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We characterize those finitely generated commutative rings which are (parametrically)
bi-interpretable with arithmetic: a finitely generated commutative ring A is bi-
interpretable with (N, +, x) if and only if the space of non-maximal prime ideals of
A is nonempty and connected in the Zariski topology and the nilradical of A has
a nontrivial annihilator in Z. Notably, by constructing a nontrivial derivation on a
nonstandard model of arithmetic we show that the ring of dual numbers over Z is not

bi-interpretable with N.

Introduction

We know since Godel that the class of arithmetical sets, that is, sets definable in the
semiring (N, +, x), is very rich; in particular, the first-order theory of this structure

is undecidable. One expects other mathematical structures which are connected to
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Logical Complexity of Rings 113

arithmetic to share this feature. For instance, since the subset N of Z is definable in
the ring Z of integers (Lagrange's Four Square Theorem), every subset of N which
is definable in arithmetic is definable in Z. The usual presentation of integers as
differences of natural numbers (implemented in any number of ways) shows conversely
that Z is interpretable in N; therefore every Z-definable subset of Z™ also corresponds
to an N-definable set. Thus the semiring N is interpretable (in fact, definable) in the ring
Z, and conversely, Z is interpretable in N; that is, N and Z are mutually interpretable.
However, something much stronger holds: the structures N and Z are bi-interpretable.

Bi-interpretability is an equivalence relation on the class of first-order struc-
tures which captures what it means for two structures (in possibly different languages)
to have essentially have the same categories of definable sets and maps. (See [1] or
[11, Section 5.4].) Thus in this sense, the definable sets in structures which are bi-
interpretable with arithmetic are just as complex as those in (N, +, x). We recall
the definition of bi-interpretability and its basic properties in Section 2 below. For
example, we show there that a structure A with underlying set A is bi-interpretable
with arithmetic if and only if there are binary operations @& and ® on A such
that (Z,+,x) = (A,®,®), and the structures (4, @, ®) and A = (4,...) have the
same definable sets. The reader who is not yet familiar with this notion may simply
take this equivalent statement as the definition of “A is bi-interpretable with N.”
Bi-interpretability between general structures is a bit subtle and sensitive, for example,
to whether parameters are allowed. Bi-interpretability with N is more robust, but we
should note here that even for natural algebraic examples, mutual interpretability with
N does not automatically entail bi-interpretability with N: for instance, the Heisenberg
group UT;4(Z) of unitriangular 3 x 3 matrices with entries in Z, although it interprets
arithmetic [21], is not bi-interpretable with it; see [12, Théoréme 6] or [25, Theorem 7.16].
See [17] for interesting examples of finitely generated simple groups which are bi-
interpretable with N,

Returning to the commutative world, the consideration of N and Z above
leads to a natural question: are all infinite finitely generated commutative rings bi-
interpretable with N? Indeed, each finitely generated commutative ring is interpretable
in N (see Corollary 2.14 below), and it is known that conversely each infinite finitely
generated commutative ring interprets arithmetic [27]. However, it is fairly easy to see
as a consequence of the Feferman-Vaught Theorem that Z xZ is not bi-interpretable with
N. Perhaps more surprisingly, there are nontrivial derivations on nonstandard models
of arithmetic and it follows, for instance, that the ring Zl[el/ (€2) of dual numbers over Z

is not bi-interpretable with N. (See Section 6.)
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114 M. Aschenbrenner et al.

The main result of this paper is a characterization of the finitely generated
commutative rings which are bi-interpretable with N. To formulate it, we need some
notation. Let A be a commutative ring (with unit). As usual, we write Spec(A4) for the
spectrum of A, that is, the set of prime ideals of A equipped with the Zariski topology,
and Max(A) for the subset of Spec(4) consisting of the maximal ideals of A. We put
Spec’(A) := Spec(A)\Max(4), equipped with the subspace topology. (In the context of
a local ring (4,m), the topological space Spec®(4) = Spec(4)\ {m} is known as the

“punctured spectrum” of A.)

Theorem. Suppose the ring A is finitely generated, and let N be the nilradical of A.
Then A is bi-interpretable with N if and only if A is infinite, Spec° (A) is connected, and
there is some integer d > 1 with dN = 0. O

The proof of the theorem is contained in Sections 3-6, preceded by two preliminary
sections, on algebraic background and on interpretations, respectively. Let us indicate
the strategy of the proof. Clearly if A is bi-interpretable with N, then necessarily A is
infinite. Note that the theorem says in particular that if A is an infinite integral domain,
then A is bi-interpretable with N. We prove this fact in Section 3 using techniques of [37]
which are unaffected by the error therein [38], as sufficiently many valuations on the
field of fractions of A may be defined via ideal membership conditions in A. Combining
this fact with Feferman-Vaught-style arguments, in Section 4 we then establish the
theorem in the case where A is infinite and reduced (i.e., N = 0): A is bi-interpretable
with N iff Spec’(4) is connected. To treat the general case, we distinguish two cases
according to whether or not there exists an integer d > 1 with dN = 0. In Section 5,
assuming that there is such a d, we use Witt vectors to construct a bi-interpretation
between A and its associated reduced ring A .4 = A/N. Noting that A is finite if and only
if A 4 is finite, and Spec’ (A) and Spec’ (A .q) are homeomorphic, this allows us to appeal
to the case of a reduced ring A. Finally, by constructing suitable automorphisms of an
elementary extension of A we prove that if there is no such integer d, then A cannot be
bi-interpretable with N. (Section 6.)

Structures bi-interpretable with arithmetic are “self-aware”: they know their
own isomorphism type. More precisely, if a finitely generated structure A in a finite
language £ is bi-interpretable with N, then A is quasi-finitely axiomatizable (QFA),
that is, there is an L-sentence o satisfied by A such that every finitely generated
L-structure satisfying o is isomorphic to A; see Proposition 2.28 below. (This notion

of quasi-finite axiomatizability does not agree with the one commonly used in Zilber's
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Logical Complexity of Rings 115

program, e.g., in [1]. Also note that the restriction to finitely generated structures is
necessary: by the Lowenheim-Skolem Theorem, for every infinite £-structure there is an
elementarily equivalent but non-isomorphic £-structure.) In [24], Nies first considered
the class of QFA groups, which has been studied extensively since then; see, for
example [16-19, 26, 29, 30].

In 2004, Sabbagh [25, Theorem 7.11] gave a direct argument for the quasi-finite
axiomatizability of the ring of integers. Belegradek [25, §7.6] then raised the question
which finitely generated commutative rings are QFA. Building on our result that finitely
generated integral domains are bi-interpretable with N, in the last section of this paper

we prove the following:

Corollary. Each finitely generated commutative ring is QFA. O

This paper had a rather long genesis, which we briefly summarize. Around 2005, A. X.
and T. S. independently realized that bi-interpretability with N entails QFA. T. S. was
motivated by Pop’s 2002 conjecture [33] that finitely generated fields are determined
up to isomorphism by their elementary theory. In [37], he attempted to establish
this conjecture by showing that they are bi-interpretable with N; however, later, Pop
found a mistake in this argument, and his conjecture remains open [38]. (Note that
our main theorem does not imply that every infinite finitely generated field is bi-
interpretable with N; see Lemma 1.2 below.) Influenced by [37] and realizing that not
all finitely generated commutative rings are bi-interpretable with N, in 2006, M. A.
became interested in algebraically characterizing those which are. The corollary above
was announced in [12], where a proof based on the main result of [37] was suggested.
In his Ph. D. thesis [23], E. N. later gave a proof of this corollary circumventing
the flaws of [37].

We conclude this introduction with an open question suggested by our theorems above.
Recall that a group G is said to be metabelian if its commutator subgroup G’ = [G, G]
is abelian. If G is a metabelian group, then the abelian group G/G’ can be made into
a module M over the group ring A = Z[G'] in a natural way; if moreover G is finitely
generated, then the commutative ring A is finitely generated, and so is the A-module M,
hence by the above, the two-sorted structure (A, M) is QFA. (Lemma 7.2.) However, no
infinite abelian group is QFA [25, §7.1], and we already mentioned that the metabelian
group UT5(Z) is not bi-interpretable with N, though it is QFA [25, §7.2]. A. K. has shown
that every non-abelian free metabelian group is bi-interpretable with N [13]. Each non-

abelian finitely generated metabelian group interprets N [28].
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116 M. Aschenbrenner et al.

Question. Which finitely generated metabelian groups are QFA? Which finitely gener-

ated metabelian groups are bi-interpretable with N? O

Notations and conventions

We let m, n range over N = {0,1,2,...}. “Ring” always means “commutative ring with
unit.” Rings are always viewed as model-theoretic structures in the language {+, x} of
rings; unless otherwise specified, “formula” means “formula in the language of rings.”
We usually abbreviate “finitely generated” by “f.g.” The adjective “definable” will always

mean “definable (by a formula in first-order logic), possibly with parameters.”

1 Preliminaries: Algebra

In this section we gather some basic definitions and facts of a ring-theoretic nature
which are used later.

1.1 Radicals

Let A be a ring and I be an ideal of A. We denote by Nil(I) the nilradical of I, that is, the

ideal
Nill):={acA:3Ina" €I}

of A, and we write
Jac(I) :={a€A:YVbeAdce A1 —ab)cel+1I}

for the Jacobson radical of I. It is well-known that Nil(I) equals the intersection of all
prime ideals of A containing I, and Jac(I) equals the intersection of all maximal ideals
of A which contain I. Evidently, I C Nil(I) C Jac(I). The ideal I is said to be radical if
Nil(Z) = I. For our purposes it is important to note that although the nilradical is not
uniformly definable for all rings, the Jacobson radical is; more precisely, we have if ¢(x)

is a formula defining I in A, then the formula
Jac(p)(x) :=Vudviw (1 —xuw)v =1+ w & ¢p(w))
defines Jac(I) in A. We denote by N(A) the nilradical of the zero ideal of A. Thus N(4) =

(Npespeca P- One says that A is reduced if N(A) = 0. The ring A4 := A/N(A) is reduced,

and called the associated reduced ring of A. We say that I is nilpotent if there is some
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Logical Complexity of Rings 117

integer e > 1 such that I¢ = 0. The smallest such e is the nilpotency index of I (not to be
confused with the index [A : I] of I as an additive subgroup of A). If N(4) is f.g., then it is

nilpotent.

Lemma 1.1. A is finite if and only if it contains an f.g. nilpotent ideal of finite index in
A. (In particular, if N(4) is f.g., then A is finite iff A 4 is finite.) O

Proof. LetN be anf.g.ideal of A such that A/N is finite, and e > 1 such that N¢ = 0. We
show, by inductiononi =1,...,e, that A/N' is finite. The case i = 1 holds by assumption.
Suppose now that we have already shown that A/N' is finite, where i € {1,...,e— 1}
Then N¥/N! is an A/N-module in a natural way, and f.g. as such, hence finite. Since
A/N' = (A/N*1)/(Nt/N**1), this yields that A/N**! is also finite. [ |

1.2 Jacobson rings

In this subsection we let A be a ring. One calls A a Jacobson ring (also sometimes a
Hilbert ring) if every prime ideal of A is an intersection of maximal ideals; that is, if
Nil(Z) = Jac(I) for every ideal I of A. The class of Jacobson rings is closed under taking
homomorphic images: if A — B is a surjective ring morphism and A is a Jacobson
ring, then B is a Jacobson ring. Examples for Jacobson rings include all fields and the
ring 7 of integers, or more generally, every principal ideal domain with infinitely many
pairwise nonassociated primes. The main interest in Jacobson rings in commutative
algebra and algebraic geometry is their relation with Hilbert’s Nullstellensatz, an
abstract version of which states that if A is a Jacobson ring, then so is any f.g. A-algebra
B; in this case, the pullback of any maximal ideal n of B is a maximal ideal m of A, and

B/nis a finite extension of the field A/m. In particular, every f.g. ring is a Jacobson ring.

Lemma 1.2. Suppose A is a field which is f.g. as a ring. Then 4 is finite. O

Proof. The pullback m of the maximal ideal {0} of A is maximal ideal of Z, that is,
m = pZ for some prime number p, and A is a finite extension of the finite field Z/pZ,

hence finite. [ |

Corollary 1.3. Suppose A is f.g. Then A is finite if and only if Spec’ (4) = @, that is, every

prime ideal of A is maximal. O

Proof. @We may assume that A is nontrivial. A nontrivial ring is called zero-

dimensional if it has no non-maximal prime ideals. Every finite integral domain is
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118 M. Aschenbrenner et al.

a field, so each nontrivial finite ring is zero-dimensional. Conversely, assume that A is
zero-dimensional. Then A (being noetherian) has only finitely many pairwise distinct
maximal ideals m,..., my, and setting N := N(A4), we have N = m; N --- N my. Each of
the fields A/m; is f.g. as a ring, hence finite, by Lemma 1.2. By the Chinese Remainder
Theorem, A/N = (A/m;) x --- x (A/my), thus A/N is finite. Hence by Lemma 1.1, A 1.s
finite.

Given an element a of a ring, we say that a has infinite multiplicative order if a™ # a”

for all m # n.

Corollary 1.4. Every infinite f.g. ring contains an element of infinite multiplicative
order. O

Proof. Let A bef.g. and infinite, and let p be a non-maximal prime ideal of A, according

to the previous corollary. Take a € A \ p such that 1 ¢ (a,p). Then a has infinite

multiplicative order. .

It is a classical fact that if A is noetherian of (Krull) dimension at most n, then every
radical ideal of A is the nilradical of an ideal generated by n + 1 elements. (This is due
to Kronecker [14] in the case where A is a polynomial ring over a field, and to van der
Waerden in general; see [7].) Given a formula ¢(x,,...,x,,,¥;,...,¥,) in the language of
rings, where x;,...,x,,,¥;,...,¥, are distinct variables, as well as a ring A and a tuple
be A", weset p(A™,b):={ac A™: A = ¢la, b)}.

Lemma 1.5. There exist formulas

Tp(V1r-- 1 Vg M (V1o Vg Ky Vi)

with the following property: if A is a noetherian Jacobson ring of dimension at most n,
then

Spec A = {Hn(A,a) ‘ae nn(A”“)}

Max A = {Hn(A,a) ‘ae Mn(A"“)} .

