1, 0) is definable in

A × B (with the parameter (1, 0)); similarly, the map (a, b) �→ �B(a, b) = (0, b): A × B →
0 × B is definable in A × B. Let n = |C| and let a1, . . . , an ∈ A be representatives for the

residue classes of A/ ker α and b1, . . . , bn ∈ B be representatives for the residue classes

of B/ ker β such that α(ai) = βi(bi) for i = 1, . . . , n. Then M is seen to be definable as the

set of all (a, b) ∈ A × B such that for each i ∈ {1, . . . , n},
(a, b) ∈ (ai, 0) + �−1

A (ker α) ⇐⇒ (a, b) ∈ (0, bi) + �−1
B (ker β).

The self-interpretation g ◦ f of A × B is the map(
(a, b), (a′, b′)

) �→ �A(a, b) + �B(a′, b′) = (a, b′) : M × M → A × B

and hence definable in A × B. Similarly, the self-interpretation f ◦ g of A ×C B is the map(
(a, b), (a′, b′)

) �→ (a, b′) : g−1(M) → A ×C B,

and since

(f ◦ g)
(
(a, b), (a′, b′)

) = (a′′, b′′) ⇐⇒ (a′′, b′′) ∈ (
(a, b) + ker πA

) ∩ (
(a′, b′) + ker πB

)
,

we also see that f ◦ g � idA×CB. �

The previous lemma leads us to the study of the bi-interpretability class of the direct

product of two f.g. rings. We first observe that a product of a ring B with a finite ring is

(parametrically) bi-interpretable with B itself:

Lemma 4.6. Let A be a direct product A = B × R of a ring B with a finite ring R. Then

A and B are bi-interpretable. �
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Proof. The surjective ring morphism (b, r) �→ b: A → B is an interpretation f : A � B

with ker f = A · (0, 1). (See Example 2.9, (2).) Pick a bijection g: R′ → R where R′ ⊆ Bm for

some m ≥ 1. Then the bijection

(b, r′) �→ (
b, g(r′)

)
: B × R′ → B × R = A,

in the following also denoted by g, is an interpretation B � A (since the addition and

multiplication tables of the finite ring R are definable). Now f ◦ g: B × R′ → B is given

by (b, r′) �→ b and hence definable in B, and

g ◦ f : A × f −1(R′) = f −1(B × R′) → A

is given by (
(b, r), (b1, r1), . . . , (bm, rm)

) �→ (
b, g(b1, . . . , bm)

)
and thus definable in A, since (b, r) · (1, 0) = (b, 0) and (b, r) · (0, 1) = (0, r) for all b ∈ B,

r ∈ R. This shows that (f , g) is a bi-interpretation between A and B. �

On the other hand, the direct product of two infinite f.g. rings is never bi-interpretable

with Z:

Lemma 4.7. Let A and B be infinite finitely generated rings. Then A × B is not bi-

interpretable with Z. �

Proof. Let a ∈ A and b ∈ B be elements of infinite multiplicative order. (See

Corollary 1.4.) Suppose A × B is bi-interpretable with Z. Then by Corollary 2.20, the

set (a, b)N of powers of (a, b) is definable in A × B. By the Feferman–Vaught Theorem

[11, Corollary 9.6.4] there are N ∈ N and formulas ϕi(x), ψ i(y) (i = 1, . . . , N), possibly with

parameters, such that for all (a′, b′) ∈ A × B, we have

(a′, b′) ∈ (a, b)N ⇐⇒ A |� ϕi(a
′) and B |� ψi(b

′), for some i ∈ {1, . . . , N}.

By the pigeon hole principle, there are m �= n and some i ∈ {1, . . . , N} such that A |� ϕi(a
m)

∧ ϕi(a
n) and B |� ψ i(b

m) ∧ ψ i(b
n). But then A |� ϕi(a

m) and B |� ψ i(b
n), so (am, bn) ∈ (a, b)N,

a contradiction to m �= n. �

Combining the results in this subsection immediately yields the following conse-

quences:

Corollary 4.8. The fiber product of a noetherian ring A with a finite ring is bi-

interpretable with A.
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Corollary 4.9. The fiber product of two infinite f.g. rings over a finite ring is not bi-

interpretable with Z. �

4.3 Fiber products over infinite rings

In this subsection we show the following:

Theorem 4.10. Let α: A → C and β: B → C be surjective ring morphisms. If A and

B are both bi-interpretable with Z, and C is f.g. and infinite, then A ×C B is also

bi-interpretable with Z. �

For the proof, which is based on the criterion for bi-interpretability with Z from

Corollary 2.24, we need the following:

Lemma 4.11. Let A be bi-interpretable with Z, and a ∈ A be of infinite multiplicative

order. Then there exists a definable bijection A → aN, and hence definable binary

operations ⊕ and ⊗ on aN making aN into a ring isomorphic to Z. �

Proof. Take an interpretation f : A � Z and a definable bijective map ι : A → f ∗(Z).

(See the beginning of Section 2.8.) Choose a definable bijection f ∗(Z) → f ∗(N). By

Corollary 2.22, the map n �→ an : f ∗(N) → aN is definable. Thus the composition

A
ι−→ f ∗(Z) → f ∗(N)

n�→an−−−−−→ aN

is a definable bijection as required. The rest follows from Lemma 2.17. �

We also use the following number-theoretic fact:

Theorem 4.12. (Scott [39, Theorem 3]) Let p, q be distinct prime numbers and c ∈ Z.

