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The hydrology of the Himalayan region, known as the water tower of Asia, is undergoing rapid transformations
due to climate change and growing human influences, and it is known that this region is one of those most
vulnerable to climate change. Numerous studies have examined the changes in the hydrology of Nepal, which
includes a significant upstream portion of the Himalayas. However, there is a lack of holistic studies on the

I:_Zyw ‘;rdg: hvdrol spatial-temporal evolution of hydrologic dynamics over the entire nation and over long periods. In this study, we
imalayan hydrolo: . o . .
Nepal van iy &Y present a comprehensive assessment of the changes in river discharge, flood occurrence, and terrestrial water

storage (TWS) across all river basins in Nepal using hydrological-hydrodynamic simulations spanning for 40
years (1979-2018) at ~ 5 km spatial resolution, and downscaled flood attributes at ~ 90 m resolution. The
spatio-temporal variations in river discharge and inundation extent are examined through mapping of decadal
trends using a quantile analysis method. The results indicate that the dynamics of river discharge has evolved
varyingly across different river basins. The evolution pattern within a basin generally agrees with that at the
basin outlet, but notable exceptions are found, indicating high hydro-climatic heterogeneity within the basins.
The decadal evaluation of flood dynamics over major flooded areas suggests that inundation dynamics is strongly
influenced by various flow characteristics, including the timing, duration, and magnitude, and that the evolution
of flood dynamics is more complex than that of river discharge. Results indicate that the TWS dynamics over
entire Nepal is strongly modulated by the variations in subsurface water storage, and groundwater storage has
been in continuous decline (-1.74 cm/year) in the recent decades (2002-2016). This study provides a basis to
advance the understanding of long-term hydrologic changes in the Himalayan region with important implica-
tions for improved water resources management.

Hydrological-hydrodynamic modeling
Flood dynamics

Terrestrial water storage
Groundwater depletion

1. Introduction

The Himalayan region, referred to as the water tower of Asia, sup-
plies plentiful water to sustain river and groundwater systems in its
downstream that provide water for human livelihood and critical eco-
systems (Immerzeel et al., 2010; Viviroli et al., 2007). As the changes in
the Earth’s environment continue to alter the monsoonal rainfall pat-
terns that strongly modulate the hydrology of the region (Ghosh et al.,
2016, 2012; Mitra et al., 2012), the spatio-temporal dynamics of
downstream water availability has become a topic of increasing concern
(Dahal et al., 2018; Dimri et al., 2018a, 2018b; Immerzeel et al., 2014;
Jeelani et al., 2012; Shrestha et al., 2012). Mounting evidence suggests
that the Himalayan region is highly vulnerable to climate change (Roy
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et al., 2019; Tewari et al., 2017). Among Himalayan countries, Nepal
accounts for significant upstream portions of Himalayan region that has
drastic elevation variation resulting in diverse climate (Karki et al.,
2016) and land cover characteristics and biodiversity across the nation
(Bonekamp et al., 2018; Immerzeel et al., 2015; Singh et al., 2019).
Hence, understanding the hydrologic dynamics of river basins in Nepal
is of utmost importance to provide a better understanding of the spatio-
temporal changes in the Himalayan hydrology.

Surface water dynamics in Nepal is governed primarily by Himala-
yan snowmelt and monsoon rainfall. The four major river basins, namely
the Mahakali, Karnali, Gandaki, and Koshi (Fig. 1), originate in the
upper Himalayan region receiving substantial snow and glacier melt
water, flow through rugged terrains in the central hilly areas of Nepal,
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and drain into the Ganges river system in India. Overall, the hydrologic
dynamics of these river systems is strongly modulated by the rhythm of
the South Asian monsoon that brings ~ 80% of the annual rainfall
during the monsoon season (June-September) (Panthi et al., 2015;
Shrestha, 2000). The intense monsoonal rains produce a typical unim-
odal hydrograph with a sharp rise in flow volumes, often causing
widespread flooding (Dhital and Kayastha, 2013). During the dry sea-
son, flows reduce appreciably, affecting downstream agricultural sys-
tems and causing issues for sustaining hydropower generation (Dahal
et al., 2020; Poudyal et al., 2019).

The large climate and topographic gradient, young geological for-
mations, and strong monsoon effect make the river basins of Nepal
highly susceptible not only to adverse climatic impacts (e.g., floods,
droughts) but also to natural hazards including glacial lake outburst
flood (GLOF) and excessive soil erosion (Agarwal et al., 2016; Chen
et al., 2013). As the nation is undergoing rapid socio-economic growth,
the threats of climate change impacts are further exacerbated by human-
induced changes in land-water systems due to expanding agriculture,
urbanization, and construction of dams for hydropower generation and
irrigation, which are all inevitable to support the growing needs for
food, water, and energy (Chinnasamy et al., 2015; Dhakal et al., 2019;
Paudel et al., 2016). Moreover, the transboundary nature of the Maha-
kali, Karnali, Gandaki, and Koshi basins—that share some portions with
China and India—adds further challenges in making optimum use of
resources among different regions while also considering the ecosystem
needs. As such, these ongoing climate shifts and human-induced alter-
ations of land-water systems have altogether resulted in an increasing
threat to the region in terms of water and food security and ecological
integrity.

