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ABSTRACT

Extraction of drainage networks is an important element of river flow routing in hydrology and large-scale es-
timates of river behaviors in Earth sciences. Emerging studies with a focus on greenhouse gases reveal that small
rivers can contribute to more than half of the global carbon emissions from inland waters (including lakes and
wetlands). However, large-scale extraction of drainage networks is constrained by the coarse resolution of
observational data and models, which hinders assessments of terrestrial hydrological and biogeochemical cycles.
Recognizing that Sentinel-2 satellite can detect surface water up to a 10-m resolution over large scales, we
propose a new method named Remote Sensing Stream Burning (RSSB) to integrate high-resolution observational
flow location with coarse topography to improve the extraction of drainage network. In RSSB, satellite-derived
input is integrated in a spatially continuous manner, producing a quasi-bathymetry map where relative relief is
enforced, enabling a fine-grained, accurate, and multitemporal extraction of drainage network. RSSB was applied
to the Lancang-Mekong River basin to derive a 10-m resolution drainage network, with a significant reduction in
location errors as validated by the river centerline measurements. The high-resolution extraction resulted in a
realistic representation of meanders and detailed network connections. Further, RSSB enabled a multitemporal
extraction of river networks during wet/dry seasons and before/after the formation of new channels. The pro-
posed method is fully automated, meaning that the network extraction preserves basin-wide connectivity without
requiring any postprocessing, hence facilitating the construction of drainage networks data with openly acces-
sible imagery. The RSSB method provides a basis for the accurate representation of drainage networks that
maintains channel connectivity, allows a more realistic inclusion of small rivers and streams, and enables a
greater understanding of complex but active exchange between inland water and other related Earth system
components.

1. Introduction

The role of smaller streams within river networks in global biogeo-
chemical cycling remains poorly understood and is likely under-

Extraction of drainage networks facilitates answering fundamental
questions about how water flows on the Earth’s surface. The extraction
of drainage networks has been traditionally rooted in hydrologic science
where it is particularly applied in river flow routing (David et al. 2011;
P. Lin et al., 2018b; Yamazaki et al. 2013). However, high-resolution
drainage networks have been increasingly used to support large-scale
hydrologic predictions and spatially detailed research applications
including the assessments of flood inundation, dam failure, and reser-
voir operation (Lehner and Grill 2013; Shin et al. 2020; Yamazaki et al.
2019).
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estimated (Benstead and Leigh 2012; Raymond et al. 2013). Traditional
approaches assume that rivers and streams only transport materials from
the land to the ocean. Recent evidence, however, has gradually unveiled
the considerable amounts of materials exchanged and stored in river
networks (Aufdenkampe et al. 2011; Bastviken et al. 2011; Battin et al.
2009, 2008; Butman and Raymond 2011; Cole et al. 2007), indicating
that the river system is an essential component of global biogeochemical
cycles that have been long overlooked. Within river networks, small
rivers are more biogeochemically active, partly due to their high density
along with their intense interactions with the atmosphere and benthic
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Fig. 1. (a) Lancang-Mekong River networks extracted in this study. (b) A state-of-the-art Landsat-based river centerlines extraction (GRWL) in the study area with

break points (river centerline disconnections).

substrate, which contribute to their significant total impact (Butman
et al. 2016; Butman and Raymond 2011; Raymond et al. 2013). For
instance, small rivers (i.e., those corresponding to Horton-Strahler
stream order (Strahler 1957) of 3 or less) account for ~89% of the
global river length, emitting more than half of the greenhouse gases
from the Earth’s freshwater including lakes and wetlands (Butman et al.
2016; Raymond et al. 2013), even though they represent a relatively
small portion of surface area (Downing et al. 2012). Small rivers exhibit
high evasion rates of greenhouse gases, often two to three times those of
larger rivers (Aufdenkampe et al. 2011), implying that small discrep-
ancies in the estimates of small rivers can incur large uncertainties in
global estimates of greenhouse gas emissions. Another high uncertainty
arises from the poorly known temporal patterns of small rivers (Costigan
et al. 2015; Stanley et al. 1997). The expansion and contraction of rivers
over time can result in significant biogeochemical effects (Butman et al.
2016; HILL et al. 2010; Hotchkiss et al. 2015; Marx et al. 2017), and such
changes are relatively extreme for small rivers (Allen et al. 2018).
Delineation of smaller streams and rivers depends upon a higher res-
olution of models or maps because rivers and streams are often delineated
at large scales by either models or maps. With the advent of the digital
elevation model (DEM), automatic extraction of drainage networks has
become convenient (Tarboton et al. 1991) with the pixel-wise, direction-
based methods, such as D8 (Ocallaghan and Mark 1984) and D-infinity
(Tarboton 1997). The recent emergence of high-resolution DEM (<10-m),
mostly captured by the light detection and ranging (LiDAR) technique,
has increased the resolution of extracted rivers (Clubb et al. 2014;
Hooshyar et al. 2016; Passalacqua et al. 2012). However, increased res-
olution also introduces complications in topography (e.g., low-relief
landscape, vegetation, and artificial constructions), requiring

substantially more effort and computations to distinguish river channels
and construct river networks (Passalacqua et al. 2010; Yamazaki et al.
2019). Meanwhile, the additional processing of high-resolution DEM is
often unable to preserve drainage networks across the entire landscape
due to the focus on river channels only (Bryndal and Kroczak 2019; Wu
et al. 2019), which largely limits hydrological routing analysis and scaling
estimates of river networks for carbon budget. Most importantly, the
availability of high-resolution DEM is now far from sufficient to cover the
entirety of a large river basin (>10° km?), preventing the extraction of
drainage networks at large scales.