Then there is at most one pair (m, n) with p2m − q2n = c. �

We now show Theorem 4.10. Thus, assume that A and B are bi-interpretable with Z,

and C is f.g. and infinite. By Lemma 4.4, R := A ×C B is interpretable in Z, so by

Corollary 2.24, in order to see that R is bi-interpretable with Z, it is enough to show that

we can interpret Z in the ring R such that R can be mapped definably and injectively into

the interpreted copy Z of Z in R.

To see this, let a ∈ A and b ∈ B so that α(a) = β(b) has infinite multiplicative order

in C. Then Z := (a, b)N is definable in R as

Z = {
r ∈ R : πA(r) ∈ aN and πB(r) ∈ bN

}
.
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(Clearly, Z is contained in the set on the right-hand side of this equation; conversely,

if r is any element of this set, then r = (am, bn) for some m and n, with α(am) =
β(bn), and then α(a)m = α(a)n, as α(a) = β(b), forcing m = n since α(a) has infinite

multiplicative order.)

Recall from Corollary 4.3 that πA is an interpretation R � A. We denote by

A := π∗
A(A) = R/ ker πA the copy of A in R interpreted via πA, and by x �→ x : A → A

the natural isomorphism; similarly with B in place of A. The natural surjection R → A

restricts to a bijection Z = (a, b)N → aN; we denote by eA its inverse, and we define

eB similarly. Note that eA and eB are definable in R. By Lemma 4.11 there are binary

operations on aN, definable in A, which make aN into a ring isomorphic to (Z, +, ×).

Equip Z with binary operations ⊕, ⊗ making eA a ring isomorphism; then ⊕, ⊗ are

definable in R, and (Z, ⊕, ⊗) ∼= (Z, +, ×).

It remains to specify a definable injective map R → Z. Let fA : A → aN and

fB : B → b
N

be definable bijections, according to Lemma 4.11, and let FA and FB be

the composition of f A, f B with the natural surjection R → A and R → B, respectively;

then FA, FB are definable in R. From Corollary 2.22 and the fact that exponentiation is

definable in N, we see that the maps tA : aN → aN and tB : b
N → b

N
given by tA(am) = a22m

and tB(b
n
) = b

32n

are definable. It is now easy to verify, using Theorem 4.12, that the

definable map

r �→ (eA ◦ tA ◦ FA)(r) · (eB ◦ tB ◦ FB)(r) : R → Z

is injective. �

Remark. Below we apply Theorem 4.10 in a situation where we know a priori that the

ring A ×C B is f.g. In general, the fiber product of two f.g. rings is always again f.g.: given

surjective ring morphisms α: A → C, β: B → C, where A, B are f.g., choose a finite family

{(ai, bi)} of elements of A ×C B where the ai generate A and the bi generate B, and choose

a finite family {(0, cj)} where the cj generate ker β (by noetherianity of B); then these two

families together generate the ring A ×C B. (We thank one of the referees for pointing

this out to us.) �

4.4 The graph of minimal non-maximal prime ideals

Let A be a ring. We denote by Min(A) the set of minimal prime ideals of A; we always

assume that Min(A) is finite. (This is the case if A is noetherian.) We define a (simple,
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undirected) graph GA = (V, E) whose vertex set is the set V = Min(A) \ Max(A) of all

minimal non-maximal prime ideals of A, and whose edge relation is defined by

(p, q) ∈ E :⇐⇒ there is a non-maximal prime ideal of A containing p + q.

Note that if A is f.g., then V is the set of minimal prime ideals of A of infinite index

in A (so V �= ∅ iff A is infinite), and (p, q) ∈ E iff p + q is of infinite index in A. (See

Corollary 1.3.)

We first relate connectedness of the graph GA with connectedness of the topological

space Spec
◦
(A) = Spec(A) \ Max(A) considered in the introduction. Given an ideal I of A

we let V (I) be the closed subset of Spec(A) consisting of all p ∈ Spec(A) containing I. For

ideals I, J of A we have V (I + J) = V (I) ∩ V (J) and V (I ∩ J) = V (I) ∪ V (J). Hence:

Lemma 4.13. Let I1, . . . , Im, J1, . . . , Jn be ideals of A, where m, n ≥ 1, and I = I1 ∩· · · ∩
Im, J = J1 ∩· · · ∩ Jn. Then

V(I + J) = V(I) ∩ V(J) =
⋃
i,j

V(Ii + Jj).

�

Corollary 4.14. GA is connected iff Spec
◦
(A) is connected. �

Proof. Suppose first that Spec
◦
(A) is disconnected, that is, there are nonempty closed

subsets X, X′ partitioning Spec
◦
(A). Then both X and X′ contain a non-maximal minimal

prime ideal. To see this note that Spec◦(A) �= ∅ implies that A has at least one non-

maximal minimal prime ideal. Moreover, suppose one of the sets, say X, contains all

non-maximal minimal prime ideals of A, and take any q ∈ X ′; then q contains a minimal

(and necessarily non-maximal) prime ideal p, and since p ∈ X we get q ∈ X ∩ X ′, a

contradiction. Let now C be the set of non-maximal minimal prime ideals contained

in X, and let C′ be the set of non-maximal minimal prime ideals in X′; then C, C′ are

nonempty and partition the vertex set V of the graph GA. For p ∈ C and p′ ∈ C′, we have

Spec◦(A) ∩ V(p + p′) = Spec◦(A) ∩ V(p) ∩ V(p′) ⊆ X ∩ X ′ = ∅

and thus (p, p′) /∈ E. Hence GA is disconnected.

