
1.  Introduction
Groundwater supplies ∼40% of irrigation and household and ∼30% of industrial water use globally (Döll 
et al., 2012). The generally high-quality water, long residence time, and strong resilience to climate var-
iability (Cuthbert et  al.,  2019) make groundwater a dependable freshwater resource in many (semi)arid 
areas, which has led to a rapid increase in groundwater use, especially to sustain rising water demands for 
increased food production (Pokhrel et al., 2015; Wada et al., 2014). Such groundwater overexploitation has 
caused an alarming rate of aquifer storage depletion worldwide (Gleeson et al., 2012; Pokhrel et al., 2015; 
Wada et al., 2010), making groundwater use fundamentally unsustainable that has not only impacted water 
supplies, but also gravely altered natural hydrologic regimes and deteriorated ecosystem health (Gleeson 
et al., 2012; Siebert et al., 2010).

Hydrologically, groundwater acts as a buffer that directly modulates soil moisture and is coupled to surface 
water through a relatively slow, two-way water exchange; groundwater converges to streams and lakes as 
baseflow and recharges naturally by water percolating down from the surface (de Graaf et al., 2015, 2017; 
Fan et al., 2007, 2019; Zeng et al., 2018). Additionally, groundwater is tightly linked with other hydrological 
processes, such as surface energy balance and land-atmosphere interactions (e.g., through evapotranspira-
tion and precipitation) in critical zones where water table is shallow (Condon & Maxwell, 2019; Kollet & 
Maxwell, 2008). It has been shown that in relatively humid regions water table depth is a major determinant 
of water and energy exchange between groundwater, land surface, and atmosphere (Gleeson et al., 2011). 
Other studies have also shown that the use of groundwater for irrigation can have implications on region-
al-to-global climate and weather systems (Devanand et al., 2019; Yamada & Pokhrel, 2019). Therefore, the 
overexploitation of groundwater and the resulting storage depletion caused by increasing human land-wa-
ter management activities (e.g., land use change, irrigation, and pumping) has important implications on a 
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range of groundwater-dependent hydrologic systems including rivers, lakes, and wetlands across the globe 
(de Graaf et al., 2019; Wada et al., 2010).

Benefiting from ground observations and satellite data including terrestrial water storage (TWS) inferred 
from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, our ability to understand 
and monitor the changes in global groundwater systems have been unprecedentedly advanced (Döll, Müller 
Schmied, et al., 2014; Felfelani et al., 2017; Gleeson et al., 2012; Rodell et al., 2009, 2018; Scanlon, Longuev-
ergne, et al.,  2012). Concurrently, the modeling community has put concerted efforts to better simulate 
groundwater dynamics and characterize the connections between groundwater and hydrologic fluxes under 
natural and human-induced drivers (Felfelani, 2019). As a result, there has been a substantial increase in 
the number of hydrological models that include groundwater representation across scales—local, regional, 
and global.

While some form of groundwater has been introduced into many land models, the level of complexity 
in groundwater parameterizations varies widely, operating at varying spatial scales because of constraints 
posed by data availability and computational costs (Koirala et al., 2019). In a number of regional and glob-
al land surface models (LSMs), groundwater is represented as an unconfined aquifer unit, however in a 
rather simplified manner. Models in this category include the Variable Infiltration Capacity (VIC; Liang 
et al., 2003), Community Land Model (CLM; Lawrence et al., 2011; Leng et al., 2013; Oleson et al., 2013; 
Zeng et  al.,  2018), the upgraded version of the MATSIRO (i.e., HiGW-MAT; Pokhrel et  al.,  2012, 2015, 
2017), MIROC-INTEG (Yokohata et  al.,  2020), and Noah-Multiparameterization model (Noah-MP; Nie 
et al., 2018; Niu et al., 2011).

Models developed for relatively smaller scales (e.g., local to regional) include relatively sophisticated 
groundwater representation (e.g., coupled three-dimensional groundwater flow and solute transport). For 
example, the US Geological Survey (USGS) regional MODFLOW model simulates the three-dimensional 
steady-state and transient groundwater flow based on a rectangular structured finite-difference grid (Pan-
day et al., 2013) and, more recently, unstructured grids (Feinstein et al., 2016). MODFLOW only simulates 
the subsurface hydrology and needs to be either forced by recharge rates and water levels in surface water 
bodies or coupled with an LSM or a global hydrological model (GHM) (de Graaf et al., 2015). ParFlow (Con-
don & Maxwell, 2015, 2019; Maxwell & Condon, 2016; Maxwell & Miller, 2005) is a comprehensive and in-
tegrated coupled surface water-groundwater model which solves the three-dimensional Richards equation 
(Richards, 1931) to account for variably saturated soil with very high resolution (e.g., 1 km), however high 
computation costs make long-term (e.g., multidecadal) simulations over large domains (i.e., continental to 
global) infeasible with currently available computational resources. LEAF-Hydro-Flood (Fan et al., 2007; 
Miguez-Macho et al., 2007) is a land hydrology model with a prognostic groundwater scheme that simulates 
lateral flow and water table dynamics and is used over regional (Chaudhari et al., 2019; Pokhrel et al., 2013) 
to continental (Shin et al., 2019) scales.

Given the growing interest of the hydrologic community on hyperresolution modeling over large domains 
(Bierkens et al., 2015), it is imperative to improve groundwater representation in large-scale models to more 
realistically simulate climate-human-groundwater interactions (Pokhrel et al.,  2016). Among large-scale 
models, GHMs (e.g., WaterGAP, PCR-GLOBWB; de Graaf et  al.,  2015; Döll, Fritsche, et  al.,  2014; Döll, 
Müller Schmied, et al., 2014; Wada et al., 2017) employ the middle-of-the-road representation for ground-
water and include a relatively comprehensive representation of the impacts of human activities such as 
groundwater pumping. However, GHMs are designed for offline simulations and not coupled with Earth 
system models (ESMs). Conversely, LSMs are developed for use within ESM frameworks for both land-only 
and coupled land-atmosphere simulations, but the majority of LSMs (e.g., CLM, HiGW-MAT, Noah-MP) in-
clude simple groundwater schemes that resolve only one-dimensional (vertical) soil moisture-groundwater 
movement without accounting for lateral groundwater flow. The lateral groundwater flow contribution to 
the water budget depends on multiple factors such as climate, topography, aquifer properties, and pumping 
(Feddes et al., 1988; Krakauer et al., 2014; Sophocleous, 2002). Lateral flow is suggested to be insignificant in 
coarse grid sizes in the order of 0.5°–1° or lower resolutions (Krakauer et al., 2014; Pokhrel et al., 2015) and 
therefore is generally ignored in global simulations. An additional barrier to the inclusion of lateral flow in 
large-scale LSMs has been the lack of global hydrological datasets of permeability and depth-to-bedrock, 
but recent efforts have resulted in potentially useful datasets (Gleeson et al., 2014; Huscroft et al., 2018; 
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Pelletier et al., 2016; Xie et al., 2018), even though with certain limitations (e.g., low vertical and horizontal 
resolutions, inconsistencies over state borders, inherent biases). As such, the significant advances in global 
datasets and computational capabilities have provided new opportunities in higher-resolution hydrological 
modeling (Bierkens et al., 2015), including the representation of intercell lateral groundwater flow in LSMs.

Lateral groundwater flow was first parametrized based on Darcy's law in a regional hydrological model, the 
LEAF-Hydro (Fan et al., 2007). A handful of studies since then have adopted the approach to account for 
intercell lateral flow mostly for regional to continental scales at high spatial resolution (i.e., ∼1–5 km) (Xie 
et al., 2018; Zeng et al., 2016, 2018). In a recent study, intrahillslope lateral flow was introduced into CLM 
to capture the impact of lateral flow across representative hillslopes within a grid cell at the hillslope scales 
(Swenson et al., 2019), thereby enabling research on coupled hillslope-hydrology-vegetation interactions 
(Chaney et al., 2018; Fan et al., 2019). This representation of within grid-cell (as opposed to intercell) lateral 
flow is highly relevant for continental to global studies using coarse resolutions (i.e., >0.5°), at which the 
representation of intercell lateral flow is not generally meaningful (Krakauer et al., 2014).