The map-based delineation of rivers typically relies on optical sat-
ellite imagery for major river basins or a large spatial extent. Although
the Synthetic Aperture Radar (SAR) is an effective microwave-based
imaging tool for flood inundation detection (Hostache et al. 2018), the
complexity of processing SAR backscatter signals impedes its use in
large-scale water mapping that still relies on optical imagery (Cian et al.
2018; Huang et al. 2018). Water extents are photogrammetrically
mapped from remote sensing imagery by either supervised or unsuper-
vised methods (Ozesmi and Bauer 2002). For an entire basin, unsuper-
vised water index methods based on optical imagery are widely adopted
owing to their high efficiencies (Huang et al. 2018), such as the
Normalized Difference Water Index (NDWI) (McFeeters 1996), Modified
Normalized Difference Water Index (MNDWI) (Xu 2006) and Multi-
spectral Water Index (MuWI) (Wang et al. 2018). Based on water maps,
river pixels and river centerlines can be further identified and measured
(Pavelsky and Smith 2008). For example, Allen and Pavelsky (2018)
updated the global extent of rivers and streams by applying the MNDWI
method on Landsat images captured in a month of average river
discharge, representing a state-of-the-art feat in the field of large-scale
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river remote sensing. Moreover, multitemporal remote sensing images
corresponding to multitemporal surface water extents can potentially be
used to detect river dynamics (Barefoot et al. 2019; Donchyts et al.
2016a; Pekel et al. 2016). However, the major drawback of satellite
imagery-based extraction is that it extracts many river centerlines rather
than one river network per basin (Fig. 1). Although most extracted river
centerlines are connected, the overall connectivity within a basin cannot
be guaranteed and can easily be undermined by a single break point.
Such a break point is often observed at a pixel corresponding to on-river
objects (e.g., dams, bridges, ships) or water detection omissions (e.g.,
contamination by clouds, shadow, sunglint). This issue becomes more
prominent as the resolution of the imagery increases and the spatial
extent is enlarged. Lack of connectivity hinders the construction of the
river networks. Even if the basin-wide connectivity can be theoretically
reconstructed with some image processing techniques (e.g., Lin et al.
2010), no algorithm is yet available to construct the river networks
solely from image-derived river centerlines due to difficulties in flow
direction identification, not to mention to construct drainage networks
for the entire globe. A second issue is the spatial resolution. It is chal-
lenging to directly detect rivers narrower than one-pixel size, which
often corresponds to at least tens of meters for freely available imagery
with large-scale geographical coverage, as more sophisticated subpixel
analysis is uncommon in large-scale river networks detection. Mean-
while, the spatial resolution of the imagery is not high enough to extract
small rivers partially covered by vegetation. Taller riparian vegetation
with sufficient water availability worsen the coverage over the river
(Dosskey et al. 2010; Mokgoebo et al. 2018). Last, a minor concern is
that current surface water remote sensing at large scales is mostly based
on Landsat imagery, which limits the river detection to a 30-m resolu-
tion. While the Landsat-like Sentinel-2 imagery has the potential to
provide 10-m resolution for river delineation, which is particularly
meaningful for small rivers as it can extend the river detection to smaller
stream orders, Sentinel-2 imagery is still used far less in river studies
compared to that of Landsat.

In contrast to the highly appreciated functions of small rivers within
a river network, extraction of the detailed river networks over suffi-
ciently large extents remains challenging (Benstead and Leigh 2012; Wu
et al. 2019). Model-based extraction is necessary to infer small stream
orders from the drainage networks of the entire landscape but is con-
strained by the lack of high-resolution data for large extents. Map-based
extraction can provide observational river locations but lacks the basin-
wide connectivity necessary to construct the networks and is also limited
by scarcity of higher resolution data at large scales. However, a com-
parison between the two types of data suggests that optical imagery is
normally commercially cheaper than DEM at equivalent resolutions due
to less intensive elaboration of the raw data (Grosse et al. 2012). It is also
true for the openly accessible situation where Sentinel-2 can provide 10-
m resolution globally while global DEMs (e.g., AW3D, SRTM, ASTER,
TanDEM-X) often have a spatial resolution of 30-m at best.

From this context, this study aims to investigate the integration of
surface water remote sensing into drainage extraction over the entirety
of a large river basin for a more realistic representation of small rivers.
The primary goal is to examine whether optical remote sensing can be
coupled with DEMs to improve the resolution and dynamic extraction of
drainage networks, and, if so, explore how it can be integrated with
DEM:s. In that regard, we propose a new method rooted in the stream
burning approach (Saunders 1999) with the input of a Sentinel-2-based
water index MuWI (Wang et al., 2018), hereafter referred to as the
Remote Sensing Stream Burning (RSSB). The Lancang-Mekong River
basin was selected for testing the RSSB method because of its sufficiently
large area and vastly diverse landscapes. To evaluate the spatial accu-
racy of our integrated method, we compared the extraction results with
river centerlines (George H. Allen and Pavelsky, 2018). We then
demonstrate the extraction of river dynamics by presenting the details of
extracted river networks for multiple periods and over a meander. We
have made the following advances over previous basin-to-global scale
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studies on drainage networks extraction: (1) higher resolution of
drainage networks can be achieved at large scales based on the fusion of
Sentinel-2 imagery and coarse-resolution DEM; (2) the increased reso-
lution provides improvements in drainage networks accuracy with
realistic meander representation and networks connections; (3)
applying the proposed method to individual images enables the
extraction of multitemporal drainage networks over different periods of
interests, e.g., during wet/dry seasons and before/after the formation of
new channels; (4) as a fully automated extraction is conducted for a
large river basin, postprocessing that connects false endorheic water-
sheds is no longer required. Although we only implemented the frame-
work using Sentinel-2 imagery over the Lancang-Mekong River basin,
the new method presented here can potentially be incorporated into
other high-resolution imagery and applied to other large river basins or
even applied globally. This approach to extracting high-resolution
drainage networks would provide a methodological basis for under-
standing the role of river networks, particularly that of smaller streams
and rivers, in Earth system.

2. Data and methods
2.1. Study area

The Lancang-Mekong River basin (Fig. 1) is one of the major river
basins in the world with transboundary coverage. The river basin is
characterized by diverse fluvial geomorphology with valley-constrained
regions upstream to the bedrock-constrained areas downstream (Mesh-
kova and Carling 2012). The Lancang-Mekong River is the longest river
in Southeast Asia, at ~5000 km in length (Liu et al. 2007), and has an
reported annual discharge of ~145,000 m3/s (MRC 2010; Pokhrel et al.
2018). It covers an area greater than 795,000 km? and is home to more
than 60 million people from six countries: China, Myanmar, Laos,
Thailand, Vietnam, and Cambodia. The gradient of the upper Lancang
River is approximately 2 m/km, more than ten times that of the lower
Mekong River, indicating more convergent topography exists upstream
while divergent but well-defined banks are prevalent downstream
(Pokhrel et al. 2018). In the densely populated lower basin, the monsoon
climate determines the high variability of surface water (Ruiz-Barradas
and Nigam 2018; Yang et al. 2019). The boundary of the study area
follows the basin boundary from the HydroBASINS dataset (Lehner and
Grill 2013).