Conversely, suppose GA is disconnected. Let C, C′ be nonempty sets partitioning

V such that (p, p′) /∈ E for all p ∈ C, p′ ∈ C′. Put I := ⋂
C, I ′ := ⋂

C′. Then
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X := V (I) ∩ Spec
◦
(A), X′ := V (I′) ∩Spec

◦
(A) are nonempty closed subsets of Spec

◦
(A)

with X ∪ X′ =Spec
◦
(A), and by the previous lemma we have X ∩ X′ = ∅. Thus Spec

◦
(A)

is disconnected. �

Remark. In the case where A is a local ring, the graph GA has been considered in

different contexts. (See, e.g., [10, Definition 3.4] or [41, Remark 2.3].) �

The following lemma allows us to analyze the graph GA by splitting off a single vertex:

Lemma 4.15. Let p0 ∈ Min(A),

I0 :=
⋂ {

p ∈ Min(A) : p �= p0

}
,

and A0 := A/I0, with natural surjection a �→ a = a + I0 : A → A0. Then

p �→ p : Min(A) \ {p0} → Min(A0)

is a bijection. Moreover, for p, q ∈ Min(A) \ {p0} the natural surjection A → A0 induces an

isomorphism A/(p + q) → A0/(p + q).

Proof. The map p �→ p is an inclusion-preserving correspondence between the set

V (I0) of prime ideals of A containing I0 and the set of all prime ideals of A0. Clearly

Min(A) \ {p0} ⊆ V(I0), and if p ⊇ I0 is a minimal prime ideal of A, then p is a minimal

prime ideal of A0. To show surjectivity, let q be a minimal prime ideal of A0, where

q ∈ V(I0). Then q ⊇ p ⊇ I0 for some p ∈ Min(A) with p �= p0, and so q = p by minimality of

q. The rest of the lemma is easy to see. �

Given a graph G = (V, E) and a vertex v ∈ V, we denote by G \ v the graph obtained from

G by removing v, that is, the graph with vertex set W = V \{v} and edge set E ∩ (W × W).

If p0 is a minimal non-maximal prime of A and I0 and A0 are as in Lemma 4.15, then

p �→ p is an isomorphism GA \ p0 → GA0
.

We now return to bi-interpretability issues:

Lemma 4.16. Suppose A is infinite and f.g. Let C ⊆ V, C �= ∅, such that the induced

subgraph GA�C of GA with vertex set C is connected, and let I = ⋂
C. Then A/I is

bi-interpretable with Z. �

Proof. We proceed by induction on the size of C. If |C| = 1, then I is a prime ideal of

infinite index, and the claim holds by Theorem 3.1. So suppose |C| > 1. It is well-known

that each nontrivial finite connected graph G contains a non-cut vertex, that is, a vertex
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v such that G \ v is still connected. Thus, let p0 be a non-cut vertex of GA�C, and let

C0 := C \ {p0}, I0 := ⋂
C0. Choosing p ∈ C0 such that (p, p0) ∈ E, we have I0 + p0 ⊆ p + p0

and A/(p + p0) is infinite; hence A/(I0 + p0) is infinite. By Example 4.1, the rings A/I =
A/(I0 ∩ p0) and (A/I0)×A/(I0+p0) (A/p0) are naturally isomorphic, where A/I0 and A/p0 are

both bi-interpretable with Z, by inductive assumption and Theorem 3.1, respectively.

Hence A/I is bi-interpretable with Z by Theorem 4.10. �

For the next lemma note that the graphs GA and GAred
are naturally isomorphic.

Lemma 4.17. Let p0 ∈ Min(A) be of finite index in A, and let I0 and A0 be as in

Lemma 4.15. Then the reduced rings Ared = A/N(A) and A0 are bi-interpretable, and

the graphs GA and GA0
are naturally isomorphic. �

Proof. We may assume that I0 �⊆ p0 (since otherwise I0 = N(A) and so Ared = A0). Then

A = I0 + p0, since p0 is a maximal ideal of A (every finite integral domain is a field).

So the natural morphism A → A0 × R, where R = A/p0, is surjective (by the Chinese

Remainder Theorem) with kernel N(A) = ⋂
Min(A) = I0 ∩ p0. The first claim now follows

from Lemma 4.6. For the second claim note that the prime ideals of A0 × R are the ideals

of this ring having the form p × R where p ∈ Spec(A0) or A0 × q where q ∈ Spec(R), and

the latter all have finite index. �

4.5 Characterizing the reduced rings which are bi-interpretable with Z

Combining the results obtained so far in this section, we obtain the following

characterization of those finitely generated reduced rings which are (parametrically)

bi-interpretable with Z.