Furthermore, to better replicate irrigation practices where groundwater storage supplies irrigation in con-
junction with surface water, groundwater needs to be linked with irrigation through pumping. However, 
pumping is missing in many models (e.g., LEAF-Hydro, CLM) and relatively simplistically quantified (e.g., 
lateral flow not represented, groundwater assumed to be the sole source of irrigation) in some models, for 
example, HiGW-MAT (Pokhrel et al., 2015), CLM (Leng et al., 2014), and Noah-MP (Nie et al., 2018). Some 
of the models equipped with a pumping scheme have been reported to suffer from systematic biases in 
groundwater related fluxes and states (e.g., overestimation of groundwater storage loss caused by pumping; 
Nie et al., 2018; Pokhrel et al., 2015). Additionally, the absence of lateral flow generally leads to underrep-
resentation of the direct impact of groundwater withdrawals on surrounding areas (Pokhrel et al., 2015).

The goal of this study is to address some of the aforementioned gaps and limitations in groundwater mod-
eling in global LSMs through the representation of intercell lateral groundwater flow and aquifer pump-
ing, implemented in the codebase of the latest version of the CLM (version 5; CLM5). The new version of 
the model explicitly simulates groundwater pumping, accounts for conjunctive use of groundwater and 
surface water for irrigation, and represents lateral flow based on two approaches: (1) the conventional Dar-
cy's law for natural recharge- and topography-driven lateral flow and (2) the steady-state well equation 
for pumping-induced lateral flow. To the authors’ best knowledge, this study is the first to represent the 
steady-state well equation in large-scale hydrological models. The specific objectives are to: (1) evaluate the 
improvements achieved in the simulation of groundwater, TWS, and river discharge using the new prognos-
tic groundwater scheme across the conterminous US (CONUS); (2) investigate the effects of groundwater 
withdrawal on water table change across the heavily exploited US aquifers; and (3) explore the role of lateral 
flow in subsurface hydrology both in the natural condition and under the impact of pumping.

2.  Data and Methods
2.1.  Data

To specify the contribution of groundwater and surface water to total irrigation water withdrawals in the 
model, we use the county-level census data of irrigation water withdrawals (averaged for 1985–2015) from 
the USGS (Figure S1), available at 5-year interval since 1985 (Dieter et al., 2018; Maupin et al., 2014). Frac-
tional groundwater contribution varies significantly ranging from zero in most of the counties in the Colo-
rado Plateau, to around 40% in the Central Valley Aquifer (CVA) and the Snake River Plain to over 90% in 
most counties in the High Plains Aquifer (HPA) and Mississippi Alluvial Plain (Figure S1). The county-level 
USGS data are also used to validate the simulated irrigation water requirement and groundwater-supplied 
irrigation withdrawals.

The equilibrium water table depth (i.e., climatologic mean that represents the long-term balance between 
the climate-driven recharge and the topography-driven lateral flow) (Fan et al., 2013), aggregated to 0.25° 
resolution, is used to initialize the water table depth in CLM5 to reduce the spin-up period (Zeng et al., 2018). 
To validate the simulated water-level change across the selected regions (i.e., regions with high depletion 
rate) within the HPA, we use the USGS winter time water-level data from monitoring wells (McGuire, 2014, 
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2017). The USGS observational wells are filtered considering the length of records and the long-term mean 
water table depth. Wells within a given region of interest are selected if (1) there is at least 10 years of data 
available and (2) the mean water table depth is within 5 m of 75th percentile of long-term water-level mean 
of all wells in that region. Using this filtering approach, 366 wells in southern Nebraska (NE_S), 31 wells in 
southwest of Nebraska (NE_SW), 32 wells in southwest of Kansas (KS_SW), 23 wells in north-center of Tex-
as (TX_NC), 14 wells in northeast of Nebraska (NE_NE), and 9 wells in northwest of Nebraska (NE_NW) 
are selected. The USGS river discharge data are used to validate the seasonal streamflow at the selected 
gauging stations across major river basins within the CONUS.

To validate the decadal TWS trends from CLM5 simulations, we use five monthly GRACE products: two 
mass concentration (mascon) solutions from the Center for Space Research (CSR; Save et al., 2016) at Uni-
versity of Texas at Austin and Jet Propulsion Laboratory (JPL; Watkins et al., 2015; Wiese, Yuan, et al., 2016) 
at California Institute of Technology, and three spherical harmonic (SH) products from CSR, JPL, and the 
German Research Center for Geoscience (GFZ). While the CSR mascons are directly used at the resolution 
of 0.5° × 0.5°, scaling coefficients are applied to the JPL mascons to downscale the data from the native 
3° × 3° resolution to the 0.5° × 0.5° grids by redistributing the mass within each mascon (Nie et al., 2018, 
2019; Wiese, Landerer, et al., 2016). The level-3 SH solutions are provided at 1° × 1° grid resolution (avail-
able for download at https://podaac.jpl.nasa.gov/GRACE). The mascon solutions have been shown to be 
less affected by the leakage error, less dependent on using the scaling factors, and require less postprocess-
ing (e.g., destriping filtering is not required for mascon products) than the SH solutions (Long et al., 2015; 
Scanlon et al., 2016; Watkins et al., 2015). Here, we use all five products to increase the robustness of the 
comparison and highlight the uncertainties among different GRACE products. Trend values are calculated 
for GRACR products and simulations based on the least squares regression and Theil-Sen slope estimator. 
The significance of trend values are evaluated using the Wald test (Gouriéroux et al., 1982) and the nonpar-
ametric Mann-Kendall trend test (Kendall, 1975; Mann, 1945) at the 5% significance level. Furthermore, we 
quantify the pumping-induced TWS change over the major US aquifers by deducting the TWS trend of the 
simulation with lateral flow from that of the simulation with lateral flow and pumping.

2.2.  The CLM5

CLM5 is the land component of the Community Earth System Model version 2 (Danabasoglu et al., 2020). 
It includes a comprehensive set of underlying physical processes and parametrizations in hydrology (e.g., 
hydrology of canopy, soil, groundwater, snow, and river flow), surface energy fluxes, and biogeochemical 
cycling (e.g., photosynthesis and phenology, carbon and nitrogen cycles, methane production) (Lawrence 
et al., 2019). CLM5 includes a crop model, a soil-moisture-deficit-based irrigation scheme, and other agri-
cultural management practices (Lawrence et al., 2019). In the standard CLM5, the irrigation water require-
ment is applied to the soil column as add-on to precipitation (at 6 a.m. local time), withdrawing water from 
surface water (i.e., water in the main channel in the river routing scheme). Where water in river channels 
is not sufficient to meet irrigation demands, the deficit is supplied by a virtual source (e.g., ocean model) or 
if irrigation limitation is set, irrigation amount is restricted to that available within the main river channel 
in the grid cell.

The subsurface is represented using a high vertical resolution and improved solution to the Richard's equa-
tion to resolve soil water movement across layers. CLM5 allows users to select among multiple configura-
tions or parametrizations for a number of processes, enabling users and model developers to choose the 
parameterizations that best address their objectives. For example, users can select between a head-based 
and a zero flux lower boundary condition for the soil column. If the unconfined aquifer beneath the soil 
column is activated, the drainage from the lowest soil layer (recharge; qrech) is controlled by a head-based 

lower boundary condition (i.e., rech liq,
liq,

i
i i

i

qq q 



  


; where qi is the water flux across the lowest interface 

and θliq,i is the liquid volumetric soil moisture). When the water table is within the soil column, recharge 
rate is diagnosed using Darcy's equation across the water table. Soil thickness is constant (8.5 m) globally 
and water table depth can vary from 0 to 80 m. In this configuration, subsurface runoff decays exponen-
tially depending on the water table depth (zwt), that is,  sub ice drai,max draiΘ exp wtq q f z  , where Θice is the ice 
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impedance factor, qdrai,max is the maximum subsurface runoff when 0wtz   and is set to  drai,max 10sinq   
to best compare with observations in global simulations, β is the mean grid cell topographic slope in radians, 
and fdrai is the decay factor (Niu et al., 2005). This groundwater parameterization was initially introduced in 
CLM4.5 and is retained as an option in CLM5.

