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Whitney’s extension problem
in o-minimal structures

Matthias Aschenbrenner and Athipat Thamrongthanyalak

Abstract. In 1934, H. Whitney asked how one can determine whether
a real-valued function on a closed subset of Rn is the restriction of a
Cm-function on Rn. A complete answer to this question was found much
later by C. Fefferman in the early 2000s. Here, we work in an o-minimal
expansion of a real closed field and solve the C1-case of Whitney’s ex-
tension problem in this context. Our main tool is a definable version of
Michael’s selection theorem, and we include other another application of
this theorem, to solving linear equations in the ring of definable continuous
functions.

Introduction

The long history of Whitney’s extension problem began in 1934, when H. Whitney
presented a series of papers [46], [47], [48]. In the first paper, Whitney’s extension
theorem, which can be regarded as a partial converse of Taylor’s theorem, was
proved (see Section 1 below); it later became an important tool in differential
topology (see [31]). In the the latter two papers, Whitney answered special cases
of the following question.

Question (Whitney’s extension problem; WEPn,m). Let f : X → R be a continu-
ous function, where X is a closed subset of Rn. How can we determine whether f
is the restriction of a Cm-function on Rn?

An answer to this question in the case n = 1 was given in [47], and, judging from
the title, Whitney planned to solve the general case also; however, the continuation
of this paper never appeared. In 1958, G. Glaeser [20] introduced the notion of an
“iterated paratangent bundle” and used it to give an answer to the above question
when n is arbitrary andm = 1. The concept of paratangent bundles had significant
influence on later work in this area. After gradual progress on Whitney’s original
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question by Fefferman, Brudnyi, Shvartsman, Zobin, and others (see, e.g., [11], [10],
[9], [42], [41], [40], [51], [50]), in 2004 C. Fefferman [17] gave a complete answer
to Whitney’s extension problem, i.e., provided a necessary and sufficient condition
for the existence of a Cm-extension of functions defined on closed subsets of Rn.

In 1997, K. Kurdyka and W. Paw#lucki [28] showed a subanalytic version of
Whitney’s extension theorem. Later Paw#lucki together with E. Bierstone and
P. Milman [4] introduced an analogue of iterated paratangent bundles (which be-
came an inspiration for Fefferman’s proof of WEPn,m; see [18]), and showed that
if f : X → R is a subanalytic function on a compact subanalytic subset X of Rn

which is the restriction to X of a Cm-function Rn → R, then there is a constant
r = r(X,m, n) ∈ {0, . . . ,m} (depending only on X , m, and n) and a subana-
lytic Cm−r-extension Rn → R of f . Therefore, this raises the interesting question
whether we can find an extension which preserves both subanalyticity and the
order of differentiability.

The category of subanalytic sets possesses many good topological and geo-
metric properties, most of which are shared by the category of semialgebraic sets
(see [5], [6].) In model theory, a source of these good properties has been isolated,
and is known as o-minimality: an o-minimal expansion R of the ordered field of
real numbers is defined to be a class of subsets of Rn (for varying n) which

1. is closed under (finite) intersections and unions, complements, finite cartesian
products, and linear projections;

2. contains all algebraic subsets of Rn; and

3. contains only those subsets of R which have finitely many connected compo-
nents (the o-minimality axiom).

The archetypical example of such an o-minimal expansion of the ordered field of
real numbers is the class of semialgebraic sets (i.e., sets defined by finite boolean
combinations of polynomial inequalities); another example is the class of finitely
subanalytic sets, i.e., the subsets of Rn which are subanalytic when viewed as
subsets of real projective n-space [14]. In recent years, many new examples of
o-minimal structures have been constructed, often by sophisticated uses of elimi-
nation theory and desingularization (see, e.g., [25], [38], [43], [49]).

LetR be an o-minimal expansion of the ordered field of real numbers. Following
the usual terminology of logicians, a set S ⊆ Rn which belongs to R is said to be
definable (in R). A map f : S → Rn, where S ⊆ Rm, is said to be definable (in R)
if its graph Γ(f) ⊆ Rm+n is. It is often routine to verify that topological and
geometric constructions of a “finitary” nature preserve definability; for example, if
X ⊆ Rm is definable, then so are the closure and the interior of X . This leads to
the development of a “tame topology” [15] as envisaged by Grothendieck’s esquisse
d’un programme [21]. This is witnessed by the remarkable fact that although
the o-minimality axiom only refers to subsets of the line, the classical finiteness
theorems for semialgebraic and subanalytic sets and maps (cell decompositions,
Whitney stratifications, triangulation, trivialization, etc.) continue to hold for
definable objects in R living in higher-dimensional Euclidean spaces; see, e.g., [16].
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In o-minimal expansions of the ordered field R, definable versions of Whit-
ney’s extension theorem and WEPn,m can be considered. In Section 2 below we
do show that WEP1,m has a simple solution in the case of functions definable
in R. In [45], the second-named author proved a definable version of Whitney’s
extension theorem in R; see Section 1 below. (An alternative proof was given by
Kurdyka and Paw#lucki [29].) In the present paper we use this result to treat the
C1-case WEPn,1 of the Whitney extension problem for definable functions; our
main result is the following theorem. Given A ⊆ RN , a family (fa)a∈A of functions
fa : Xa → R (Xa ⊆ Rn) is said to be definable if the map (a, x) $→ fa(x) : X → R
where X =

{
(a, x) ∈ RN × Rn : x ∈ Xa

}
is definable.

Theorem. Let R be an o-minimal expansion of the ordered field of real numbers,
and let (fa)a∈RN be a definable family of functions fa : Xa → R, where Xa ⊆ Rn

is closed. Then the set A consisting of all a ∈ RN such that fa has an extension
to a C1-function Rn → R is definable. Moreover, if a ∈ A, then fa extends to
a C1-function Rn → R which is definable in R ; in fact, there exists a definable
family (f̃a)a∈A of C1-functions on Rn such that f̃a !Xa = fa for each a ∈ A.

Thus, for example, if f : X → R is semialgebraic, where X ⊆ Rn is closed,
and f extends to a C1-function F on Rn, then F can be taken to be semialgebraic.
This can be seen as providing an answer to the C1-case of a question posed by
Bierstone and Milman (see [52]). Our proof follows the argument for WEPn,1

given by Klartag and Zobin [26], which in turn rests on a use of Michael’s selection
theorem from general topology. Therefore, a study of properties of definable set-
valued maps and a definable version of this selection theorem occupy most of this
paper. (Sections 3 and 4.) In a companion paper [2] we investigate the Michael
selection theorem for the class of semilinear sets and maps.

It may be worthwhile to explain why we could not simply mimic Glaeser’s
original argument for the C1-case of Whitney’s extension problem in order to prove
the theorem above. First, Glaeser (see Proposition IV of Section 5, p. 43, in [20])
defines his “linearized paratangent space ptgl1 of order 1” in a completely abstract
way, simply taking the intersection of all set-valued mappings satisfying certain
properties. But there is no way to guarantee that ptgl1, so introduced, is definable
(since only intersections of definable families of sets result in definable objects, and
not an abstract set-theoretic intersection of this kind). Now, using ptgl1, Glaeser
then goes on to give a criterion for the existence of a C1-extension (see p. 44
of [20]). This criterion and the proof that it works are indeed constructive (modulo
an argument in the proof of the “Lemme” on p. 44 employing sequences, which can
probably be replaced by appeals to the curve selection lemma of o-minimality from
Chapter 6, §1 of [15]). In the following Section 6, he then shows how to obtain ptgl1

in a constructive manner. However, justifying this construction involves, among
other things, a theorem of Baire on semicontinuous functions on Baire spaces, for
which Glaeser refers to Bourbaki’s book on general topology (p. 47). He then goes
on, in the proof, to make other non-constructive twists (extracting a subsequence
from a certain convergent sequence), and another application of Baire category
appears on p. 49. We could not see how to make Glaeser’s arguments constructive
in the way necessary for a truly “o-minimal proof” leading to our main result.
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Let us also briefly discuss why we believe that such a proof is desirable. One
says that R is polynomially bounded if for each definable function f : R→ R there
is an integer N ≥ 0 such that |f(x)| ≤ xN for all sufficiently large x. In some
ways, functions definable in polynomially bounded o-minimal expansions of the
ordered field of reals resemble real analytic functions [34]. This may suggest the
potential adaptability of classical techniques for Whitney extension problems to the
o-minimal context. However, such tools are not available in absence of polynomial
boundedness, yet there are plenty of examples of o-minimal expansions of the real
field which are not polynomially bounded: by Wilkie [49] there is an o-minimal
expansion of the ordered field of reals which contains the real exponential function
x $→ ex : R → R, and indeed, every o-minimal expansion R of the ordered field
of reals is contained in one in which the exponential function is definable [43].
(As an aside, we note here a remarkable dichotomy discovered by Miller [33]: if R
is not polynomially bounded, then this is so because the exponential function is
definable in R.)