Theorem 4.18. Let A be an infinite finitely generated reduced ring. Then A is bi-

interpretable with Z if and only if the graph GA is connected. �

Proof. After applying lemmata 4.15 and 4.17 sufficiently often, we can reduce to the

situation that no minimal prime of A is maximal, that is, the vertex set of the graph

GA equals Min(A). In this case, if GA is connected, then by Lemma 4.16, the ring A is

bi-interpretable with Z. Conversely, suppose that GA is not connected. Let C ⊆ V be a

connected component of the graph GA = (V, E). Then for each p ∈ C and q ∈ V \ C we

have (p, q) /∈ E, that is, p+ q has finite index in A. Thus by Corollary 1.3 and Lemma 4.13,

setting I := ⋂
C, J := ⋂

(V \ C), the ideal I + J has finite index in A. Since I ∩ J =
N(A) = 0, by Example 4.1, the rings A and (A/I) ×A/(I+J)(A/J) are naturally isomorphic,
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and by Lemma 4.16, both A/I and A/J are infinite. Hence by Corollary 4.9, A is not

bi-interpretable with Z. �

5 Finite Nilpotent Extensions

Throughout this section we let B be a ring with nilradical N. Our main goal for this

section is the proof of the following theorem:

Theorem 5.1. Suppose B is f.g. and annZ(N) �= 0. Then the rings Bred = B/N and B are

bi-interpretable. �

In particular, if B is f.g. and has positive characteristic, then Bred and B are bi-

interpretable. Our bi-interpretation between Bred and B passes through a truncation

of Cartier’s ring of big Witt vectors over Bred; therefore we first briefly review this

construction. (See [4, IX, §1] or [8, §17] for missing proofs of the statements in the next

subsection.)

5.1 Witt vectors

In the rest of this section we let d, i, j ≥ 1 be integers. Let X1, X2, . . . be countably many

pairwise distinct indeterminates, and for each j set X |j := (Xi)i|j. The j-th Witt polynomial

wj ∈ Z[X|j] is defined by

wj :=
∑
i|j

iXj/i
i .

Let now Y1, Y2, . . . be another sequence of pairwise distinct indeterminates. Then for

any polynomial P ∈ Z[X, Y] in distinct indeterminates X, Y there is a sequence (Pi) of

polynomials Pi ∈ Z[X|i, Y|i] such that

P
(
wi(X|i), wi(Y|i)

) = wi

(
P1(X1, Y1), . . . , Pi(X|i, Y|i)

)
for all i.

In particular, there are sequences (Si) and (Mi) of polynomials Si ∈ Z[X|i, Y|i] and

Mi ∈ Z[X|i, Y|i] such that

wi(X|i) + wi(Y|i) = wi

(
S1(X1, Y1), . . . , Si(X|i, Y|i)

)
,

wi(X|i) · wi(Y|i) = wi

(
M1(X1, Y1), . . . , Mi(X|i, Y|i)

)
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for all i. For example, S1 = X1 + Y1, M1 = X1 · Y1, and if p is a prime, then

Sp = Xp + Yp −
p−1∑
i=1

1

p

(
p

i

)
Xi

1Yp−i
1 , Mp = Xp

1 Yp + XpYp
1 + pXpYp.

Let A be a ring. We let A|d be the set of sequences a = (ai) of elements of A indexed by

all i|d, and for a = (ai) ∈ A|d and j|d let a|j := (ai)i|j ∈ A|j. We define binary operations +

and · on A|d by

a + b := (
S1(a1, b1), . . . , Sj(a|j, b|j), . . .

)
,

a · b := (
M1(a1, b1), . . . , Mj(a|j, b|j), . . .

)
for a = (ai), b = (bi) ∈ A|d. Equipped with these operations, A|d becomes a ring (with

0 and 1 given by (0, 0, 0, . . . ) and (1, 0, 0, . . . ), respectively), which we call the d-th ring

of Witt vectors over A, denoted by Wd(A). Every ring morphism f : A → B induces a

componentwise map A|d → B|d, and this map is a ring morphism Wd(f ): Wd(A) → Wd(B).

Thus Wd is a functor from the category of rings to itself. The polynomials wj define

(functorial) ring morphisms

a �→ wj(a|j) : Wd(A) → A,

and hence give rise to a ring morphism

a �→ w∗(a) := (
wj(a|j)

)
: Wd(A) → A|d,

where A|d carries the product ring structure. The entries wj(a|j) of w∗(a) are known as

the ghost components of the Witt vector a ∈ Wd(A). If no i|d is a zero-divisor in A,

then w∗ is injective, and if all i|d are units in A, then w∗ is bijective. Note that the

underlying set of both the ring Wd(A) and of the ring A|d is a finite-fold power of A.

Moreover:

Lemma 5.2. The ring A|d is integral over its subring w∗
(
Wd(A)

)
. �

Proof. Let a = (ai) ∈ A|d and j|d, and suppose ai = 0 for i|d, i �= j; it suffices to show

that a is integral over w∗
(
Wd(A)

)
. This follows from the fact that aj+1 = w∗(b)a in A|d,

where b = (bi)i|d satisfies b1 = aj and bi = 0 for i|d, i �= 1. �

Lemma 5.3. If A is f.g, then so is Wd(A). �
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Proof. Using that A is the image of a polynomial ring over Z, we first reduce to the

case that char(A) = 0, so w∗ is injective. Since A|d is integral over B := w∗
(
Wd(A)

)
, if the

ring A is f.g., then so is A|d and hence also B, by the Artin–Tate Lemma 1.8. Thus Wd(A)

is f.g.
�

Note also that the identity map A|d → Wd(A) furnishes us with an interpretation

A � Wd(A) of the ring Wd(A) in the ring A.