The default version of CLM5 includes a new subsurface hydrology scheme in which the bulk aquifer layer 
below the model soil column is removed and the head-based lower-boundary condition is replaced by a 
zero-flux boundary condition at the base of the soil column. Additionally, soil thickness (depth-to-bedrock) 
is spatially explicit (depths between 0.4 and 8.5 m are allowed, with the 8.5-m depth chosen to allow for 
relatively deep soil water stores for use, for example, by tropical trees, but shallow enough to maintain rea-
sonably short spin-up time). This scheme results in improved simulation of TWS seasonal and interannual 
variability (Swenson & Lawrence, 2015). The water table is determined by identifying the first soil layer 
above the bedrock with soil water saturation fraction of less than 0.9. A drawback of this groundwater con-
figuration is that the water table depth is only resolved when saturated soil layers exist within the active soil 
portion of the ground column (i.e., max 8.5 m in default CLM5). Deeper water table positions, as is common 
in arid or semiarid regions, are not resolved and are set to 8.5 m. Finally, surface and subsurface runoff is 
routed across the landscape using the process-based Model for Scale Adaptative River Transport (MOSART, 
Li et al., 2013), which simulates the surface water dynamics (i.e., streamflow, channel velocity, and water 
depth) based on kinematic wave formulations (Lawrence et al., 2019).

2.3.  Representation of Pumping in CLM5

To consider conjunctive water use for irrigation, the surface water-supplied fraction (i.e., determined by 
the USGS data) of the irrigation water requirement is withdrawn from the main channel in MOSART (if 
adequate water is available). The rest of the irrigation water is then extracted from the aquifer layer if water 
table is below the soil column (or from soil layers when water table is within the soil column). Here, we 
incorporate a groundwater pumping scheme into CLM5, in which water is withdrawn to satisfy the ground-
water-supplied portion of the irrigation requirement in a grid cell. The water balance of a grid cell with 
pumping (Pokhrel et al., 2015) is expressed as:

g
pr r

dS
AR GW Q

dt
  � (1)

where /gdS dt  is the groundwater storage change, R is the net recharge (i.e., the flux between the unsaturat-
ed soil and the groundwater), Δ ΔA x y  is the grid cell area, and Qr is the groundwater discharge to the river. 
GWpr is the groundwater pumpage rate, which is extracted from the aquifer layer (when water table is below 
the soil column) or soil layers (when water table is within the soil column) in sequential order starting from 
the soil layer right below the water table. Any GWpt residual not satisfied by the amount of water taken from 
the soil layers is taken from the underlying aquifer layer. The water table depth is then lowered as:

pr
wt wt

y

dGW
z z

S
  � (2)

where wtz  and zwt are the updated and old water table depths, respectively, dGWpr is the portion of total 
groundwater pumpage extracted from a soil layer, and Sy is the specific yield of the aquifer, diagnosed in 
CLM5 based on the soil properties and water table location. Finally, the liquid water storage of the soil layers 
and the aquifer layer are also updated based on the water extracted for pumping.

2.4.  Lateral Groundwater Flow Using Darcy's Law

The lateral groundwater flow in cells with no pumping ( 0prGW  ) is represented by Darcy's law following 
Fan et al. (2007). In this approach, the lateral flow is included in the groundwater mass balance for a grid 
cell by generalizing Equation 1 as:
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g
n r

dS
AR Q Q

dt
  � (3)

where 
8

1
nQ  is the net lateral flow between the center cell and its neighboring cells and Qris the groundwa-

ter discharge to rivers, which can be dropped for a nonriver cell. When the water table is below the soil 
column, the net lateral flow is added (removed) to (from) the aquifer storage. If the water table is within 
the soil column, the positive net lateral flow is added to soil layers in sequential order starting from the soil 
layer right above the water table and the negative net lateral flow is extracted from soil layers in sequential 
order starting from the soil layer right below the water table (any residual would be taken from the under-
lying aquifer layer). The lateral flow is mainly driven by groundwater head difference—induced by climate, 
topography (i.e., topographic slope in baseflow generation), pumping, and so on—between two cells and 
computed based on Darcy's law as:

n c
n

h hQ wT
l
   

 
� (4)

where hn and hc are the hydraulic head in nth neighbor and center grid cells, respectively, T is the trans-
missivity, l is the distance between cells, and  Δ 0.5tan / 8w x   is the width of an imaginary octagon 
(Figure 1) that replaces the square grid cell to provide an equal chance for all eight sides/neighbors to flow 
to/from the central cell. Figure 1 shows the schematic diagram of intercell lateral flow in the absence of 
pumping wells (Figure 1a) and immediate vicinity of a cell with pumping wells (Figure 1b).

The prognostic aquifer transmissivity (T) is also calculated based on the water table depth and hydraulic 
conductivity for two different cases (Fan et al., 2007). If water table depth is within the model soil column, 
T=T1 + T2, where T1 is the transmissivity of saturated portion of the soil column (i.e., from the water table 
to the bottom-most layer) and T2 is the transmissivity for the depth below the bottom-most layer.

T
K z K Z Z i n

K Z Z
i iwt

n
i i iwt h iwt wt

n h n

1 1�
�� � � � �� � �

� �
� �
� � ,

,

for layer

wwt n� �

�

�
�

�
� for layer

� (5)
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Figure 1.  Schematic of lateral groundwater flow between a grid cell and the eight neighboring cells in the absence (a) 
and existence (b) of pumping. Note that the entire groundwater-supplied irrigation water requirement of a grid cell is 
assumed to be withdrawn from a single well (with the radius of re).

(a) (b)
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 2
0 0

expn n
zT K z dz K dz K f
f

   
       

 
 � (6)

where iwt is the index of soil layer that includes the groundwater table, Ki is the hydraulic conductivity of 
layer i, Δ iz  is the thickness of soil layer i, Zh,iwt is the bottom interface depth of layer i, Zwt is the groundwater 
table depth, and n is the total number of soil layers. The aquifer transmissivity for the depth lower than the 
model soil column (T2) is estimated using the hydraulic conductivity of the bottom-most layer, exponential-

ly decayed with depth expn
zK K
f

  
      


. Here, f is the e-folding length representing the complexity of 

sediment-bedrock profile (Zeng et al., 2016) and is calculated following the hyperbolic equation presented 
in Fan et al. (2007) as:

for 0.16, and 5m for 0.16
1

af f
b

 


   
� (7)

where a and b are parameters set to 120 and 150 m, respectively, and β is the terrain slope.

If the water table is below the soil column, the transmissivity is calculated using Equation 6 but for the 
lower bound equal to the distance from the water table depth and the bottom interface depth of layer n (i.e., 
Zh,n) as:

  ,

, ,

exp exp h n wt
n n

Z Z Z Zwt h n wt h n

z zzT K z dz K dz K f
f f

 

 

    
      


  

   
 � (8)

Note that the hydraulic conductivity in the above equations is the lateral hydraulic conductivity determined 
from the vertical hydraulic conductivity—resolved in the vertical one-dimensional soil movement—and 

percent of clay in the soil layer as the representative of anisotropy factor lat
clay

ver
i.e., KC

K
 

 
 

 (Fan et al., 2007; 

Zeng et al., 2016).