Proof. For every n let

VX, V1o V) =32 Az, (x=y12, + - + V2,

Jac,(X,y1,....¥y,) =Jac(y,).
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Logical Complexity of Rings 119

Then for every n-tuple a = (a;, ..., a,) of elements of A4, the formula y,(x, a) defines the
ideal of A generated by a,,...,a,, and Jac,(x, a) defines its Jacobson radical. Writing y
for (yy,...,¥y41), the formulas

7, (y) == VYvWw (Jac,,, (v - w,y) = (Jac,,,(v,y) v Jac, ;(w,y)),

Wn(y) :=Vvaw (Jac, ., (v,y) vV Jac, (1 —vw,y)),

n,x,y) = Jac,,,(x,y)

have the required property, by Kronecker’'s Theorem.

Remarks.

1.

The previous lemma holds if the noetherianity hypothesis is dropped and
Spec A and Max A are replaced with the set of f.g. prime ideals of A and the
set of f.g. maximal ideals of A, respectively, by a non-noetherian analog of
Kronecker's Theorem due to Heitmann [9, Corollary 2.4, (ii) and Remark (i)
on p. 168].

Let 7, W, I1,, be as in Lemma 1.5, and set n;, := 7,, A —=u,,. Then for every

noetherian Jacobson ring A of dimension at most n we have
spec’d = {M1,(4,@) : a e 7 A"}

Hence for every such ring A, we have A |= Vy, ---Vy, ,—n, iff dimA < 1.
(Using the inductive characterization of Krull dimension from [6], one can
actually construct, for each n, a sentence dim_,, such that for all Jacobson

rings A, we have A |=dim_,, iff dimA < n.) O

1.3 Subrings of a localization

In this subsection we let R be a ring and D be a subring of R.

Proposition 1.6. Suppose that D is a Dedekind domain and D[c!] = R[c™!] for some
c € D\{0}. Then R is an f.g. D-algebra. O

This can be deduced from [31, Theorem 2.20], but we give a direct proof based on a

simple lemma from this paper:

Lemma 1.7. (Onoda [31]) Suppose R is an integral domain. Then the set of ¢ € R such
that ¢ = 0 or ¢ # 0 and R[c"!] is an f.g. D-algebra is an ideal of R. d
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120 M. Aschenbrenner et al.

Proof. Since this set clearly is closed under multiplication by elements of R, we only
need to check that it is closed under addition. Let a,, a, € R \{0} be such that a, +a, # 0
and the D-algebra R[ai_ll is f.g., for i = 1, 2. So we can take an f.g. D-algebra B C R such
that a; € B and B[a;l] ) R[alfl], fori =1, 2. Given x € R, take n > 1 such that alT‘X € B;
then (a,+a,)?" 'x € B, so x € Bl(a,+a,)"!]. Thus Rl(a,+a,)"!] = Bl(a;+a,)!] is an f.g.
D-algebra. |

Proof of Proposition 1.6 Let c be as in the statement of the proposition, and first let S
be a multiplicative subset of D with R[S™!] = D[S~ 11; we claim that then there is some s
€ S such that R[s™!] = D[s™']. To see this note that for each Q € Spec(D) with D, 2 R we
have c € Q, since otherwise D, 2 Dlc1!1 = Rlc1!] 2 R, and for a similar reason we have
QNS #4¢. Let Qy,...,Q, be the prime ideals Q of D with D, 2 R. Fori =1,...,m pick
somes; € Q;NSandsets:=s;---5,, €SN Q; N--- N Q,,. Then we have D, 2 R for each
Q € Spec(D) with s ¢ Q, and hence D[s™'] = \s4q D 2 R. Therefore D[s~'] = RIs™'].

Let now I be the ideal of R defined in Lemma 1.7; we need to show that 1 € I.
Toward a contradiction assume that we have some prime ideal P of R which contains I.
Put Q :=D NP € Spec(D) and S := D \ Q. Then D, = Rp (there is no proper intermediate
ring between a DVR and its fraction field). In fact, we have D[S™!] = D, = R[S™'], so by

the above there is some s € S with R[s~!] = D[s"!]. Hence s € I \ P, a contradiction. n

Remark. We don’t know whether the conclusion of Proposition 1.6 can be strength-
ened to R = D[r!] for some r € R \{0}. O

For a proof of the next lemma see, for example, [3, Proposition 7.8].

Lemma 1.8. (Artin-Tate [2]) Suppose D is noetherian and R is contained in an f.g.

D-algebra which is integral over R. Then the D-algebra R is also f.g.

The following fact is used in Section 3.

Corollary 1.9. Suppose D is a one-dimensional noetherian integral domain whose
integral closure D in the fraction field K of D is an f.g. D-module. If Dic~'] = Rlc™!]
for some c € D \{0}, then R is an f.g. D-algebra. O

Proof. Let R be the integral closure of R in K. Suppose ¢ € D \{0} satisfies Dlc™!] =
Ric™!]. Then D is a Dedekind domain and Dlc~!] = Rl[c~!]. By Proposition 1.6, R is an
f.g. D-algebra, and hence also an f.g. D-algebra. Lemma 1.8 implies that R is an f.g.
D-algebra. |
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1.4 Annihilators

Let A be a ring. Given an A-module M we denote by
anny (M) :={a € A: alM = 0}

the annihilator of M (an ideal of A), and if x is an element of M we also write ann,(x) for
the annihilator of the submodule Ax of M, called the annihilator of x. The annihilator
anny,(A) of A viewed as a Z-module is either the zero ideal, in which case we say that the
characteristic of A is 0, or contains a smallest positive integer, called the characteristic
of A. (Notation: char(A).)

In the following we let N := N(A). We also set Ag=A®y Q, with natural morphism

ar—1a)=a® 1:A—>A@.
Its kernel is the torsion subgroup
Aior i={a € A : anng(a) # 0}

of the additive group of A. Suppose that the ideal A, . of A is finitely generated. Then

tor
there is some integer e > 1 such that eA

of A

wor = 0; the smallest such e is called the exponent

One checks easily that then

tor*

TINAg) =W :e):={acA:each}
L‘lannAQ («(a)) = anny(ea) foreacha € A.
The following lemma on the existence of nilpotent elements with prime annihilators is
used in Section 6. (Note that if € is as in the conclusion of the lemma, then €2 = 0 and

A/anny(e) is an integral domain of characteristic zero.)

Lemma 1.10. Suppose that A is noetherian and ann, (V) = 0. Then there is some ¢ € N

with anny, (¢) prime and anny,(¢) = 0. O

Proof. Note that the hypothesis ann, (V) = 0 implies not only that N is nonzero, but
also that some nonzero element of N remains nonzero under ¢; in particular, N (Ag) # 0.
Let A be the set of annihilators of nonzero elements of N(Ap). Then A # @, and as Ag

is noetherian, we may find a maximal element P € A. Scaling if need be, we may assume
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122 M. Aschenbrenner et al.

The ideal P

is prime, as if xyi(a) = O while neither xi(a) = 0 nor yi(a) = 0, then P C ann, (y(a))

tor*

that P = annAQ(L(a)) where a € L_lN(AQ) = (V : e), e = exponent ofA

with x € anny (yt(a)) \ P, contradicting maximality. Thus, anny (ea) = ("' P is prime and

anny(ea) = 0, so € := ea does the job. [ |

1.5 A bijectivity criterion

In the proof of Proposition 7.1 we apply the following criterion:

Lemma 1.11. Let ¢: A — B be a morphism of additively written abelian groups. Let N
be a subgroup of A. Suppose that the restriction of ¢ to IV is injective, and the morphism
¢: A/N — B/¢(N) induced by ¢ is bijective. Then ¢ is bijective. O

Proof. Leta € A, a # 0. If a € N, then ¢(a) # 0, since the restriction of ¢ to N is
injective. Suppose a ¢ N. Then ¢(a) ¢ ¢(N) since ¢ is injective; in particular, ¢(a) # 0.
Hence ¢ is injective. To prove that ¢ is surjective, let b € B. Since ¢ is onto, there is some
a € A such that b — ¢(a) € ¢(N), so b € ¢(4) as required. [ |

2 Preliminaries: Interpretations

In this section we recall the notion of interpretation, and record a few consequences
(some of which may be well-known) of bi-interpretability with N. We begin by discussing
definability in quotients of definable equivalence relations. Throughout this section, we
let A = (4,...) be a structure in some language £ = £, and B = (B,...) be a structure

in some language L.

2.1 Definability in quotients

Let E be a definable equivalence relation on a definable set S € A™, with natural
surjection n5: S — S/E. Note that for X € S we have X = nE_l(nE(X)) iff X is E-invariant,
that is, for all (a, b) € E we have a € X iff b € X. A subset of S/E is said to be definable
in A if its preimage under 7 is definable in A; equivalently, if it is the image of some
definable subset of S under 7. A map S/E — S'/E, where E’ is a definable equivalence
relation on some definable set S’ in A, is said to be definable in A if its graph, construed
as a subset of (S/E) x (S'/E'), is definable. Here and below, given an equivalence relation
E on a set S and an equivalence relation E' on S', we identify (S/E) x (S/E') in the natural

way with (S x S')/(E x E'), where E x E' is the equivalence relation on S x S’ given by

(a,a’) (EXE)(b,b) ¢ aEbanddEb (a,beS,a,b eb).
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2.2 Interpretations

A surjective map f : M — B, where M C A™ (for some m) is an interpretation of B in A
(notation: f : A ~» B) if for every set S C B" which is definable in B, the preimage f~!(S)
of S under the map

@y, ....ap) — (flay,....f(a,)): M" — B",

which we also denote by f, is a definable subset of M™ C (A™)" = A™" It is easy to verify

that a surjective map f : M — B (M C A™) is an interpretation of B in A iff the kernel
kerf :={(a,b) e M x M : f(a) = f(b)} (2.1)

of f, as well as the preimages of the interpretations (in B) of each relation symbol and
the graphs of the interpretations of each function symbol from Lz, are definable in A. If
the parameters in the formula defining ker f and in the formulas defining the preimages
of the interpretations of the symbols of £; in A can be chosen to come from some set
X C A, then we say that f is an X-interpretation of B in A, or an interpretation of B in A
over X. An interpretation A ~» A is called a self-interpretation of A. (A trivial example
is the identity interpretationid,: A — A.)

We say that B is interpretable in A if there exists an interpretation of B in A.
Given such an interpretation f : M — B of B in A, we write M := M/ ker f for the set of
equivalence classes of the equivalence relation kerf, and f for the bijective map M — B
induced by f. Then M is the universe of a unique £z-structure f*(B) such that f becomes
an isomorphism f*(B) —B. We call the Lg-structure f*(B) the copy of B interpreted in
A via the interpretation f.

The composition of two interpretations f : A ~» B and g: B ~» C is the
interpretation g o f : A ~» C defined in the natural way: if f : M — B and g: N — C,
then g o f : f~1(N) — C is an interpretation of C in A. In this case, the restriction of
f to a map f~1(N) — N induces an isomorphism (gof)*(C) — g*(C) between the copy
(gof)*(€C) = f~1(N)/ ker(gof) of C interpreted in A via g o f and the copy g*(C) = N/ kerg

of C interpreted in B via g which makes the diagram

(g0 f)"(C) 9°(C)
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commute. One verifies easily that the composition of interpretations makes the class
of all first-order structures into the objects of a category whose morphisms are the
interpretations.

Suppose B is interpretable in A via an {-interpretation f : M — B. Then every
automorphism o of A induces a permutation of M and of kerf, and there is a unique
permutation & of B such that & o f = f o o; this permutation & is an automorphism
of B. The resulting map o — o: Aut(A) — Aut(B) is a continuous group morphism
[11, Theorem 5.3.5], denoted by Aut(f). We therefore have a covariant functor Aut from
the category of structures and @-interpretations to the category of topological groups
and continuous morphisms between them. (Here the topology on automorphism groups
is that described in [11, Section 4.1].)

If B and B’ are structures which are interpretable in A, then their direct product B x B’
is also interpretable in A; in fact, if f : M — B (M € A™) is an interpretation A ~~ B, and
f:M — B (M’ € A™) is an interpretation A ~ B/, then f x f: M x M'— B x B is an
interpretation A ~ B x B’.

The concept of interpretation allows for an obvious uniform variant: let 2 be a class
of L-structures and B be a class of structures in a language L', for simplicity of
exposition assumed to be relational. A uniform interpretation of % in 2l is given by the

following data:

1. L-formulas o(2), u(x;2), and ¢(x, x’;z); and

2. for each n-ary relation symbol R of £ an £-formula pg(yg;2).

Here x, X' are m-tuples of variables (for some m), yz as in (2) is an mn-tuple of variables,
and z is a p-tuple of variables (for some p). All variables in these tuples are assumed to
be distinct. For A € Aset SA := {s € AP : A = 0(s)}. We require that

(U1) for each A € A and s € SA, the set M, := {a € A™ : A = 1u(a;s)} is nonempty,
e(x, x';s) defines an equivalence relation E; on M., and for each R € L', the set

R, defined by p(yg;s) in A is E¢-invariant.

Letting 7: My — M /E, be the natural surjection, the quotient M /E, then becomes the

underlying set of an £’-structure B, interpreted in A by 7. We also require that

(U2) B, € Bforeach A € ¥, s € S4, and for each B € B there are some A € 2,
s € SA such that B = B,.

We say that B is uniformly interpretable in 2 if there exists a uniform interpretation
of % in 2. Clearly the relation of uniform interpretability is transitive. If 6 = {B} is a

singleton, we also say that B is uniformly interpretable in 2; similarly if 2( is a singleton.
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2.3 Homotopy and bi-interpretations

Following [1], we say that interpretations f : M — B and f’: M’ — B of B in A are
homotopic (in symbols: f >~ f’) if the pullback

[f=f1={xx)eMxM :fx) =f(x)}
of f and f is definable in A; equivalently, if there exists an isomorphism
a: f*(B) = (f)*(B)

which is definable in A such that f' o« = f. So for example if f is a self-interpretation of
A, then f ~ id,, if and only if the isomorphism f: f*(A) — A is definable in A. Homotopy
is an equivalence relation on the collection of interpretations of B in A. Given X C A,
we say that interpretations f : A ~» B and f: A ~ B are X-homotopic if [f = f'] is
X-definable. It is easy to verify that if the #-interpretations f, f': A ~» B are f-homotopic,
then Aut(f) = Aut(f’).