5.2 A bi-interpretation between B and Bred

Let I be an ideal of B with I2 = 0 and d ≥ 1 an integer such that dI = 0. Put A := B/I. The

residue morphism B → A induces a surjective ring morphism r: Wd(B) → Wd(A), and we

also have a ring morphism

b = (bi) �→ w(b) := wd(b) =
∑
i|d

ibd/i
i : Wd(B) → B.

The morphism w descends to Wd(A):

Lemma 5.4. There is a unique ring morphism t: Wd(A) → B such that w = t ◦ r. �

Proof. Let b = (bi) and b′ = (bi
′) be elements of Wd(B) such that r(b) = r(b′), that is,

xi := bi
′− bi ∈ I for each i|d. Then for i|d we have

i(b′
i)

d/i = ibd/i
i + i(d/i)bd/i−1

i xi + multiples of x2
i ,

and since x2
i = 0 and i(d/i)xi = dxi = 0, we obtain i(b′

i)
d/i = ibd/i

i . This yields wd(b) =
wd(b′). So given a ∈ Wd(A) we can set t(a) := wd(b) where b is any element of Wd(B)

with r(b) = a. One verifies easily that then t: Wd(A) → B has the required property. The

uniqueness part is clear.
�

In the following we view B as a Wd(A)-module via the morphism t from the previous

lemma.

Lemma 5.5. Suppose B is f.g. Then the Wd(A)-module B is f.g. �

Proof. First note that the image W of Wd(A) under t contains all d-th powers of

elements of B. Hence B is integral over its subring W: each b ∈ B is a zero of the monic

polynomial Xd − bd with coefficients in W. Since B is an f.g. W-algebra, this implies that

B is an f.g. Wd(A)-module [3, Corollary 5.2]. �
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In the rest of this subsection we assume that B is f.g. Let b1, . . . , bm be generators for the

Wd(A)-module B, and consider the surjective Wd(A)-bilinear map

(a1, . . . , am) �→
m∑

j=1

ajbj : Wd(A)m → B. (5.1)

By Lemma 5.3, the ring Wd(A) is f.g., hence noetherian, so the kernel of (5.1) is f.g. Using

Wd(A)-bilinearity, the preimage of the graph of multiplication in B under the map (5.1)

is definable in Wd(A). Hence the map (5.1) is an interpretation of B in Wd(A). Composing

this interpretation Wd(A) � B with the interpretation A � Wd(A) from the previous

subsection, we obtain an interpretation f : A � B. Since the ideal I is f.g., the residue

morphism b �→ b : B → A = B/I is an interpretation g: B � A. With these notations, we

have the following:

Lemma 5.6. The pair (f , g) is a bi-interpretation between A and B. �

Proof. The self-interpretation f ◦ g of B is the map (B|d)m → B given by

(β1, . . . , βm) �→
m∑

j=1

wd(βj)bj

and hence definable in B. One also checks easily that the self-interpretation g ◦ f of A is

the map (A|d)m → A given by

(α1, . . . , αm) �→
m∑

j=1

wd(αj)bj,hence definable in A. �

We can now prove the main result of this section:

Proof of Theorem 5.1. Since annZ(N) �= 0, we can take some d ≥ 1 with dN = 0. Since

B is f.g. and hence noetherian, we can take some e ∈ N with N2e = 0. We proceed by

induction on e to show that B and Bred = B/N are bi-interpretable. If e = 0 then N = 0,

and there is nothing to show, so suppose e ≥ 1. By the above applied to the ideal

I := N2e−1
of B (so I2 = 0), the f.g. rings A := B/I and B are bi-interpretable. Now the

nilradical of A is N(A) = N + I, so dN(A) = 0 and N(A)2e−1 = 0. Hence by inductive

hypothesis applied to A in place of B, the rings Ared = A/N(A) and A are bi-interpretable.

Since Ared and Bred are isomorphic and the relation of bi-interpretability is transitive,

this implies that Bred and B are bi-interpretable. �
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6 Derivations on Nonstandard Models

In this section we shall construct derivations on nonstandard models of finitely

generated rings. Our appeal to ultralimits is not strictly speaking necessary as a simple

compactness argument would suffice, but the systematic use of ultralimits permits us

to avoid some syntactical considerations.

6.1 Ultralimits

Let us recall some of the basic formalism of ultralimits. Let I be a nonempty index set,

U be an ultrafilter on I, and M = (M, . . . ) be a structure (in some first-order language).

We denote by MU the ultrapower M I/U of M relative to U and by �M the diagonal

embedding of M into MU , that is, the embedding M → MU induced by the map M → MI

which associates to an element a of M the constant function I → M with value a. By Łos’

Theorem, �M : M → MU is an elementary embedding. We define the ordinal-indexed

directed system of ultralimits UltU (M , α) by

1. UltU (M , 0) := M ,

2. UltU (M , α + 1) := (
UltU (M , α)

)U , and

3. UltU (M , λ) := lim−→α<λ
UltU (M , α) for a limit ordinal λ.

For us, in (3) only the case of λ = ω is relevant. By way of notation, if I and U are

understood, then by an ultralimit we mean UltU (M , ω) and we shall write

∗M := UltU (M , ω).