Analysis of long-term observational data provides an insight for
historical evolution; however, hydrometeorological observations are
generally scarce in terms of both spatial and temporal coverages, espe-
cially for regions like Nepal. In this vein, hydrological models are
indispensable tools for understanding the long-term evolution of such
complex and large-scale hydrologic systems. Indeed, large-scale hydro-
logic studies have benefited from the advances made in hydrological
modeling over the past two decades (Nazemi and Wheater, 2015;
Pokhrel et al., 2017, 2016; Wada et al., 2017). In case of the Himalayan
region, and specifically for Nepal, most studies have relied on limited
observations (e.g., Karki et al., 2020; Sharma and Shakya, 2006), and
modeling studies have not fully exploited the advances in recent model
developments. The outstanding challenges and limitations of existing
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hydrologic and hydrodynamic studies in Nepal are primarily related to:
(1) a focus on river flow as the sole variable to describe the changing
hydrology in the region (e.g., Bajracharya et al., 2018; Palazzoli et al.,
2015; Pandey et al., 2019; Rajbhandari et al., 2017; Sharma and Shakya,
2006; Shrestha et al., 2016a, 2016b, 2014, 2013), and (2) sub-national
scale studies focusing on a part of the country (e.g., Babel et al., 2014;
Bharati et al., 2016; Bhatta et al., 2019; Chinnasamy et al., 2015; Mishra
et al., 2018).

Regarding to the first issue identified above, among many observa-
tion- and modeling-based studies in Nepal, most have focused on
changes in river flow. While river flow is a key indicator of water
availability, there are other hydrologic variables such as surface water
depth, inundated area, and river-floodplain water storage that provide a
more comprehensive representation of the spatial and temporal changes
in water resource systems. For example, Pandey et al. (2011) assess the
adaptive capacity of water resources system of the Bagmati river basin,
by using area of vegetation and wetland as a proxy for ecological ca-
pacity due to the limitation of data availability. With the high-resolution
modeling, variables such as the natural water availability can be
explicitly derived from the simulated spatio-temporal distribution of
water storages, which are useful for water resources management and
ecological applications (Bharati et al., 2014). As for the second issue,
hydrological simulations have generally been conducted for a portion of
the nation. To cope with the aforementioned compounded pressures, it
is essential to develop a holistic understanding of the long-term and
nationwide hydrologic changes since many water-related problems are
multi-sectoral that should be addressed at the local, national, and
regional scales (Friedman et al., 1984; Henriksen et al., 2003; McMillan
et al., 2016). The increased domain size also provides an opportunity to
utilize the terrestrial water storage (TWS) measurements from the
Gravity Recovery and Climate Experiment (GRACE) satellites, rarely
used by previous studies in Nepal. As such, the simulation of the hy-
drologic systems across all basins can provide a holistic view at the
national level.

The objective of this study is to present a comprehensive analysis of
the spatio-temporal changes in hydrologic fluxes and storages across all
river basins of Nepal and for a multi-decadal historical period. The re-
sults are based on high-resolution integrated hydrological-
hydrodynamic modeling validated against ground- and satellite-based
observations. Key research questions addressed in this study are fol-
lows. (1) How has the dynamics of natural river discharge, inundated
areas, and TWS in the Himalayan river basins of Nepal evolved over the
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Fig. 1. The river basins of Nepal. Location of the basins is indicated in the lower left conner. The background color coding indicates the spatial extent of the basins.
Blue lines with varying widths show the spatial distribution of long-term mean (1979-2018) river discharge at ~ 5 km grids. Red circles mark the location of
hydrological gauging stations; the numbers indicate the station IDs used in the database of the Department of Hydrology and Meteorology (DHM), Nepal. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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past four decades? (2) Are there any distinct spatial patterns and tem-
poral signatures in low, median, and high river flows in those river
basins? (3) What are the similarities in inter-annual and decadal trends
across the river basins located in different geographic regions? We
answer these questions based on the simulation results of the historical
river-floodplain dynamics for 40 years (i.e., 1979-2018 period) at a
spatial resolution of ~ 5 km (3 arc-minute), where flood extent is
downscaled to a further finer resolution of ~ 90 m (3 arc-second). Such
advanced capability of high-resolution hydrological modeling for a large
domain is enabled by combining a global land surface model HIGW-MAT
(Pokhrel et al., 2015) and a global river-floodplain hydrodynamic model
CaMa-Flood (Yamazaki et al., 2011).