The virtue of the argument of Klartag and Zobin is that it neatly isolates the
non-constructive input in the form of the Michael selection theorem; hence proving
a definable version of this theorem, which we believe to be of independent interest,
became the centerpiece of our paper. To illustrate the usefulness of this definable
version of Michael’s selection, we include another application.

Corollary. With R as above, let f, g1, . . . , gm : Rn → R be definable functions.
If there are continuous functions y1, . . . , ym : Rn → R such that

(∗) f = g1y1 + · · ·+ gmym,

then there are also definable continuous functions y1, . . . , ym with this property.

See Section 6 below for a more precise statement. For the case where the
functions f, g1, . . . , gm are given by real polynomials and R is the ordered field of
real numbers (hence “definable = semialgebraic”), this was shown by Fefferman
and Kollár (Corollary 29, (1) in [19]) using algebraic-geometric techniques specific
to polynomials. (Kollár and Nowak [27] showed that in this situation, in general
one cannot choose y1, . . . , ym to be continuous rational functions.) Our approach
follows the method to construct continuous solutions yi to (∗) from Section 1 of [19]
using affine bundles, Glaeser refinements, and Michael’s theorem.

In the rest of this paper, we more generally work in an o-minimal expansionR of
a real closed ordered field R (not necessarily the reals). This allows for applications
of model-theoretic compactness; see, e.g., Section 6 below or Section 6 of [45]. We
assume that readers have a working knowledge of o-minimality. (See [15] or [16] for
the necessary background.) “Definable” always means “definable in R, possibly
with parameters.”

Acknowledgements. We thank the anonymous referee for numerous suggestions
which improved the readability of the paper.
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Conventions and notations

Throughout this paper, d, k, l, m, and n will range over the set N = {0, 1, 2, 3, . . .}
of natural numbers. For a set S ⊆ Rn we denote by clS = cl(S) the closure,
by ∂S = ∂(S) := cl(S) \ S the frontier, and by intS = int(S) the interior of S.
We denote the Euclidean norm on Rn by ∥ · ∥ and the associated metric by
(x, y) $→ d(x, y) := ∥x− y∥. For r ∈ R>0 and x ∈ Rn we let

Br(x) :=
{
y ∈ Rn : d(x, y) < r

}

be the open ball of radius r around x and

Br(x) :=
{
y ∈ Rn : d(x, y) ≤ r

}

be the closed ball of radius r around x. Given x ∈ Rn, for a non-empty definable
set S ⊆ Rn let d(x, S) := infy∈S d(x, y) ∈ R≥0 be the distance between x and S,
and d(x, ∅) := +∞. For E ⊆ Rn ×Rm and x ∈ Rn, let

Ex =
{
y ∈ Rm : (x, y) ∈ E

}
.

1. Definable Whitney extension theorem

In this section, a definable version of Whitney’s extension theorem and related
terminology needed will be introduced (see [45]). We let X be a definable subset
of Rn, and fix some m. We say that f : X → R is Cm if there exists a definable
Cm-function F : U → R on an open neighborhood U of X with F !X = f . We let
α = (α1, . . . ,αn) range overNn, and letDα = ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n

and |α| := α1+· · ·+αn.

Definition 1.1. A jet of order m on X is a family F = (Fα)|α|≤m of definable
continuous functions Fα : X → R. If f : U → R is a definable Cm-function on an
open neighborhood U of X , then we obtain a jet Jm

X (f) :=
(
(Dαf) !X

)
|α|≤m

of

order m on X . If F is a jet of order m on X and X ′ ⊆ X is definable, then

F !X ′ := (Fα !X ′)|α|≤m

is a jet of order m on X ′. Let F be a jet of order m on X . For every a ∈ Rn,
x ∈ X , we define

Tm
a F (x) =

∑

|α|≤m

Fα(a)
(x− a)α

α!

and
Rm

a F (x) = F − Jm
X (Tm

a F (x)).

We say that F is a definable Cm-Whitney field (F ∈ E m(X)) if for all x0 ∈ X and
|α| ≤ m,

(1.1) (Rm
x F )α(x′) = o

(
∥x− x′∥m−|α| )

as X ∋ x, x′ → x0,

equivalently, if

|Tm
x F (z)− Tm

x′ F (z)| = o(∥x− z∥m + ∥x′ − z∥m) for z ∈ Rn and X ∋ x, x′ → x0.
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(See [30], [35].) Note that if F ∈ E m(X) and X ′ ⊆ X is definable, then F !X ′ ∈
E m(X ′). Given a jet F of order m on X , we say that a Cm-function f : Rn → R
is an extension of F if Jm

X (f) = F .

The following is shown in [45]. (See also [29].)

Theorem 1.2 (Definable Whitney extension theorem). Suppose X is closed, and
let F ∈ E m(X) and q ∈ N. Then F has a definable Cm-extension which is Cq

on Rn \X.

The classical Whitney extension theorem is the same statement in the case
where R = R, of course without the definability requirements in both the hypoth-
esis and conclusion; here the Cm-extension of F can even be chosen to be analytic
on Rn \X , by [47].

2. The one-dimensional case

In his paper [47], H. Whitney introduced the concept of difference quotients and
used it to answer WEP1,m. Even though this concept is very natural, it is quite
complicated to verify the resulting conditions in practice. In this section, we show
that if we work in an o-minimal context, the answer to the definable WEP1,m

becomes a lot simpler. We first establish an estimate related to Taylor’s formula.
For x, y ∈ R we denote by

[x, y] :=
{
rx + (1− r)y : r ∈ [0, 1]

}

the line segment between x and y.

Lemma 2.1. Let f : (a, b)→ R be a definable Cm-function where a, b ∈ R, a < b.
Assume, for l ≤ m, that the lth derivative f (l) of f has an extension to a continuous
function fl : [a, b] → R, and consider the m-jet F = (fl)l≤m on [a, b]. Let x, y ∈
[a, b] and ϵ > 0, and suppose |fm(s)− fm(t)| ≤ ϵ for all s, t ∈ [x, y]. Then

∣∣∣(Rm
x F )(l)(y)

∣∣∣ ≤ ϵ
|x− y|m−l

(m− l)!
for all l ≤ m.

Proof. Let l ≤ m. Suppose x < y, and for 0 < ϵ0 < y − x let xϵ0 := x + 1
2ϵ0 and

yϵ0 := y − 1
2ϵ0. By Taylor’s theorem (see Exercise (2.12) of Chapter 7 in [15]),

there exists zϵ0 ∈ (xϵ0 , yϵ0) such that

f (l)(yϵ0) = f (m)(zϵ0)
(yϵ0 − xϵ0)

m−l

(m− l)!
+

∑

k≤m−l−1

f (l+k)(xϵ0)
(yϵ0 − xϵ0)

k

k!
.

By definable Skolem functions, we may assume that ϵ0 $→ zϵ0 : (0, y − x) → [x, y]
is definable, and so by the monotonicity theorem, z := limϵ0→0+ zϵ0 ∈ [x, y] exists.
By continuity

fl(y) = fm(z)
(y − x)m−l

(m− l)!
+

∑

k≤m−l−1

fl+k(x)
(y − x)k

k!
.
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Therefore

∣∣(Rm
x F )(l)(y)

∣∣ =
∣∣∣fl(y)−

∑

k≤m−l

fl+k(x)
(y − x)k

k!

∣∣∣ =
∣∣∣(fm(z)− fm(x))

(y − x)m−l

(m− l)!

∣∣∣

≤ |fm(z)− fm(x)| · |x− y|m−l

(m− l)!
≤ ϵ |x− y|m−l

(m− l)!

as claimed. Similarly one deals with the case y < x. ✷

Theorem 2.2. Let f : X → R be definable and continuous where X ⊆ R is
closed. Suppose f ! intX is Cm and f (l) !