2.5.  Lateral Groundwater Flow Using Steady-State Well Equation

In finite difference models, a point sink/source of water (e.g., pumping wells) is represented by the grid cell 
that contains the sink/source. Since the gird cell has dimensions typically much larger than a well diameter 
and irrigation water is extracted from the entire cell (Section 2.3), the simulated head in a pumping cell does 
not represent the relatively large head gradient caused by pumping (Anderson et al., 2015). However, it can 
be reasonably assumed that the simulated head in a pumping cell represents the head at certain distance 
(re) from the center of the cell. Therefore, we consider a virtual single well at the center of pumping cells 
and compute the lateral flow using the steady-state well equation applied between er r  and the center of 
a neighbor cell following Anderson et al. (2015).

The 2-D form of the groundwater equation with the assumption of lateral isotropy can be written in both 
the Cartesian (Equation 9) and radial (Equation 10) coordinate systems as:

y
h h hS T T
t x x y y


                 

� (9)

1
y

h hS Tr
t r r r

  
 

  
� (10)

where Sy is the aquifer specific yield, h is the hydraulic head, T is the transmissivity, and ε is the sink/source 
term. The analytical solution of the radial partial differential equation (Equation 10) for the steady state 
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condition considering pumping in the boundary condition at well radius (i.e., 0r r , 02hQ K r h
r


 


, 

where Q is the pumping rate
3L
T

 
 
  

) is given as:

2
0

1
2 2

Q rr dr Tdh
r




      
  

� (11)

Assuming that the head change due to pumping is negligible compared to the aquifer thickness and evalu-
ating the above integral, the solution to Equation 11 can be written as Equation 12, which can be simplified 
to Equation 13—generally known also as the well equation—assuming a known head (i.e., ,r R h H  ).

2 2
0 ln

2 2 4
Q r rr Th C 

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 
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 
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The total water pumped in the center cell is supplied by the lateral flow from the eight neighboring cells 
(Figure 1b) (Anderson et al., 2015). Thus, the lateral flow can be estimated by solving Equation 13 for Q, 
applying it between the effective well block radius er r  and the center of a neighbor cell (i.e., Δr a x   
or Δ 2x ), which yields:

   2 2 2@ @ 0
lat 8 8

4ln 16ln

ewt r wt ae

e e

a rT z zQ rQ
a a
r r

 
   

   
   
   

� (14)

where zwt@re and zwt@a are the water table depths at er r  and r a . Following Anderson et al. (2015), the 
effective well block radius for the 8-neighbor case is calculated as 0.178Δer x  (Figure 1b). Note that if re-
charge is explicitly resolved and directly added to groundwater storage, the recharge terms in Equation 14 
should be ignored.

2.6.  Experimental Settings

To investigate the separate roles of lateral groundwater flow and pumping, we conduct four sets (i.e., all 
possible combinations by turning lateral flow and pumping on and off) of CLM5 offline simulations over 
the CONUS domain at 3 arc-min (∼5 km) resolution and forced by the North America Land Data Assimila-
tion System phase II meteorological data. Surface and subsurface runoff is routed using MOSART at 0.125° 
(∼13 km) resolution as in the default CLM5. Table 1 illustrates the groundwater and subsurface configu-
rations for all simulations. Given that the primary objective of this study is to improve the simulation of 
water table dynamics and better capture the impact of extensive groundwater pumping, we select the active 
aquifer layer and the head-based recharge (Section 2.2) for implementing lateral flow and pumping.

In the control experiment (CTRL), the aquifer beneath the soil column is activated as in the standard 
CLM4.5 configuration, which is retained as an option in CLM5.0 (Section 2.2). The CTRL_PumpNoLat is 
based on CTRL, but groundwater pumping (Section 2.3) for conjunctive use of groundwater and surface 
water for irrigation is additionally considered. The DarcyLat_NoPump includes lateral flow (Section 2.4) 
based on Darcy's law (Fan et al., 2007) incorporated into CLM5 considering the same subsurface configura-
tion as in CTRL (i.e., the same lower boundary condition, the same subsurface runoff parameterization, and 
activated aquifer layer). See Text S1 in the supporting information for the parallel computing architecture 
and the modifications required for intercell communications due to the implementation of lateral flow. The 
fourth experiment (DarcyWellLat_Pump) is designed to account for groundwater pumping (Section 2.3) as 
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well as the lateral flow based on combination of Darcy's law and the steady-state well equation (Section 2.5). 
That is, in calculating the lateral flow between two grid cells, in case at least one of them is pumping cell 
(i.e., cell with nonzero groundwater-supplied irrigation demand) Equation 14 applies, and if both are non-
pumping cells, Equation 4 applies. This simulation, likewise, uses the same soil configuration and lower 
boundary condition as in CTRL.

For model spin-up, water table depth is initialized with the equilibrium water table depth from Fan 
et al. (2013). The CTRL and DarcyLat_NoPump experiments are first spun up for 120 years cyclically us-
ing the available atmospheric forcing data. Next, 3 years of recursive simulations are conducted using the 
forcing data for year 2000 to get the model stabilized for year 2000. Simulations for 2000–2016 period are 
then conducted. The CTRL_PumpNoLat and DarcyWellLat_Pump simulations are started from CTRL and 
DarcyLat_NoPump (i.e., spun up for 120 years), respectively, with an extra spin-up of 10 years in transient 
mode (i.e., with pumping) to avoid these simulations starting with initial condition as in the simulations 
with no pumping, especially over the highly exploited aquifers. Then, the actual simulation is conducted 
for 2000–2016 period. Ideally, the transient simulation could be started from the beginning of irrigation 
development (e.g., 1950 for the HPA) to better replicate the absolute depletion caused by pumping since the 
predevelopment. However, we chose to conduct a 10-year spin-up in transient mode because our goal is to 
evaluate the improvements in groundwater simulations resulting from the incorporation of lateral flow and 
pumping, rather than capture the long-term depletion caused by pumping.

3.  Results and Discussion
3.1.  Spatial Variability of Groundwater Table Depth

Figure 2 shows the average groundwater table depth for 2000–2016 period from the two control simula-
tions (Figures 2a and 2b) and the differences between DarcyLat_NoPump and CTRL as well as DarcyWell-
Lat_Pump and CTRL_PumpNoLat (Figures 2c and 2d). The water table dynamics and cumulative change 
are validated next (Section  3.2). In general, water table depth is controlled by the balance between the 
vertical (recharge from the soil column to the aquifer and capillary flux) and lateral (base flow and lateral 
groundwater flow) water fluxes (Fan et al., 2007; Swenson & Lawrence, 2015). In the CTRL simulation (Fig-
ure 2a), the spatial distribution of groundwater table depth mostly reflects climate patterns in the absence 
of pumping. That is, across the eastern US with abundant precipitation that contributes largely to aquifer 
recharge, water table resides within shallow depths (i.e., maximum 8 m from the land surface). Conversely, 
over the western and southwestern US, water table depth is much deeper (i.e., up to 80 m) owing to less 
recharge (i.e., in mostly arid and semi-arid climate), steep terrain, and rugged topography (represented by 
the slope term in the subsurface runoff parameterization). In terms of the water table type and the regional 
characteristic of groundwater systems (Gleeson et al., 2011), the larger depth and high spatial variabilities 
over the West and Southwest suggest a recharge-controlled type of groundwater, whereas, shallow water 
table together with low spatial variability across the Midwest and East suggest a topography-controlled type 
of groundwater, consistent with Gleeson et al. (2011). The long-term average water table depth in CTRL 
(Figure 2a) and CTRL_PumpNoLat (Figure 2b) is generally similar in most regions except over highly man-
aged aquifer systems (insets in Figures 2a and 2b) where a large water level drop is caused by pumping. For 
example, in the HPA water level drops by ∼2–10 m in the northern part, ∼7–19 m in the central part, and 
∼10–27 m in the southern part, which are all intensively irrigated using groundwater. Similar patterns can 
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Simulation Lower BC Aquifer layer Subsurface runoff Pumping Soil configuration Lateral flow

CTRL Head-based Active Exponential No 20 layers, 8.5 m No

CTRL_PumpNoLat Head-based Active Exponential Yes 20 layers, 8.5 m No

DarcyLat_NoPump Head-based Active Exponential No 20 layers, 8.5 m Darcy

DarcyWellLat_Pump Head-based Active Exponential Yes 20 layers, 8.5 m Darcy and well equation

Abbreviation: CTRL, control experiment.