To our best knowledge, this is the first study of such kind to use high-
resolution simulations of river-floodplain dynamics over the entire
Nepal, in which not only the changes in river discharge but also inun-
dated areas and river-floodplain water storages are examined. Through
the high-resolution modeling over the nationwide domain, we provide
important advances over previous studies in the region in that the
simulations are conducted in a consistent modeling framework, which
allows collective comparisons of basin-wise characteristics of hydro-
logical responses. This enables the understanding of how the hydrology
in the region has evolved historically, which is a key to future pro-
jections of water resources and hence sustainable development and
climate change adaptation. In the remainder of this paper, the models
(HiGW-MAT and CaMa-Flood) are introduced, and observational data
and research approach are described in section 2. Results and discus-
sions are provided in section 3, and summary and conclusion are pre-
sented in section 4.

2. Materials and methods
2.1. HiGW-MAT and CaMa-Flood models

HiGW-MAT (Pokhrel et al., 2015) is a global land surface model that
simulates various hydrological processes from canopy to bedrock on a
full physical basis by solving both energy and water balances. CaMa-
Flood (Yamazaki et al., 2013, 2011) is a global hydrodynamic model,
which computes river-floodplain hydrodynamics (i.e., river discharge,
flow velocity, water level, and inundated area) by solving shallow water
equations of open channel flow, explicitly accounting for backwater
effects using the local inertial approximation (Yamazaki et al., 2013).
We use a modeling framework that combines HiIGW-MAT and CaMa-
Flood. Such integration provides an optimal combination in terms of
spatial resolution needed to resolve key hydrological processes at
different scales. HIGW-MAT is used to simulate local runoff by consid-
ering hydrological processes such as evapotranspiration, snow melt,
infiltration, and groundwater dynamics at a resolution of 0.5° (~50 km)
that is consistent with that of meteorological forcing, namely the
WATCH Forcing Data using the ERA-Interim (WFDEI) data (Weedon
et al., 2018). The runoff from HIGW-MAT is then used in CaMa-Flood to
simulate the finer details of river-floodplain processes at a high resolu-
tion of 3-arcmin (~5km) because the focus of the present study is river
discharge and floodplain processes. This model combination has been
widely used for regional to global-scale studies (Burbano et al., 2020;
Pokhrel et al., 2018; Shin et al., 2020; Yamazaki et al., 2014, 2012; Zhao
etal., 2017). Such multi-scale modeling approach allows the simulations
of long-term changes in terrestrial water storage and flux at high reso-
lution over the large domain with less computational burden.

HiGW-MAT derives from MATSIRO (Minimal Advanced Treatments
of Surface Interaction and Runoff; Takata et al., 2003), which has been
advanced over the years by adding various new schemes to simulate
groundwater flow and human water management. Each grid cell of
HiGW-MAT has four types of surfaces with and without canopy and
snow, respectively, where energy fluxes are calculated separately
considering sub-grid heterogeneities. Canopy interception and transpi-
ration are estimated based on the photosynthesis scheme in the Simple
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Biosphere Model 2 (SiB2; Sellers, 1997), surface and subsurface runoff
processes are modeled using a simplified TOPMODEL (Beven and
Kirkby, 1979; Stieglitz et al., 1997), soil moisture movement is simu-
lated by solving the Richards equation (Koirala et al., 2014; Richards,
1931; Yeh and Eltahir, 2005), and the water table depth is explicitly
represented (Koirala et al., 2014). HIGW-MAT includes the capability to
simulate human water management practices (Pokhrel et al., 2012a,
2012b, 2015), but we use HIGW-MAT in the natural setting (i.e., the
human water managements modules are turned off) following our pre-
vious studies to provide runoff forcing to CaMa-Flood (Pokhrel et al.,
2018; Shin et al., 2020) since our objective is on investigating the hy-
drological changes stemming from natural climate variability, which is
the first order driver of flow regime change (Bower et al., 2004). Land-
surface properties, including land cover, soil type and associated model
parameters, are set to identical to those in our previous studies (Pokhrel
et al., 2018; Shin et al., 2020).

We use CaMa-Flood version-3.94 with a spatial resolution of ~ 5 km,
which includes the capability to downscale flood depth to a further
higher resolution of 3-arcsec (~90 m). For river-floodplain parameter-
izations (e.g., flow direction, river-floodplain elevation profile, river
length, and river width), MERIT Hydro is used, which is a global hy-
drography dataset based on the MERIT (Multi-Error-Removed
Improved-Terrain; Yamazaki et al.,, 2017) DEM (Digital Elevation
Model) and multiple inland water body datasets (Yamazaki et al., 2019).
As errors including absolute bias, stripe noise, speckle noise, and tree
height bias (Yamazaki et al., 2017) that prevail in the previously used
SRTM (Shuttle Radar Topography Mission) DEM are removed, an
improved simulation of river-floodplain dynamics is enabled. A com-
plete description of the model physics, parameterization methods, and
sensitivities to input parameters in CaMa-Flood can be found in the
previous literature (Yamazaki et al., 2013, 2011) and the user manual
that is available for free download.

2.2. Observational data

Simulated river discharge is validated against the observational data
at 23 gauging stations maintained by the Department of Hydrology and
Meteorology (DHM), Nepal (Fig. 1). The gauging stations are evenly
distributed in both upstream and downstream regions, and they include
at least 16 years of data records.