2.2. Data

2.2.1. Reflectance data

The reflectance data used in this study were from a Sentinel-2 Mul-
tispectral Instrument (MSI) by the European Space Agency (ESA). The
Sentinel-2 MSI provides 13 spectral bands at three spatial resolutions
(10-m, 20-m, and 60-m) for the period of June 2015 and beyond. Before
the Sentinel-2, Landsat images captured starting from January 1987
were used, from sensors of the Thematic Mapper (TM) on Landsat 5 and
Operational Land Imager (OLI) on Landsat 8, all at the spatial resolution
of 30 m.

2.2.2. Topography data

We used the Multi-Error-Removed Improved-Terrain DEM (MERIT
DEM) at a resolution of 90-m (Yamazaki et al. 2017) as the topography
data. We selected not to use the 30-m open access data (e.g., SRTM30) for
two reasons: 1) we aimed to demonstrate the robustness of this method by
using relatively lower-resolution topography; 2) MERIT DEM had multi-
ple elevation errors (e.g., in mosaicking tiles) removed so that technical
disturbance to the extraction of the drainage networks could be minimal
(Supplementary Information). For the extent of the Lancang-Mekong
River basin, MERIT DEM was processed from SRTM3 DEM that was
originally acquired by an 11-day InSAR mission in February of 2000 (Farr
et al. 2007). Multiple errors were corrected in the topography, including
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absolute bias, stripe noise, speckle noise and tree height bias (Yamazaki
et al. 2017), making it suitable for drainage networks extraction (Shin
et al. 2020, 2019) and for baseline comparison. Potential flow dis-
connectivity in extraction could be significantly mitigated from the edge
effect caused by mosaicking inconsistent tiles (Lehner et al. 2008; Wu
et al. 2008). It is worth noting that for water bodies, SRTM3 DEM (as well
as the derived data) was intended to depict the elevation of the water
surface at the time of the SRTM mission in February 2000 (Slater et al.
2006) instead of the bathymetry at other times.

2.2.3. Reference river location data

Reference river locations were obtained from the Global River widths
from Landsat (GRWL) database (Allen & Pavelsky, 2018). GRWL was
compiled from Landsat images in the near mean-discharge month circa
2015. The modified normalized difference water index (MNDWI) was
applied in developing GRWL to identify water pixels from Landsat images.
Further processing on extracted water mask eventually produced GRWL
with information regarding the location, width, and braiding index of
rivers, in both vector and raster forms. The river vector (polyline) and
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river raster (one Landsat pixel wide) from GRWL were measured as the
river centerline using RivWidth (Pavelsky and Smith 2008) software.
Constrained by Landsat inputs, only rivers >30-m wide were included in
GRWIL, and the river connectivity was not guaranteed. We extracted river
vectors from GRWL within our study area to obtain 649,189 river reaches;
the average length of reach segmentation was 36.15 m

2.3. Methods

Three main steps were adopted for accurate and dynamic extraction
of river networks (Fig. 2). First, remote sensing input was prepared by
identifying water presence based on Sentinel-2 bands, and then MuwlI
percentiles were computed to create a composite image. Second, the
water index was integrated with the coarse topography using the pro-
posed Remote Sensing Stream Burning (RSSB) to inherit the high-
resolution from the imagery. Third, flow direction and flow accumula-
tion were computed through the common hydrological routing for the
connected drainage network.

2.3.1. Creating the composite image from reflectance percentile

We created the Sentinel-2 or Landsat composite by calculating per-
band, per-pixel percentiles of reflectance within a given period on the
Google Earth Engine platform (Gorelick et al. 2017). An adequate
percentile of reflectance over sufficient scenes can exclude the outlier
values from clouds, shadows, and sunglint (Donchyts et al. 2016b,
2016a; Ortiz et al. 2017; Wang et al. 2018). We used the 50% percentile
in this study because it can represent the average condition of a period
while reducing uncertainties from intermittent acquisition time, such as
variable water extent and vegetation disturbance (Donchyts et al.
2016b; Lin et al., 2018a; Ortiz et al. 2017). The exact percentile can be
determined a priori using other datasets (e.g., Wilson and Jetz 2016). To
produce the latest, most accurate Lancang-Mekong River network, we
used a total of 13,376 Sentinel-2 scenes from 2015 to 06-23 to 2019-04-
01 over the entire basin. High revisit frequency and overlap swath of the
twin constellation ensures each pixel is contained within 50 to 157
scenes for percentile calculation. For the period before 2015, we used
Landsat scenes over a selected region to demonstrate the dynamics of
flow pathways. Additionally, to best eliminate cloud contamination, we
filtered out low-quality pixels (e.g., pixels of opaque clouds, cirrus
clouds, and cloud shadows) using quality-assessment bands (i.e., QA60
band of Sentinel-2 and pixel_ga band of Landsat).

2.3.2. Identifying water presence by multispectral water index (MuWI)

Water masks or water maps are usually produced using threshold
values of water index with binary coding for water and non-water pixels
(Allen and Pavelsky, 2018; Yamazaki et al. 2017). In this study, we
extended the utility of water index by assuming its value was a relative
quantification of surface water presence. This assumption could be
reasonable because a lower percentage of water coverage corresponds to
a lower value of water index at the pixel or subpixel level (Feyisa et al.
2014; Wang et al. 2018).

Among many water indexes, we selected the Multispectral Water
Index (MuWI) to identify water presence because it is a native 10-m
water index on Sentinel-2 with improved accuracy. Sentinel-2 has
multiple band resolutions (10, 20, 60 m), indicating previous indexes
deliver either lower resolution (e.g., MNDWI) or lower accuracy (e.g.,
NDWI). MuWI adapts to both Sentinel-2 and Landsat with improved
low-albedo performance (Wang et al. 2018). Low-albedo pixels, origi-
nating from the shadows of buildings, hillslopes, and clouds, usually
contribute to commission error and are speculated to be the primary
error source in water mappings (Fisher et al. 2016). A systematic com-
parison shows that the commission error in water mappings using MuWI
is ~6%, which is significantly lower than that from NDWI (~18%) and
MNDWI (~14%) (Wang et al. 2018). We calculated MuWI based on the
composite images (Egs. 1 and 2 for Sentinel-2 and Landsat, respec-
tively). Depending on the adopted satellite, MuWI provides 10-m water
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presence from Sentinel-2 and 30-m water presence from Landsat.