(
[−r, r]∩ intX

)
is uniformly continuous

for all l ≤ m and r ∈ R>0. Then f is the restriction of a definable Cm-func-
tion R→ R.

Proof. If dimX = 0, then this is obvious (since then X is finite). Suppose
that dimX = 1. By the definable Whitney’s extension theorem (Theorem 1.2),
it is enough to find a Cm-Whitney field F = (fl)l≤m with f0 = f on X . It is
enough to construct F on each definably connected component of X , and hence
we may assume that X is definably connected. (For isolated points x ∈ X , we can
simply let fl(x) = 0 for all l = 1, . . . ,m.) We also assumeX = [a, b] where a, b ∈ R,
a < b. (The case where X is unbounded is similar.) Let fl : [a, b]→ R be the con-
tinuous extension of the lth derivative f (l) of f ! (a, b). Define F := (fl)l≤m. To
prove that F ∈ E m([a, b]), by Taylor’s theorem, it is enough to only check (1.1) in
Definition 1.1 for x0 ∈ {a, b}. Let ϵ > 0 be given. Since fm is continuous on [a, b],
there exists δ ∈ (0, b− a) such that |fm(s)− fm(t)| ≤ ϵ for all s, t ∈ [a, a+ δ]. By
Lemma 2.1, for x, y ∈ [a, a+ δ] and l ≤ m, we have

∣∣(Rm
x F )(l)(y)

∣∣

|x− y|m−l
≤ ϵ

(m− l)!
.

Hence (1.1) holds for x0 = a; similarly, (1.1) also holds for x0 = b. So F ∈
E m([a, b]). ✷

3. Continuity of definable set-valued maps

The discussion of more advanced topics about WEPn,m requires an investigation
of set-valued maps; therefore, we devote this section to topological properties of
definable set-valued maps. (See [3], [24] for classical studies.)

Notation. Let X and Y be sets. We use the notation T : X ⇒ Y to denote a
map T : X → 2Y , and call such T a set-valued map. Let T : X ⇒ Y be a set-valued
map. The domain of T is the set of x ∈ X with T (x) ̸= ∅. The graph of T is the
subset

Γ(T ) :=
{
(x, y) ∈ X × Y : y ∈ T (x)

}

of X × Y . Note that every map f : X → Y gives rise to a set-valued map X ⇒ Y ,
whose graph is the graph of the map f .
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Let T = (Tx)x∈X be a family of subsets of Rm, where X ⊆ Rn. As usual we
say that T is definable if the set

⋃
x∈X{x} × Tx is definable. Then T gives rise

to a set-valued map T : X ⇒ Rm given by T (x) := Tx for x ∈ X . A set-valued
map X ⇒ Rm (X ⊆ Rn) which arises in this way from a definable family of subsets
of Rm is said to be definable.

In the remainder of this section, we fix a definable set-valued map T : X ⇒ Rm

where X ⊆ Rn.

Definition 3.1. We say that

1. T is lower semicontinuous (l.s.c.) if, for every x ∈ X , y ∈ T (x), and neigh-
borhood V of y, there is a neighborhood U of x such that T (x′) ∩ V ̸= ∅ for
all x′ ∈ U ∩X ;

2. T is upper semicontinuous (u.s.c.) or closed if Γ(T ) is closed in X×Rm, that
is: for every x ∈ X , y ∈ Rm \ T (x), there are neighborhoods U of x and V
of y such that T (x′) ∩ V = ∅ for all x′ ∈ U ∩X ;

3. T is continuous if T is both l.s.c. and u.s.c.

What we call lower semicontinuous (upper semicontinuous) is sometimes called
“inner semicontinuous” (respectively “outer semicontinuous”), for example in [13]
and [37]. In [3], “upper semicontinuous” is reserved for a slightly more restric-
tive concept (which can be shown to agree with ours if

⋃
x∈X T (x) is bounded;

cf. Proposition 1.4.8 in [3]); we prefer the terminology “closed”.

Remarks.

1. A definable map X → Rm is continuous in the usual sense if and only if
it is continuous in the sense of the previous definition, when viewed as a
set-valued map X ⇒ Rm.

2. If T is closed, then T (x) is closed for every x ∈ X (but of course, the converse
of this implication fails).

3. If f : X ′ → X is a definable continuous map, where X ′ ⊆ Rn′
, and T is

l.s.c. (closed), then T ◦ f is l.s.c. (closed, respectively). In particular, if X ′ is
a definable subset of X , and T is l.s.c. (closed), then T !X ′ is l.s.c. (closed,
respectively).

4. Suppose X = X1∪X2 where X1, X2 are definable subsets of X with cl(X1)∩
X2 = X1 ∩ cl(X2) = ∅. If T !X1 and T !X2 are l.s.c. (u.s.c., respectively),
then so is T .

One powerful consequence of the o-minimality axiom is the cell decomposition
theorem, which implies that every definable continuous map is piecewise contin-
uous. The main goal in this section is to show an analogue for set-valued maps.
We let π : X × Rn → X denote the natural projection onto X . First, we show
that T is piecewise l.s.c.

Lemma 3.2. There is a finite partition C of X into definable sets such that T !C
is l.s.c., for every C ∈ C .
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Figure 1. A lower semicontinuous set-valued map (left); a closed set-valued map (right).

Proof. We prove this lemma by induction on d = dimX . If d = 0, then X is a
finite set; so this case is trivial. Assume the lemma holds for all definable set-valued
maps whose domain has dimension < d. By the cell decomposition theorem, take a
cell decomposition D of Rn compatible with X . The induction hypothesis applies
to T !D for each D ∈ D with dimD < d; hence we may assume that X is a cell.
Moreover, we may also assume that X is an open cell in Rd, since every cell of
dimension d is definably homeomorphic to an open cell in Rd. Let

K =
{
(x, y) ∈ X ×Rn : y ∈ T (x) and

(∃ϵ > 0) (∀δ > 0) (∃x′ ∈ Bδ(x) ∩X) (∀y′ ∈ T (x′)) ∥y − y′∥ > ϵ
}

be the set of witnesses of lower semi-discontinuity of T . Obviously, T ! (X \ π(K))
is l.s.c. Thus it remains to show the following claim.

Claim. dim(π(K)) < d.

Suppose not. Then π(K) has non-empty interior. By definable Skolem func-
tions and the cell decomposition theorem, we may assume that there is a defin-
able continuous map f : U → Rm, where U ⊆ Rd is open, such that Γ(f) ⊆ K.
Let

(
x, f(x)

)
∈ K. Then there exists ϵ > 0 such that, for every δ > 0, there

is x′ ∈ Bδ(x) ∩ U with ∥f(x)− f(x′)∥ > ϵ. This contradicts the continuity
of f at x. ✷

Next we show that if T has closed values, then T is also piecewise closed:

Lemma 3.3. Suppose that T (x) is closed, for every x ∈ X. There is a finite
partition C of X into definable sets such that T !C is closed, for every C ∈ C .

Proof. Similarly to the proof of Lemma 3.2, we show this by induction on d =
dimX . The case d = 0 is obvious. Suppose the statement holds true for definable
set-valued maps with closed values whose domain has dimension < d. The induc-
tion hypothesis, the cell decomposition theorem, and a similar argument as in the
beginning of the proof of Lemma 3.2, allow us to reduce to the case that X is an
open cell. Let S := Γ(T ) and K := π(∂S). It is sufficient to show that dimK < d.
Assume dimK = d. By definable Skolem functions and the cell decomposition the-
orem, there exist a non-empty definable bounded open set V ⊆ clV ⊆ K and a de-
finable continuous function f : clV → Rm such that Γ(f) ⊆ ∂S. For each x ∈ clV
we have d

(
f(x), T (x)

)
> 0, because T (x) is closed. After shrinking V suitably, we
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may assume that the function x $→ d
(
f(x), T (x)

)
: clV → R>0 is continuous.

Since clV is closed and bounded, there is ∆ > 0 such that

d
(
f(x), T (x)

)
> ∆ for all x ∈ clV .

Pick x0 ∈ V and δ0 > 0 such that Bδ0(x0) ⊆ V . By continuity of f , take 0 < δ < δ0
such that

∥f(x0)− f(x)∥ < ∆

3
for every x ∈ Bδ0(x0).