The Global Surface Water (GSW) data (Pekel et al., 2016) are used to
validate the simulated flood extent at ~ 90 m resolution. The GSW data
are based on Landsat satellite images from 1984 to present for the entire
globe. Each pixel of Landsat images is classified either as open water, not
open water, or non-valid class. For valid classes (i.e., open water and not
open water), classification results are combined on a monthly basis as a
form of frequency of open water existence at a pixel. Here, we calculate
the flood occurrence from the modeled flood extents and compare it
with the flood occurrence of GSW data for the identical period, i.e.,
1984-2018. Due to the difference in spatial resolutions of the GSW data
(0.0025°) and CaMa-Flood (0.00083° or 3-arcsec), the GSW data are
upscaled to 0.0010° for the convenience of comparison.

Simulated TWS anomaly is compared with the data inferred from the
GRACE satellite mission. We use the mascon products, which have ad-
vantages over traditional spherical harmonics products (Jing et al.,
2019; Scanlon et al., 2016), and are available from two different pro-
cessing centers, the Jet Propulsion Laboratory (JPL) and the center for
Space Research (CSR) (Save et al., 2016; Watkins et al., 2015). As the use
of multiple GRACE products is recommended for a basin-scale applica-
tion (Scanlon et al., 2016), TWS anomaly is derived from the mean of the
two mascon products using area-weighted average over the modeling
domain (Chaudhari et al., 2019). For comparison with GRACE, the
simulated TWS is first calculated by summing up canopy water, snow
water, and subsurface water storages from HiGW-MAT and river-
floodplain storage from CaMa-Flood, following Pokhrel et al. (2018).
Then, the simulated TWS anomaly is calculated as the deviation from
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mean of the simulated TWS during 2004-2009.
2.3. Estimation of groundwater storage variations

While the TWS from GRACE provide the total TWS as vertically-
integrated values of all relevant TWS components (i.e., canopy, snow,
soil, river-floodplain, and ground water storages), the simulated results
include explicitly resolved individual storage components. Hence, the
simulated results provide additional insights on the component contri-
bution of different water storages to the total TWS. However, the effects
of water management activities, specifically groundwater withdrawal,
which are captured in the GRACE data are not simulated in the models
(see Section 2.1). Thus, we estimate the variations in groundwater
storage caused by both natural variability and groundwater withdrawal
following Rodell et al. (2009). In this approach, groundwater storage
variations are isolated by subtracting the other water storage compo-
nents from model simulations (i.e., canopy, snow, soil, and river-
floodplain water storages) from GRACE TWS.

2.4. Statistical analysis methods

2.4.1. Quantile analysis of river discharge

To understand and visualize the historical evolution of river dis-
charges at the major basin outlets, we adopt and modify a quantile
analysis method by Rottler et al. (2019), which combines quantile
sampling, trend analysis, and Complete Ensemble Empirical Mode
Decomposition with Additive Noise (CEEMDAN) (Colominas et al.,
2014; Torres et al., 2011). The method enables analysis and visualiza-
tion of the (1) long-term seasonality, (2) trend of seasonality change, (3)
temporal evolution of seasonality, and (4) annual flow duration curve.
To do so, three different quantiles are defined, which vary from 0.01
(small discharge) to 0.99 (large discharge): quantile on a daily basis
(QDAY), quantile within 30-day moving window (QMOV), and quantile
on a yearly basis (QYEA).

The long-term seasonality of river discharge in different basins is
directly illustrated by representing QDAY with respect to DOY (day of
year). QDAY is calculated for each DOY without differentiating the
years, e.g., QDAY for May 16th is calculated from 40 values for May 16th
of each year during the 1979-2018 period. By using QDAY, the sea-
sonality at different level of quantiles can be represented at once.

The trend of seasonality change is assessed from a trend analysis of
QMOV. QMOV is calculated for each DOY and each year, e.g., QMOV for
May 16th, 2001 is calculated among the values during its + 15 days (i.e.,
from May 1st, 2001 to May 31st, 2001); QMOVs for May 16th of the
other years other than 2001 are independently calculated. For the trend
analysis, the Theil-Sen method (Sen, 1968) is used, which is less sensi-
tive to outliers than the least square method. By compiling the results
from different DOYs and probabilities, the long-term trend of seasonality
change can be represented with respect to different quantile levels.