MuWlsina— = —4ND(2,3) +2ND(3,8) +2ND(3,12) —ND(3,11) (1)
MuWl pgsar—s = — AND(1,2) +2ND(2,4) + 2ND(2,7) — ND(2, 5) )

where ND(i,j) denotes the normalized difference of band i and band j;
and p represents top-of-atmosphere (TOA) reflectance for corresponding
Sentinel-2 or Landsat bands:

— Poand; ~ Pband;

ND(i,j) =
Prand; T Prand;

3

2.3.3. Stream burning and flow routing

Stream burning is a widely adopted flow enforcement method to
produce conditioned DEM for deriving drainage networks (Lehner and
Grill, 2013; Saunders and Maidment 1996; Yamazaki et al., 2019).
Conventional stream burning often uses a rasterized stream map as the
mask to lower the stream pixel.

Taking this one step further, we incorporated MuWI-represented
water presence as the burnt layer into the DEM to force the flow. A
resolution of 10 m can be achieved when producing water presence
using Sentinel-2 images. The representative moment, or period of water
presence, is more flexible in selecting satellite images because the in-
termediate step of producing water maps (particularly, thresholding) is
avoided. As MuWI-derived water presence layer has spatially continuous
values for both water and land pixels, frequently reported issues
resulting from only burning water pixels, such as disconnection (Tur-
cotte et al. 2001; Yamazaki et al. 2019) and parallel channels (Yamazaki
et al. 2015, 2012), are expected to be mitigated.

thing = Zpase — (pMu WI (4)

where ¢ is the burning intensity parameter. Based on the conditioned
DEM from stream burning, hydraulic conditioning was conducted to
overcome negative effects induced from topographic depressions
(Woodrow et al. 2016). We calculated flow direction and flow accu-
mulation using the D8 algorithm (Ocallaghan and Mark 1984) primarily
due to computational efficiency and consistency with previous datasets,
especially in terms of large-scale applications. Following Lin et al.
(2019), we applied a channelization threshold of 25 km?. Flow calcu-
lations were performed through the TauDEM software package (Tar-
boton 2005) under the Message Passing Interface (MPI) parallel
computing mode on a 48-core workstation.

2.3.4. Analyses

We assessed the positional accuracy of the extracted river using
Goodchild’s measure for linear features (Goodchild and Hunter 1997).
The proportion of extracted river that lies within the buffer of the
reference river centerline was computed according to buffer sizes (Eq. 5
where L represents the length of the river vector line). With increasing
buffer size, x, the positional difference between the extraction and the
reference was estimated using the threshold p(x)>0.85, as done in
Donchyts et al. (2016b).

L(overlapped with the buffer of size x)

px) = )

Liota

The statistical difference between the extraction and the reference
was assessed using the two-sample Kolmogorov-Smirnov test (Allen
et al. 2018; Venables and Ripley 2013).

Burning intensity parameter, ¢, is the major controlling parameter
for both topographical modification and the final extraction. We
compared and contrasted various ¢ values from 1, 5, 10 and 20 m to
characterize the sensitivity of the method. However, since the least
modification was expected on the baseline DEM (Callow et al. 2007), we
further analyzed the Pareto optimum where necessary burning intensity
ensured replication of the river location, while further increasing
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burning intensity only marginally improved accuracy. To quantify het-
erogeneous burning intensity, flow accumulation (A) either from D8 or
D-infinity method is used as a basis:

A
9=10+10— (6)
Agsg,

where Agsg; represents the 95% percentile of flow accumulation in the
entire basin. This equation can warrant smaller burning intensity for
headwaters while larger burning intensity for downstream floodplains.

3. Results
3.1. Higher-resolution extraction of the drainage network

To examine the possibility of increasing resolution of the drainage
network, we used the RSSB method to extract the high-resolution
drainage networks for the entirety of the selected sub-basin. Signifi-
cant improvements are evident in the high-resolution extraction in terms
of realistic river representations (Fig. 3). For comparison, equivalent
Sentinel-2 imagery and DEM are integrated in both extractions, but the
lower one adopts a high resolution (10-m) following the RSSB method
while the upper one adopts a coarse-resolution (90-m) following the

ordinary stream burning method. Not only does increased river-reach
sinuosity indicate a higher level of fidelity, but an increase in
authentic tributaries also suggests that improvements of networking
correctness can be identified in the RSSB high-resolution extraction
(Fig. 3a). Large structural errors in the coarse resolution (90-m)
extraction are evident, likely due to low-relief terrain in the area and
false tributary joints. Furthermore, the high-resolution extraction suc-
cessfully excludes the oxbow lakes that are unilaterally connected to the
river, which have completely different flow regimes, as shown in the
yellow circled areas in Fig. 3a. At the networks region in Fig. 3a, an
additional river length of 41% is delineated in the high-resolution
extraction (57,460 m vs. 40,687 m), which is associated with a mini-
mum of nearly half the difference in estimates of carbon emissions. A
closer inspection at the meander level is shown in the example of Fig. 3b,
where the meander is accurately delineated in the high-resolution
extraction, but not in the ordinary coarse-resolution extraction. At this
meander, ~100% longer river length is observed, implying that small
rivers with more curvatures require such high-resolution extraction for
more realistic estimates, particularly for biogeochemical processes.
The cumulative density functions (CDFs) statistically show that ac-
curacy was improved in the RSSB-derived higher-resolution extraction
(Fig. 4). The 90-m DEM-based 10-m extraction (red line) show the
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highest positional accuracy over all error quantiles, corroborating the
rationale that positive effects of high vertical accuracy can offset nega-
tive effects of low horizontal spatial resolution in drainage extraction
process when adopting the MERIT DEM. It is also observed that the 90-m
DEM-based 90-m extraction (green line) surpasses the cumulative fre-
quencies of both 30-m DEMs-based 10-m extractions (purple lines) after
a large error quantile (~ 800 to 1000 m error). This observation implies
that some systematic errors of topography slope may exist in the 30-m
DEMs and can propagate to the false drainage connection where the
slopes are too distorted to be rectified by increasing spatial resolution.
Note that connectivity of the drainage networks is well retained in the
10-m extraction for the entire sub-basin, suggesting that the increased
resolution does not confuse the determination of the flow direction at
the pixel level.