Lemma 2.1. Letf,f: A~ Bandg, g: B ~ C. Then

f~f and g~g = gof~gof. -

Proof. It suffices to show that g ~g'= gof ~gofand f~f'= gof ~gof.Forthe
first implication, note that if [g = g'] is definable in B, then [gof =g o fl=f"'(lg =g
is definable in A. To show the second implication, suppose f >~ f’. Then [f = f'] and
(f)~1(kerg) are definable in A, and

xx)elgof=gof] < I’ ((X,X”) elf =118 & ,x" e (f/)‘l(kerg)) :
thus [g o f = g o f'] is also definable in A, thatis,go f ~go f'. |

Letf: A ~ B and g: B ~ A. One says that the pair (f, g) is a bi-interpretation between
A and B if go f ~id, and f o g ~ id; that is, if the isomorphism g o f: (go f)*(A) — A
is definable in A, and the isomorphism ]Tg: (f o 9)*(B) — B is definable in B. (See
Figure 1.) The relation of bi-interpretability is easily seen to be an equivalence relation
on the class of first-order structures. A bi-interpretation (f, g) between A and B is an
@-bi-interpretation if f, g are ¢-interpretations and g o f and f o g are #-homotopic to
the respective identity interpretations. If (f, g) is such an @-bi-interpretation between A

and B, then Aut(f) is a continuous isomorphism Aut(A) —Aut(B) with inverse Aut(g).
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A B A

F1G. 1. Compositiongo fof f: A ~~ B and g: B ~ A.

Lemma 2.2. Let (f, g) be a bi-interpretation between A and B. Then for every subset S
of B¥ (k > 1) we have
Sis definablein B <= f~!(S) is definable in A.

O
Proof. The forward direction follows from the definition of “f is an interpretation of B
in A.” For the converse, suppose f~1(S) is definable in A; then the set S’ := (fog) ™1 (S) =
g7 1(f1(9)) is definable in B (since g is an interpretation of A in B). For y € B¥ we have
y € Siff (f o g)(x) = y for some x € S'. Therefore, since [f o g =idg] and S’ are definable in
B,sois S. | |

The previous lemma may be refined to show that a bi-interpretation between A and
B in a natural way gives rise to an equivalence of categories between the category of

definable sets and maps in A and the category of definable sets and maps in B. (See [20].)

Corollary 2.3. Let (f, g) be as in Lemma 2.2, and f/, f": A ~ B.If fo g~ f" o g,
then f/~ f”. d

Proof. Note that g~! ([f' = f"]) = [f' o g = f” o gl and use Lemma 2.2. [ ]

2.4 Weak homotopy and weak bi-interpretations

The notion of bi-interpretability allows for a number of subtle variations, one of which
(close to the notion of bi-interpretability used in [11, Chapter 5]) we introduce in this
subsection. Given two interpretations f : A ~ B and f': A ~» B’ of (possibly different) £Lg-
structures in A, we say that f and f’ are weakly homotopic if there is an isomorphism
f*(B) — (f")*(B’) which is definable in A; notation: f ~ f’. Clearly ~ is an equivalence
relation on the class of interpretations of Lg-structures in A, and “homotopic” implies

“weakly homotopic.” (Note that f ~ f” only makes sense if B = B/, whereas f ~ f’ merely
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implies B = B’.) The following is easy to verify, and is a partial generalization of the fact
that f ~ f’ implies Aut(f) = Aut(f’):

Lemma 2.4. Letf:A ~> Bandf": A~ B’,andlet 8: f*(B) — (f')*(B’) be an isomorphism,
definable in A. Put

y:=foBof :B-—>B.
Then Aut(f) = y Aut(f’) y L. O

We say that a pair (f, g), where f : A ~» B and g: B ~~ A, is a weak bi-interpretation
between A and B if g o f ~ id, and f o g ~ idg. The equivalence relation on the
class of first-order structures given by bi-interpretability is finer than that of weak
bi-interpretability, and in general, might be strictly finer. In Section 2.7 below we see,
however, that as far as bi-interpretability with N is concerned, there is no difference

between the two notions.

2.5 Injective interpretations

An injective interpretation of B in A is an interpretation f : A ~ B where f : M — B
(M € A™) is injective (and hence bijective). (See [11, Section 5.4 (a)].) We also say that the
structure B is injectively interpretable in A if B admits an injective interpretation in A.
An important special case of injective interpretations is furnished by relativized
reducts. Recall (cf. [11, Section 5.1]) that B is said to be a relativized reduct of A if the
universe B of B is a subset of A™, for some m, definable in A, and the interpretations
of the function and relation symbols of Lz in B are definable in A. In this case, B is

injectively interpretable in A, with the interpretation given by the identity map on B.

Example 2.5. The semiring (N,+, x) is a relativized reduct of the ring (Z,+, x).

(By Lagrange's Four Squares Theorem.) O

The structure A is said to have uniform elimination of imaginaries if every ¢-definable
equivalence relation on A™ is the kernel of an #-definable map A™ — A" (for some n).
If A has uniform elimination of imaginaries, then every interpretation of B in A is
homotopic to an injective interpretation of B in A [11, Theorem 5.4.1]. The following is

well-known:

Lemma 2.6. Every interpretation of an infinite structure A in the ring Z of integers is

homotopic to an injective interpretation of A in Z whose domain is Z. O

Proof. It is well-known that Z has uniform elimination of imaginaries: given a

definable equivalence relation E on Z™ we have E = kerf if for a € Z™ we let f(a) be
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the smallest element of the E-equivalence class of a, with respect to the well-ordering
on Z™ defined by b < b’ : & |b| < |b/|, or |b| = |b/| and b is smaller than b’ in the
lexicographic ordering on Z™. The lemma now follows by the remarks preceding it
in combination with the fact that every infinite definable subset of Z™ is in definable

bijection with Z. o

So for example, if an infinite semiring S is interpretable in Z, then there are definable

binary operations @& and ® on Z such that (Z, ®, ®) is isomorphic to S.

Lemma 2.7. Every self-interpretation of Z is homotopic to the identity inter-

pretation. O

Proof. Let f: M — Z be a self-interpretation of Z, where M C Z™. By Lemma 2.6 we
may assume that f is bijective, m = 1, and M = Z. Hence the copy of Z interpreted
in itself via f has the form Z = (Z,®, ®) where & and ® are binary operations on Z
definable in Z. Let 0, and 1, denote the additive and multiplicative identity elements of
the ring Z. The successor function k — o (k) := k®1,: Z — Zin the ring Z is definable in
Z. Therefore the unique isomorphism Z — Z, given by k > o*(0,) for k € Z, is definable
in Z; its inverse is ]_” n
Due to the previous lemma, the task of checking that a pair of interpretations forms a
bi-interpretation between A and Z simplifies somewhat: a pair (f, g), where f: A ~ Z

and g: Z ~~ A, is a bi-interpretation between A and Z iff g o f >~ id,.

Corollary 2.8. If A and Z are bi-interpretable, then any two interpretations of Z in A

are homotopic. O

Proof. Suppose (f, g), where f: A ~~ Z and g: Z ~~ A, is a bi-interpretation between
A and Z. Let f’ be an arbitrary interpretation A ~» Z. Then f o g and f'o g are
self-interpretations of Z. Therefore f o g ~ f'o g by Lemma 2.7 and thus f ~ f’ by
Corollary 2.3. |

2.6 Interpretations among rings

In this subsection we let A be a ring. Familiar ring-theoretic constructions can be seen

as interpretations:

Examples 2.9.

1. Let S be a commutative semiring, and suppose A is the Grothendieck ring

associated to S, that is, A = (S x S)/E where E is the equivalence relation
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on S x S given by (x, y)E(x, ¥') : & x + ¥/ = ¥ + y. Then the natural map
S x S — A is an interpretation of A in S.

2. For an ideal I of A which is definable in A (as a subset of A), the residue
morphism A — A/I is an interpretation of A/I in A.

3. Suppose A=A, x A, is the direct product of rings A, A,. Then both factors
A, and A, are interpretable in A. (By the last example applied to the ideals
I, = Ae, respectively I, = Ae;, where e; = (1, 0), e, = (0, 1).)

4. Let Sbe amultiplicative subsetof A (i.e.,1€S5,0¢ S,and S-S C S). Suppose
S is definable. Then the map

M:=AxS— AlIS7!1: (a,s) — a/s

is an interpretation of the localization A[S™!] of A at S in A. Its kernel is the

equivalence relation
(a,s)~ (a,s) = dteS(t-(as'—a's)=0)

on M. In particular, if A is an integral domain, then its fraction field is

interpretable in A.

Let S be a multiplicative subset of A. One says that S is saturated if for all a, b € A with
ab € Swe have a € S and b € S. Equivalently, S is saturated iff A \ S is a union of prime
ideals of A. There is a smallest saturated multiplicative subset S of A which contains S
(called the saturation of S); here A \ S is the union of all prime ideals of A which do not
intersect S, and A[S™!] = A[S™!]. (See [3, Chapter 3, exercises].)

Lemma 2.10. Suppose A is a finite-dimensional noetherian Jacobson ring, and ¢ € A.
Then Alc™!] is interpretable in A. O

Proof. By Lemma 1.5, the union of all prime ideals of A which do not contain c is
definable in A, hence so is the saturation S of the multiplicative subset ¢ = {¢" : n =
0,1,2,...} of A. Thus Alc™!] = A[S™!] is interpretable in A by Examples 2.9, (4). [ ]

Suppose A is noetherian. Then every finite ring extension B of A is interpretable in A:
choose generators by, ..., b, of Bas an A-module, and let K be the kernel of the surjective
A-linear map n: A™ — B given by (a,,...,a,,) — > ;a;b;. Then K is an f.g. A-submodule
of A™, hence definable in A. The multiplication map on B may be encoded by a bilinear

form on A™. Thus 7 is an interpretation of B in A.
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One says that A has finite rank n if each f.g. ideal of A can be generated by n
elements. In this case, every submodule of A™ can be generated by mn elements [5].

Hence we obtain the following:

Lemma 2.11. Suppose A is noetherian of finite rank. Then the class of finite ring
extensions of A generated by m elements as A-module is uniformly interpretable
in A. O

This fact together with its corollary below are used in the proof of Theorem 3.1.

Corollary 2.12. Suppose A is noetherian of finite rank, and let A’ be a flat ring extension
of A in which A is definable. Then the class of rings of the form A’® B, where B is a finite
ring extension of A generated by m elements as an A-module, is uniformly interpretable

in the two-sorted structure (4’, A). O

Proof. Let B be a ring extension of A generated as an A-module by b, ..., b,,. With «,

K as before we have an exact sequence

0>K—=> A", B 0.

By flatness, tensoring with A’ yields an exact sequence

0>A®K— (A" 2%, 4'®, B — 0.
The image of K under x > 1 ® x generates the A’-module A’®, K, and the extension
of the bilinear form on the A-module A™ which describes the ring multiplication on
B to a bilinear form on the A’-module (A')"™ also describes the ring multiplication
onA'®, B. .

We finish this subsection by recording a detailed proof of the well-known fact that all
finitely generated rings are interpretable in Z. The proof is a typical application of Gédel
coding in arithmetic, and we assume that the reader is familiar with the basics of this
technique; see, for example, [40, Section 6.4]. (Later in the paper, such routine coding
arguments will usually only be sketched.) Let 8 be a Godel function, that is, a function
N2 — N, definable in Peano Arithmetic (in fact, much weaker systems of arithmetic are
enough), so that for any finite sequence (a,, ..., a,) of natural numbers there exists a € N
such that g(a, 0) = n (the length of the sequence) and g(a, i) = a; fori =1,...,n. It is
routine to construct from B a function y: N> — Z which is definable in Z and which
encodes finite sequences of integers, that is, such that for each (a,,...,a,) € Z" there

exists a e Nwith y(a, 0) =n and y(a, i) =q; fori=1,...,n.
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Lemma 2.13. Suppose A is interpretable in Z, and let X be an indeterminate over A.
Then A[X] is also interpretable in Z. O

Proof. For simplicity we assume that A is infinite (the case of a finite A being similar).

Let g: Z — A be an injective interpretation of A in Z. (Lemma 2.6.) Let

N:={aeN:y(@0) =1, and y(a,0) = 2= y(a,y(a,0)) # 0}

be the set of codes of finite sequences (ay,...,a,) € Z"! such that a,, # 0if n > 1.
Clearly N is definable in Z. It is easy to check that then the map
y(@,0)-1

N AXl:a— Y g(y(ai+1)X
i=0

is an injective interpretation of A[X] in Z.

The previous lemma in combination with Examples 2.9, (2) and (4) yields the following:

Corollary 2.14. Every f.g. ring and every localization of an f.g. ring at a definable

multiplicative subset are interpretable in Z. O

The proof of the previous corollary even shows that each f.g. ring is computable, that is,
isomorphic to a ring (N, &, ®) with underlying set N and computable binary operations
@, ® on N. (Recall that “computable” properly implies “arithmetic,” i.e., definable in the

semiring (N, 4, x).) This and the following remarks are not used later in this paper.

Remarks (Uniform interpretations in and of Z).  The proof of Corollary 2.14 can
be refined to show that the class of f.g. rings is uniformly interpretable in Z. See
[37, Section 2] for a proof that Z is uniformly interpretable in the class of infinite f.g.
fields. By (2) and (4) of Examples 2.9, if p is a prime ideal of A, then the fraction field
of A/p is interpretable in A. Using remark (2) following Lemma 1.5 this implies that
for each n, the class of infinite fields generated (as fields) by n elements is uniformly
interpretable in the class 2, of infinite rings generated by n elements. Hence for each n,
Z is uniformly interpretable in 2(,,. We do not know whether Z is uniformly interpretable

in the class | J,, %, of infinite f.g. rings. (This question was also asked in [12].)

2.7 Bi-interpretability with Z

In this subsection we deduce a few useful consequences of bi-interpretability with

7. Suppose first that A and Z are weakly bi-interpretable, and let (f, g’) be a weak
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bi-interpretation between A and 7Z. By Lemma 2.6 there is an injective interpretation
g:Z — A of A in Z with g ~ g’. By Lemma 2.1 we have g o f ~ g'o f ~ id,, and by
Lemma 2.7 we have f o g ~ id,. Hence (f, g) is a weak bi-interpretation between A and
7, and if (f, g') is even a bi-interpretation between A and Z, then so is (f, g). Thus, if
there is a weak bi-interpretation between A and Z at all, then there is such a weak bi-
interpretation (f, g) where g is a bijection Z — A; similarly with “bi-interpretation” in
place of “weak bi-interpretation.”