To supplement the trend analysis, the temporal evolution of sea-
sonality is investigated for 30-day moving average time series. From the
average daily time series, the yearly time series for each DOY is
extracted, e.g., the 30-day averaged river discharge for May 16th of each
year. Here, we use the CEEMDAN method to investigate the temporal
evolution of seasonality. We note that CEEMDAN decomposes the time
series into a collection of intrinsic mode functions (IMFs), and the last
IMF, which is also referred to as the residue, represents the trend of data;
the increasing residue values compared to the values in their prior years
indicate an increasing trend, and vice versa. The residue of CEEMDAN
can be nonmonotonic (e.g., U-shaped curve), increase/decrease abruptly
at a certain year, and flat. Hence, the temporal evolution of seasonality
can be assessed at diverse aspects. When the residues of CEEMDAN for
different DOYs are compiled together, the deviation of residue of
CEEMDAN for 30-day averaged flow (hereafter 34) is presented for
comparisons. To test the existence of monotonic trend, the Mann-
Kendall (MK) test is used (o = 0.05).
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The change of annual flow duration curve is investigated using
QYEA. QYEA is essentially identical to an empirical flow duration curve,
derived from daily data for a year. QYEA is calculated for each year
without differentiating DOY, e.g., QYEA for 2001 is calculated among
365 values in the year; QYEAs for the other years are independently
calculated. The yearly time series of QYEA is analyzed using CEEMDAN
method for each quantile, and the deviation of residue of CEEMDAN for
QYEA (hereafter 61y,) from every quantile is compiled and presented.
The MK test is used to assess the existence of monotonic trend.

Note that the plots are provided in two forms: original values as in
Rottler et al., (2019) and standardized values. The standardization is
conducted to make dry-season flows and small-quantile flows more
discernible when they are plotted together with wet season flows and
high quantile flows. For standardization for the trend of seasonality
change and the temporal evolution of seasonality, a given value is
divided by the mean of the values having the identical DOY. For the
change of annual flow duration curve, a given value is divided by the
mean of the values having the identical exceedance probability.

2.4.2. Mapping of Multi-Decadal change

To examine the overall spatio-temporal dynamics of river discharge
across the nation, we map the multi-decadal trends in low (Q1¢; 10%
quantile in QYEA), median (Qsp; 50% quantile) and high (Qgo; 90%
quantile) flows at all ~ 5 km grid cells for every decade (10-year periods
during 1979-1988, 1989-1998, 1999-2008, and 2009-2018). The
decadal trend maps are generated from the trends in 6, (Section 2.4.1),
estimated by using the Theil-Sen method. The existence of monotonic
trend for each decade is examined using MK test (o« = 0.05). The use of
trend maps for low, median, and high flows and for four different
decadal periods enables an explicit representation of the overall evolu-
tion of river discharge at the ~ 5 km grids. Since the decadal trend is
calculated as the rate of change within a given decade, four snapshots
are obtained for each quantile. Similarly to that for the decadal trends in
river discharge, we calculate the change in flood occurrence from one
decade to the next that results in three snapshots of flood occurrence
change between the decadal periods.

3. Results and discussion
3.1. River discharge

3.1.1. Validation of river discharge

Evaluation of river discharges at 23 gauging stations is presented in
Fig. 2. The spatial distribution of long-term mean river discharge over
the entire basins is presented in Fig. 1, also indicating the locations of
the gauging stations. As high coefficients of determination indicate (R?
> 0.9), the seasonal cycle of river discharge is well reproduced not only
at relatively downstream locations but also at small tributaries. Specif-
ically, the low flow is simulated remarkably well at most locations,
which is important for water resources management such as irrigation
and hydropower operation. Note that the models are not tuned using
observations and applied over a relatively large domain, and the hy-
drologic processes are simulated by a land surface model using global
forcing datasets. Hence, a perfect match with observations is not ex-
pected. Further, since the primary objective of this study is to examine
the interannual variabilities in river discharges, certain discrepancies in
the flow seasonality are not of particular concern. In quantifying the
interannual variabilities, analyzing differences in river discharge among
different years can offset consistent overestimation or underestimation
tendencies. Hence, we consider the results to be of reasonable accuracy
overall to investigate the long-term evolution of river discharge.

3.1.2. Evolution of river discharge over four decades

Fig. 3 shows the long-term seasonality, trend of seasonality, temporal
evolution of seasonality, and change of annual discharge for the four
major river basins. From the long-term seasonality, the wet season is
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Fig. 2. Comparison of the seasonal cycle of simulated river discharge with observations from DHM, Nepal at stations marked in Fig. 1. Interannual variability is
indicated by green and grey shadings for simulated and observed discharge, respectively, using upper and lower 25% flow quantiles for each month. Coefficient of
determination (R?) is indicated for every station. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

evidently found to be June, July, August, and September (JJAS) across
the nation (Fig. 3a). High quantile flows (i.e., high discharge) and the
wet season flows (i.e., JJAS) are found to have decreased in all four
basins (Fig. 3b). Overall QMOV trends are negative, except for some
high quantile flows in the dry season (i.e., other than JJAS) where
increasing trends become more noticeable as a basin is located farther
east. The prevalent decreasing QMOV trends indicate the nationwide

v

decrease in seasonal river discharge. The increase in high quantile flows
in the dry season suggests a tendency of increased flooding in the dry
season with a higher magnitude in recent times than in the past.