So, ∥f(x)− f(x′)∥ < 2∆/3 for all x, x′ ∈ Bδ(x0). Hence,

d
(
(x, f(x)), {x′}× T (x′)

)
≥ d

(
f(x), T (x′)

)
≥ d

(
f(x′), T (x′)

)
− ∥(f(x), f(x′))∥

> ∆− 2∆

3
=

∆

3

for x, x′ ∈ Bδ(x0). Thus,

d
(
Γ(f !Bδ(x0)),Γ(T !Bδ(x0))

)
>

∆

3
,

and so,

(x0, f(x0)) ∈ (Bδ(x0)×Rm) ∩B∆/3(x0, f(x0)) ⊆ (X ×Rm) \ S,

which contradicts (x0, f(x0)) ∈ ∂S. ✷

Lemmas 3.2 and 3.3 in combination with the cell decomposition theorem im-
mediately yield the following theorem.

Theorem 3.4. Suppose T (x) is closed, for every x ∈ X. Then there is a cell
decomposition C of Rn compatible with X such that T !C is continuous, for ev-
ery C ∈ C .

Remark. A version of Theorem 3.4 in the case where R is the ordered field of
real numbers was shown in [13], with a longer proof. (See the “main result”,
Theorem 32, and its Corollary 33, in [13].)

4. Definable Michael’s selection theorem

In this section we treat a definable version of the well-known Michael selection the-
orem [32] for set-valued maps. The classical version of this theorem plays a crucial
role in the approach to solving WEPn,1 by Klartag and Zobin [26]. Classically,
this theorem is shown by a non-constructive iterative procedure; see Section 9.1
of [3] or [23], [24] for expositions. By definable Skolem functions, every definable
set-valued map T : X ⇒ Rm with domain X has a definable selection, i.e., a de-
finable map f : X → Rm such that Γ(f) ⊆ Γ(T ); here, we prove a strengthening
of this fact under suitable additional hypotheses on T :
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Theorem 4.1 (Definable Michael’s selection theorem). Let X be a closed subset
of Rn and T : X ⇒ Rm be a definable l.s.c. set-valued map such that T (x) is non-
empty, closed, and convex for every x ∈ X. Then T has a continuous definable
selection.

In the proof, we use:

Lemma 4.2. Let T : R ⇒ Rm be a definable set-valued map with domain (0, 1).
Let (0, y) ∈ cl

(
Γ(T )

)
. Then there is a definable continuous f : (0, ϵ) → Rm, for

some ϵ > 0, such that f(t) ∈ T (t) for all t ∈ (0, ϵ) and limt→0+ f(t) = y.

Proof. By definable curve selection (see Chapter 6, §1 in [15]), there is a defin-
able continuous injective path γ : (0, ϵ0) → Γ(T ), where ϵ0 ∈ R>0, such that
lims→0+ γ(s) = (0, y). We may assume that γ−1 is also continuous. Let P =
γ
(
(0, ϵ0)

)
⊆ R × Rm; clearly, dimP = 1. Let π : R × Rm → R be the projec-

tion onto the first coordinate; then there are only finitely many t ∈ π(P ) with
dim(Pt) = 1. After making ϵ0 smaller, we may assume that dim(Pt) = 0 for every
t ∈ π(P ). It is sufficient to show that there is an ϵ > 0 such that if 0 < t < ϵ,
then |Pt| = 1. Suppose not. By definable Skolem functions, there exist ϵ1 > 0 and
definable continuous maps g1, g2 : (0, ϵ1] → Rm such that Γ(gi) ⊆ P for i = 1, 2
and g1(t) ̸= g2(t) for every t ∈ (0, ϵ1]. Since lims→0+ γ(s) = (0, y), the func-
tions g1, g2 are bounded; and thus limt→0+ gi(t) exist for i = 1, 2. Since γ−1 is
a continuous injective definable map and Γ(g1), Γ(g2) are definably connected,
I1 := γ−1

(
Γ(g1)

)
and I2 := γ−1

(
Γ(g2)

)
are disjoint definably connected subsets of

(0, ϵ0). Pick an i ∈ {1, 2} such that 0 /∈ cl(Ii). Then Ii = [a, ϵ0) where 0 < a < ϵ0
or Ii = (a, b] where 0 < a < b < ϵ0. By continuity of γ−1, in the first case we
have γ(a) = (0, limt→0+ gi(t)), and in the second case γ(b) = (0, limt→0+ gi(t)).
Obviously, (0, limt→0+ gi(t)) /∈ Γ(T ) (since the domain of T is (0, 1)), but both
γ(a) and γ(b) are in Γ(T ), a contradiction. ✷

Proof of Theorem 4.1. We proceed by induction on d = dimX . If d = 0, then X
is a finite set and the statement is obvious. Suppose the theorem holds for all
set-valued maps satisfying the hypotheses, on a domain of dimension < d. By
Theorem 3.4,

X ′ := cl{x ∈ X : T is not continuous at x}

is a definable closed subset of X , dimX ′ < dimX , and T ! (X \X ′) is continuous.
Therefore, by induction hypothesis, we can take a definable continuous selection
f : X ′ → Rm of T !X ′. Since X ′ is closed, by the definable Tietze extension
theorem (see, e.g., Section 6.2 of [1]), we can further take a definable continuous
map g : Rn → Rm such that g !X ′ = f . Since T (x) is closed and convex, for
each y′ ∈ Rn there is a unique y ∈ T (x) with d(y′, y) = d

(
y′, T (x)

)
. (See, e.g.,

Lemma 2.12 of [1].) Define F : X → Rm by

F (x) = the unique y ∈ T (x) such that d
(
g(x), y

)
= d

(
g(x), T (x)

)
.

To finish the proof, it remains to show that F is continuous. Let x0 ∈ X and
γ : (0, 1)→X with limt→0+ γ(t)=x0; we need to show that limt→0+ F (γ(t))=F (x0).
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Claim. Let ϵ > 0. Then

∥g(x0)− F (γ(t))∥ ≤ ∥g(x0)− F (x0)∥ + ϵ as t→ 0+.

Proof of claim. Since T is l.s.c., by Lemma 4.2, after replacing γ by a suitable
reparametrization of γ ! (0, ϵ0), for some ϵ0 ∈ (0, 1), we obtain a definable contin-
uous function h : γ

(
(0, 1)

)
→ Rm such that h

(
γ(t)

)
∈ T

(
γ(t)

)
for t ∈ (0, 1) and

limt→0+ h
(
γ(t)

)
= F (x0). By continuity of g at x0, take δ > 0 such that for all

x1 ∈ Rn with ∥x1 − x0∥ < δ, we have ∥g(x1) − g(x0)∥ < 1
3ϵ. Let then t0 ∈ (0, 1)

be such that for 0 < t ≤ t0 we have ∥γ(t)− x0∥ < δ and
∥∥h

(
γ(t)

)
− F (x0)

∥∥ < 1
3ϵ.

By the definition of F ,

∥F (γ(t))− g(γ(t))∥ ≤ ∥h(γ(t))− g(γ(t))∥ for all t ∈ (0, 1).

Moreover, for 0 < t ≤ t0 we have

∥h(γ(t))− g(γ(t))∥ ≤ ∥h(γ(t))− F (x0)∥+ ∥F (x0)− g(x0)∥+ ∥g(x0)− g(γ(t))∥
≤ 1

3 ϵ+ ∥F (x0)− g(x0)∥+ 1
3 ϵ = ∥g(x0)− F (x0)∥ + 2

3 ϵ

and hence

∥g(x0)− F (γ(t))∥ ≤ ∥g(x0)− g(γ(t))∥ + ∥g(γ(t))− F (γ(t))∥
≤ 1

3 ϵ + ∥h(γ(t))− g(γ(t))∥ ≤ 1
3 ϵ + ∥g(x0)− F (x0)∥ + 2

3 ϵ

= ∥g(x0)− F (x0)∥ + ϵ

as required. ✷

Hence y0= limt→0+ F
(
γ(t)

)
exists inRm, and ∥g(x0)−y0∥≤∥g(x0)−F (x0)∥+ϵ

for every ϵ > 0; that is, ∥g(x0)− y0∥ ≤ ∥g(x0)− F (x0)∥. Thus if x0 ∈ X ′, then
F (x0) = g(x0) and hence y0 = g(x0) = F (x0). Now suppose x0 ∈ X \X ′. Then
by closedness of T ! (X \X ′), we have y0 ∈ T (x0), so by definition of F we obtain
y0 = F (x0). Therefore F is continuous at x0. ✷

We do not know whether Theorem 4.1 continues to hold if R is merely assumed
to be definably complete (i.e., every non-empty bounded definable subset of R has
a supremum in R).