Table 1 shows the river length and river networks density distribu-
tion of drainage networks extracted from the two resolutions. For both
extractions, the river length and networks density all roughly follow the
classic power law (Leopold and Maddock 1953). However, the RSSB-
derived high-resolution drainage networks presents a longer river
length, and thus, a denser network. This discrepancy can be in the order
of 2.5 times for both total length and networks density. Notably, the
high-resolution approach extracts one more stream order (w = 9)
compared to that of the coarse-resolution, implying that increased res-
olution not only improves representation of flowlines but also
strengthens the level of details in the network.

Table 1
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3.2. Multitemporal representation of drainage network

The ability of RSSB to extract the dynamics of the river networks is
vital. To demonstrate the multitemporal aspect of this method, we de-
pict a reach in the Lancang-Mekong River basin where the major flow
route is likely to change over time (Fig. 5a). In Area A, a new river
channel initialed circa 2005, as can be inferred from annual MuWI
change and supported by two images captured in 2001 and 2014
(Fig. 5b). In Area B, the water presence percentage varied significantly
between dry and wet seasons in a U-turning channel area of the Lancang-
Mekong River, i.e., February to May (dry) and June to October (wet)
(MRC 2010), as shown in Fig. 5c. Four periods of wet/dry seasons
before/after new-channel initiation differ from the water presence pat-
terns as measured by MuWI (right panel of Fig. 5a). The variations of
water presence propagate to the drainage networks extraction using the
RSSB method. During the dry season after initiation of the new channel
(green line in Fig. 5a), a higher water presence is apparent in the upper
bifurcation near Area A, so that the flowline in the extraction of this
period diverts into the new channel. Similarly, more water is present in
the lower bifurcation near Area B during the wet season, after initiation
of the new channel (red line in Fig. 5a). As a result, the extracted
drainage flows through the lower meanders rather than upward through
the U-shaped channel. All four extractions agree better with the river
channels, whether bankfull or exposed, in contrast to the extraction
performed without burning (gray line in Fig. 5a). Although the upper
route is also connected during the wet season after the formation of the
new channel, the single flow direction approach (D8) in our method
identifies the lower route to be the major route. Despite possible debate
on the criterion to determine the major route in this situation of multiple
de facto flow directions, the results show that varying remote sensing
inputs in the RSSB method could differentiate the flow routes during
environmental changes (Fig. 5). As this multitemporal capability of
RSSB method relies on the selection of imagery, it needs to be further
tested and developed in future work (e.g., possible issues with mis-
matching scenes from a rapid avulsion).

3.3. Basin-wide extraction of the drainage network

To demonstrate the added spatial accuracy afforded by integrating
surface water remote sensing, we extracted the drainage networks for
the entire Lancang-Mekong River basin and compared it with the
observational river centerlines. We note that due to computational
constraints (>1 TB memory requirement), the basin-wide extraction is
upscaled to 90 m from 10 m. Two extraction results (Origin and RSSB)
were generated both at 90 m resolution; thus, the primary difference
between them was whether or not Sentinel-2 imagery was integrated
through MuWI. Even though it is not the best extraction promised by
RSSB method, there is still a significant reduction in positional error
after applying our method (Fig. 6). Overall, the distance to authentic
river centerlines is reduced by 48%, from 236 m of the original

Stream order w, number n,,, mean length Lyeqn, total length Ly,.q;, and the river networks density D, of drainage networks from the high-resolution extraction using RSSB

and the coarse-resolution extraction using ordinary stream burning.

High-resolution (RSSB)

Coarse-resolution (ordinary)

Order (@) n, Lmean (km) Liotat (km) D (km km™2) n, Liean (km) Leotar (km) D (km km?)
1 516,095 0.19 97,756 0.815 20,085 1.95 39,074 0.326
2 239,744 0.19 44,963 0.375 9370 2.14 20,082 0.167
3 132,648 0.18 23,922 0.199 5184 1.93 9997 0.083
4 77,973 0.17 13,073 0.109 2633 1.86 4887 0.041
5 42,178 0.16 6891 0.057 1374 1.72 2363 0.020
6 21,331 0.16 3450 0.029 667 1.69 1130 0.009
7 10,623 0.16 1676 0.014 401 1.90 762 0.006
8 5152 0.14 744 0.006 253 2.01 508 0.004
9 2831 0.15 431 0.004 0 - 0 0
Total: 1,048,575 0.18 192,907 1.608 39,967 1.97 78,802 0.657
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extraction to 123 m of the RSSB extraction. Wider reaches are associated
with lower positional differences for both extraction results where river
width is less than or equal to 500 m. However, the error-width rela-
tionship is not consistent for reaches wider than 500 m, likely because
more bifurcations and braided sections exist in wider channels. All width
categories show a 50-£10% error reduction, suggestive of a systematic
improvement from remote sensing treatment in terms of location
accuracy.

Spatial distribution of positional errors over the Lancang-Mekong
River basin from the two extraction results is compared in Fig. 7. For
both results, the positional error is higher in the lower basin than that in
the upper basin (Figs. 7a-b). This likely occurred because the flat and
populated landscape, which hinders accurate extraction of the river
network, is often observed in downstream regions of the Lancang-
Mekong basin (Deng 2019; Viero et al. 2019). Fig. 7c reveals the

improvement, or error reduction, of positional accuracy across most
basin areas. For those river sections laid on landscapes where drainage is
more challenging to be extracted, such as those with larger positional
error, the corresponding accuracy improvements are proportionally
larger.

3.4. Sensitivity analysis

The most sensitive parameter in the RSSB method is the burning
intensity, ¢, that controls the extent of lowering the water body and
raising the land. Fig. 8a shows the probability distributions of accuracy
improvement under four ¢ settings, ranging from 1 m to 20 m. With
increasing ¢, the distributions are more right-skewed, implying greater
improvement in accuracy. However, when comparing average
improvement (margin), increasing ¢ from 10 m to 20 m does not
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DEM modification.

Table 2
Sensitivity analysis of burning intensity per stream width group.