The findings on river discharge evolution from QMOV trends are
explained in a greater detail in terms of the evolution of 5304 (Fig. 3c). It
is worth recalling that the increasing values of 5394 compared to the
values in their prior years indicate an increasing trend, and vice versa.
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(a) Long-term Seasonality

(b) Trend of Seasonality

(c) Temporal Evolution of Seasonality
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Fig. 3. Evolution of river discharge at the outlets of four major river basins in Nepal over the 1979-2018 period. (a) Long-term seasonality, (b) trend of seasonality,
(c) temporal evolution of seasonality, and (d) change of annual discharge. The left and right panels in each subject present the values without and with stan-
dardization. Red and blue bars on top of the subplots in (c) and (d) indicate significant monotonic decrease and increase, respectively, over the 40 year period at a
given DOY (day of year) (Mann-Kendall test; « = 0.05). Gray dash lines in the subplots in (c) and (d) indicate decadal periods from 1979 to 2018. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Interestingly, during the latest two decades (1999-2018), all basins
show decreasing 8304 in the wet season (Fig. 3¢). Other than that, a basin
further to the west tends to have a more consistent decreasing trend than
that in the basins to the east (more red bars in Fig. 3c). In addition to
geological location, as the time windows of interest moves towards the
dry season, the transition patterns of 304 become rather mixed (e.g.,
decrease followed by increase in February-April at Karnali basin).

The change in annual flow duration curve is found to vary according
to the basin locations (Fig. 3d). Note that increasing &1, over time at a
given quantile indicates an increase in QYEA, and vice versa. Overall, a
considerable decrease in QYEA is found for the Mahakali basin at most of
quantiles from mid-1990 s through mid-2010 s (Fig. 3d). Such transition
over a decade is also found in the Karnali basin, but the timing varies
according to the quantiles; some quantiles vary from early-1990 s and
others vary from early-2000 s. The Karnali basin shows another distinct
change pattern at the quantiles from 0.3 to 0.6 in 2010 s, where QYEA
increases in recent years. The Gandaki basin shows mixed trends;
decreasing trends are found at quantiles between 0.4 and 0.5 in the
1990 s, between 0.5 and 0.8 and greater than 0.95 in the 2000 s, and

between 0.8 and 0.95 in the 2010 s; increasing trends are also found at
quantiles between 0.5 and 0.8 and greater than 0.9 that last until the
early-1990 s. The Koshi basin shows similar trends in QYEA for all
quantiles; increasing trends lasting until the mid-1990 s are followed by
decreasing trends in the 2000 s. In sum, the annual flow duration curves
of the major river basins of Nepal are found to have evolved varyingly in
the past four decades.

Spatial distribution of decadal trends in low, median, and high flows
are presented in Fig. 4. In general, the decadal trends within the basins
are similar to those at the basin outlets, hence the overall observations
from Fig. 3d apply also to these results. For example, it is evident that
low, median, and high flows in the downstream regions have persis-
tently declined during the last two decades (1999-2018), which is in line
with what can be seen in Fig. 3d. Such nationwide decrease in river flow
has an important implication for water resource management, especially
for hydropower development and irrigation. Specifically, hydropower
operation can be considerably limited by the decrease in low flow during
the drying season due to the environmental flow requirement. It is,
however, worth noting that the trends at the basin outlets do not

(a) Quo (b) Qso () Qoo
»
1979-1988 -
A—‘:r
. -
i P 0
i o 2 P 20
*
1989-1998 q"— 15
10
5
r . r r 0
J o {r Pl (( Pl [T s
{ i $ {
1999-2008 b s = - —10
, B 2 .
4 s -15
.
_j -20
; p i 2 -2
£s
5 |
n,
20092018 . - - . N
. s .rll

Fig. 4. Decadal trend in (a) low flow (Q10), (2) median flow (Qsp), and (3) high flow (Qgo) calculated from the quantiles on a yearly basis (QYEA). Significant
monotonic changes are indicated with black dots (Mann-Kendall test; o = 0.05). The unit is percentage change per decade. Small river reaches with Qo < 10 m®/s are

pruned out.
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necessarily represent the trends over the entire basin. For example, the
opposite trends at the basin outlets and a part of basins are found for
northern part of Karnali, western part of Gandaki, and northern part of
Koshi basins. Such prevalent opposite trends within the basins compared
to those at the basin outlets suggest substantial hydrological heteroge-
neity across the nation.