Corollary 4.3. Let T be as in the previous theorem, and let X0 ⊆ X be definable
and closed. Then every continuous definable selection of T !X0 extends to a con-
tinuous definable selection of T . In particular, given distinct x1, . . . , xN ∈ X and
yi ∈ T (xi) for i = 1, . . . , N , there exists a continuous definable selection f of T
with f(xi) = yi for i = 1, . . . , N .

Proof. Let f0 : X0 → Rm be a continuous definable selection of T !X0. Let
T0 : X ⇒ Rm be a set-valued map given by

T0(x) =

{
T (x) if x ∈ X \X0,{
f0(x)

}
if x ∈ X0.

It is easy to verify that T0 is l.s.c. Now apply Theorem 4.1 to T0. ✷
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Remark. The closedness of X0 in the above corollary is necessary. Consider
X0 = (0,+∞) and T : R ⇒ R, where T (x) = R for every x ∈ R. Then x $→
1/x : (0,+∞)→ R is a continuous selection of T !X0 without continuous extension.

Let Hm denote the set of closed bounded non-empty convex definable subsets
of Rm. Equip Hm with the Hausdorff metric dH : for A,B ∈ Hm set

dH(A,B) := sup
({

d(y,A) : y ∈ B
}
∪
{
d(y,B) : y ∈ A

})
.

Every map X → Hm is a set-valued map X ⇒ Rm, and so it makes sense to talk
about definable maps X → Hm. From Theorem 4.1 we immediately obtain:

Corollary 4.4. Every continuous definable map X → Hm, where X ⊆ Rn is
closed, has a continuous definable selection.

It is well-known that for R = R, every Lipschitz map X → Hm, where X ⊆ Rn,
has a Lipschitz selection. See, e.g., Theorem 9.4 of [3]; the construction given there
uses Steiner points (and hence integration). We do not know whether a definable
Lipschitz map X → Hm always has a definable Lipschitz selection.

We finish this section with another standard application of Michael’s selection
theorem, about approximating possibly discontinuous maps by continuous ones
(cf. Section 7.2 of [12]). For a definable map f : X → Rm, where X ⊆ Rn, we set

||f || := sup
{
||f(x)|| : x ∈ X

}
∈ R≥0 ∪ {+∞}.

Corollary 4.5. Let f, g : X → Rm be definable, where X ⊆ Rn is closed, and
suppose f is continuous and g is bounded. Then for each ϵ > 0 there exists a
continuous definable and bounded g : X → Rm with ||f − g|| ≤ ||f − g||+ ϵ.

Proof. Note that if ||f − g|| = ∞, then we can take g = 0. Therefore from now
on we assume that ||f − g|| < ∞ (so f is also bounded). Take r > 0 such that
g(X) ⊆ Br(0), and let λ := ||f − g||+ ϵ. For x ∈ X define

T (x) :=
{
y ∈ Br(0) : ||f(x)− y|| ≤ λ

}
.

Then T (x) ̸= ∅ since g(x) ∈ T (x), and T (x) is closed and convex. By Theorem 4.1,
it remains to show that T is l.s.c. Let x ∈ X , y ∈ T (x), and V ⊆ Rm be an open
neighborhood of y. Thus ||f(x)− y|| ≤ λ. Since ||f(x)− g(x)|| < λ, by considering
the line segment between y and g(x), we see that we may take some y′ ∈ V
with ||f(x) − y′|| < λ. Since f is continuous at x, we now let U be an open
neighborhood of x such that ||f(x′)− f(x)|| < λ− ||f(x)− y′|| for all x′ ∈ U ∩X .
Thus ||f(x′)−y′|| < λ for all x′ ∈ U ∩X , i.e., y′ ∈ T (x′)∩V for all x′ ∈ U ∩X . ✷

In addition, by Corollary 1.2 in [44], one can achieve differentiability of the
approximation up to some fixed finite order.

Corollary 4.6. Let f, g : X → Rm be definable, where X ⊆ Rn is closed, and
suppose f is continuous and g is bounded. Then for each m > 0 and ϵ > 0 there
exists a Cm, definable and bounded g : X → Rm with ||f − g|| ≤ ||f − g||+ ϵ.
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5. Affine bundles

In this section, following [17], we introduce affine bundles and Glaeser refinements
and establish basic facts about them used later. The proofs are routine adaptations
of those given in [26] and are only included for the convenience of the reader.
Throughout this section we let X denote a subset of Rn. For notational simplicity,
from now on we often denote a set-valued map and its graph by the same letter. A
set-valued map H : X ⇒ Rm such that for each x ∈ X , H(x) is empty or an affine
subspace of Rm, is called an affine bundle on X . In the rest of this section, we let
H : X ⇒ Rm be an affine bundle on X . Define the Glaeser refinement H ′ of H by

H ′(x0) :=
{
y0 ∈ H(x0) : d

(
y0, H(x)

)
→ 0 as x→ x0 in X

}
for x0 ∈ X .

That is, (x0, y0) ∈ H is in H ′ if and only if for every ϵ > 0 there is some δ > 0
such that for every x ∈ X ∩ Bδ(x0), there is y ∈ H(x) such that ||y0 − y|| < ϵ.
Clearly if H is definable, then so is H ′. Since H ′ ⊆ H , every selection (continuous
or not) of H ′ is a selection of H ; conversely, each continuous selection of H is also
a selection of H ′. Moreover:

Proposition 5.1. The Glaeser refinement H ′ of H is an affine bundle on X.

Proof. Let p0 ∈ H ′(x0). To prove that H ′(x0) is an affine subspace of Rm, let
q0, r0 ∈ H ′(x0), a, b ∈ R. It suffices to show that

y0 := a(q0 − p0) + b(r0 − p0) + p0 ∈ H ′(x0).

Let ϵ > 0, and take δ > 0 such that for all x1 ∈ X ∩Bδ(x0), there exist p1, q1, r1 ∈
H(x1) such that

||p0 − p1||, ||q0 − q1||, ||r0 − r1|| <
ϵ

3(|a|+ |b|+ 1)
.

For such x1 ∈ X ∩Bδ(x0) and p1, q1, r1, we have

y1 := a(q1 − p1) + b(r1 − p1) + p1 ∈ H(x1)

and ||y0 − y1|| < ϵ. Thus y0 ∈ H ′(x0). ✷

We say that H is stable under Glaeser refinement if H ′ = H . Clearly if H is
stable under Glaeser refinement, then H is l.s.c.

Lemma 5.2. Let x0 ∈ X. Then

dimH ′(x0) ≤ lim inf
X∋x→x0

dimH(x).

Proof. We may assume H ′(x0) ̸= ∅. Let d = dimH ′(x0) and p0, . . . , pd ∈ H ′(x0)
be such that p1 − p0, . . . , pd − p0 are R-linearly independent. Let ϵ > 0. By
definition of H ′, there exists some δ > 0 such that for all x ∈ Bδ(x0) we obtain
q0, . . . , qd ∈ H(x) with ∥pi − qi∥ < ϵ; for sufficiently small ϵ, q1 − q0, . . . , qd − q0
are R-linearly independent, so dimH(x) ≥ d. ✷
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Starting with an affine bundle H0 = H : X ⇒ Rm on X , we inductively de-
fine a sequence (H(l))l∈N of affine bundles on X by setting H(l+1) := (H(l))′ for
each l ∈ N. The previous lemma has a remarkable consequence.

Lemma 5.3. Let x0 ∈ X be such that H(x0) ̸= ∅. Then

dimH(2k+1)(x0) ≥ m− k =⇒ H(l)(x0) = H(2k+1)(x0) for all l ≥ 2k + 1.

Proof. We proceed by induction on k. If k = 0, then the implication asserts that
if H ′(x0) = H(x0), then H(l)(x0) = H ′(x0) for all l ≥ 1. Now if H ′(x0) = H(x0),
then H(x) = H(x0) for all x ∈ X in a neighborhood of x0, by the previous lemma,
and hence H(l)(x) = H(x0) for all x ∈ X in a neighborhood of x0 and all l ≥ 1. For
the induction step, assume the implication holds for a certain value of k. Suppose
dimH(2k+3)(x0) ≥ m − k − 1. If dimH(2k+1)(x0) ≥ m − k, then by inductive
hypothesis we obtain H(l)(x0) = H(2k+1)(x0) = H(2k+3)(x0) for every l ≥ 2k + 1.
Assume dimH(2k+1)(x0) ≤ m− k − 1. Then

dimH(2k+1)(x0) ≤ m− k − 1 ≤ dimH(2k+3)(x0) ≤ dimH(2k+1)(x0),

and so

dimH(2k+1)(x0) = dimH(2k+2)(x0) = dimH(2k+3)(x0) = m− k − 1.