By definition of the direct limit, the structure ∗M comes with a family of embeddings

UltU (M , n) → ∗M which commute with the diagonal embeddings

�Ult(M ,n) : UltU (M , n) → UltU (M , n + 1).

We identify M with its image in ∗M under the embedding

M = UltU (M , 0) → ∗M .

The Elementary Chain Lemma [11, Theorem 2.5.2] implies that M is an elementary

substructure of ∗M . For fixed U , the ultralimit construction commutes with taking

reducts, and is functorial on the category of sets. Given a set N and a map f : M → N,

we write ∗f : ∗M → ∗N for the ultralimit of f . In particular, if N is a substructure of
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M , then the ultralimit of the natural inclusion N → M is an embedding ∗N → ∗M

(compatible with the inclusions of N and N into their respective ultralimits), by which

we identify ∗N with a substructure of ∗M . From the universal property of the direct

limit, we have the curious and useful fact that ∗UltU (M , 1) = ∗M where by equality we

mean canonical isomorphism.

6.2 Constructing derivations on elementary extensions

With the next two lemmata we show that every non-principal ultrapower of an integral

domain of characteristic zero admits an ultralimit carrying a derivation which is

nontrivial on the ultralimit of the nonstandard integers. We let R be an integral domain

of characteristic zero and k ⊆ R be a subring.

Lemma 6.1. Suppose R is an f.g. k-algebra, and let t ∈ R be transcendental over k. Then

there is a k-derivation ∂: R → R with ∂(t) �= 0. �

Proof. Present R as R = k[t1, . . ., tn] where t1 = t. Since t is transcendental over k,

there is a k-derivation D: K → K on the field of fractions K of R satisfying D(t) = 1.

(See, e.g., [15, Proposition VIII.5.2].) Write D(ti) = ai/bi where ai ∈ R and bi ∈ R, bi �= 0.

Let ∂ be the restriction of
(∏n

i=1 bi

)
D to R, a k-derivation on R possibly taking values in

K. Since R is an integral domain, ∂(t) = ∏
i bi �= 0, and visibly ∂(ti) = ai

∏
j �=i bj ∈ R for

each i = 1, . . . , n. Hence, for any f ∈ R, writing f = F(t1, . . ., tn) for some polynomial F

over k, we see that ∂(f ) = ∑n
i=1

∂F
∂Xi

(t1, . . . , tn)∂(ti) ∈ R. �

Taking an ultralimit of the above derivations, we find interesting derivations on

ultralimits.

Lemma 6.2. Let t ∈ R be transcendental over k. Then there is an ultralimit ∗R of R and

a k-derivation ∂ : ∗R → ∗R with ∂(t) �= 0. �

Proof. Let I be the set of finite subsets of R. For S ∈ I, let

(S) := {S′ ∈ I : S ⊆ S′},

and let C := {
(S) : S ∈ I

}
. Observe that C has the finite intersection property: (S1) ∩ (S2) =

(S1 ∪ S2) for all S1, S2 ∈ I. Hence C extends to an ultrafilter U on I.

For each S ∈ I, by Lemma 6.1 we may find a k-derivation ∂S: k[t, S] → k[t, S]

with ∂S(t) �= 0, and these k-derivations combine to a k-derivation
∏

S∈I ∂S on the
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k-subalgebra
∏

S∈I k[t, S] of RI, which in turn induces a k-derivation ∂fin with ∂fin(t) �= 0

on the image Rfin of this subalgebra under the natural surjection RI → RI/U =
UltU (R, 1). By definition of C, the image of �R is contained in Rfin. Thus

D := ∂fin ◦ �R : R → UltU (R, 1)

is a k-derivation and D(t) �= 0. Then

∂ := ∗D : ∗R → ∗UltU (R, 1) = ∗R

is our desired derivation. �

We specialize the above result to obtain our derivation which is nontrivial on

the nonstandard integers. Below we fix an arbitrary non-principal ultrafilter Ũ (on some

unspecified index set), and given a ring A we write Ã = AŨ .

Corollary 6.3. There is a k-derivation ∂ on an ultralimit ∗R̃ of R̃ such that ∂(t) �= 0 for

some t ∈ Z̃. �

Proof. Let t ∈ Z̃ \ Z be an arbitrary new element of Z̃. Then t is transcendental over k,

and the previous lemma applies to R̃ in place of R. �

Combining the previous corollary with Lemma 1.10, we conclude that noetherian rings

having torsion-free nilpotent elements have elementary extensions with an automor-

phism moving the nonstandard integers.

Lemma 6.4. Let A be a noetherian ring with nilradical N = N(A), and suppose that

annZ(N) = 0. Then there is an ultralimit ∗Ã of Ã and an automorphism σ of ∗Ã over A

for which σ(∗Z̃) � ∗Z̃.