As a first application of these remarks, we generalize Lemma 2.7 from Z to all structures

bi-interpretable with Z.

Corollary 2.15. If A and Z are bi-interpretable, then every self-interpretation of A is
homotopictoid,. (Hence if A and Z are bi-interpretable, then any pair of interpretations

A ~~Z and Z ~ A is a bi-interpretation between A and Z.) O

Proof. Let (f, g) be a bi-interpretation between A and Z where g is a bijection Z — A,
and let h: A ~~ A. Then f o ho g ~ id, by Lemma 2.7, thus h o g >~ g by Lemma 2.1, and
so h >~ id, by Corollary 2.3. u

For the following corollary (used in the proof of Theorem 3.1 below), suppose we are
given an isomorphism «: A — A of L-structures. Then « acts on definable objects in
the natural way. For example, if i: M — D (M € A™) is an interpretation of D in A,
then i o @ !: «(M) — D is an interpretation of D in A, and « induces an isomorphism
@: i*(D) — (ioa~1)*(D). Note that the underlying set of (ioa~!)*(D) is a(M)/ ker(ioa™!) =
a(M)/a(keri).

Corollary 2.16. Leti:A ~» D andj: D ~» A, and let A := (joi)*(A) and « denote the
inverse of the isomorphism joi: A — A. Suppose D is bi-interpretable with Z. Then
@:i*(D) > (ioa~1)*(D) is definable in A. O

Proof. One checks that i induces an isomorphism (joa~1)*(D) — (ioj)*(D) which makes

the diagram

(i 0 j)"(D) D

"

joi

(i0a=1)*(D) 2~ i*(D)

commutative. By Corollary 2.15, the self-interpretation i o j of D is homotopic to idp,
that is, i 0 j is definable in D, and so « = (joi)~! is definable in A. [ |
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Let now f: A ~ Z and g: Z ~ A, where f: M — Z (M C A™), and g is a bijection

7Z — A. We are going to analyze this situation in some more detail. Let 7 = f*(Z) and

A = (g o )*(A). We have isomorphisms gof: A — A and f: Z — Z. From (2.1) in

Section 2.2 recall the definition of the kernel of a map. Note that as g is bijective, we have
A=f"YZ)/ker(gof) = M/kerf,

so A and Z have the same underlying set, and we have a commutative diagram

7 g A
7—=A

which shows the subtle fact that the identity map Z — A is an interpretation of A in Z.

For the next lemma, we say that a structure with the same universe as A is interdefinable

with A if both structures have the same definable sets.

Lemma 2.17. The following are equivalent:
1. A is bi-interpretable with Z;
2. A is weakly bi-interpretable with Z;
3. There are binary operations & and ® on A such that
(@ (Z+, x)=4, 0 )
(b) (4, &, ®) is interdefinable with A = (4, ...). O
Proof. It is clear that if we have binary operations & and ® on A satisfying
conditions (a) and (b) in (3), then (f, g), where f: A — Z is the unique isomorphism
(A,®,®) — (Z,+,x) and g = f~!, is a bi-interpretation between A and Z. Conversely,
suppose A is weakly bi-interpretable with Z via a weak bi-interpretation (f, g) where g
is a bijection Z — A. Let « be an isomorphism A = (gof)*(A) — A, definable in A. Let @
and ® be the binary operations on A such that « is an isomorphism (Z +,x)—=> A4, 8,Q).
(Recall that Z = A as sets.) The operations @& and ® are then definable in A; conversely,
since « is also an isomorphism of L-structures A — A and the identity 7Z — Ais an
interpretation of A in Z, the interpretations of the function and relation symbols of £
in A are definable in (4, @, ®). u

As an illustration of this analysis, next we show the following:

Lemma 2.18. Suppose A is bi-interpretable with Z. Let ®: A — A be definable, and let
a € A. Then the orbit

M) = {*"(@):n=0,1,2,...} (®°" = nth iterate of ®)

of a under @ is definable. U
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Proof. Via Go6del coding of sequences, it is easy to see that the lemma holds if A = Z.
In the general case, suppose ®, @ are binary operations on A satisfying conditions (a)
and (b) of the previous lemma. Then the map & is also definable in (4, ®, ®), hence ®N(a)
is definable in (4, ®, ®), and thus also in A. u

Let us note two consequences of Lemma 2.18 for rings.

Corollary 2.19. Let A be a ring of characteristic zero which is bi-interpretable with Z.

Then the natural image of Z in A is definable as a subring of A. O
Proof. TheimageofZis (x+— x+ DY) U (x — x — 1)N(0). Apply Lemma 2.18. |

Corollary 2.20. Let A be a ring which is bi-interpretable with Z, and a € A. Then
the set
aV:={a":n=0,1,2...}

of powers of a is definable.

Proof. The set a is (x — ax)N(1). Apply Lemma 2.18. [ ]

Here is a refinement of Lemma 2.18. For an interpretation f of Z in A, the restriction of f
to amap f~1(N) — Nis an interpretation of N in A, and by abuse of notation we denote
the copy of N interpreted in A via this interpretation by f*(N), and we write n — 7 for

the inverse of the isomorphism f*(N) — N.

Lemma 2.21. Suppose A is bi-interpretable with Z, and let f: A ~~ Z. Let ®: A — A be
definable. Then the map
(@, 7) > ®"(a): A x f*(N) > A

is definable. O

Proof. Let g: Z — A be an injective interpretation Z ~~ A; then (f, g) is a bi-

interpretation between A and Z. (Corollary 2.15.) Let & and ® be the binary operations

on A making g an isomorphism (Z, +, x) — (4, ®, ®). Then & and ® satisfy (a) and (b) in

Lemma 2.17 (by the proof of said lemma). The map ® is definable in (4, &, ®), and thus
(@,b) > 09 P (a): A x g(N) > A

is definable in (4, @, ®), and hence also in A. Therefore, since [g o f =id,] is definable in

A, so is (the graph of) the map
(@,b) > &P (a): A x fFTI(N) — A.

The lemma follows. |
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The last lemma immediately implies the following:

Corollary 2.22. Let A be a ring which is bi-interpretable with Z, and let f: A ~» Z. Then
the map
@n)m—a":Axf*N)— A

is definable. O

2.8 A test for bi-interpretability with Z

Suppose that (f, g) is a weak bi-interpretation between A and Z where g is a bijection
7 — A. As remarked in the previous subsection, we then have f*(Z) = (g o f)*(A) as
sets, so the inverse of any definable isomorphism (gof)*(A) —A (which exists since
g o f ~1id,) is a bijection A — f*(Z) which is definable in A. The following proposition

is a partial converse of this observation:

Proposition 2.23. Suppose that A is f.g. and the language £ = £, of A is finite. Let
f:A ~ Z and g: Z ~~ A. Suppose also that there exists an injective map A — f*(Z)
which is definable in A. Then (f, g) is a weak bi-interpretation between A and Z. O

An important consequence of this proposition (and Lemma 2.17) is that under rea-
sonable assumptions on A and £, establishing bi-interpretability of A with Z simply
amounts to showing that A is interpretable in Z, and Z is interpretable in A in such a
way that there is a definable way to index the elements of A with elements of the copy
of Zin A:

Corollary 2.24. (Nies) If A is f.g. and £ is finite, then the following are equivalent:
1. A is (weakly) bi-interpretable with Z;

2. A is interpretable in Z, and there is an interpretation f of Z in A and an
injective definable map A — f*(Z). O

A proof of this corollary of Proposition 2.23 is sketched in [25, Proposition 7.12].
However, we feel that a more detailed argument is warranted. (Also note that loc. cit.
does not assume A to be f.g.) Before we give a proof of Proposition 2.23, we show two

auxiliary facts:

Lemma 2.25. Let f be a self-interpretation of A which is homotopic to the identity.
Then every set X C f*(A)" which is definable in A is definable in f*(A). O
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Proof. Suppose f is given by M — A where M C A™ is definable. Let §(x;,...,x,)
be an L-formula, possibly involving parameters, which defines X in A; that is, for all

acM" C (A™)" we have
AEEg@a < acX.

By hypothesis, the isomorphism f: f*(A) — A is definable in A. Let ¢(x, y) define its
graph; that is, for a € M and b € A we have

AEg@b << f@) =b.

Set

E' Yy Yy =3xp ~~E|Xn(%'(X1,...,Xn) & /\ w(Xi,yi)).

i=1

Then for a € M™ we have
f A EE@ < AEE (@)
— A |=3X1"'3Xn(§(xl' n)& /\ lrf(_))
<— AEéfa) < acX,

hence &£* defines X in f*(A). |

Lemma 2.26. Let A be an f.g. structure in a finite language. Then any two interpreta-

tions of A in Z are homotopic. O

Proof. Letf,g:7Z ~~ A; by Lemma 2.6 we may assume that f and g are injective with

domain Z. Let a,,...,a, € A be generators for A and let b, := f~1(a;), ¢; := g~ '(a;), for
i =1,...,n, be the corresponding elements of f*(4) and g*(4), respectively. The unique
isomorphism f*(A) — g*(A) given by b; — c; (i = 1,...,n) is relatively computable and
hence definable in Z. |

We now show Proposition 2.23. Thus, let f: A ~~ Z and g: Z ~ A, and let ¢: A — f*(Z)
be an injective map, definable in A. By Lemma 2.7 we have f o g > id,, so it is enough

to show that g o f ~ id,. Recall that g induces an isomorphism (f o g)*(Z) — f*(Z), and
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thus, pulling back ¢ under g we obtain a g*(A)-definable injective map g*(¢): g*(4) —
(f 0 9)*(Z) making the diagram

A——[*(2)

74— (Fog) (@)

commute. We make its image g*(d))(g*(A)) the universe of an L£-structure, which we
denote by g*(¢)(g*(A)), such that g*(¢) becomes an isomorphism. Note that both the
underlying set g* (¢)(g*(A)) as well as the interpretations of the function and relation
symbols of £ in this structure are definable in g*(A), hence in Z, and so, by Lemma 2.25,
also in (f o g)*(Z). Thus we obtain an interpretation h of A in (f o g)*(Z) with h*(A) =
g*(¢>)(g*(A)). On the other hand, suppose g is given by N — A where N C Z"; then setting

N:=(Ffog '&), g:=go(fog N,

we have another interpretation g’: (f o g)*(Z) ~ A. By Lemma 2.26, the interpretations
h and g are homotopic. Thus we have an isomorphism h*(A) — (g')*(A) which is
definable in (f o g)*(Z), and hence in g*(A). Composing this isomorphism with the iso-
morphism g*(¢): g*(A) — h*(A), which is also definable in g*(A), yields an isomorphism
g*(A) — (g')*(A) which is definable in g*(A). It is routine to verify that the isomorphism
g: g*(A) — A maps the domain N’ of ¢’ bijectively onto the domain f~1(N) of g o f,
and that this bijection induces a bijection (g')*(4) — (gof)*(A) which is compatible
with ¢’ and go f, and hence an isomorphism (g')*(A) — (gof)*(A). Thus our definable
isomorphism g*(A) — (g')*(A) gives rise to an isomorphism A — (gof)*(A) which fits into

the commutative diagram

f)r(A)

|

(go
g (A) ——(¢')*(A)

A
g

and which is definable in A, as required. O

2.9 Quasi-finite axiomatizability

In this subsection we assume that L is finite and A = (4,...) is f.g. We say that an

L-formula ¢, (x;,...,X,) is a QFA formula for A with respect to the system of generators
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a,...,ay,of A if the following holds: if A’ is any f.g. £-structure and a/, ..., a, € A’, then
A’ = gp(ay,...,ay) iff there is an isomorphism A —A’ with q; — a; fori =1,...,n.
Any two QFA formulas for A with respect to the same system of generators of A are

equivalent in A. Moreover:

Lemma 2.27. Let ¢, (x;,...,X,) be a QFA formula for A with respect to the system of
generators a,,...,a, of A. Then for each system of generators b,,...,b,, of A thereis a
QFA formula for A with respect to by,...,b,,. O

Proof. For notational simplicity we assume that m = n = 1 (the general case is only
notationally more complicated). Let b be a generator for A. Let s(x), t(y) be £L-terms such
that a = t4(b) and b = s%(a). Put ¥(y) := ¢(t(y)) A y = s(t(y)). Then v is a QFA formula for

A with respect to b. .
A QFA formula for A is a formula ¢4 (x;, ..., x,) which is QFA for A with respect to some
system of generators a,...,a, of A. Note that if there is a QFA formula ¢, (x;,...,X,,)

for A, then A is QFA, that is, there is an £-sentence o such that for every £-structure A’,
we have A’ =0 iff A = A’. (Take 0 = 3x;---3x,¢,.) We do not know whether conversely
each QFA structure has a QFA formula. If A is finite, then there clearly is a QFA formula

for A. In this subsection we are going to show the following (see [25, Theorem 7.14]):
Proposition 2.28. If A is bi-interpretable with Z, then there is a QFA formula for A. O

Before we give the proof of this proposition, we make some observations. For these,
we assume that the hypothesis of Proposition 2.28 holds, that is, that we have binary
operations @ and ® on A as in (a) and (b) of Lemma 2.17. We take L£-formulas ¢ (x;, X,
v, z) and ¢g(x;, X5, y, z), where z = (z;,...,2;) for some k € N, and for each function
symbol f of £, of arity m, and for each relation symbol R of L, of arity n, we take
formulas PrXy, e Xy, Y) and ¢i(x;,...,x,) in the language of rings, and some c € Ak,
such that

1. ¢glxy, X5, ¥, ¢) and ¢g(xy, X5, y, ¢) define @ and ® in A, respectively;
2. @p(xy,..., Xy, y) and @g(x,...,%,) define f2 and R#, respectively,
in (4, @, ®).

We now let «y(z) be an L-formula for which A = «(c), and for which the following
properties hold for all £-structures A’ and c’e (4')¥ such that A’ |= a,(c):

1. @glx;, X5, ¥, €) and ¢g(x;, X,, y, ¢) define binary operations @' and ®’,

respectively, on A’; and
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2. @p(Xy,... Xy, y) and gp(xy,...,x,) define fA and R4, respectively, in
(A, @', ®), for all function symbols f and relation symbols R of L.