By Lemma 5.2, dimH(2k+1)(x) ≥ m− k− 1 for all x ∈ X in a neighborhood of x0.

Claim. H(2k+1)(x) = H(2k+2)(x) for all x ∈ X in a neighborhood of x0.

Proof of claim. Suppose not. Then, for every δ > 0, there is x ∈ Bδ(x0) ∩X with

dimH(2k+1)(x) > dimH(2k+2)(x), i.e., dimH(2k+2)(x) ≤ m− k − 2.

By Lemma 5.2 again,

m− k − 1 = dimH(2k+3)(x0) ≤ lim inf
x→x0

dimH(2k+2)(x) ≤ m− k − 2,

a contradiction. ✷

By the above claim, for l ≥ 2k + 3, there exists δ > 0 (depending on l) such
that H(l)(x) = H(2k+3)(x) for all x ∈ Bδ(x0) ∩X . ✷

If H(x) ̸= ∅ for some x ∈ X , we put l∗ := 2m+ 1; otherwise put l∗ := 0. With
these notations, by the preceding lemma we have:

Corollary 5.4. H(l) = H(l∗) for l ≥ l∗.

Hence the sequence (H(l))l∈N of affine bundles onX constructed fromH(0) = H
as above by iterated Glaeser refinements eventually stabilizes:

H(2m+1) = H(2m+2) = · · · .

We let H(∗) := H(2m+1) be the eventual value of this sequence. Thus H(∗) is an
affine bundle on X which is stable under Glaeser refinement, and hence l.s.c. The
definable Michael selection theorem (Theorem 4.1) now yields:
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Corollary 5.5. Suppose H is definable. Then H has a continuous selection if
and only if H(∗)(x) ̸= ∅ for all x ∈ X, and in this case, H even has a definable
continuous selection.

6. Linear equations in continuous functions

In this section we give an application of Corollary 5.5; the material in this section
is not used later in the paper. Let f, g1, . . . , gm be definable maps X → Rk,
where X ⊆ Rn. We consider the linear equation

(∗) f = g1y1 + · · ·+ gmym

in unknown continuous functions y1, . . . , ym : X → R.

Theorem 6.1. If there are continuous functions y1, . . . , ym : X → R solving (∗),
then there are also definable continuous functions y1, . . . , ym with this property.

This follows immediately from Corollary 5.5 above, applied to the definable
affine bundle H : X ⇒ Rm on X given by

H(x) :=
{
(y1, . . . , ym) ∈ Rm : f(x) = g1(x)y1 + · · ·+ gm(x)ym

}
for x ∈ X .

In fact we have a version of this theorem for definable families.

Corollary 6.2. Let (fa)a∈RN and (gi,a)a∈RN (i = 1, . . . ,m) be definable families
of maps fa, g1,a, . . . , gk,a : Xa → Rk (Xa ⊆ Rn). Then the set A ⊆ RN given by

a ∈ A ⇐⇒
{

there are continuous maps y1, . . . , ym : Xa → Rk

such that fa = g1,a y1 + · · ·+ gm,a ym

is definable. Moreover, there are definable families (yi,a)a∈A of continuous maps

yi,a : Xa → Rk (i = 1, . . . ,m)

such that for all a ∈ A, we have fa = g1,a y1,a + · · ·+ gm,a ym,a.

The definability of A follows by noting that H(∗) is defined uniformly in the
functions f, g1, . . . , gm. The rest is a routine application of the compactness the-
orem of first-order logic (see, e.g., Section 6 of [45] for a similar argument). In-
deed, let L be the language of R, assumed to include a name for each element
of R, so that every definable set in R is definable by an L-formula. Let α(x)
be an L-formula defining A in R. For each m-tuple ψ = (ψ1, . . . ,ψm) of for-
mulas ψi(x, y, z), where the lengths of x, y, and z are n, k, and N , respectively,
let χψ(z) be a formula such that, for each a ∈ RN , χψ(a) holds in R precisely when
ψi(x, y, a) defines the graph of a continuous map yi : Xa → Rk (i = 1, . . . ,m) such
that fa = g1,ay1 + · · ·+ gm,aym. Next, add N fresh constants c1, . . . , cN to L and
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call the resulting language L′. For notational convenience, write c = (c1, . . . , cN ).
By our main theorem, the L′-theory

Th(R) ∪
{
α(c)

}
∪

{
¬χψ(c) : ψ = (ψ1, . . . ,ψm) is a tuple of L-formulas ψi = ψi(x, y, z)

}

is inconsistent. Therefore, by the compactness theorem, there are m-tuples

ψ1(x, y, z), . . . ,ψM (x, y, z)

of formulas such that, for each a ∈ A, one of the tuples ψi(x, y, a) defines the graphs
of continuous maps y1, . . . , ym : Xa → Rk such that fa = g1,ay1 + · · · + gm,aym.
We can now easily construct a single m-tuple of formulas ψ(x, y, z) which works
for every a ∈ A, i.e., for each a ∈ A, the components of ψ(x, y, a) define the graphs
of continuous maps y1, . . . , ym : Xa → Rk with fa = g1,ay1 + · · ·+ gm,aym.

We finish this section with a special case of the corollary above.

Corollary 6.3. Let

f(C,X), g1(C,X), . . . , gm(C,X) ∈ R[C,X ],

where C = (C1, . . . , CN ), X = (X1, . . . , Xn) are disjoint tuples of distinct indeter-
minates. Then the set A consisting of all c ∈ RN such that there are continuous
functions y1, . . . , ym : Rn → R such that

f(c, x) = g1(c, x)y1(x) + · · ·+ gm(c, x)ym(x) for all x ∈ Rn

is semialgebraic. Moreover, there are semialgebraic functions

y1, . . . , ym : RN × Rn → R

such that for all c ∈ A and i = 1, . . . ,m, the function yi(c,−) : Rn → R is contin-
uous and

f(c, x) = g1(c, x)y1(c, x) + · · ·+ gm(c, x)ym(c, x) for all x ∈ Rn.

Theorem 6.1 remains true for finite systems of linear equations instead of a
single equation (∗). It is natural to wonder whether Theorem 6.1 also has an
analogue for homogeneous equations. Let X ⊆ Rn be definable, let C(X) de-
note the R-algebra of continuous functions X → R, and let C(X)def be its sub-
algebra consisting of the definable continuous functions X → R. The m-tuples
(y1, . . . , ym) ∈ C(X)m satisfying

g1y1 + · · ·+ gmym = 0

form a C(X)-submodule M of C(X)m. Is this module generated by M ∩C(X)mdef?
In algebraic terms, Theorem 6.1 says that C(X)def is pure in C(X) (viewed

as a C(X)def -module in the natural way). A positive answer to the question
above would complement this by saying that C(X) is a flat (and hence, by purity,
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faithfully flat) C(X)def -module. However, this question has a negative answer,
as was pointed out to us by C. Fefferman: for this, let R be the ordered field of
real numbers (so “definable” = “semialgebraic”) and X = R2, and consider the
homogeneous equation

g1y1 + g2y2 = 0, where g1(x, y) = x2 + y2 and g2(x, y) = xy for x, y ∈ R.

Then M is isomorphic to the maximal ideal

m :=
{
f ∈ C(R2) : f(0) = 0

}

of C(R2), the isomorphism being given by (y1, y2) $→ y2. However, m is not gen-
erated by mdef := m ∩ C(R2)def , due to the asymptotics of semialgebraic func-
tions. (For example, the function h∈C(R2) given by h(x, y)=1/ logx if x > 0 and
h(x, y)=0 if x ≤ 0 is easily seen to not to belong to the ideal of C(R2) generated
by mdef .)

Another attempt to generalize Theorem 6.1 involves the model theory of mod-
ules, and for the rest of this section we assume that the reader is familiar with
the basics of this theory; see, for example, Appendix A.1 of [22]. We view C(X)
and C(X)def as structures in the language of C(X)def -modules in the natural way.