Table 1 
Experiments and Model Configuration
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be seen in the southern part of the CVA (i.e., the San Joaquin River basin) and Snake River Plain where 
water table drawdown of up to ∼17 m and 10 m stands out, respectively. Note that the absolute magnitude 
of depletion due to irrigation could have potentially been underestimated over regions such as the HPA be-
cause of the substantially longer irrigation development period compared to the 10-year spin-up in transient 
mode considered in this study.

Figure 2c shows the difference in water table between DarcyLat_NoPump and CTRL simulations. Note that 
positive (negative) values mean deeper (shallower) water-level compared to CTRL. Evidently, the average 
water table depth across the eastern US remains within the range of −0.5 to +0.5 m difference from the 
CTRL simulation due to a small water table gradient between the grid cells. The relatively shallow water ta-
ble in these regions causes the climate-induced vertical flux (recharge) to be balanced by large baseflow—as 
a function of water table depth—causing relatively small lateral flow compared to the recharge. Conversely, 
high water table gradients across the West and Southwest drive large regional groundwater flows between 
intermountain hills and valleys. The relatively deep water table in these regions causes small convergent 
baseflow compared to the recharge and lateral groundwater flow. Finally, the results shown as the differ-
ence between DarcyWellLat_Pump and CTRL_PumpNoLat simulations (Figure 2d) highly resemble Fig-
ure 2c for most areas. Exceptions are the managed aquifer systems where groundwater pumping causes 
large water level drop, analogous to that in CTRL_PumpNoLat; however, the lateral flow in DarcyWellLat_
Pump allows intercell exchanges as a function of transmissivity and head gradient. The water-level gradient 
imposed by pumping can directly impact both magnitude and direction of the lateral flow. For example, a 
grid cell that discharges natural recharge flux to the neighbors in DarcyLat_NoPump could switch the role 
under pumping and receive lateral flow from its neighbors in DarcyWellLat_Pump.
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Figure 2.  Long-term average water table depth (m) from CTRL and CTRL_PumpNoLat (a and b) and the differences between DarcyLat_NoPump and 
DarcyWellLat_Pump against CTRL and CTRL_PumpNoLat (c and d), respectively, for 2000–2016. The major US aquifers (i.e., HPA, CVA, Mississippi Alluvial 
Plain, Snake River Plain, Colorado Plateau, Coastal Lowlands, Piedmont Blue Ridge, and Surficial) are outlined with black color (see Figure S1 for aquifers 
location). CTRL, control experiment; CVA, Central Valley Aquifer; HPA, High Plains Aquifer.

(a)

(c) (d)

(b)
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3.2.  Groundwater-Level Change in the HPA and CVA

The spatiotemporal changes in water table depth due to irrigation pumping are examined for the HPA and 
CVA, the most heavily exploited aquifers in the US that rank first and second in terms of the groundwater 
withdrawals (Scanlon, Faunt, et  al.,  2012). The USGS continuously monitors the changes in groundwa-
ter-level across the HPA (with an area of ∼450,000 km2) before the irrigation season starts every year using 
over 3,000 wells (McGuire, 2011).

Figure 3 compares the spatial patterns of accumulated water-level change from simulations (a–d) and USGS 
report (e) (McGuire, 2017). The USGS report (Figure 3e) illustrates water-level changes from predevelop-
ment (∼1950) to 2015, which ranges from ∼25-m increase in small regions in Nebraska to ∼70-m deple-
tion in Texas Panhandle. While the northeast HPA in Nebraska houses extensive irrigated areas (Felfelani 
et al., 2018), the USGS map shows little to no depletion in that region. Contrarily, patches of water-level 
increase can be seen in the north-central part of Nebraska (Figure 3e) due to increased recharge in recent 
times (Scanlon, Faunt, et al., 2012). Toward the south of HPA, the reported depletion reaches ∼20 m at the 
border of Nebraska and Colorado, ∼50 m in the southwest of Kansas and north border of Texas and exceeds 
50 m in the southern HPA. In general, the north-to-south water-level gradient can be explained mainly by 
the low annual recharge, meaning that groundwater withdrawals are generally unsustainable in the central 
and southern HPA.

As seen in Figures 3a and 3c, the simulated water-level changes from CTRL and DarcyLat_NoPump present 
relatively similar spatial variability for 2000–2015 period; the changes in these simulations are climate-driv-
en. These simulations fall short in capturing the reported depletion hotspots across the HPA by a large 
margin. A minor depletion of 0.5–1.5 m is discernible in northern Texas, central Kansas, and at the border 
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Figure 3.  Cumulative groundwater-level change across the HPA for 2000–2015 period from simulations (a–d) compared with the USGS report, provided at 
500 m resolution, for predevelopment period (∼1950) to 2015 (e). Note that the CLM5 simulations (a–d) share the left color bar. Blue boxes show the regions 
of interest where temporal variation of groundwater-level is validated with USGS data (Figure 4). CLM5, Community Land Model version 5; HPA, High Plains 
Aquifer; USGS, US Geological Survey.

(a)

(b) (d)

(c) (e)



Water Resources Research

of Nebraska and Kansas, inconsistent with the critical regions seen in USGS data. Furthermore, the increas-
ing water-level on the west side of HPA (CTRL and DarcyLat_NoPump) can be attributed to high recharge 
which is subsequently spread over a wider area by lateral flow (Figure 3c), governed by the water-level 
gradient and transmissivity.

Implementation of groundwater pumping in CTRL_PumpNoLat results in a significantly improved simu-
lation of the accumulated water-level change (Figure 3b), capturing most of the hotspots of groundwater 
depletion in the central and southern regions. The groundwater drawdown in CTRL_PumpNoLat reaches 
∼8 m at the border of Colorado and Nebraska, ∼13 m over the southwestern Kansas, and ∼18 m in Texas 
Panhandle for 2000–2015 period. Differences between the USGS data and CTRL_PumpNoLat simulation 
can be primarily seen in Nebraska. While most of the regions with small water-level change (i.e., −0.5 to 
0.5 m) in central and northern Nebraska and even the small region of large depletion in northwest of Ne-
braska are accurately simulated, ∼0.5–5 m drawdown is simulated across the northeast and south-center of 
Nebraska that does not exist with a comparable spatial extent in the USGS data. The overestimated deple-
tion in Nebraska can be associated with overestimation of irrigation water owing to the unrealistic setting 
of target soil moisture (Felfelani et al., 2018), the uncertainties in input data (e.g., irrigation fraction and 
crop types which impact the estimation of irrigation water requirement), and underestimation of recharge, 
especially irrigation return flow (i.e., due to soil hydrology and evapotranspiration processes).

While DarcyWellLat_Pump (Figure 3d) tends to include all improvements in capturing the depletion hot-
spots achieved in CTRL_PumpNoLat, the consideration of lateral flow based on the well equation along 
with pumping further enhances the simulation of groundwater-level change. The lateral flow mechanism 
partly compensates the pumping-induced storage depletion by allowing flow convergence from the neigh-
boring grid cells and forming features resembling cones of depression (insets in Figures 3b and 3d), result-
ing in a smoothening of the pixelated groundwater-level change.