We also require that if A’ = «y(c), then

(3) (4, @, ®) is a ring which is a model of a sufficiently large (to be specified)
finite fragment of Th(Z).

The ring (4’, &', ®') may be nonstandard, that is, not isomorphic to (Z, +, x). However,
choosing the finite fragment of arithmetic in (3) appropriately, we can ensure that we
have a unique embedding (Z, +, x) - (4’,®’,®’). From now on we assume that «, has
been chosen in this way. Additionally we can choose «( so that finite objects, such as
L-terms and finite sequences of elements of A’, can be encoded in (4’, &', ®'). This can
be used to uniformly define term functions in A’, and leads to a proof of the following
(see [25, Claim 7.15] for the details):

Lemma 2.29. There is an L-formula «(z), which logically implies «((z), such that
A = alc), and whenever A’ is an f.g. £-structure and ¢ € (A%, then A’ = «alc) iff
(4', @', ®) is standard. 0

Let now t = (¢;,...,t,) be a tuple of constant terms in the language of rings. Given
A’ E ay(c), we denote by t(¢') = (t,(¢),...,t,(c))) the tuple containing the interpreta-

tions of the t; in the ring (4’, @', ®'). We also let « be as in the previous lemma.

Lemma 2.30. Let A’ is an f.g. £-structure and c’e (A’)* with A’ = «(c/). Then the orbit
of t(c/) under Aut(A’) is @#J-definable in A'. O

Proof. We claim that for a’ = (aj,...,a}) € (A))" we have
o(t(c")) = a’ for some o € Aut(A") <= t(c”) = a’ for some ¢’ with A’ = «a(c”).

Here the forward direction is clear. For the backward direction suppose A’ & «(c”), and
let ", ®"” denote the binary operations on A’ defined by ¢4 (x, x5, y, ¢"), 95 (x;, X5, y, "),
respectively. We then have a unique isomorphism (4’, @', ®') — (4’, ®’, ®"). This

isomorphism maps t(c¢’) onto t(c”), and is also an automorphism of A’, by condition (2) in

the description of «y above. This shows the claim, and hence the lemma. n
Proof of Proposition 2.28 Let a;,...,a, € A generate A, and let t;,...,t, be
the constant terms in the ring language corresponding to the images of a;,...,a,,

respectively, under the isomorphism (4, &, ®) — (Z,+, x). Then for each f.g. £-structure
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A’ and aj,...,a;, € A/, there is an isomorphism A —A’ with a;—a;" for each i iff there
is some ¢’ such that A’ = «(c) and an automorphism of A’ with ¢,(c/) — a;’ for each i. By

the lemma above, the latter condition is definable. -

3 Integral Domains

The goal of this section is to show the following theorem:

Theorem 3.1. Every infinite f.g. integral domain is bi-interpretable with Z. O
Combining this theorem with Proposition 2.28 immediately yields the following:

Corollary 3.2. Every f.g. integral domain has a QFA formula. O

Although Theorem 3.1 can be deduced from the main result of [37] (and is unaffected by
the error therein), we prefer to start from scratch and give a self-contained proof of this
fact.

In the rest of this section we let A be an integral domain with fraction field K.

The broad outline of the proof of Theorem 3.1 is similar to that of the main result of
[37]; we sketch the idea informally in what follows. First we observe that results of J.
Robinson, R. Robinson, and Rumely yield that if dim(A) = 1, then A is bi-interpretable
with N, and we're done. In the general case, a theorem of Poonen allows us to define
a subring D of A with dim(D) = 1. Using some commutative algebra results of Onoda
we get that D is f.g. We aim to show that A is bi-interpretable with D (and thus with
7). We can think of A as the coordinate ring of an algebraic variety V over D. Now A is
interpretable in D, and we let A be the copy of A interpreted in D interpreted in A. Then
A is the coordinate ring of an algebraic variety V over the subring D of A defined by the

same formula as D in A. The graph of the isomorphism A — A is
I':={(p,p) € A x A:"p,p evaluate in the same way on V and on V"}.

We then finish the proof and show that I' is definable in A by evaluating in points
coming from a uniformly definable family of integral extensions of D. We suppress some
technical details here; for example, our reliance on Noether Normalization in the last
step of the argument forces us to work with suitable localizations Alc™!], Dlc™!] (where

0 # c € D) instead of the original rings A, D.
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3.1 Noether Normalization and some of its applications

Our main tool is the Noether Normalization Lemma in the following explicit form (see
[22, Theorem 14.4]):

Proposition 3.3. Suppose that A is an f.g. D-algebra, where D is a subring of A. Then
there are nonzero ¢ € D and x;,...,x, € A, algebraically independent over D, such that

Alc 'lis an f.g. Dlc7!,x;,...,x,]-module. O

If the field X is f.g., we define the arithmetic (or Kronecker) dimension of A as

trdeg(K) +1 if char(4) =0,
adim(4) := g% “
trdeng (K) if char(A) =p > 0.

As a consequence of Proposition 3.3, if the integral domain A is f.g., then adim(A4) equals
the Krull dimension dim(A) of A.
Proposition 3.3 is particularly useful when combined with the following fact (a basic

version of Grothendieck's “generic flatness lemma”); see [42, Theorem 2.1].

Proposition 3.4. Suppose that A is an f.g. D-algebra, where D is a subring of A. Then

there is some ¢ € D \{0} such that A[c™!]is a free Dlc~!]-module. O

The integral domain A is said to be Japanese if the integral closure of A in a finite-degree
field extension of K is always a finitely generated A-module. Every finitely generated

integral domain is Japanese; see [22, Theorem 36.5].

Lemma 3.5. Let D be a Japanese noetherian subring of A, x;,...,x,, € A be alge-
braically independent over D, and suppose that A is finite over R = D[x;, ..., x,]. Then
every subring of A which contains D and is algebraic over D is finite over D. O

Proof. Let B be a subring of A with D € B which is algebraic over D. We first show that
B is integral over D. Let b € B. Then b is integral over R, that is, satisfies an equation
of the form f(b) = 0 for some monic polynomial f € R[Y | in the indeterminate Y. With

o= (ay,...,a,) ranging over N, write
f=> xf,(V) where x* = x{' ---x%" and f, () € D[Y].
o
Since B is algebraic over D, x,,...,x, remain algebraically independent over B. Hence,

f,(b) =0 for all «. In particular, f,(b) = 0 and the polynomial f, is monic. Therefore, b is

integral over D.
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Next we note that K = Frac(4) is a finite-degree field extension of L := Frac(R).

Again because x, ..., x,, are algebraically independent over B, each D-linearly inde-
pendent sequence by, ...,b,, of elements of B is also R-linearly independent and hence
L-linearly independent, and so m < [K : L]. Take D-linearly independent b,,...,b,, € B

with m maximal, and set M := DI[b,,...,b,]. Then M is an f.g. D-submodule of B,
and the quotient module B/M is torsion. Hence Frac(B) = Frac(M), and the degree of
Frac(M) over Frac(D) is finite. Therefore the integral closure of D in Frac(B) is an f.g.
D-module; since this integral closure contains B and D is noetherian, B is an f.g.

D-module as well. |

With the following lemma we establish a basic result in commutative algebra. It bears
noting here that our hypothesis that the subring in question has arithmetic dimension 1
is necessary. It is not hard to produce non-finitely generated two-dimensional subrings

of finitely generated integral domains.

Lemma 3.6. Suppose A is finitely generated. Then every subring of A of arithmetic

dimension 1 is finitely generated. O

Proof. Let B be a subring of A with adim(B) = 1. If char(4) = 0, then let D := Z C B.
If char(4A) = p > 0, pick some t € B transcendental over F, and set D := F,[t] € B. By
Proposition 3.3 we can find some ¢ € D \{0} and x, ..., x,, € A which are algebraically
independent over D and for which A[c™!] is a finite integral extension of Dlc™ !, x, ...,
x,]. Since adim(B) = 1, Blc™!] is algebraic over D[c~!]. Hence by Lemma 3.5 applied to
Alc™'1, DIc™!] in place of A, D, respectively, Blc~'] is a finitely generated Dlc~']-module.
Choose generators yy, ..., y,, of Blc™!] as D[c"!]-module. Scaling by a sufficiently high
power of ¢, we may assume that each y; belongs to B and is integral over D. Then setting
R:=Dly,,... y,,Jwehave R C BC Blc~!] = Rlc™!]. By Corollary 1.9, Bis an f.g. R-algebra,

hence also an f.g. ring. -

3.2 Proof of Theorem 3.1

In this subsection we assume that A is f.g. We begin by showing that as an easy
consequence of results of J. Robinson, R. Robinson, and Rumely, each f.g. integral
domain of dimension 1 is bi-interpretable with Z. We deal with characteristic zero and

positive characteristic in separate lemmata:

Lemma 3.7. Suppose that char(4) = 0 and dim(4A) = 1. Then A is bi-interpretable
with N. O
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Proof. The field extension K|Q is finite; set d := [K : Q]. J. Robinson showed [34] that
the ring Oy of algebraic integers in K is definable in K and that the subset Z is definable
in Ok; hence Z is definable in A. Take an integer ¢ > 0 such that A C OK[%]. The map
n +— c¢c": N — Nis definable in A, and so is the map v: A — N which associates to a € A
the smallest n := v(a) € N such that c"a € Og. Fixing a basis w;,..., w5 € Of of the
free Z-module Ok, we obtain a definable injective map A — 7% x N by associating to
a € A the tuple (k,(@),..., kg(@),v(a)), where (k;(a),..., kg(a)) is the unique ele-
ment of Z? such that ¢"@a = 2?21 k;(a)w;. Hence, A is bi-interpretable with Z by
Corollary 2.24. u

Lemma 3.8. Suppose that char(4) > 0 and dim(4A) = 1. Then A is bi-interpretable
with N. O

Proof. Letp:=char(4), and by Noether Normalization take some t € A, transcendental
over ]Fp, such that A is a finite extension of IE‘p[t]. Rumely [36, Theorem 2] showed that k[t]
is definable in K, where k is the constant field of K (i.e., the relative algebraic closure of
F, in K). R. Robinson [35, §§4a-b] specified a formula t(x, y) with the property that for
each finite field F, t(x, t) defines the set ¢t in F[¢]. It follows that the binary operations
on tY making n - t"*: N — t" an isomorphism of semirings are definable in F[¢]. Thus,
the inverse of this isomorphism is an interpretation F[t] ~» N. Let N = N, be the set of
natural numbers of the form n = Hizl p?i with n; €{0, 1, ..., p — 1}, all but finitely many
n; = 0, and p; is the i prime number. Then ¥ := {t™ : m € N} is definable in A. We
have a bijection t¥ — F,[t] which sends t", where n = [1;-1 P} to Yoo m;t 1. Rumely
[36, p. 211] established the definability of this map in K (and hence in A). In particular,
F,lt] is definable in A, and we have a definable injection F,[t] < tN. Since A is an f.g.
free ]Fp[t]—module, we also have an ]Fp[t]—linear (hence definable) bijection A — IE‘p[t]d, for

some d > 1. The lemma now follows from Corollary 2.24. u

With our lemmata in place, we complete the proof of Theorem 3.1. Thus, suppose A is
infinite, so dim(4) > 1.

For each natural number n, Poonen [32] produced a formula 0,,(x;, ..., x,,) so that
for any finitely generated field F and any n-tuplea = (a,, ..., a,) € F" one has F = 6,,(a)

if and only if the elements a,, ..., a,, are algebraically independent. If char(4) = 0, let

D:=AnN{a €K :aisalgebraicover Q} = {a € A: K E —0,(a)}.

If char(A) = p > 0, then pick some t € A which is transcendental over I, and set

D:=An{a €K :ais algebraic over IFp[t]} ={a €A :K E —b,(a,t)}
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In both cases, D is an algebraically closed subring of A with adim(D) = 1, definable in
A. By Lemma 3.6, D is finitely generated, hence noetherian, and therefore a Dedekind
domain.

By Proposition 3.3 we take some nonzero ¢ € D and x;, ..., X,, € A so that

Xy, ..., X,, are algebraically independent over D and A, := Alc™!] is a finite integral

m
extension of D/x,, ..., x,,], where D, = Dlc™']. By Proposition 3.4, after further
localizing at another nonzero element of D, we can also assume that A, is a free (and

hence flat) D,-module. One verifies easily that if char(4) = 0, then
D,=A,N{a €K :ais algebraic over Q} = {a € A, : K = =6, (@)},

hence D, is definable in A ; similarly one also sees that if char(4) > 0, then D, is definable
inA,

Let yy, ..., ¥, € A be generators of A, as D,x;, ..., x,]-module. Let X =
Xy,.... X)), Y = (Yy,...,Y,) be tuples of indeterminates, and let p be the kernel of
the D-algebra morphism D [X, Y | — A, given by X; — x; and YV; > y; fori=1,...,m
and j = 1,...,n. Note that p N D/[X] = (0). Let Py, ..., P, be a sequence of generators of
pandlet V=V(p) C A?j” be the affine variety defined by p, so A, is the ring of regular
functions on V. For any point a € A™(D,) there is some integral domain D’ extending
D, as a D,-module generated by at most n elements, and some point b € A"(D’) so that
(a, b) e V(D).

By Lemma 2.10 we have an interpretation D ~» D.. (We could have also used
Lemma 3.7 or 3.8, in combination with Examples 2.9, (4) and Corollary 2.20.) Precom-
posing this interpretation with the interpretation A ~» D given by the inclusion D € A
yields an interpretation of D, in A. Lemma 2.10 also shows that A is interpretable in A.
Every ideal of a Dedekind domain (such as D) is generated by two elements. (See, e.g.,
[3, Chapter 9, Exercise 7].) Hence by Lemma 2.11 the class D of integral extensions of
D, generated by n elements as D -modules is uniformly interpretable in D, (and hence
in A), and by Corollary 2.12, the class of rings A, ®, D" where D' € D is uniformly
interpretable in the two-sorted structure (4., D), and hence in A. As a consequence the

following set is definable in A:
E:={(a,D',be,p) : acA™D,), D' €D, be A"(D),
(a,b) e V(D'), ec D', p€ A, and p(a,b) = e}.
Indeed, the condition that (a, b) € V (D) may be expressed by saying that P,(a, b) =--- =
P,(a, b) = 0. That pla, b) = e is expressed by saying

Quy, .o Uy, vy, Vy €A, ®p D) (p—e: > vilx; —ai)—l—zjuj(yj—bj)).
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(To see this use that A, ®p_ D' = D'[X,Y]l/pD'[X, Y] as D’'-algebras, and for all (a,b) €
A™*(D’"), the kernel of the morphism p +— p (a, b): D'[X, Y ] — D' is generated by X; — a;
and Yj — bj.) We also note that given p, g € A, we have

(Va € A™(D,)) (VD' € D)(Vb € A"(D'))(Ve € D)
p=q — (3.1)
(a,D',b,e,p) €E & (a,D',b,e,q) €E.