Proof. Let ε be an element of N with annA(ε) =: q prime and annZ(ε) = 0, given by

Lemma 1.10. Let π : A → A/q =: R be the natural quotient map. By Corollary 6.3, we can

find an ultralimit ∗R̃ of R̃ and an R-derivation ∂ : ∗R̃ → ∗R̃ which is nontrivial on ∗Z̃. Note

that Aε is an R-module in a natural way, and so ∗Ãε is an ∗R̃-module. We thus may define

a map σ : ∗Ã → ∗Ã by x �→ x + ∂(∗π(x))ε; one checks easily that σ is an automorphism

over A. We have Aε ∩ Z = 0 and annR(ε) = 0, hence ∗Ãε ∩ ∗Z̃ = 0 and ann∗R̃(ε) = 0. Since

∂ is nontrivial on ∗Z̃, it follows that σ(∗Z̃) � ∗Z̃. �

We conclude that rings as in the previous lemma are not bi-interpretable with Z.
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Corollary 6.5. No noetherian ring with nilradical N for which annZ(N) = 0 is bi-

interpretable with Z. �

Proof. Let A be a ring of characteristic zero, and identify Z with its image under the

ring morphism Z → A. Suppose Z is definable in A. Then the same formula defines

the subring Z̃ of Ã, since (Ã, Z̃) is an elementary extension of (A,Z). Similarly, given

an ultralimit ∗Ã of Ã, the subring ∗Z̃ of ∗Ã is A-definable, so σ(∗Z̃) = ∗Z̃ for all

automorphisms σ of ∗Ã over A. Now combine Lemma 6.4 and Corollary 2.19. �

We finish this subsection by remarking that although it may not be obvious from the

outset, a nontrivial derivation on a proper elementary extension of R̃ as constructed in

Corollary 6.3 has some unexpected properties, not exploited in the present paper. (As

before n ranges over the standard natural numbers.)

Lemma 6.6. Let Z � Z and ∂: Z → Z be a derivation. Then ∂(Z) ⊆ ⋂
n≥1 nZ. �

Proof. Let a ∈ Z and n ≥ 1; we need to show that ∂(a) is divisible by n, and for this we

may assume that a ≥ 0. By the Hilbert–Waring Theorem we may write a = ∑g
i=1 bn

i for

some bi ∈ Z (where g = g(n) only depends on n), and differentiating both sides of this

equation yields ∂(a) = n
∑g

i=1 bn−1
i ∂(bi). �

6.3 Finishing the proof of the main theorem

We now complete the proof of the main theorem stated in the introduction, along

the lines of the argument sketched there: let A be an f.g. ring, N = N(A). Suppose

annZ(N) �= 0. Then by Theorem 5.1 (applied to A in place of B), the rings A and Ared are

bi-interpretable, and by Theorem 4.18, the reduced ring Ared is bi-interpretable with

N if and only if Ared is infinite and Spec
◦
(Ared) is connected. The latter is equivalent

to A being infinite and Spec
◦
(A) being connected. If annZ(N) = 0, then A is not bi-

interpretable with Z, by Corollary 6.5. �

7 Quasi-Finite Axiomatizability

In this section we show the corollary stated in the introduction, in a slightly more

precise form:

Proposition 7.1. Every f.g. ring has a QFA formula. �

Throughout this section we let A, B be f.g. rings.
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Lemma 7.2. Suppose there is a QFA formula for A, and let M be an f.g. A-module. Then

there is a QFA formula for the two-sorted structures (A, M). �

Proof. Let ϕA(x) be a QFA formula for A, where x = (x1, . . . , xm). So we can take

generators a1, . . . , am of A such that for each f.g. ring A′ and a′
1, . . . , a′

m ∈ A′, we have

A′ |� ϕA(a′
1, . . . , a′

m) iff there is an isomorphism A → A′ with ai �→ ai
′ for i = 1, . . . , m.

Below we often use the (albeit obvious) fact that there is at most one such isomorphism

A → A′. Let also b1, . . . , bn be generators for M. Since A is noetherian, the syzygies of

these generators are f.g., that is, there are elements ajk (j = 1, . . . , n, k = 1, . . . , p) of A

such that for all α1, . . . , αn ∈ A we have

n∑
j=1

αjbj = 0 ⇐⇒ there are β1, . . . , βp ∈ A such that αj =
p∑

k=1

βkajk for all j = 1, . . . , n.

For j = 1, . . . , n, k = 1, . . . , p pick polynomials Pjk ∈ Z[x] such that ajk = Pjk(a), where

a = (a1, . . . , am). Let y = (y1, . . . , yn) be a tuple of distinct variables of the module

sort, u be another variable of the module sort, and u1, . . . , up, z1, . . . , zn be distinct new

variables of the ring sort. Let γ (y) be the formula

∀u∃z1 · · · ∃zn

(
u =

n∑
i=1

ziyi

)

and ζ (x, y) be the formula

∀z1 · · · ∀zn

⎛⎝ n∑
j=1

znyn = 0 ←→ ∃u1 · · · ∃up

⎛⎝ n∧
j=1

zj =
p∑

k=1

ukPjk(x)

⎞⎠⎞⎠ .