3.2. Water storage dynamics

3.2.1. Inundated areas

Fig. 5 shows the first results of the long-term river-floodplain storage
over all Nepalese river basins for the 1979-2018 period. For selected
regions, the simulated flood occurrences from CaMa-Flood are
compared with the GSW data for the 1984-2018 period (Fig. 6). The
broad spatial patterns of natural river-floodplain storage are well
captured by the model for large river basins. In the downstream portions
of the basins—where floodplains are more developed than in the upper
reaches—the maximum flood extent and seasonally inundated areas are
relatively prominent (Fig. 5). Some differences are found between flood
occurrences simulated by CaMa-Flood and GSW data. The differences
can be attributed partly to the errors in DEMs used in CaMa-Flood, but
the GSW product also suffers from limitations in the Landsat satellite
images, which are susceptible to atmospheric conditions (i.e., cloud
cover) and are known to have substantial missing records specifically
until early 2000 s (Shin et al., 2020); the former generally results in the
underestimation of GSW flood occurrence and maximum flood extent
specifically for the wet season, and the latter is suggested to cause
general biases in the GSW flood occurrence specifically towards the
recent years. Large water bodies are reproduced by the model, but
gradation of flood occurrence around the rim of those water bodies, seen
in the GWS data, is underrepresented in the simulated results (e.g., west
region in Fig. 6a; middle region in Fig. 6d). This is because of the hy-
drography data, i.e., MERIT DEM and MERIT Hydro. MERIT DEM is
based on Shuttle Radar Topography Mission (SRTM) DEM, launched in
2000, and some other DEM products (Yamazaki et al., 2019, 2017).
Thus, elevation variations over a region where large water bodies exis-
ted before year 2000 are indicated as flat areas such that water spreads
over those regions in CaMa-Flood simulation.

For the selected regions, we further investigate how the inundation
dynamics evolved over time. Fig. 7 presents the decadal changes in flood
occurrence. Overall, the change in flood occurrence is found to have
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resulted from the combined effects of river discharge changes at
different quantiles. When high flow (e.g., Qgo) increases, the maximum
inundation extent increases and the regions near the maximum extent
are inundated more frequently, and hence the flood occurrence in those
regions increases, and vice versa. Meanwhile, when the duration of low-
to-median flows (e.g., Q10-Qso) increases, the regions near river chan-
nels are inundated for a longer time so that the flood occurrence in-
creases, and vice versa. Overall, the diverse spatial patterns of the
changes in flood occurrence reflect various aspects of hydro-climatic
changes over the nation. Such investigation on the evolution of inun-
dation dynamics over 40 years is enabled by the high-resolution simu-
lation of river-floodplain processes.

3.2.2. Terrestrial water storage (TWS)

To understand how TWS—an integrated measure of overall water
availability—is changing across all basins, we examine the TWS anom-
alies from the models (see Section 2.1) and those from GRACE satellites.
Fig. 8 presents a comparison of simulated and GRACE-based TWS
anomalies for 2002-2016 (a period chosen considering GRACE data
availability) and averaged over all Nepalese river basins (Fig. 1). Model
results suggest that subsurface water storage (i.e., soil moisture and
ground water storage) strongly dominates the overall TWS dynamics.
That is, compared to subsurface water storage, the variations in the
other storage components (i.e., canopy, river-floodplain, and snow
storages), are relatively small. The contribution of individual compo-
nents to total TWS varies spatially depending on climate, topography,
and level of human impacts. The component contributions in the Nep-
alese basins—a relatively higher contribution of sub-surface stor-
age—are found to be similar to those in other basins located in
comparable latitudes (Felfelani et al., 2017; Ferreira et al., 2020). In
terms of within-a-year variability, the simulated results well capture the
general seasonal variations in TWS seen in GRACE data; however, in
terms of interannual variability, continually decreasing trends in the
GRACE data are not found in the simulated results. This suggests that the
decreasing trend in the GRACE TWS is likely caused by growing
groundwater exploitation (Pandey et al., 2010; Prasad Pandey and
Kazama, 2014; Shrestha et al., 2020), the effects of which are captured
in GRACE data but not simulated in the model.

Model results indicate an increase in TWS (and groundwater) during
the 2002-2016 period, with a trend of 0.18 (0.11) cm/year, which
resulted from an initial decline at the rate of —0.21 (-0.10) cm/year
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Fig. 5. Long-term flood occurrence simulated by CaMa-Flood for the 1979-2018 period. Selected regions marked with dashed boxes are further investigated in

Figs. 6-7.
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in Fig. 5.

during 2002-2009 and a subsequent recovery of 0.92 (0.52) cm/year
during 2010-2016 (Fig. 8). However, and as noted above, a continually
declining trend (-1.67, —1.58, and —1.85 cm/year during 2002-2016,
2002-2009, and 2010-2016 periods, respectively) is found in the TWS
from GRACE data that vertically integrate all TWS components. To
examine the changes only in groundwater storage caused by natural
variability and groundwater withdrawal, we use the results derived by
using TWS from GRACE and simulated soil moisture and surface water
storages (see Section 2.3). It is evident from Fig. 8 that the changes in the
other TWS components than groundwater are relatively small and hence

the majority of the decline in TWS seen in GRACE comes from the
decline in groundwater storage. The trends in groundwater storage
change for the 2002-2016, 2002-2009, and 2010-2016 periods are
—1.74, —1.46, and —2.18 cm/year, respectively, which closely align
with the trends is GRACE-based TWS. Such consistent declines in the
GRACE-based TWS and groundwater storage despite the recovery seen
in the simulated TWS as well as groundwater storage suggest that human
impacts have been intensifying in recent years. The contribution of
human water use to TWS (and groundwater storage) change is estimated
at —1.85 (-1.85) cm/year for 2002-2016 period and —1.37 (-1.36) and
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—2.77 (-2.70) cm/year for 2002-2009 and 2010-2016 periods,
respectively.