Stream width count Accuracy improvement (m)
o=1 ®=5 =10 =20

W<50 153,847 64.5 79.9 95.7 89.0
50<W<100 233,007 80.3 109.4 116.1 125.7
100<W<200 117,825 94.2 111.5 114.5 136.2
200<W<500 67,752 48.0 87.7 100.9 125.8
W>500 76,758 118.2 120.3 141.4 121.7
all 649,189 80.2 102.4 112.7 111.2

continue the improvement, but decrease the margin from 112.69 m to
111.18 m. Stream burning can rectify drainage location but may
compromise subsequent terrain analysis (Callow et al. 2007). To pre-
serve the observational water presence with less modification on DEM,
we conducted the Pareto optimum of ¢ over the entire Lancang-Mekong
River basin. The Pareto optimum (Fig. 8b) shows the accuracy
improvement added to each previous ¢ setting (e.g., category ¢ = 5 is
compared to category ¢ = 1, while category ¢ = 1 is compared to ¢ = 0),
in relation to different DEM modification percentages. Category ¢ = 1
that is compared to the non-burning setting ¢ = 0 contributes the highest
added accuracy improvement, suggesting that stream burning is vital.
The optimum of ¢ is achieved near 10 m, considering both less DEM

o

feil

o
1

Positional Difference (m)
2 3
o =]
i | 1

o
o
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50<W=100

modification and added accuracy improvement. This value is similar to
that in a previous study (Callow et al. 2007) which reported that stream
burning with 10 m trenches has the least impact on subsequent terrain
analysis.

To further examine the heterogeneous burning intensity, we con-
ducted sensitivity analysis of burning intensity per stream width group.
As presented in Table 2, ¢ = 10 and ¢ = 20 presents the highest accuracy
improvements for all width groups. According to the sensitivity analysis
(Table 2), we used the eq. 6 to study the effects of heterogeneous
burning intensity. Generally, it is found that the effects of heterogeneous
burning intensity are not significant (Fig. 9). Both extractions with
heterogeneous burning intensity (RSSB-D8 and RSSB-Dco) present
marginally higher positional difference than the extraction with the
fixed burning intensity (RSSB-fixed) for all river types. The resultant
differences between RSSB-D8 and RSSB-Dco extractions are also
minimal.

4. Discussion
4.1. Importance of remote sensing inputs
The methodological advance of this study mainly comes from the

integration of water presence information derived from optical remote
sensing. This integration enables high-resolution and multitemporal

100<W=200

200<W=500

Fig. 9. Effects of heterogeneous burning intensity. RSSB-D8 represents RSSB extraction with heterogeneous burning intensity calculated from D8 flow accumulation;
RSSB-Doo represents RSSB extraction with heterogeneous burning intensity calculated from D-infinity flow accumulation; RSSB-fixed represents RSSB extraction with

fixed burning intensity; Origin represents the non-RSSB extraction.
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ability for drainage networks extraction at the basin scale or larger. It
has been suggested in previous studies (e.g., Condon and Maxwell 2019;
Getirana et al. 2009; Kenny and Matthews 2005; Lehner and Grill, 2013;
Lindsay 2016; Saunders and Maidment 1996; Woodrow et al., 2016; Wu
et al. 2019; Yadav and Hatfield 2018; Yamazaki et al., 2019) that water
map inputs are critical in order to precisely construct drainage networks
in large river basins. Previous studies mostly used produced maps (e.g.,
blue lines on maps) to improve channel locations. Among them, MERIT-
Hydro (Yamazaki et al. 2019) used water maps derived from Landsat
imagery by using the conventional stream burning method, which is the
only study thus far to explicitly use satellite imagery at the basin scale or
larger. However, it used the mapping products rather than directly
integrating satellite imagery. As a result, previous studies did not derive
as much benefit from the spatiotemporal advantages (e.g., higher-
resolution, multitemporality) of satellite imagery as is possible for
drainage networks extraction. This study, to the best of our knowledge,
is the first to explore the spatiotemporal advantages of satellite imagery
with a focus on the high-resolution aspect of extracting drainage net-
works at large scales.

In comparison with previous water maps inputs, direct integration of
optical remote sensing imagery can offer many advantages. First,
spatially contiguous burning delivered by direct integration facilitates
the accurate extraction of drainage networks at large scales. As previous
stream burning approaches often adopted blue lines from maps, which
are in binary form (usually 1 for water, 0 for non-water) (Lindsay 2016;
Wu et al. 2019), the thin and isolated burning can result in inaccurate
connections of reaches or even disconnections (Habib et al. 2018). Our
parallel experiment confirms that when a GRWL layer (river centerlines)
in binary form is used as the input with equivalent extraction settings,
many disconnections are produced, notably, on the main stem of
Lancang-Mekong River near the dam or over low-relief areas. For
drainage networks extraction over a large region, disconnections are
usually inevitable due to the uncertainties in topography (Schwanghart
et al. 2013; Wu et al. 2017), which could introduce more disconnections
as resolution increases. However, direct integration by the remote
sensing water index can generate a connected, precise drainage net-
works without necessitating further processing (e.g., Poggio and Soille
2012; Yamazaki et al., 2019), as demonstrated for the Lancang-Mekong
River basin in this study. Its success may be attributed to spatial burning
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Fig. 10. Positional errors of extractions from baseline DEM (Baseline), MERIT
Hydro dataset (MERIT) (Yamazaki et al. 2019), 90-m extraction in this study
(RSSB-10), 10-m extraction in this study (RSSB-10), 30-m extraction based on
AW3D DEM (AW3D-30), and 30-m extraction based on SRTM DEM (SRTM-30)
over the selected sub-basin, compared to a 1:50000 local hydrograph provided
by the Mekong River Commission (MRC).
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where the quantification of water presence shows a gradual decrease
from river center (pure water pixel, mostly) to river edge (mixed pixel)
and to bank (pure land pixel), which ensures smooth lowering (or raising
for land) on the topography. Although the disconnectivity issue is not an
inherent limitation of conventional methods and RSSB is not theoreti-
cally immune to disconnection (e.g., in the case of inadequate parameter
setting), the spatially contiguous burning has been useful in minimizing
this issue. Furthermore, the direct integration by a water index, as in
RSSB, is a more objective and fully automatic method to produce
drainage networks.