Finally, let α be a sentence expressing that A is a ring and M is an A-module. One verifies

easily that

ϕM(x, y) := α ∧ ϕA(x) ∧ γ (y) ∧ ζ(x, y)

is a QFA formula for the two-sorted structure (A, M). �

Lemma 7.3. Let a1, . . . , an be generators for A. There is a formula μ(x1, . . . , xn) such

that for all rings A′ and a′
1, . . . , a′

n ∈ A′, we have A′ |� μ(x1, . . . , xn) iff there is a morphism

A → A′ with ai �→ ai
′ for i = 1, . . . , n. �
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Proof. Let x = (x1, . . . , xn) and π : Z[x] → A be the (surjective) ring morphism satisfying

π (xi) = ai for i = 1, . . . , n. Let P1, . . . , Pm ∈ Z[x] generate the kernel of π and let µ(x) be the

formula P1(x) = · · · = Pm(x) = 0. �

Lemma 7.4. Let I, J be ideals of B such that IJ = 0. If there are QFA formulas for B/I

and for B/J, then there is one for B. �

Proof. Let ϕI(x) be a QFA formula for A = B/I, where x = (x1, . . . , xm), and take

a system a = (a1, . . . , am) of generators of A such that for each f.g. ring A′ and

a′ = (a′
1, . . . , a′

m) ∈ (A′)m, we have A′ |� ϕI(a
′) iff there is an isomorphism A → A′ with a �→

a′. Take generators b1, . . . , bm, f1, . . . , fp for the ring B such that ai = bi + I for i = 1, . . . , m

and I = (f1, . . . , fp). Put b = (b1, . . . , bm), f = (f1, . . . , fp). From our QFA formula ϕI(x) for

A we easily construct a formula ψ I(x, u) (where u = (u1, . . . , up)) such that for each f.g.

ring B′ and b′ = (b′
1, . . . , b′

m) ∈ (B′)m, f ′ = (f ′
1, . . . , f ′

p) ∈ (B′)p, the following are equivalent,

with I ′ := (f ′
1, . . . , f ′

p) ⊆ B′:

(1) B′ |� ψ I(b
′, f ′);

(2) there is an isomorphism A → B′/I′ with a �→ b′ + (I′)m.

(See Example 2.9, (2).) By Lemma 7.2, there is also a QFA formula for the two-sorted

structure (B/J, I). Hence as before, we can take generators c1, . . . , cn, g1, . . . , gq of B such

that the cosets c1 + J, . . . , cn + J generate the ring B/J and g1, . . . , gq generate the ideal J,

as well as a formula ψJ(y, u, v), where y = (y1, . . . , yn), v = (v1, . . . , vq), such that for each

f.g. ring B′ and tuples c′ = (c′
1, . . . , c′

n), f ′ = (f ′
1, . . . , f ′

p), and g′ = (g′
1, . . . , g′

q) of elements

of B′, the following statements are equivalent, with J ′ := (g′
1, . . . , g′

q) ⊆ B′:

(3) B′ |� ψJ(c′, f ′, g′);
(4) there is an isomorphism (B/J, I) → (B′/J′, I′) with c + Jn �→ c′ + (J′)n and

f �→ f ′.

Now by Lemma 7.3 let µ(x, y, u, v) be a formula such that for each f.g. ring B′ and tuples

b′ = (b′
1, . . . , b′

m), c′ = (c′
1, . . . , c′

n), f ′ = (f ′
1, . . . , f ′

p), g′ = (g′
1, . . . , g′

q) of elements of B′, the

following are equivalent:

(5) B′ |� µ(b′, c′, f ′, g′);
(6) there is a morphism B → B′ with b �→ b′, c �→ c′, f �→ f ′, and g �→ g′.

Then by Lemma 1.11 and the equivalences of (1), (3), (5) with (2), (4), (6), respectively, the

formula ψ I(x, u) ∧ ψJ(y, u, v) ∧ µ(x, y, u, v) is QFA for B with respect to the system of

generators b, c, f , g of B. �
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Corollary 7.5. Let N1, . . . , Ne (e ≥ 1) be ideals of B such that N1· · · Ne = 0. Suppose that

for k = 1, . . . , e, there is a QFA formula for the f.g. ring B/Nk. Then there is a QFA formula

for B. �

Proof. We proceed by induction on e. The case e = 1 being trivial, suppose that e ≥ 2

and put I := N1· · · Ne−1, J := Ne, so IJ = 0. By assumption, there is a QFA formula for

B/J = B/Ne. Consider the f.g. ring B := B/I and the ideals Nk := Nk/I (k = 1, . . . , e − 1)

of B. We have N1 · · · Ne−1 = 0, and the residue map B → B induces an isomorphism

B/Nk → B/Nk. Hence by the inductive hypothesis applied to B and N1, . . . , Ne−1, there

is a QFA formula for B = B/J. Now by the proposition above, there is a QFA formula

for B. �

We can now prove Proposition 7.1. First, applying the previous corollary to N1 = · · · =
Ne = N(B) where e = nilpotency index of N(B) yields that if there is a QFA formula for

Bred, then there is a QFA formula for B. Thus to show that B has a QFA formula we

may assume that B is reduced. Let P1, . . . , Pe be the minimal prime ideals of B. Then

P1· · · Pe = P1 ∩· · · ∩ Pe = 0, and by Corollary 3.2, for each k = 1, . . . , e there is a QFA

formula for the f.g. integral domain B/Pk. Hence again by the preceding corollary, there

is a QFA formula for B. �
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