Let now (f, g) be a bi-interpretation between D, and N, let i be an interpretation of D,
in A, and let h be an interpretation of A in N (Corollary 2.14). Put j := h o f : D, ~ A.
Let A := (j o i)*(A) be the copy of A interpreted via j in the copy of D, interpreted via i
in A. By Lemma 3.7 or 3.8, D, is bi-interpretable with N, so by Corollary 2.15, the self-
interpretation i o j of D, is homotopic to the identity. Thus if we can show that the
isomorphism joi: A — A is definable in A, then the pair (i, j) is a bi-interpretation
between A and D,. Let « denote the inverse of joi. Then i o « is an interpretation of
D, in A, and by Corollary 2.16, « induces an isomorphism i*(D,) — (ioa)*(D,) which is
definable in A. We also denote this isomorphism by «, and also denote by « the induced
map on the various objects defined in i*(D_). With this convention, put E := a(E). Then

E is definable in A, and hence also in A. Therefore
I:={@pp eAx A (Va € A™(D,))(VD' € D)(vb € A™(D"))(Ve € D)
(a,D',b,e,p) € E < (a(a),a(D),a(b),(e),p) € E}

is definable in A, and by (3.1), " is the graph of «: A — A. This implies that A is bi-
interpretable with D, and hence with N. O

4 Fiber Products

In this section we study finitely generated rings which can be expressed as fiber
products of other rings. We first review the definition, and then successively focus
on fiber products over finite rings and fiber products over infinite rings. The section
culminates with a characterization of those f.g. reduced rings which are bi-interpretable
with Z.

4.1 Definition and basic properties

Let o: A — C and B: B — C be two ring morphisms. The fiber product of A and B over C
is the subring
A x;B={(a,b) € AxB:a(a)=pBb))}
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of the direct product A x B. The natural projections A x B — A and A x B — B restrict
to ring morphisms n4: A x; B — A and ng: A x; B — B, respectively. Note that if «
is surjective, then my is surjective; similarly, if 8 is surjective, then so is 7w ,. In the
following we always assume that «, 8 are surjective. We do allow C to be the zero ring;

in this case, A x;B=A x B.

Example 4.1. Let I, J be ideals of a ring R. Then the natural morphism R/(I N J) —
(R/I) x (R/J) maps R/(I N J) isomorphically onto the fiber product A x, B of A = R/I and
B=R/Jover C=R/(I+J),wherea:A=R/I > C=R/(I+J)and B:B=R/J - C=R/I +J)

are the natural morphisms. O
Lemma 4.2. Suppose A and B are noetherian. Then A x B is noetherian. O

Proof. LetI = kerm,, J = kerng, and R := A X, B. Since I N J = 0, we have a
natural embedding of R into the ring (R/I) x (R/J). The ring morphism 7 ,, m5 induce
isomorphisms R/I — A, R/J — B. Thus R/I and R/J are noetherian as rings and hence
as R-modules. So the product (R/I) x (R/J), and hence its submodule R, is a noetherian

R-module as well. [ |

Corollary 4.3. Suppose A and B are noetherian. Then 7, is an interpretation of A in
A x;B,and g is an interpretation of Bin A x B, and hence 74 x 7 is an interpretation
of A x Bin A x; B. O

Proof. By the previous lemma, the ideals I = kern, and J = kerngy of A x B are f.g.,

and hence (existentially) definable in A x. B. |

Lemma 4.4. Suppose A and B are interpretable in Z and C is f.g. Then A x, B is
interpretable in Z. O

Proof. Letf:7Z ~ A and g: Z ~ B; then f x g is an interpretation Z ~~» A x B. Both
a o f and B o g are interpretations Z ~+ C; so by Lemma 2.26 (and the assumption that
Cis f.g.), the set

[wof =Bogl=(fxg) '(Ax;B)

is definable in Z. Hence the restriction of f x g to a map (fxg) " }(4 x, B) - A x. Bis an

interpretation of A x, B in Z. |
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4.2 Fiber products over finite rings

Every fiber product of noetherian rings over a finite ring is bi-interpretable with the

direct product of those rings:

Lemma 4.5. Let a: A — C and 8: B — C be surjective morphisms of noetherian rings,
where C is finite. Then the pair (f, g), where f is the identity A x B2 A x;B — A X B
and g = 7, x 7wy (Ax; B2 — A x B, is a bi-interpretation between A x B and
A X B. U

Proof. We first observe that the subset M := A x. B of A x B is definable in the ring A
x B (and hence that f is indeed an interpretation A x B ~ A x. B). To see this first note
that the map I1,: A x B — A x 0 given by (a, b) — (a, 0) = (a, b) - (1, 0) is definable in
A x B (with the parameter (1, 0)); similarly, the map (a, b) + Igzla, b) = (0, b): A x B —
0 x B is definablein A x B. Let n = |C| and let a,,...,a, € A be representatives for the
residue classes of A/kero and b,,..., b, € B be representatives for the residue classes
of B/ ker B such that «a(a;) = B;(b;) fori =1,...,n. Then M is seen to be definable as the
set of all (a, b) € A x B such that foreachie {1,...,n},

(a,b) € (a;,0) + M (kera) <= (a,b) € (0,b;) + I3 (ker B).
The self-interpretation g o f of A x B is the map
((a,b), (@, b)) — My(a,b)+Mg@,b)=(ab): M xM—> AxB
and hence definable in A x B. Similarly, the self-interpretation f o g of A x B is the map
((a,b), (@, b)) — (a,b): g ' (M) — A xB,
and since
(fog)((ab), @, b)) =(@a"b") < (@ b e (@b +kerm,) N (@, b)+kerng),

we also see that fog ~id,, p. |

The previous lemma leads us to the study of the bi-interpretability class of the direct
product of two f.g. rings. We first observe that a product of a ring B with a finite ring is

(parametrically) bi-interpretable with B itself:

Lemma 4.6. Let A be a direct product A = B x R of a ring B with a finite ring R. Then
A and B are bi-interpretable. O
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Proof. The surjective ring morphism (b, ) — b: A — B is an interpretation f : A ~ B
with kerf = A - (0, 1). (See Example 2.9, (2).) Pick a bijection g: R" — R where R’ C B™ for

some m > 1. Then the bijection
(b,7) > (b,g(r)): BxR - BxR=A,

in the following also denoted by g, is an interpretation B ~~ A (since the addition and
multiplication tables of the finite ring R are definable). Now f o g: B x R’ — B is given
by (b, ¥) — b and hence definable in B, and

gof:AxfIR)=f'BxR)— A
is given by
((b,1), (b1, 1), ... (b, 1)) > (b,g(by,...,by))

and thus definable in A, since (b, r) - (1, 0) = (b, 0) and (b, r) - (0, 1) = (0, r) for all b € B,
r € R. This shows that (f, g) is a bi-interpretation between A and B. |

On the other hand, the direct product of two infinite f.g. rings is never bi-interpretable
with Z:

Lemma 4.7. Let A and B be infinite finitely generated rings. Then A x B is not bi-
interpretable with Z. O

Proof. Let a € A and b € B be elements of infinite multiplicative order. (See
Corollary 1.4.) Suppose A x B is bi-interpretable with Z. Then by Corollary 2.20, the
set (a,b)N of powers of (a, b) is definable in A x B. By the Feferman-Vaught Theorem
[11, Corollary 9.6.4] there are N € N and formulas ¢;(x), ¥;(y) i =1,...,N), possibly with

parameters, such that for all (a’, ') € A x B, we have
@,b)e @b — Ak ¢;(a’) and B = y;(b'), for some i € {1,...,N}.
By the pigeon hole principle, there are m # n and some i € {1,...,N} such that A = ¢;(a™)

A ;@) and B |= (™) A ;(b"). But then A = ¢;(@™) and B |= v;(b"), so (a™,b") € (a, b)Y,

a contradiction to m # n. u

Combining the results in this subsection immediately yields the following conse-

quences:

Corollary 4.8. The fiber product of a noetherian ring A with a finite ring is bi-
interpretable with A.
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Corollary 4.9. The fiber product of two infinite f.g. rings over a finite ring is not bi-
interpretable with Z. O

4.3 Fiber products over infinite rings
In this subsection we show the following:

Theorem 4.10. Let a: A — C and B8: B — C be surjective ring morphisms. If A and
B are both bi-interpretable with Z, and C is f.g. and infinite, then A x, B is also
bi-interpretable with Z. O

For the proof, which is based on the criterion for bi-interpretability with Z from

Corollary 2.24, we need the following:

Lemma 4.11. Let A be bi-interpretable with Z, and a € A be of infinite multiplicative

N

order. Then there exists a definable bijection A — a", and hence definable binary

operations @ and ® on a¥ making a" into a ring isomorphic to Z. O

Proof. Take an interpretation f: A ~ Z and a definable bijective map t: A — f*(Z).
(See the beginning of Section 2.8.) Choose a definable bijection f*(Z) — f*(N). By

Corollary 2.22, the map 7 — a”: f*(N) — a! is definable. Thus the composition

A5 @) — ) 222 N
is a definable bijection as required. The rest follows from Lemma 2.17. |

We also use the following number-theoretic fact:

Theorem 4.12. (Scott [39, Theorem 3]) Let p, q be distinct prime numbers and ¢ € Z.

Then there is at most one pair (m, n) with p?™ — ¢*" =c. O

We now show Theorem 4.10. Thus, assume that A and B are bi-interpretable with Z,
and C is f.g. and infinite. By Lemma 4.4, R := A X, B is interpretable in Z, so by
Corollary 2.24, in order to see that R is bi-interpretable with Z, it is enough to show that
we can interpret Z in the ring R such that R can be mapped definably and injectively into
the interpreted copy Z of Z in R.

To see this, let a € A and b € B so that «(a) = 8(b) has infinite multiplicative order
in C. Then Z := (a, b)" is definable in R as

Z={reR:my(r) e a" and 7y(r) € bN}.
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(Clearly, Z is contained in the set on the right-hand side of this equation; conversely,
if r is any element of this set, then r = (@™, b") for some m and n, with a(a@™) =
B(d"), and then «a(a)™ = «la)”, as ala) = B(b), forcing m = n since «(a) has infinite
multiplicative order.)

Recall from Corollary 4.3 that 74 is an interpretation R ~» A. We denote by
A := n}(A) = R/kerm, the copy of A in R interpreted via 7,, and by x> X: A > A
the natural isomorphism; similarly with B in place of A. The natural surjection R — A

restricts to a bijection Z = (a,b)N — @

; we denote by e, its inverse, and we define
ep similarly. Note that e, and ey are definable in R. By Lemma 4.11 there are binary
operations on @', definable in 4, which make @ into a ring isomorphic to (Z,+, x).
Equip Z with binary operations @, ® making e, a ring isomorphism; then @, ® are
definable in R, and (Z, ®, ®) = (Z, +, x).

It remains to specify a definable injective map R — Z. Let f,: A — a

and
fg: B — b be definable bijections, according to Lemma 4.11, and let F, and Fy be
the composition of f,, fz with the natural surjection R — A and R — B, respectively;
then F,, Fp are definable in R. From Corollary 2.22 and the fact that exponentiation is
definable in N, we see that themaps t,: @' — @ and t: 5 b given by t,(@") = a2

— —32 . . .
and tB(bn) = b are definable. It is now easy to verify, using Theorem 4.12, that the

definable map
re (egotygoF,)(r) -(egotgoFp)(r): R—> Z

is injective. O

Remark. Below we apply Theorem 4.10 in a situation where we know a priori that the
ring A x, Bis f.g. In general, the fiber product of two f.g. rings is always again f.g.: given
surjective ring morphisms «: A — C, 8: B — C, where A, B are f.g., choose a finite family
{(a;, b;)} of elements of A x, B where the a; generate A and the b; generate B, and choose
a finite family {(0, ¢;)} where the c; generate ker g (by noetherianity of B); then these two
families together generate the ring A x. B. (We thank one of the referees for pointing
this out to us.) O

4.4 The graph of minimal non-maximal prime ideals

Let A be a ring. We denote by Min(4) the set of minimal prime ideals of A; we always

assume that Min(4) is finite. (This is the case if A is noetherian.) We define a (simple,
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undirected) graph G, = (V,E) whose vertex set is the set ¥ = Min(4) \ Max(A4) of all

minimal non-maximal prime ideals of A, and whose edge relation is defined by
(p,q) € E <= thereis a non-maximal prime ideal of A containing p + q.

Note that if A is f.g., then V is the set of minimal prime ideals of A of infinite index
in A (so V # @ iff A is infinite), and (p,q) € E iff p + q is of infinite index in A. (See
Corollary 1.3.)