An additional comparison with hydrography in the selected sub-
basin of the Mekong River (Fig. 10) not only emphasizes the impor-
tance of remote sensing inputs but also underscores the improvements
derived from spatially continuous burning and the higher resolution
proposed in this study. Meanwhile, it reaffirms the importance of ver-
tical accuracy of DEM data. MERIT-Hydro is composed of hydrography
data rather than drainage networks data, which does not include some
key networks information such as stream order. Hence, a more sys-
tematic comparison (e.g., river length distribution statistics as in
Table 1) is not possible. Moreover, water index MuWI as the first de-
rivative of reflectance is used in this study to identify likely waterbodies,
while the second derivative of reflectance embedding river morphology
can be a potential replacement, such as the singularity index which is
useful for estimating river locations (Isikdogan et al. 2018, 2017a,
2017b).

Besides, the ability to derive dynamic drainage network is deter-
mined by the multi-temporal remote sensing inputs. Multi-temporal
remote sensing inputs temporalize the hydrologically-conditioned
DEM within the framework of RSSB, which could transform cross-
sectional analysis to panel analysis of the river networks. For example,
the analysis of patterns of lakes connected to river networks (Gardner
et al. 2019) could possibly scale up in time dimension and to larger
scales. Similarly, multi-temporal RSSB could improve hydrological
modeling. For example, the concept of distributed time variant gain
modeling (Xia et al. 2005) could be complemented by RSSB for its flow
routing process. However, implementing time-variant flow routing may
incur complications, such as the need for revising model structure and
considerable additional computations. Given the existence of multi-
temporal DEM sources (e.g. TanDEM-X data, multi-temporal LiDAR
collection), multi-temporal DEMs are not as useful as the RSSB over
large scales considering their low accessibility and limitation on surface
water elevation.

Moreover, the direct integration of remote sensing imagery, or the
RSSB method, delivers potential for higher resolution in drainage net-
works extractions. As demonstrated in Section 3.1, such higher resolu-
tion is both feasible and effective for representing small rivers.
Generally, higher-resolution input is not limited to Sentinel-2, or even
optical remote sensing, as used in this study; other types of imagery can
also be the potential sources, such as 10-m Sentinel-1 SAR (Synthetic
Aperture Radar) and 3.7-m WorldView-3 SWIR (Short-wave Infrared)
imagery. However, various potential challenges exist when adopting
other types of imagery, such as the development of an adequate quan-
tification on other imagery as MuWI on Sentinel-2 for optimal
integration.

4.2. Linking hydromorphology with hydrology

Delineation of drainage networks can be sourced from hydro-
morphology, or fluvial geomorphology. Hydromorphology approaches
the structure and evolution of Earth’s water resources by focusing on
morphological characteristics, such as the width, depth, and longitudinal
profile of a river, that reflect the dynamic, historical evolution of drainage
basins induced by both natural and human influences (Chen et al. 2019;
Vogel 2011). The combination of hydromorphological and hydraulic
characteristics, such as elevation, slope, flow direction and catchment
area, has filled many knowledge gaps regarding drainage networks
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properties (Allen et al. 2018; Allen and Pavelsky, 2018; Altenau et al.
2019; Barefoot et al. 2019; Frasson et al., 2019; Gardner et al. 2019;
Griscom et al. 2017), particularly by efforts of the Surface Water and
Ocean Topography (SWOT) mission. Further advances may be hampered
by the separation of hydromorphologic measurements from drainage
networks, particularly when studying them from systematic perspectives.
From the hydromorphological aspect, recent progress is largely motivated
by satellite remote sensing, which can provide direct multitemporal
measurements at large scales. From the hydrological standpoint, flow
networks topology and its quantities are still limited in terms of spatial
and temporal representations.

In these regards, direct integration in this study can serve as the
foundation to transform the understanding of the relationship between
river networks and hydraulic quantities from that of related analysis to
one of integrated fusion. Related analysis is an intuitive method that takes
full advantage of current high quality drainage networks data (mostly
HydroSHEDS) and relates it to satellite-derived hydromorphology, usu-
ally involving Spatial Join geoprocessing (Lin et al., 2019). The spatial
discrepancy between the remotely sensed river and DEM-derived flow
path is a fundamental problem in related analysis. From our calculations,
the mean spatial discrepancy between HydroSHEDS and GRWL center-
lines in the Lancang-Mekong River basin is greater than 700 m. This issue
becomes more significant when the differences in spatial resolutions be-
tween the two datasets are larger, which poses higher uncertainties.
Moreover, temporal discrepancy usually exists in related analysis because
remote sensing imagery is often multitemporal, while topography is
static. It is certainly appreciated that related analysis has proven feasible
for many analyses (Frasson et al., 2019; Gardner et al. 2019; Lin et al.,
2019), but those analyses are less sensitive to the spatial discrepancies
and detailed flow information (e.g., the abundance of lakes connected to
river networks (Gardner et al. 2019)), while some others are more sen-
sitive. For example, Manning’s equation—one of the key theoretical
equations for deriving discharge from satellites—would be augmented at
the basin scale with dense hydromorphologic measurements by
combining flow propagation over a more authentic river network (Lin
et al., 2019); this is important to further the understanding of intermittent
and ephemeral streams in drainage networks that are currently poorly
understood.

Ideally, bathymetry data is constructed over the entire basin by
replacing the modeled river centerline with the real thalweg and extracting
the drainage networks from the channel bed. However, this approach is
still far less feasible at present due to the difficulty in penetrating water and
returning signals at large scales. Nevertheless, extracting drainage net-
works does not necessarily require absolute elevation; it only requires
relative relief between adjacent pixels. The RSSB method provides a basis
to construct the quasi-bathymetry where the absolute elevation of each
pixel is not guaranteed but relative relief between adjacent pixels could be
improved. Given that not all wavelengths of optical remote sensing are
entirely attenuated in water, reflectance could partially carry depth in-
formation under certain conditions (Alsdorf et al. 2007; Choubey 1998;
Harrington et al. 1992; Legleiter et al. 2009; Legleiter and Harrison 2018).
However, it is rather difficult to confirm any physical meaning of MuWI, as
well as the integration in this study, which requires more comprehensive
spectral analysis combined with field work. Besides, current burning is
locally heterogenous. Subsequent study with the aim to reconstruct the
natural basin landforms is probably achieved by a more sophisticated
heterogenous burning throughout the basin. Nonetheless, our proposed
method effectively extracts high-resolution drainage networks over suffi-
ciently large areas, which may support the quasi-bathymetry assumption
of the integration. In particular, its effectiveness is also revealed in its fully
automated extraction without the need for postprocessing.