Question. Are C(X) and C(X)def elementarily equivalent?

By [39] and Theorem 6.1, a positive answer to this question would imply
that C(X)def is an elementary substructure of C(X). Answering this question
amounts to showing that all Baur–Monk invariants Inv(φ,ψ,−) of the C(X)def-
modules C(X) and C(X)def agree. Since C(X)def contains an infinite subfield,
each of these invariants is either 1 or ∞. Moreover,

Inv(φ,ψ, C(X)def) ≤ Inv(φ,ψ, C(X))

since C(X)def is pure in C(X). Hence the question above has a positive answer
if Inv(φ,ψ, C(X)) > 1 ⇒ Inv(φ,ψ, C(X)def) > 1, for all positive primitive formu-
las φ, ψ in a single free variable y. Here is the simplest non-trivial instance of this
question:

Question. Let a1, . . . , ak, b1, . . . , bl, f, g ∈ C(X)def . Let y ∈ C(X) satisfy

fy = a1y1 + · · ·+ ak yk for some y1, . . . , yk ∈ C(X), and

gy ̸= b1 z1 + · · ·+ bl zl for all z1, . . . , zl ∈ C(X).

Is there some y ∈ C(X)def satisfying the same conditions?

We do not know the answer to this question. If l = 0 (so the second condition
reads “gy ̸= 0”), then the answer is yes, since given a continuous solution y we can
simply pick a point x0 ∈ X where g(x0)y(x0) is nonzero, consider the affine bundle

H(x) =
{
(y0, . . . , yk) : f(x)y0 = a1(x)y1 + · · ·+ ak(x)yk,

and if x = x0, then y0 = y(x0)
}

and proceed as in the proof of Theorem 6.1. See [36] for a description of the
Baur–Monk invariants Inv(φ,ψ, C(X)def) in the case when X has dimension 1.
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7. C1-Whitney’s extension problem

In this section, we follow the idea given in [26] to solve WEPn,1. Throughout
this section, we fix a definable closed subset X of Rn and a definable continuous
function f : X → R.

Definition 7.1. We say that a definable affine bundle H : X ⇒ R × Rn on X is
a holding space for f if whenever F ∈ C1(Rn) is definable with F = f on X , then

{(
x, F (x),

∂F

∂x1
(x), . . . ,

∂F

∂xn
(x)

)
: x ∈ X

}
⊆ H.

We can think of a holding space for f as a collection of potential Taylor poly-
nomials of extensions of f to a C1-function U → R on a neighborhood U of X :
Let Pn be the R-vector space of linear polynomials in n indeterminates with
coefficients from R. For a fixed x0 ∈ X , there is a one-to-one correspondence
between R×Rn and Pn given by

(a, u)←→ p(a, u)(x) = a+ ⟨u, x− x0⟩.

Therefore, we may also think of H ⊆ X × (R×Rn) as a subset of X ×Pn.

Obviously,

H0 :=
{
(x, f(x), u) ∈ X ×R×Rn : x ∈ X, u ∈ Rn

}

is a holding space for f . We call H0 the trivial holding space for f . Clearly H0

contains every holding space for f , and dimH0(x) = n for each x ∈ X .

Holding spaces usually contain too much information; for example, consider the
trivial holding space for f . In order to cut down on the insignificant information,
C1-Glaeser refinements are introduced.

Definition 7.2. Let H ⊆ X ×Pn. The C1-Glaeser refinement H̃ of H is defined
as follows: we let (x0, p0) ∈ H̃ if and only if (x0, p0) ∈ H , and for every ϵ > 0 there
exists δ > 0 such that for all x1, x2 ∈ X ∩ Bδ(x0), there exist p1 ∈ H(x1) and
p2 ∈ H(x2) satisfying the following inequalities (with the convention 00 = 0):

(7.1) |Dα(pi − pj)(xi)| ≤ ϵ ∥xi − xj∥1−|α| for i, j = 0, 1, 2 and α with |α| ≤ 1.

That is, (x0, p0) ∈ H with p0 = (a0, u0) is in H̃ if and only if for every ϵ > 0 there
exists δ > 0 such that for all x1, x2 ∈ X ∩Bδ(x0), there are pi = (ai, ui) ∈ H(xi),
i = 1, 2, such that

{
|ai + ⟨ui, xj − xi⟩ − aj | ≤ ϵ∥xi − xj∥,
||ui − uj|| ≤ ϵ,

for i, j = 0, 1, 2.

Note that H̃ ⊆ H , and if H is definable, then so is H̃. Here is how H̃ relates
to the notion of Glaeser refinement H ′ of H introduced in the previous section.

Proposition 7.3. Suppose H ⊆ H0. Then H̃ ⊆ H ′.
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Proof. Let
(
x0, f(x0), u0

)
∈ H̃ and ϵ > 0 be given. By continuity of f and the

definition of H̃ , there is δ > 0 such that for every x1 ∈ Bδ(x0) ∩ X there ex-
ists

(
f(x1), u1

)
∈ H(x1) where |f(x1)− f(x0)| < ϵ/

√
2 and ∥u1 − u0∥ < ϵ/

√
2.

Therefore,
∥∥(f(x1), u1

)
−
(
f(x0), u0

)∥∥ < ϵ. Thus
(
x0, f(x0), u0

)
∈ H ′. ✷

We say that H ⊆ X ×Pn is stable under C1-Glaeser refinement if H̃ = H .
By Proposition 7.3, if H is a holding space for f which is stable under C1-Glaeser
refinement, then H = H ′ = H̃ is l.s.c.

Proposition 7.4. Let H : X ⇒ Pn be an affine bundle on X. Then H̃ : X ⇒ Pn

is an affine bundle on X.

Proof. Let p0 ∈ H̃(x0). To prove that H̃(x0) is affine, let q0, r0 ∈ H̃(x0), a, b ∈ R.
It is enough to show that a(q0 − p0) + b(r0 − p0) ∈ H̃(x0) − p0. Let ϵ > 0, and
take δ > 0 such that for all x1, x2 ∈ X ∩Bδ(x0), there exist p1, q1, r1 ∈ H(x1) and
p2, q2, r2 ∈ H(x2) with

|Dα(pi − pj)(xi)| ≤
ϵ

2(|a|+ |b|+ 1)
∥xi − xj∥1−|α| ,

|Dα(qi − qj)(xi)| ≤
ϵ

2(|a|+ |b|+ 1)
∥xi − xj∥1−|α| ,

|Dα(ri − rj)(xi)| ≤
ϵ

2(|a|+ |b|+ 1)
∥xi − xj∥1−|α|

for i, j = 0, 1, 2 and α with |α| ≤ 1. Let x1, x2 ∈ X∩Bδ(x0), and fix such witnesses
p1, q1, r1 and p2, q2, r2. Then a(qi − pi) + b(ri − pi) ∈ H(xi) − pi for i = 1, 2.
Hence
∣∣Dα

[
(a(qi − pi) + b(ri − pi) + pi)− (a(qj − pj) + b(rj − pj) + pj)

]
(xi)

∣∣

≤
∣∣Dα

[
(a+ b+ 1)(pi − pj)

]
(xi)

∣∣+ |Dα(a(qi − qj))(xi)|+ |Dα(b(ri − rj))(xi)|

≤ 2(|a|+ |b|+ 1)
ϵ

2(|a|+ |b|+ 1)
∥xi − xj∥1−|α|

= ϵ ∥xi − xj∥1−|α|

for i, j = 0, 1, 2 and α with |α| ≤ 1. Thus a(q0 − p0) + b(r0 − p0) + p0 ∈ H̃(x0) as
desired. ✷

The above proposition and the definition of continuous differentiability imply
that the class of holding spaces for C1-functions is closed under C1-Glaeser refine-
ment.

Corollary 7.5. Suppose f is C1. If H is a holding space for f , then so is H̃.

By iterating the process of taking C1-Glaeser refinements, we obtain a decreas-
ing sequence (Hl)l∈N of subsets of X ×Pn as follows:

H0 := the trivial holding space for f ,

Hl+1 := H̃l.
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We call (Hl)l∈N the sequence of holding spaces for f . By induction on l using
Proposition 7.3, we obtain Hl ⊆ H(l).