Figure  4 depicts the comparison of the simulated groundwater-level change with the annual winter time 
USGS observations (McGuire, 2014, 2017), along with monthly precipitation and shown for wells (i.e., filtered 
based on the criteria noted in Section 2.1 for the 75th percentile of long-term water-level mean) in regions 
of large depletion across the HPA (outlined by blue boxes in Figure 3). See Figure S3 for different regions 
selected and Figure S4 for the same zones as in Figure 4 but for the 50th percentile of long-term water-level 
mean. Consistent with the spatial patterns across the HPA (Figure  3), the CTRL, and DarcyLat_NoPump 
show relatively stable temporal patterns, as opposed to the USGS water-level changes that show a continuous 
fall-off from 2000 to 2013, especially in Kansas and Texas. High precipitation during 2007–2012 in Nebraska 
reduces groundwater loss, even resulting in water level increase by a few meters (NE_S and NE_NE). Among 
simulations, those with pumping (CTRL_PumpNoLat and DarcyWellLat_Pump) match most closely with the 
USGS data, not only over largely depleted regions (Figure 4, Figures S3 and S4) but also across regions that 
appear to recover from a major drawdown (e.g., northern HPA where high recharge balance irrigation water 
use; Figure 4 and Figure S5), indicating overall improvements in the simulation of groundwater dynamics 
(both spatial and temporal). While large groundwater depletion rates in NE_SW, NE_NW, and TX_NC (i.e., 
4, 4, and 12 m declines for 2000–2013, respectively) are well replicated by CTRL_PumpNoLat and DarcyWell-
Lat_Pump, water-level drawdown in KS_SW is slightly underestimated and in NE_NE is overestimated which 
could be related to various factors including errors in the amount of water extraction, biases in recharge likely 
caused by uncertainties in climate forcing, and soil hydrology parameterizations.

When aggregated over a relatively large region, the impact of lateral flow on the simulated groundwater-lev-
el change is found to be negligible in the absence of pumping (CTRL compared with DarcyLat_NoPump) 
and rather insignificant even when pumping is considered (CTRL_PumpNoLat compared with DarcyWell-
Lat_Pump), due to the inherent and strong scale dependency of the lateral flow. Figures S6 and S7 provide 
contrasting examples of the differences between simulations with and without lateral flow at grid cell scale 
compared with single well data in different locations. Notable refinements can be observed in the simu-
lations with lateral flow in both pumping and no-pumping cases across many cites (e.g., Figures S6a–S6f, 
S6m–S6o and Figures S7f, S7g, S7o, and S7p). However, there are also well locations where lateral flow tends 
to not improve the simulation (Figures S7b and S7n). Furthermore, errors and uncertainties in the input 
irrigation datasets could cause failure in capturing the groundwater loss (Figure S7h) and/or false trigger 
of irrigation (Figure S6l).
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The CVA with an area of ∼52,000 km2 includes the Sacramento Valley in the north, the San Joaquin Valley 
in the middle, and the Tulare Basin in the south. Unlike in the HPA, surface water accounts for a large frac-
tion (∼50%) of irrigation water over this arid to semiarid region (Bertoldi, 1989).

Figure 5 compares the water-level changes from simulations (a–d) accumulated over 2000–2015 period with 
the USGS estimated changes (e) from the predevelopment (∼1860) to 1961 across CVA (Bertoldi et al., 1991; 
Williamson et al., 1989). Note that the simulation period in this study lies entirely after the period in USGS 
report (∼1860–1961), however, since the intensive groundwater pumping across CVA began more than a 
century ago and has been maintained until now, it is reasonable to expect relatively similar spatial patterns 
of groundwater drawdown over time. Furthermore, due to data limitations (e.g., lack of USGS continuous 
monitoring of groundwater-level changes similar to the HPA), this is the only comparison that could be 
made (de Graaf et al., 2019).

According to the USGS estimate, the maximum depletion (i.e., 12–120 m) has occurred in the Tulare Basin 
in the southern CVA with the highest depletion rate on the west (Scanlon, Longuevergne, et al., 2012). The 
water-level declines in the Sacramento and San Joaquin Valleys are less severe, ranging from 0 to 24 m, 
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Figure 4.  Time series of water-level anomalies from simulations compared with the well data for selected regions within the HPA (blue boxes in Figure 3). 
In total, data from 366 wells in southern Nebraska (NE_S), 31 wells in southwest of Nebraska (NE_SW), 32 wells in southwest of Kansas (KS_SW), 23 wells in 
north-center of Texas (TX_NC), 14 wells in northeast of Nebraska (NE_NE), and 9 wells in northwest of Nebraska (NE_NW) are used in the analysis. Bars show 
the monthly total precipitation as anomalies. CTRL, control experiment; HPA, High Plains Aquifer; USGS, US Geological Survey.
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and even small regions of water-level rise of ∼3 m can be seen, for example, in the Delta on the west. In 
the absence of groundwater extraction and lateral flow, the CTRL simulation only reflects the vertical cli-
mate-driven water-level changes (Figure 5a), showing declines of less than 2 m in the valleys, mainly due 
to prolonged drought and reduced recharge, and rises in the range of 0–2 m in the surrounding areas with 
higher elevation and precipitation.

Similar to the HPA case, the DarcyLat_NoPump simulation (Figure 5c) compares favorably with the CTRL 
with a relatively small (0–2 m) groundwater decline across most of the CVA and 0–2 m increase at its north-
ern and southern parts; however, lateral flow extends the groundwater depletion/rise in DarcyLat_NoPump. 
The results from the CTRL_PumpNoLat and DarcyWellLat_Pump (Figures 5b and 5d) suggest an overall 
improvement in the simulation of groundwater-level changes in the CVA. The higher rate of simulated 
water-level drop toward the southern San Joaquin Valley and central Tulare Basin matches with the USGS 
estimate and the findings from other studies (de Graaf et al., 2019; Scanlon, Longuevergne, et al., 2012; Wil-
liamson et al., 1989). However, the largest depletion (∼12 m) is simulated around the center of the Tulare 
Basin, slightly shifted compared to the maximum depletion location seen in the USGS data (Figure 5e). 
Contribution of lateral flow in DarcyWellLat_Pump shows promise in smoothening the pixelated spatial 
distribution of the change in groundwater level (Figure 5b), a potential model artifact, and forming even a 
cone of depression similar to the HPA case. Finally, small declines (∼0–2 m) in the water-level are simulated 
in the Sacramento Valley region which show good consistency with the observations.

To better investigate how large-scale pumping impacts groundwater movement, we present the lateral 
groundwater flow fields from the simulations with (DarcyWellLat_Pump) and without (DarcyLat_No-
Pump) pumping. For this purpose, the lateral fluxes from all eight neighboring cells are projected onto the 
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Figure 5.  Cumulative groundwater-level change across the CVA for 2000–2015 period from simulations (a–d) compared with the USGS estimated water-level 
change for predevelopment period (∼1860) to 1961 (modified from Faunt, 2009; Williamson et al., 1989) (d). Note that the simulations (a–d) share the left color 
bar. CTRL, control experiment; CVA, Central Valley Aquifer; USGS, US Geological Survey.
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coordinate axes, aggregated on the four edges of grid cells, and then averaged for both vertical and horizon-
tal directions to get the north-south and east-west components at the center of the cell. These components 
are then used to show the mean lateral flow fields for 2000–2016 period across the HPA and CVA (Figure 6). 
While the lateral fluxes in the DarcyLat_NoPump simulation (Figures 6a and 6c) are controlled by recharge 
(e.g., in the west border of HPA) and topography (e.g., southwest of CVA), irrigation-pumping imposes large 
water table gradient and lateral influxes (i.e., up to 3.5 mm month−1) toward the cones of depression in the 
two aquifers (zoomed-up insets in Figures 6b and 6d). For example, the most depleted regions in central 
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Figure 6.  Mean lateral flow fields over the HPA (a and b) and CVA (c and d) for 2000–2016. Background shows the surface elevation as a shaded relief image. 
Regions of large depletion are presented as insets in the right, showing lateral groundwater flow vectors in the foreground of cumulative groundwater-level 
change (Figures 3 and 5).