4.3. Limitations and future work

Despite the promising performance of our proposed integration
method for the entire Lancang-Mekong River basin, there are several
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limitations and potential areas for future advancements in terms of both
integration and flow representation. First, sophisticated remote sensing
tests are needed regarding the reflectance impact, selection of burning
equation, and water depth retrieval. We used Top-Of-Atmosphere (TOA)
reflectance data as remote sensing inputs, as they were the highest-level
reflectance data provided by the European Space Agency (ESA) over the
Lancang-Mekong River basin at the time of this study (Gascon et al.
2017). However, radiometric corrections, including atmospheric,
terrain and cirrus corrections which convert TOA reflectance to Bottom-
Of-Atmosphere (BOA) or surface reflectance, are likely to improve
inland water detection, as are water presence quantification and
drainage networks extraction. A linear form of the burning equation (Eq.
(4)) was applied in this study. It assumes a linear relationship between
MuWI and relative water depth, which is empirical and beneficial for the
sake of brevity. A systematic examination of the extents and conditions
at which water depth information can be retrieved from the remote
sensing water index is still necessary in order to support the integration
method. This examination will certainly contribute not only to drainage
extraction but also the vertical dimension of hydromorphology, which is
also essential in biogeochemical processes (Elosegi et al. 2010; Ledesma
et al. 2018).

Second, potential increases in extraction resolution are possible but
constrained by computation over large scales. On the one hand, the
resolution of a final extraction can be further refined using the RSSB
method by substituting higher resolution inputs of remote sensing (e.g.,
1-m imagery over the US from the National Agriculture Imagery Pro-
gram) and/or DEM (e.g., 30-m DEMs, such as SRTM30, AW3D30,
NASADEM). On the other hand, it is necessary to investigate the
boundary of resolution difference between the two inputs (i.e., imagery
and DEM) to maintain the hydrological conditions. Furthermore, many
studies on drainage extraction (Lehner et al. 2008; Yamazaki et al.
2019), including ours, identified the computational restrictions of
hardware or algorithms as one of the key barriers to enhancing drainage
resolution at a large scale. In the case of our 10-m resolution with 48,244
x 39,384 pixels, the computation time shows a nearly linear speedup
when using parallel computing (5 nodes over a single node has a 4.7 x
speedup), suggesting scalability is feasible. However, we identified
memory size as the major bottleneck of computation. For example,
~100 GB of memory was used to conduct the 10-m extraction of the sub-
basin in this study, and a theoretical >1 TB of memory would be needed
for the entire Lancang-Mekong River basin. We recommend a greater
number of collaborations with the community of distributed computing
for the efficient parallel algorithms (e.g., Richardson et al. 2014) on
more advanced high-performance computing systems.

Although our method and results have adequately integrated obser-
vational river locations, it is still insufficient in some ways to represent the
physical realism of flow pathways. A braided river, in-channel flow routes,
or bifurcation of rejoined or non-rejoined networks cannot be represented
due to the D8 algorithm used, which is a single flow direction method. In
addition, multiple flow direction methods such as D-infinity (Tarboton
1997), and recent work (Wang et al. 2020) originating from the field of
graph theory may also facilitate a more realistic representation. Those
multiple flow direction methods may improve positional accuracy of the
extracted river locations. However, extracting river networks with explicit
stream order and hydraulic connection based on multiple flow direction
methods remains a challenge. For instance, to evaluate the performance of
D-infinity method, we calculated flow direction and flow accumulation
using D-infinity, and assessed positional accuracy for D-infinity-derived
river locations (Table 3). Although the overall positional difference of D-
infinity-derived river locations is lower than that of D8-derived river net-
works (89.7 m vs. 123.7 m), it is recognized that upstream-downstream
linkage and stream order are hard to build when using D-infinity, which
is attributed to the difference between “river locations™ and “river net-
works” in Table 3.

A 90-m DEM is used because its high vertical accuracy outweighs the
effects of high horizontal resolution when compared to 30-m SRTM and
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Table 3

Comparisons of positional difference between D-infinity-derived river locations and D8-derived river networks.
Positional difference (m) All W<50 50<W<100 100<W<200 200<W<500 W>500
D-infinity river locations 89.67 86.24 89.77 80.01 53.22 143.31
D8 river networks 123.67 151.02 118.17 91.24 56.93 173.11

AW3D DEMs. Future studies could consider DEMs with similarly high
vertical accuracy of higher horizontal resolutions. As stereo-
photogrammetry is also useful for DEM generation (Grosse et al. 2012;
Pulighe and Fava 2013), it could be feasible to explore drainage
extraction solely from optical imagery in future studies.

5. Conclusions

In this study, we proposed an integrative method for extracting
drainage networks that employs high-resolution, multitemporal optical
satellite remote sensing imagery. By implementing the RSSB method
using Sentinel-2 imagery over the Lancang-Mekong River basin, we
demonstrated that this method is able to extract high-resolution
drainage networks in contrast to the conventional model- and map-
based methods. The high-resolution extraction also exhibits improved
spatial accuracy (~50% error reduction) and an enhanced ability to
delineate dynamics in drainage networks. Despite some limitations, our
attempt to use remote sensing to resolve spatial constraints not only
contributes to drainage networks extraction methodology but also pro-
vides an improved basis for understanding the role of inland waters in
global elemental cycles by refining the size and distribution of drainage
network, particularly for small rivers. In addition to increased resolu-
tion, RSSB enforces the large-scale connectivity of drainage networks
that is not sufficiently considered by extractions on high-resolution
imagery or high-resolution DEM. The large-scale high-resolution
drainage networks constructed with high accuracy could advance esti-
mates of combined flow information (e.g., flow direction, flow accu-
mulation, slope), networks topology (e.g., stream order, fractal,
connectivity), and hydromorphological characteristics (e.g., river width,
meander wavelength, sinuosity), allowing greater understanding of
complex interactions between water flow and elemental exchange pro-
cesses. By introducing direct integration of emerging optical remote
sensing, this study presents a new method to extract high-resolution
active drainage networks; this information is useful to determine flow
routing in changing river systems, which is especially important for
constraining estimates of smaller streams and rivers in the river
network.
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