Even though the spatial scale for applying GRACE data, also referred
to as the footprint, is 150,000 km? or larger (Girotto et al., 2016; Liet al.,
2012), the mascon products have been increasingly applied to even
smaller areas in the range of 40,000-100,000 km? (Scanlon et al., 2016).
Our study domain (~196,000 kmz) is larger than the footprint, but
relatively small compared to sizes of major global basins (Scanlon et al.,
2016). Hence, there can be uncertainties in the GRACE TWS and the
groundwater storage change derived from it. However, the finding of
declining trends of TWS and groundwater within Nepal and its sur-
rounding regions is supported by other independent regional studies
using various GRACE satellite products (e.g., Jing et al., 2019; Tiwari
et al., 2009). Specifically, Tiwari et al. (2009) estimate the human-
induced groundwater loss around Nepal to —1 to —4 cm/year for the

2002-2008 period, which aligns with the estimation of this study. In
addition, well observation data of the Kathmandu Valley aquifer in
central Nepal, which indicate a drawdown of groundwater levels by
1.38-7.5 m during 2000-2008 (Pandey et al., 2010; Shrestha et al.,
2018), also support the finding of this study.

4. Summary and conclusion

This study presents the first results of the long-term (1979-2018)
evolution of river-floodplain dynamics over all river basins of Nepal at a
spatial resolution of ~ 5 km for river flow and ~ 90 m for flood extents.
The simulated river discharge is validated nationally using the obser-
vations from DHM, Nepal. Using simulated results, historical changes in
river discharge are then investigated using a quantile analysis method,
which effectively describes the temporal evolution of river discharge, in
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Fig. 8. TWS anomaly derived from GRACE data and HiIGW-MAT & CaMa-Flood simulations averaged over the entire study domain (Fig. 1). The panel on the right
shows the seasonal cycle. Grey shading indicates the uncertainty in GRACE data, expressed as the range between the two products.

terms of the long-term seasonality (QDAY), trend of seasonality change
(QMOV), temporal evolution of seasonality (5304), and change of flow
duration curve (d1y,). Then, the spatio-temporal variations in river
discharge are examined through mapping of decadal trends for low flow
(Q10), median flow (Qsp), and high flow (Qgp). The long-term season-
ality at the outlets of the major river basins is then analyzed using QDAY.
The results of QMOV and 6304 suggest that the high quantile flows during
the wet season (i.e., JJAS) are persistently declining, especially during
the latest two decades (1999-2018). Based on the analysis of 51, and the
decadal trends of flow duration curves, it is found that low, median, and
high flows in the downstream regions have also decreased continually
during the past two decades (1999-2018). Further, the annual flow
duration curves are found to have evolved differently in different basins,
and the evolution patterns of trends at the basin outlets generally
coincide with those within the basins; however, some opposite patterns
are also found within the basins in the northern part of Karnali, western
part of Gandaki, and northern part of Koshi basins.

The comparison of high-resolution, simulated flood extent with
satellite-based data suggest that the model reasonably reproduces the
inundation extents in the major flooded areas, especially those in the
southern parts of the country. Based on the evaluation of decadal
changes in inundated areas over the major flooded regions, it is found
that not only the changes in high quantile flows cause changes in
inundation extent, but also the changes in low quantile flows modulate
flood occurrence in riverine areas. Lastly, the changes in TWS during the
2002-2016 period is examined through combined use of model results
and the GRACE data. Results suggest that the overall TWS dynamics is
strongly modulated by the variations in subsurface water storage, and a
growing influence of water management, especially a potential increase
in groundwater use, has likely caused a continual decline in TWS and
groundwater storage. The changes in GRACE TWS are found to be
—1.67 cm/year during the 2002-2016 period and —1.58 and —1.85 cm/
year during the 2002-2009 and 2010-2016 periods, respectively. The
changes in groundwater storage caused by both natural variability and
ground water withdrawal, which is derived by combining model results
and GRACE data, is estimated to be —1.74, —1.46, and —2.18 cm/year
for the 2002-2016, 2002-2009, and 2010-2016 periods, respectively.
There are certain limitations to this study, of which the most important
one is the missing representation of water management processes in the
models, especially groundwater use. The spatial resolution could also be
further refined to better resolve hydrologic processes in the headwater
catchments. Lastly, uncertainties might have been introduced to the
GRACE TWS and the derived groundwater storage change because of the
relatively small domain size. GRACE data when applied over small

10

domains may also suffer from leakage errors but those are expected to be
small in the mascon products. Despite these limitations, this study pre-
sents a modeling framework consisting of a global land surface model
and global floodplain hydrodynamics model with a promising capability
to simulate the changing hydrology of the Himalayan region, providing
a basis for improved understanding of the long-term hydrologic dy-
namics under climate change.
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