(a)

(c) (d)

(b)
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and southern HPA (Figure 3d) and southern CVA (Figure 5d) receive relatively high lateral flows—modu-
lated by the aquifer transmissivity—from the surrounding areas. Furthermore, climate variability could also 
affect the magnitude of lateral flow. For example, relatively higher lateral flow can be expected during wet 
years compared to dry years. These results underscore the importance of lateral flow at the grid scale used 
in this study and especially when pumping is considered.

The significance of the intercell lateral flow (i.e., relative to the grid water budget) has been defined in both 
relative (exceeding 10% of recharge) and absolute terms (exceeding 10 mm year−1) (Krakauer et al., 2014). 
Results from the DarcyLat_NoPump simulation (Figure S8) suggest that in over 30% of the total land areas 
within the study domain, the contribution of lateral flow is significant when the relative criterion is consid-
ered. This percentage increases to 32% in DarcyWellLat_Pump, where the pumping-induced head gradient 
triggers a higher lateral flow in the pumping cells. Furthermore, the sensitivity of the intercell lateral flow 
across spatial scales is quantified by aggregating the area-averaged lateral flow at 3 arc-min resolution into 
0.125° and 0.5° resolutions (Figures S9 and S10). The area with significant contribution of lateral flow re-
duces from 32% (DarcyWellLat_Pump) to 29% and 15%, respectively, at 0.125° and 0.5° resolutions.

The magnitude of lateral flow is highly dependent on transmissivity; low conductivities can impose signifi-
cant resistance to lateral flow (de Graaf et al., 2020). Improved representation of bedrock (e.g., by consider-
ing bedrock and alluvial aquifers interconnectivity; Raiber et al., 2019), aquifer thickness, and conductivity 
in LSMs using emerging global datasets (e.g., de Graaf et al., 2020; Gleeson et al., 2014; Huscroft et al., 2018) 
could potentially influence the water balance and help address groundwater related issues in modeling. 
Finally, the constant soil thickness is another structural shortcoming in this study. While setting a limita-
tion on soil thickness is unavoidable in large-scale modeling to reduce the computation cost, unrealistic 
constant soil thickness would introduce bias in soil moisture simulation, and consequently in head-based 
recharge representation. As such, the depth-to-bedrock data set could be incorporated to restrict water table 
depth and to allow for variable soil thickness across regions with shallow depth-to-bedrock (i.e., shallower 
than 8.5 m).

3.3.  Decadal Water Storage Trends

Figure 7 presents a comparison of spatial variability in TWS trend from simulations and GRACE data across 
the CONUS for 2005–2015 period. This period is selected to represent strong positive and negative decadal 
trends in TWS with the emphasis on hotspots of groundwater depletion (see Figure  S11 for 2002–2016 
trend maps). For better comparison with coarse resolution GRACE data, TWS simulations with 3 arc-min 
resolution are transformed to SH domain, truncated at degree and order 60, and smoothed by the 300-km 
Gaussian filter, similar to the postprocessing applied to GRACE SH products (Felfelani et al., 2017; Long 
et al., 2015; Longuevergne et al., 2010; Wahr et al., 1998). Consistent with the fact that the significance of 
lateral groundwater flow is inversely related to the grid resolution (Krakauer et al., 2014), the contribution 
of lateral flow to TWS becomes relatively insignificant at the GRACE spatial scale, especially after the ap-
plication of the 300-km Gaussian filter. Therefore, the results from CTRL and CTRL_PumpNoLat are not 
shown as those resemble the DarcyLat_NoPump and DarcyWellLat_Pump, respectively, in most regions.

GRACE data show large negative trends in TWS (Figures 7a–7c) that mostly overlap with the irrigation 
hot spots, suggesting that irrigation plays a major role in modulating TWS in these regions. There are also 
large negative trends over nonirrigated areas detected by GRACE (e.g., across the northwestern Great Lakes 
region), mainly driven by natural variabilities. Conversely, GRACE shows large positive TWS trends across 
the Southeast and northern half of the CONUS. Specifically, TWS increases in the northern HPA (Fig-
ures 7a–7c), in line with the USGS observation of groundwater rises in these highly irrigated regions (Fig-
ure 3e). In general, the spatial variability of decadal trends in TWS from simulations (Figures 7d and 7e) 
shows close correspondences among the simulations and good agreement with GRACE (Figures 7a–7c) in 
terms of the magnitude and direction of change. However, certain discrepancies are apparent mainly in 
terms of the magnitude between GRACE and simulations, among simulations, and even among different 
GRACE products, especially in regions with relatively high human influence (e.g., CVA and HPA). As a 
counterexample, there are also few regions with relatively low human impacts (e.g., across the East and 
Southeast) where GRACE and simulations show contradictory direction of change in TWS. A good corre-
lation between the direction of change in TWS simulations and NLDAS precipitation (not shown) implies 
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that the differences between GRACE data and model results across the East could partly be due to the biases 
in forcing data, especially precipitation.

The DarcyLat_NoPump (Figure  7d) tends to capture the negative and positive trends with the magni-
tudes and extents analogous to that of the GRACE data. For example, agreements across the Southwest, 
north-central US, and northwest of HPA, where lateral flow can be seen (Figure 3c) to spread over the high 
recharge on the west border of HPA, are discernible. Furthermore, the DarcyWellLat_Pump simulation 
(Figure 7e) resembles DarcyLat_NoPump in most of the regions, except for areas with large groundwa-
ter-supplied irrigation. The DarcyWellLat_Pump simulation shows improved agreement (i.e., compared to 
DarcyLat_NoPump) in capturing the GRACE-detected downward trend in areas such as the CVA, however, 
it also overestimates the pumping-induced TWS depletion rate (e.g., over the HPA) compared to GRACE.

Considering the coarse spatial resolution of GRACE data and postprocessing (e.g., Gaussian and de-striping 
filtering applied to the SH products), comparison of the modeled TWS and GRACE data could suffer from 
inherent uncertainties, especially in dry regions with localized human water abstractions (Döll, Fritsche, 
et al., 2014). We also show the disparities between the GRACE products (Figures 7a–7c), which could partly 
explain the aforementioned uncertainties. For example, mascon solutions depict relatively large negative 
TWS trends (∼1–5 cm year−1) over the southwestern and western US including the CVA, southern HPA, 
and the Coastal Lowlands Aquifer (Figures 7a and 7b). Similarly, GRACE SH products (Figure 7c) shows 
negative trends across the southern US, however, the signals are rather attenuated. There are also notable 
discrepancies, including even opposite signs of change, between different GRACE products (e.g., over the 
Great Lakes region). These results suggest that the GRACE uncertainties must be considered when evalu-
ating TWS simulations.

Table 2 provides the decadal trends in TWS for the major US aquifers from simulations and GRACE products 
for 2005–2015 period (see Table S1 for 2002–2016 period). Similar to Figure 7, the lateral flow contribution to 
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Figure 7.  Spatial distribution of TWS trends (cm year−1) based on 0.5° GRACE CSR (a) and JPL (b) mascon solutions, the mean of one-degree SH solutions 
from CSR, JPL, and GFZ centers (c), and 3 arc-min simulations (d and e) for 2005–2015. Scaling factors are applied to GRACE JPL mascon anomalies to 
downscale its resolution to 0.5° × 0.5°. Major US aquifers are shown with solid black line for which the average trend values are provided in Table 2. For the 
aquifers with areas smaller than the GRACE footprint of ∼200,000 km2 (i.e., CVA, Mississippi Alluvial Plain, and Snake River Plain), larger hydrological units 
shown by dashed line are considered for trend calculations. CSR, Center for Space Research; GFZ, German Research Center for Geoscience; GRACE, Gravity 
Recovery and Climate Experiment; JPL, Jet Propulsion Laboratory; SH, spherical harmonic; TWS, terrestrial water storage.
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TWS is relatively insignificant at the basin scale; trends from CTRL and CTRL_PumpNoLat resemble those 
from DarcyLat_NoPump and DarcyWellLat_Pump, respectively. For many of the aquifers with decreasing 
TWS trend in GRACE data (i.e., HPA, Coastal Lowlands, Snake River Plain, and Mississippi Alluvial Plain), 
CTRL and DarcyLat_NoPump simulations outperform those with pumping in estimating the magnitude of 
change. Furthermore, the CTRL_PumpNoLat and DarcyWellLat_Pump perform better in CVA, but tend to 
overestimate the negative trend in HPA, consistent with the spatial patterns of TWS trend (Figures 7d and 
7e). This difference in performance of pumping simulations can be explained partly by the larger contri-
bution of groundwater to the total irrigation water withdrawal in the HPA (∼90%) compared to that in the 
CVA (∼40%; Figure S1), prescribed as model input. Our results also confirm that the HPA shows the largest 
pumping-induced TWS change (−1.457 cm year−1), followed by the CVA (−0.994 cm year−1) and Snake Riv-
er Plain (−0.195 cm year−1). Overall, the representation of lateral flow in CLM allows regional groundwater 
flow and tends to improve the subsurface response to TWS changes in certain regions (Table 2), although 
the impact is less significant at the coarse resolution of GRACE data. Finally, results from the seasonal cycle 
of TWS variations (Figure S12) show that the inclusion of pumping could increase the seasonal amplitude 
toward better agreement with GRACE.