By Proposition 7.4, if l ∈ N and x ∈ X such that Hl(x) ̸= ∅, then Hl(x) is an
affine subspace of Pn. This together with the definition of C1-Glaeser refinement
and Taylor’s theorem implies the following corollary.

Corollary 7.6. If Hl+1(x) is non-empty for every x ∈ X, and Hl is a holding
space for f , then Hl+1 is a holding space for f . In particular, if Hl(x) is non-empty
for every l ∈ N and x ∈ X, then Hl is a holding space for f for all l ∈ N.

If there exists some l∗ ∈ N such that Hl∗ is stable under C1-Glaeser refinement,
then we call H∗ := Hl∗ the stable holding space for f . In [17], by an argument
originating in [20] and adapted in [4], it was shown in the classical real context
that every continuous function has a stable holding space. This remains true for
definable continuous functions in our setting.

Lemma 7.7. Let H be a holding space for f , and x0 ∈ X. Then

dim H̃(x0) ≤ lim inf
X∋x→x0

dimH(x).

This follows from Lemma 5.2 and Proposition 7.3. As in the proof of Lemma 5.3,
the previous lemma implies:

Lemma 7.8. Let x0 ∈ X be such that H(x0) ̸= ∅, and set m := Pn. Then

dimH(2k+1)(x0) ≥ m− k =⇒ H(l)(x0) = H(2k+1)(x0) for all l ≥ 2k + 1.

Corollary 7.9. Let l∗ := 2 dimPn + 1 = 2n+ 3. Then Hl = Hl∗ for l ≥ l∗, so f
has stable holding space H∗ = Hl∗ .

The following lemma exhibits a certain uniformity of the C1-Glaeser refinement.

Lemma 7.10. Let H be a holding space for f , and x0 ∈ X. If
(
f(x0), u0

)
∈ H̃(x0),

then for every ϵ > 0, there is δ > 0 such that

|f(x) + ⟨u0, x
′ − x⟩ − f(x′)| ≤ ϵ ∥x− x′∥ for all x, x′ ∈ X ∩Bδ(x0).

Proof. Suppose that there is ϵ > 0 such that for every δ > 0 there are x, x′ ∈
X ∩Bδ(x0) with

|f(x) + ⟨u0, x
′ − x⟩ − f(x′)| > ϵ ∥x− x′∥ .

Let δ > 0. Let x, x′ ∈ X ∩ Bδ(x0) be witnesses of the above statement and(
f(x), u

)
∈ H(x) with ∥u− u0∥ ≤ ϵ/2. Then

|f(x) + ⟨u, x′ − x⟩ − f(x′)| ≥ |f(x) + ⟨u0, x
′ − x⟩ − f(x′)|− |⟨u − u0, x

′ − x⟩|
≥ |f(x) + ⟨u0, x

′ − x⟩ − f(x′)|− ∥u− u0∥ · ∥x′ − x∥

> ϵ ∥x′ − x∥ − ϵ

2
∥x′ − x∥ = ϵ

2
∥x′ − x∥ .

Thus,
(
f(x0), u0

)
/∈ H̃(x0). ✷
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Lemma 7.11. Let H∗ be the stable holding space for f . Then f is the restriction
of a definable C1-function Rn → R if and only if H∗ admits a continuous definable
selection.

Proof. The forward direction being trivial, we let g = (g1, . . . , gn) : X → Rn be a
definable continuous map such that Γ

(
(f, g)

)
⊆ H∗ where (f, g) is the map

x $→
(
f(x), g(x)

)
: X → R×Rn.

Let F = (Fα)|α|≤1 where F0̄ := f and Fei := gi for i = 1, . . . , n. (Here, e1, . . . , en ∈
Nn are the standard basis vectors of Rn.) By the definable Whitney extension
theorem, it is sufficient to prove that F is a C1-Whitney field. Since g is continuous,
it is enough to show the following:

|f(x) + ⟨g(x), x′ − x⟩ − f(x′)| = o(∥x′ − x∥) for x, x′, x0 ∈ X with x, x′ → x0.

Let ϵ > 0 and x0 ∈ X be given. By continuity of g, we can take δ1 > 0 such that

∥g(x)− g(x0)∥ <
ϵ

2
for all x ∈ Bδ1(x0) ∩X .

By Lemma 7.10 and since H∗ is stable under C1-Glaeser refinement, there is δ2 > 0
such that, for all x, x′ ∈ Bδ2(x0) ∩X ,

|f(x) + ⟨g(x0), x
′ − x⟩ − f(x′)| < ϵ

2
∥x′ − x∥ .

Set δ = min{δ1, δ2}. Thus,

|f(x) + ⟨ g(x), x′ − x⟩ − f(x′)|
≤ |f(x) + ⟨g(x0), x

′ − x⟩ − f(x′)|+ |⟨g(x)− g(x0), x
′ − x⟩|

<
ϵ

2
∥x′ − x∥+ ∥g(x)− g(x0)∥ · ∥x′ − x∥ < ϵ ∥x′ − x∥

for any x, x′ ∈ Bδ(x0) ∩X . This yields the claim. ✷

Combining the definable Michael selection theorem (Theorem 4.1) with Propo-
sition 7.3 and the previous lemma, we obtain our main result:

Theorem 7.12. Let f : X → R be a definable continuous function where X ⊆ Rn

is closed, and let H∗ be its stable holding space. Then f is the restriction of a
definable C1-function Rn → R if and only if H∗(x) ̸= ∅ for every x ∈ X.

From this theorem, the theorem stated in the introduction follows by an appli-
cation of the compactness theorem in a similar way as at the end of Section 5.

We finish with answering a special case of the following question of van den
Dries, posed in lectures at Urbana in 1997. Let f : X → R be a definable function
where X ⊆ Rn is closed. Recall that we say that f is Cm if it extends to a definable
Cm-function on an open neighborhood of X .
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Question. Suppose that for each x ∈ X there is some δ > 0 such that f !Bδ(x)∩X
is Cm. Is f then Cm?

The local nature of the C1-Glaeser refinement and Theorem 7.12 allows us to
give a positive answer in the case m = 1. Given H ⊆ X ×Pn and Y ⊆ X , let
H !Y := H ∩ (Y ×Pn).

Lemma 7.13. Let (Hl) be the sequence of holding spaces for f . Let x ∈ X
and δ > 0, and let (H ′

l) be the sequence of holding spaces for f !Bδ(x)∩X. Then,
for all l ∈ N,

(7.2) H ′
l !Bδ/2l(x) ∩X ⊆ Hl !Bδ/2l(x) ∩X.

Proof. Clearly H0 ! Y is the trivial holding space of f !Y , for each definable closed
subset Y of X . Suppose we have already shown (7.2) for some value of l. Let
(x0, p0) ∈

(
Bδ/2l+1(x) ∩X

)
×Pn be given. Then

(7.3) (x0, p0) ∈ H ′
l+1 ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x0, p0) ∈ H ′
l , and for all ϵ > 0 there is

some δ0 > 0 such that for all x1, x2 ∈
Bδ0(x0) ∩Bδ(x) ∩X there are pi ∈ H ′

l(xi)
(i = 1, 2) such that the inequalities (7.1) in
Definition 7.2 hold.

On the other hand,

(x0, p0) ∈ Hl+1 !Bδ(x) ∩X ⇐⇒

⎧
⎪⎨

⎪⎩

(x0, p0) ∈ Hl, and for all ϵ > 0 there is
some δ0 > 0 such that for all x1, x2 ∈
Bδ0(x0) ∩ X there are pi ∈ Hl(xi) (i =
1, 2) such that (7.1) holds.

Suppose now that (x0, p0) ∈ H ′
l+1. So (x0, p0) ∈ H ′

l and x0 ∈ Bδ/2l+1(x) ∩
X ⊆ Bδ/2l(x) ∩ X , hence (x0, p0) ∈ Hl by inductive hypothesis. Given ϵ > 0
we may choose δ0 > 0 as in (7.3) to additionally satisfy δ0 ≤ δ/2l+1, and then
Bδ0(x0) ⊆ Bδ/2l(x) ⊆ Bδ(x). Together with the inductive hypothesis, this yields
(x0, p0) ∈ Hl+1. ✷

By the previous lemma and Theorem 7.12, we obtain:

Corollary 7.14. Let X ⊆ Rn be closed and f : X → R be definable, and suppose
that for each x ∈ X there is some δ > 0 such that f !Bδ(x) ∩ X is C1. Then f
is C1.
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