We first relate connectedness of the graph G, with connectedness of the topological
space Spec’ (A) = Spec(A) \ Max(A) considered in the introduction. Given an ideal I of A
we let V (I) be the closed subset of Spec(4) consisting of all p € Spec(4) containing I. For
ideals I, Jof Awehave VI+J)=VINVJ)and VINJ) =V (I)UV(J). Hence:

Lemma 4.13. LetI,...,I,,J;,...,J, beideals of A, where m,n>1,andI =1, N--- N
I, J=J, N NJ,. Then

VI+J))=vVD)NVJ) = U V(I; + J)).
ij

O

Corollary 4.14. G, is connected iff Spec’(A) is connected. O

Proof. Suppose first that Spec’(A) is disconnected, that is, there are nonempty closed
subsets X, X' partitioning Spec’(A). Then both X and X’ contain a non-maximal minimal
prime ideal. To see this note that Spec®(4) # ¢ implies that A has at least one non-
maximal minimal prime ideal. Moreover, suppose one of the sets, say X, contains all
non-maximal minimal prime ideals of A4, and take any q € X’; then q contains a minimal
(and necessarily non-maximal) prime ideal p, and since p €¢ X we get q € X N X', a
contradiction. Let now C be the set of non-maximal minimal prime ideals contained
in X, and let C' be the set of non-maximal minimal prime ideals in X’; then C, C’ are

nonempty and partition the vertex set V of the graph G,. For p € C and p’ € C’, we have
Spec®(A) NV(p+p') =Spec’(A) NV NV(E) S XNX =0

and thus (p,p’) ¢ E. Hence G, is disconnected.
Conversely, suppose G, is disconnected. Let C, C' be nonempty sets partitioning
V such that (p,p’) ¢ E forallp € C,p € C. PutI = ((C, I' := (C. Then
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X := V (I) N Spec’(A), X' := V (I') NSpec’(A) are nonempty closed subsets of Spec (4)
with X U X' =Spec’(4), and by the previous lemma we have X N X' = . Thus Spec (4)

is disconnected. [ |

Remark. In the case where A is a local ring, the graph G, has been considered in
different contexts. (See, e.g., [10, Definition 3.4] or [41, Remark 2.3].) O

The following lemma allows us to analyze the graph G, by splitting off a single vertex:

Lemma 4.15. Let py € Min(4),

Ip =) {p € Min(4) : p # p},

and A, := A/I;, with natural surjectiona — a=a+1;: A - Aj. Then

p = p: Min(4) \ {py} = Min(4,)

is a bijection. Moreover, for p, q € Min(4) \ {p,} the natural surjection A — A, induces an
isomorphism A/(p + q) — Ao/ + ).

Proof. The map p — p is an inclusion-preserving correspondence between the set
V (Iy) of prime ideals of A containing I, and the set of all prime ideals of A,. Clearly
Min(A4) \ {py} € V), and if p > I, is a minimal prime ideal of A, then p is a minimal
prime ideal of A;. To show surjectivity, let ¢ be a minimal prime ideal of A,, where
q € V(). Then q 2 p D I, for some p € Min(A4) with p # p,, and so q = p by minimality of

q. The rest of the lemma is easy to see. u

Given a graph G = (V,E) and a vertex v € V, we denote by G \ v the graph obtained from
G by removing v, that is, the graph with vertex set W = V \{v} and edge set E N (W x W).
If p, is a minimal non-maximal prime of A and I, and A are as in Lemma 4.15, then
p — p is an isomorphism G, \ pg — G4,

We now return to bi-interpretability issues:

Lemma 4.16. Suppose A is infinite and f.g. Let C € V, C # ¢, such that the induced
subgraph G,[C of G, with vertex set C is connected, and let I = () C. Then A/I is
bi-interpretable with Z. O

Proof. We proceed by induction on the size of C. If |C| = 1, then I is a prime ideal of
infinite index, and the claim holds by Theorem 3.1. So suppose |C| > 1. It is well-known

that each nontrivial finite connected graph G contains a non-cut vertex, that is, a vertex
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v such that G \ v is still connected. Thus, let p, be a non-cut vertex of G,[C, and let
Co := C\ {pg}, Iy := () Cy. Choosing p € C, such that (p,py) € E, we have I + py S p + pg
and A/(p + py) is infinite; hence A/(I; + py) is infinite. By Example 4.1, the rings A/I =
A/(IyNpo) and (A/Iy) X 41y +p,) (A/Po) are naturally isomorphic, where A/I; and A/p, are
both bi-interpretable with Z, by inductive assumption and Theorem 3.1, respectively.
Hence A/I is bi-interpretable with Z by Theorem 4.10. ]

For the next lemma note that the graphs G, and G,  are naturally isomorphic.

Lemma 4.17. Let p, € Min(A) be of finite index in A, and let I, and A, be as in
Lemma 4.15. Then the reduced rings A,,q = A/N(A) and A, are bi-interpretable, and

the graphs G, and G, are naturally isomorphic. O

Proof. We may assume that I, € p, (since otherwise Iy = N(A) and so A4 = Ay). Then
A = I, + py, since p, is a maximal ideal of A (every finite integral domain is a field).
So the natural morphism A — A, x R, where R = A/p,, is surjective (by the Chinese
Remainder Theorem) with kernel N(A) = [ Min(4) = I, Np,. The first claim now follows
from Lemma 4.6. For the second claim note that the prime ideals of A; x R are the ideals
of this ring having the form p x R where p € Spec(4,) or Ay x q where q € Spec(R), and
the latter all have finite index. |

4.5 Characterizing the reduced rings which are bi-interpretable with Z

Combining the results obtained so far in this section, we obtain the following
characterization of those finitely generated reduced rings which are (parametrically)

bi-interpretable with Z.

Theorem 4.18. Let A be an infinite finitely generated reduced ring. Then A is bi-
interpretable with Z if and only if the graph G, is connected. O

Proof. After applying lemmata 4.15 and 4.17 sufficiently often, we can reduce to the
situation that no minimal prime of A is maximal, that is, the vertex set of the graph
G, equals Min(A). In this case, if G, is connected, then by Lemma 4.16, the ring A is
bi-interpretable with Z. Conversely, suppose that G, is not connected. Let C € V be a
connected component of the graph G, = (V,E). Then for each pe C and qe V' \ C we
have (p, q) ¢ E, that is, p + q has finite index in A. Thus by Corollary 1.3 and Lemma 4.13,
setting I := (\C, J := [(V\ C), the ideal I + J has finite index in A. Since I N J =
N(A) = 0, by Example 4.1, the rings A and (A/I) x4, ;(A/J) are naturally isomorphic,
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and by Lemma 4.16, both A/I and A/J are infinite. Hence by Corollary 4.9, A is not
bi-interpretable with Z. |

5 Finite Nilpotent Extensions

Throughout this section we let B be a ring with nilradical N. Our main goal for this

section is the proof of the following theorem:

Theorem 5.1. Suppose B is f.g. and anny, (V) # 0. Then the rings B,,; = B/N and B are
bi-interpretable. U

In particular, if B is f.g. and has positive characteristic, then B,,; and B are bi-
interpretable. Our bi-interpretation between B,.; and B passes through a truncation
of Cartier’s ring of big Witt vectors over B,,;; therefore we first briefly review this
construction. (See [4, IX, §1] or [8, §17] for missing proofs of the statements in the next

subsection.)

5.1 Witt vectors

In the rest of this section we let d, i, j > 1 be integers. Let X;,X,, ... be countably many
pairwise distinct indeterminates, and for each j set X|; := (X;); ;. The j-th Wit¢ polynomial
w; € Z[X|j] is defined by

— - /U
w;j = ZlXi .
ilj

Let now Y,,Y,,... be another sequence of pairwise distinct indeterminates. Then for
any polynomial P € Z[X, Y] in distinct indeterminates X, Y there is a sequence (P,) of

polynomials P; € Z[X;, ¥;] such that
P(w;(X;p), wi(Y)) = wy(Py (X, Yy), ..., Pi(X;, Y);)) foralli.

In particular, there are sequences (S;) and (M;) of polynomials S; € ZI[X};, Y] and
M; € ZIX|;, Y;] such that

wi (X)) + wi(Y)) = wi (S, Xy, YY), -, Si(X i V),

wi (X)) - wi(Y)) = wi (M (X, YY), .., My(X);, V)

120z e g1 uo 3senb Aq G6£ZL6Y/Z L L/1/020Z/2101HE/uil/wod dno"dlWapede//:sdiy WOl papeojumoq



Logical Complexity of Rings 155

for all i. For example, S; =X, +Y,, M; =X, - Y, and if p is a prime, then

p—-1
1 (P\ip-i D D
S,=X,+Y, - Zg(i)xlyl . M, =XV, +X,Y] +pX,Y,.

i=1

Let A be a ring. We let Al? be the set of sequences a = (a;) of elements of A indexed by
all i|d, and for a = (a;) € Al and j|d let a; = (a)y; € AU, We define binary operations +

and - on Al by

iy

a+b = (Sl(al,bl),...,Sj(alj,bu),...),

a-b:= (Ml(al,bl),...,Mj(ali,bu),...)

fora =(a;), b =(b;) € Ald. Equipped with these operations, A!¢ becomes a ring (with
0 and 1 given by (0,0,0,...) and (1,0,0,...), respectively), which we call the d-th ring
of Witt vectors over A, denoted by W;(A). Every ring morphism f : A — B induces a
componentwise map A!¢ — B!¢, and this map is a ring morphism W4(f): W4(A) > Wy4(B).
Thus W is a functor from the category of rings to itself. The polynomials w; define

(functorial) ring morphisms

at— W](aU): Wd(A) — A,

and hence give rise to a ring morphism

a— w,(a):= (wj(au)): W (4) — Ald

where Al? carries the product ring structure. The entries wjla;) of w,(a) are known as
the ghost components of the Witt vector a € W,4(A). If no i|d is a zero-divisor in A,
then w, is injective, and if all i|d are units in A, then w, is bijective. Note that the
underlying set of both the ring W,;(4) and of the ring Ald is a finite-fold power of A.

Moreover:
Lemma 5.2. The ring A!¢ is integral over its subring w, (W;(4)). O

Proof. Leta = (a;) € A'? and j|d, and suppose a; = 0 for i|d, i # j; it suffices to show
that a is integral over w, (W,(A)). This follows from the fact that @/*! = w, (b)a in A4,
where b = (b;); 4 satisfies b; = q; and b; = 0 for i|d, i # 1. |

Lemma 5.3. If Aisf.g, then sois W,4(A). O

120z e g1 uo 3senb Aq G6£ZL6Y/Z L L/1/020Z/2101HE/uil/wod dno"dlWapede//:sdiy WOl papeojumoq



156 M. Aschenbrenner et al.

Proof. Using that A is the image of a polynomial ring over Z, we first reduce to the
case that char(4) = 0, so w, is injective. Since A'? is integral over B := w, (Wy(A)), if the
ring A is f.g., then so is Ald and hence also B, by the Artin-Tate Lemma 1.8. Thus W (A)
. ||
is f.g.

Note also that the identity map Al¢ — W,(A) furnishes us with an interpretation
A ~» W (A) of the ring W4(A) in the ring A.

5.2 A bi-interpretation between B and B.qq

Let I be an ideal of BwithI2=0and d > 1 an integer such that dI = 0. Put A := B/I. The
residue morphism B — A induces a surjective ring morphism r: W;(B) — W (A), and we

also have a ring morphism
b= (b) > w(b) = wyb) = > b} Wy(B) — B.
ild
The morphism w descends to W (A):

Lemma 5.4. There is a unique ring morphism ¢: W;(A) — Bsuch that w =tor. O

Proof. Let b = (b;) and b’ = (b;) be elements of W (B) such that r(b) = r(b’), that is,

x;:=b;/— b; €I for each i|d. Then for i|d we have

i(b;)d/i = ib?/i + i(d/i)b?/iflxi + multiples of Xiz,

and since x> = 0 and i(d/i)x; = dx; = 0, we obtain i(b))%/! = ib?'". This yields w4(b) =
wy(d'). So given a € W,4(A) we can set t(a) := wy(b) where b is any element of W (B)
with r(b) = a. One verifies easily that then ¢: W;(4) — B has the required property. The

[ ]

uniqueness part is clear.

In the following we view B as a W (A)-module via the morphism ¢ from the previous

lemma.

Lemma 5.5. Suppose B is f.g. Then the W;(A)-module B is f.g. O

Proof. First note that the image W of W,(4) under ¢ contains all d-th powers of
elements of B. Hence B is integral over its subring W: each b € B is a zero of the monic
polynomial X4 — b with coefficients in W. Since B is an f.g. W-algebra, this implies that
Bis anf.g. W;(A)-module [3, Corollary 5.2]. [ |
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In the rest of this subsection we assume that B is f.g. Let by, ..., b,, be generators for the
W ,(A)-module B, and consider the surjective W ;(A)-bilinear map

m
@y, ) > D ajh;: Wy(A)™ — B. (5.1)
j=1

By Lemma 5.3, the ring W (4) is f.g., hence noetherian, so the kernel of (5.1) is f.g. Using
W (A)-bilinearity, the preimage of the graph of multiplication in B under the map (5.1)
is definable in W;(A). Hence the map (5.1) is an interpretation of B in W,(A). Composing
this interpretation W;(4) ~» B with the interpretation A ~» W;(A) from the previous
subsection, we obtain an interpretation f : A ~» B. Since the ideal I is f.g., the residue
morphism b +— b: B — A = B/I is an interpretation g: B ~» A. With these notations, we

have the following:
Lemma 5.6. The pair (f, g) is a bi-interpretation between A and B. O

Proof. The self-interpretation f o g of B is the map (B'4)™ — B given by

Brr-- s Bm) > D Wa(B)b;

j=1

and hence definable in B. One also checks easily that the self-interpretation g o f of A is
the map (A!%)™ — A given by

m
hence definable in A. (g 0py) > Z Wd(OéJ-)F, n
=1

We can now prove the main result of this section:

Proof of Theorem 5.1. Since ann, (V) # 0, we can take some d > 1 with dN = 0. Since
B is f.g. and hence noetherian, we can take some e € N with N%° = 0. We proceed by
induction on e to show that B and B,,4 = B/N are bi-interpretable. If e = 0 then N = 0,
and there is nothing to show, so suppose e > 1. By the above applied to the ideal
I:= N2 of B (so I? = 0), the f.g. rings A := B/I and B are bi-interpretable. Now the
nilradical of A is N(4) = N + I, so dN(4A) = 0 and N(A)zef1 = 0. Hence by inductive
hypothesis applied to A in place of B, the rings A .4 = A/N(A) and A are bi-interpretable.
Since A4 and B4 are isomorphic and the relation of bi-interpretability is transitive,

this implies that B,,4 and B are bi-interpretable. -
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6 Derivations on Nonstandard Models

In this section we shall construct derivations on nonstandard models of finitely
generated rings. Our appeal to ultralimits is not strictly speaking necessary as a simple
compactness argument would suffice, but the systematic use of ultralimits permits us

to avoid some syntactical considerations.

6.1 Ultralimits

Let us recall some of the basic formalism of ultralimits. Let I be a nonempty index set,
U be an ultrafilter on I, and M = (M,...) be a structure (in some first-order language).
We denote by MY the ultrapower M!/iU/ of M relative to &/ and by Ayr the diagonal
embedding of M into MY, that is, the embedding M — MY induced by the map M — M’
which associates to an element a of M the constant function I — M with value a. By Los’
Theorem, Ay: M — MY is an elementary embedding. We define the ordinal-indexed

directed system of ultralimits Ult;, (M, @) by

1. Ult,(M,0) := M,
2. Ul (M,a+1) := Ulty,(M,)", and
3. Ul (M, ) = l'l)nad Ult;,(M, o) for a limit ordinal A.

For us, in (3) only the case of A = w is relevant. By way of notation, if I and U/ are

understood, then by an ultralimit we mean Ult;,(M, ) and we shall write
*M := Ulty, (M, »).

By definition of the direct limit, the structure *M comes with a family of embeddings

Ult;,(M, n) — *M which commute with the diagonal embeddings
Ay Ulty (M, n) — Ulty, (M, n +1).
We identify M with its image in *M under the embedding
M = Ult,,(M,0) — *M.

The Elementary Chain Lemma [11, Theorem 2.5.2] implies that M is an elementary
substructure of *M. For fixed U, the ultralimit construction commutes with taking
reducts, and is functorial on the category of sets. Given a set N and a map f : M — N,

we write *f: *M — *N for the ultralimit of f. In particular, if N is a substructure of
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M, then the ultralimit of the natural inclusion N — M is an embedding *N — *M
(compatible with the inclusions of N and N into their respective ultralimits), by which
we identify *N with a substructure of *M. From the universal property of the direct
limit, we have the curious and useful fact that *Ult;,(M, 1) = *M where by equality we

mean canonical isomorphism.

6.2 Constructing derivations on elementary extensions

With the next two lemmata we show that every non-principal ultrapower of an integral
domain of characteristic zero admits an ultralimit carrying a derivation which is
nontrivial on the ultralimit of the nonstandard integers. We let R be an integral domain

of characteristic zero and k C R be a subring.

Lemma 6.1. Suppose Ris an f.g. k-algebra, and let t € R be transcendental over k. Then
there is a k-derivation d: R — R with a(t) # 0. O

Proof. Present R as R = klt;, ..., t,] where t; = t. Since t is transcendental over k,
there is a k-derivation D: K — K on the field of fractions K of R satisfying D(t) = 1.
(See, e.g., [15, Proposition VIII.5.2].) Write D(t;) = a;/b; where a; € R and b; € R, b; # 0.
Let 3 be the restriction of ([T}, b;) D to R, a k-derivation on R possibly taking values in
K. Since R is an integral domain, d(t) = [[; b; # 0, and visibly 3(¢;) = a; ]_[j# b]- € R for
each i = 1,...,n. Hence, for any f € R, writing f = F(t;, ..., t,) for some polynomial F
over k, we see that 9(f) = >, ;—}Z(tl, . t,)0(t) €R. [ |

Taking an ultralimit of the above derivations, we find interesting derivations on

ultralimits.

Lemma 6.2. Lett € R be transcendental over k. Then there is an ultralimit *R of R and
a k-derivation 9: *R — *R with d(¢t) # 0. O

Proof. LetI be the set of finite subsets of R. For S €1, let

S):={Sel:Scs},
and let C := {(S) :Se I}. Observe that C has the finite intersection property: (S;) N (S,) =
(S; US,) forall S;, S, € I. Hence C extends to an ultrafilter ¢/ on I.

For each S € I, by Lemma 6.1 we may find a k-derivation dg: klt, S| — klt, S]

with d4(t) # 0, and these k-derivations combine to a k-derivation [[¢.;ds on the
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k-subalgebra [[g.; klt, S] of R!, which in turn induces a k-derivation 0y, With 95, (2) # 0
on the image Rg, of this subalgebra under the natural surjection Rl — RuU =

Ult;,(R, 1). By definition of C, the image of Ay is contained in Rﬁn. Thus
D:=dg,0Ax: R — Ulty(R, 1)

is a k-derivation and D(t) # 0. Then
9:="D:*R — "Ult;;(R,1) ="R

is our desired derivation. [ ]

We specialize the above result to obtain our derivation which is nontrivial on
the nonstandard integers. Below we fix an arbitrary non-principal ultrafilter U (on some

unspecified index set), and given a ring A we write A = AY.

Corollary 6.3. There is a k-derivation 9 on an ultralimit *R of R such that 3(t) # 0 for

some t € Z. O

Proof. Lett e Z\ Z be an arbitrary new element of Z. Then ¢ is transcendental over k,

and the previous lemma applies to R in place of R. |

Combining the previous corollary with Lemma 1.10, we conclude that noetherian rings
having torsion-free nilpotent elements have elementary extensions with an automor-

phism moving the nonstandard integers.

Lemma 6.4. Let A be a noetherian ring with nilradical N = N(A4), and suppose that
anny,(N) = 0. Then there is an ultralimit *A of A and an automorphism o of *A over A
for which o (*Z) ¢ 7.

Proof. Let ¢ be an element of N with ann,(¢) =: q prime and anny,(¢) = 0, given by
Lemma 1.10. Let w: A — A/q =: R be the natural quotient map. By Corollary 6.3, we can
find an ultralimit *R of R and an R-derivation d: *R — *R which is nontrivial on *Z. Note
that Ae is an R-module in a natural way, and so *Ae is an *R-module. We thus may define
amap o: *A — *A by x — x + 9(*7(x))e; one checks easily that ¢ is an automorphism
over A. We have Ae N Z = 0 and anng(e) = 0, hence *Ae N*Z = 0 and ann.g(e) = 0. Since
9 is nontrivial on *Z, it follows that o (*Z) ¢ *Z. [ ]

We conclude that rings as in the previous lemma are not bi-interpretable with Z.

120z AeN g1 uo3senb Aq GeezZL6Y/2) L/1/020Z/a101Me/ulwi/wod dnoolwapese//:sdiy wolj papeojumo(



Logical Complexity of Rings 161

Corollary 6.5. No noetherian ring with nilradical N for which ann,(N) = 0 is bi-
interpretable with Z. O

Proof. Let A be a ring of characteristic zero, and identify Z with its image under the
ring morphism Z — A. Suppose Z is definable in A. Then the same formula defines
the subring Z of A, since (4,7Z) is an elementary extension of (4,Z). Similarly, given
an ultralimit *4 of A, the subring *7 of *A is A-definable, so o(*Z) = *Z for all

automorphisms o of *A over A. Now combine Lemma 6.4 and Corollary 2.19. u

We finish this subsection by remarking that although it may not be obvious from the
outset, a nontrivial derivation on a proper elementary extension of R as constructed in
Corollary 6.3 has some unexpected properties, not exploited in the present paper. (As

before n ranges over the standard natural numbers.)
Lemma 6.6. LetZ > Z and 9: Z — Z be a derivation. Then 3(Z) C (- nZ. O

Proof. Leta € Z and n > 1; we need to show that d(a) is divisible by n, and for this we
may assume that a > 0. By the Hilbert-Waring Theorem we may write a = 2?21 b} for
some b; € Z (where g = g(n) only depends on n), and differentiating both sides of this
equation yields 9(a) = n Z?zl b?‘la(bi). -

6.3 Finishing the proof of the main theorem

We now complete the proof of the main theorem stated in the introduction, along
the lines of the argument sketched there: let A be an f.g. ring, N = N(A). Suppose
anny(N) # 0. Then by Theorem 5.1 (applied to A in place of B), the rings A and A4 are
bi-interpretable, and by Theorem 4.18, the reduced ring A_.4 is bi-interpretable with
N if and only if A4 is infinite and Spec (A4,,q) is connected. The latter is equivalent
to A being infinite and Spec’(4) being connected. If ann, (V) = 0, then A is not bi-
interpretable with Z, by Corollary 6.5. O

7 Quasi-Finite Axiomatizability

In this section we show the corollary stated in the introduction, in a slightly more

precise form:
Proposition 7.1. Every f.g. ring has a QFA formula. O

Throughout this section we let A, B be f.g. rings.
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Lemma 7.2. Suppose there is a QFA formula for A4, and let M be an f.g. A-module. Then
there is a QFA formula for the two-sorted structures (4, M). O

Proof. Let ¢,(x) be a QFA formula for A, where x = (x;,...,%,,). So we can take
generators a,,...,a,, of A such that for each f.g. ring A" and a},...,a;, € A, we have
A’ = gy(ay, ..., ay,) iff there is an isomorphism A — A’ with a; — a;/ fori=1,...,m.

Below we often use the (albeit obvious) fact that there is at most one such isomorphism

A — A'. Let also by,...,b, be generators for M. Since A is noetherian, the syzygies of
these generators are f.g., that is, there are elements aji G=1,....n,k=1,...,p)of A
such that for all @y, ..., «, € A we have

n p
Zajbj:O <= there are,Bl,...,,BpeAsuchthataj:Z,Bkajkforallj:1,...,n.
j=1 k=1

Forj=1,...,n,k=1,...,p pick polynomials Py € Z[x] such that a;; = Pj(a), where
a = (a;,...,a,). Let y = (y;,...,¥,) be a tuple of distinct variables of the module
sort, u be another variable of the module sort, and u,..., Up,Zy, -1 2y be distinct new

variables of the ring sort. Let y(y) be the formula

n
Yuiz, ---3z, (u = ZZiYi)
i=1

and ¢(x, y) be the formula
n n p
vz,---Vz, Zznyn =0 «— Ju, '~E!up /\ z; = Z ukij(X)
j=1 j=1 k=1

Finally, let « be a sentence expressing that A is a ring and M is an A-module. One verifies

easily that

X, V) =a A (X)) AY (@) ALX,Y)

is a QFA formula for the two-sorted structure (A, M). [ |
Lemma 7.3. Let a,,...,a, be generators for A. There is a formula u(x;,...,x,) such
that for allrings A’ and a}, ... ,a;, € A’, wehave A’ |= u(x,, ..., x,) iff there is a morphism

A - A'witha; — a;/fori=1,...,n. O
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Proof. Letx = (x,...,x,)andx: Z[x] — A be the (surjective) ring morphism satisfying
w(x;)=a;fori=1,...,n. LetP,..., P, € Z[x] generate the kernel of = and let uu(x) be the
formula P,(x) =--- =P, (x) =0. |

Lemma 7.4. Let I, J be ideals of B such that IJ = 0. If there are QFA formulas for B/I
and for B/J, then there is one for B. O

Proof. Let ¢;(x) be a QFA formula for A = B/I, where x = (x,...,X,,), and take
a system a = (a;,...,a,,) of generators of A such that for each f.g. ring A’ and
a =(aj,..., a,) € (@A)", wehave A’ |= ¢;(a’) iff there is an isomorphism A — A’ with a —
a'. Take generators by, ..., b,,. fi,... ,fp for thering Bsuchthata; =b;,+Ifori=1,...,m
and I = (f},... ,fp). Putb= (by,....b,). f = (fl,...,fp). From our QFA formula ¢;(x) for

A we easily construct a formula v ;(x, u) (where u = (u,..., up)) such that for each f.g.
ring B and b’ = (b},...,by,) € B)™, f' = (f],... ,fl’,) € (B")P, the following are equivalent,
with I’ := (fl/,...,fl’,) C B

(1) B =y b, f);

(2) there is an isomorphism A — B'/I' with a — b’ + (I')™.

(See Example 2.9, (2).) By Lemma 7.2, there is also a QFA formula for the two-sorted
structure (B/J, I). Hence as before, we can take generators c;,...,C,,9;,--- '9q of B such
that the cosets ¢; +J, ..., ¢, +J generate the ring B/J and gy, ..., g, generate the ideal J,
as well as a formula ¢ ;(y, u, v), wherey = (y;,...,v,), V= (v,... ,Vq), such that for each
f.g. ring B' and tuples ¢’ = (c},...,¢p), ' = (fi,....fp), and g’ = (g}, ..., gy) of elements
of B', the following statements are equivalent, with J' := (g}, ..., g&) C B

(3) B vy, f' g

(4) there is an isomorphism (B/J, I) — (B'/J, I') with ¢ + J* — ¢ + (J)" and

f=rf.

Now by Lemma 7.3 let u(x, y, u, v) be a formula such that for each f.g. ring B’ and tuples
b= (@®},....b), ¢ =(,....cp), [ = (fl’,...,fI;), g = (g’l,...,gﬁz) of elements of B/, the

following are equivalent:

(5) B E=uld, c, f, 9
(6) there is a morphism B — B'withb+— b, c+> ¢, fr f',andgr— ¢

Then by Lemma 1.11 and the equivalences of (1), (3), (5) with (2), (4), (6), respectively, the
formula y;(x, u) A ¥y, u, v) A ulx, y, u, v) is QFA for B with respect to the system of
generators b, c, f, g of B. [ |
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Corollary 7.5. Let Ny,...,N, (e > 1) be ideals of B such that N;---N, = 0. Suppose that
fork=1,...,e, thereis a QFA formula for the f.g. ring B/N;. Then there is a QFA formula
for B. O

Proof. We proceed by induction on e. The case e = 1 being trivial, suppose that e > 2
and putI := Ny---N,_,,
B/J = B/N,. Consider the f.g. ring B := B/I and the ideals N}, := N /I (k =1,...,e — 1)
of B. We have N, ---N,_; = 0, and the residue map B — B induces an isomorphism
B/N, — B/N,. Hence by the inductive hypothesis applied to B and N,...,N,_;, there

e—1r

J := N, so IJ = 0. By assumption, there is a QFA formula for

is a QFA formula for B = B/J. Now by the proposition above, there is a QFA formula
for B. |

We can now prove Proposition 7.1. First, applying the previous corollary to N = --- =
N, = N(B) where e = nilpotency index of N(B) yields that if there is a QFA formula for
B..q, then there is a QFA formula for B. Thus to show that B has a QFA formula we
may assume that B is reduced. Let P;,...,P, be the minimal prime ideals of B. Then
P,---P,=P; N--- NP, =0, and by Corollary 3.2, for each k = 1,...,e there is a QFA
formula for the f.g. integral domain B/P;. Hence again by the preceding corollary, there
is a QFA formula for B. O
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