Table 3 compares the irrigation water requirement and withdrawals from CTRL_PumpNoLat and Darcy-
WellLat_Pump (simulations that account for conjunctive water use) with the county-level data of irrigation 
water withdrawals across the HPA (Dieter et al., 2018; Maupin et al., 2014).

In the USGS data, irrigation water withdrawals in HPA range from 19.7 to 26.5 km3 year−1 during 2000–
2015, of which more than 88% on average has been extracted from groundwater (Table 3). Results from 
the CTRL_PumpNoLat and DarcyWellLat_Pump simulations suggest the irrigation water requirement to 
range from 17 to 25 km3 year−1 for 2000–2015, of which only ∼1–1.5 km3 year−1 is withdrawn from surface 
water; the rest is supplied by groundwater (Table 3), consistent with the USGS data. For example, in year 
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Aquifer name Test CTRL
CTRL_

PumpNoLat
DarcyLat_
NoPump

DarcyWellLat_
Pump GRACE CSR GRACE JPL

GRACE 
SH mean

Central Valleya Wald −1.080* ± 0.17 −2.205* ± 0.17 −1.087* ± 0.17 −2.153* ± 0.17 −1.772* ± 0.25 −3.457* ± 0.29 −1.286*

M-K −1.024* −2.155* −1.032* −2.106* −1.873* −3.808* −1.412*

High Plains Wald −0.878* ± 0.10 −2.355* ± 0.12 −0.893* ± 0.10 −2.298* ± 0.13 −0.226 ± 0.11 −0.489* ± 0.11 −0.507*

M-K −0.835* −2.296* −0.847* −2.233* −0.199 −0.442* −0.478*

Mississippi Alluvial Plainb Wald −0.120 ± 0.24 −0.198 ± 0.26 −0.119 ± 0.24 −0.191 ± 0.26 0.202 ± 0.28 0.412 ± 0.35 −0.294

M-K −0.074 −0.174 −0.071 −0.170 0.226 0.531 −0.284

Piedmont Blue Ridge Wald 0.110 ± 0.19 0.096 ± 0.19 0.113 ± 0.19 0.095 ± 0.19 0.425* ± 0.17 0.431* ± 0.17 0.059

M-K 0.075 0.062 0.080 0.057 0.406 0.354 0.028

Coastal Lowlands Wald −0.262 ± 0.13 −0.381* ± 0.13 −0.255 ± 0.13 −0.377* ± 0.13 −0.030 ± 0.14 −0.110 ± 0.16 −0.450*

M-K −0.269 −0.390* −0.264 −0.382* −0.057 −0.101 −0.464*

Surficial Wald −0.354* ± 0.10 −0.375* ± 0.11 −0.353* ± 0.10 −0.357* ± 0.11 0.924* ± 0.11 0.626* ± 0.18 0.167

M-K −0.326* −0.344* −0.328* −0.330* 0.949* 0.649* 0.149

Colorado Plateau Wald −0.290* ± 0.09 −0.329* ± 0.09 −0.362* ± 0.09 −0.348* ± 0.09 −0.251* ± 0.08 −0.156 ± 0.09 −0.834*

M-K −0.244* −0.284* −0.320* −0.302* −0.267* −0.168 −0.885*

Snake River Plainc Wald −0.175 ± 0.15 −0.439* ± 0.15 −0.193 ± 0.15 −0.428* ± 0.16 0.211 ± 0.19 −0.035 ± 0.19 −0.184

M-K −0.138 −0.406* −0.155 −0.397* 0.285 0.036 −0.178

Notes. The significance of trends is evaluated based on Wald and Mann-Kendall tests. Stars indicate that the trend is significantly different from zero at the 5% 
significance level.
Abbreviation: CTRL, control experiment; CSR, Center for Space Research; GRACE, Gravity Recovery and Climate Experiment; JPL, Jet Propulsion Laboratory; 
SH, spherical harmonic; TWS, terrestrial water storage.
aSacramento, San Joaquin, and Tulare basins combined. bMississippi Alluvial Plain and Mississippi Embayment combined. cSnake River Basin (upper, middle, 
and lower combined).

Table 2 
Decadal Trends (cm year−1; 2005–2015 Period) in TWS for the Major US Aquifers
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2000, 23.77 out of 24.40 km3 is extracted from groundwater (94%) and 1.45 km3 is extracted from surface 
water (6%) in the DarcyWellLat_Pump simulation. Similar proportions are found in other years. While 
in CTRL and DarcyLat_NoPump, surface water is the sole source for irrigation and the majority of irri-
gation water requirement is supplied by an unlimited virtual source (i.e., due to the inadequate water in 
the main river channel and/or constraining surface water supply to the surface water contribution in the 
USGS data) which results in an unrealistic representation of irrigation. Therefore, it can be concluded that 
accounting for conjunctive use of groundwater and surface water for irrigation could largely improve the 
simulation of irrigation withdrawals (Table 3), groundwater dynamics, and aquifer depletion (Figures 3–5, 
Figures  S3–S7) across the irrigated regions, but could also lead to an overestimation of TWS depletion 
(i.e., after the incorporation of pumping) compared to the GRACE data (specifically where groundwater 
is the major irrigation source). Such overestimation in regions with heavy irrigation-pumping has been 
reported also in other studies that used other models (e.g., HiGW-MAT, Noah-MP) with different irrigation 
and groundwater schemes (Nie et al., 2018; Pokhrel et al., 2015), remaining as an outstanding issue to be 
addressed in future studies.

3.4.  River Discharge Simulation by MOSART

Finally, we evaluate the simulation of river discharge, an important hydrologic variable from water resource 
perspective that is tightly linked to groundwater dynamics. We test if the differences in the simulation of 
groundwater dynamics and baseflow generation from CTRL, CTRL_PumpNoLat, DarcyLat_NoPump, and 
DarcyWellLat_Pump would alter surface water routing by MOSART in CLM5, and whether the impact 
of pumping is apparent in streamflow simulations. For this purpose, MOSART simulations are compared 
with the USGS streamflow observations at downstream locations of the major river basins across CONUS 
(Figure 8; Table S2).

A good agreement is found between the simulated river discharge in the CTRL and DarcyLat_NoPump 
simulations and USGS observations (e.g., Columba River, Mississippi River, Illinois River, Ohio River, and 
Wabash River), specifically in the basins with relatively low human influence. This is obvious because MO-
SART currently does not account for reservoir operation. The performance of CTRL and DarcyLat_NoPump 
is further improved by activating pumping in the CTRL_PumpNoLat and DarcyWellLat_Pump simulations 
in most of the stations (e.g., Arkansas River, White River, Missouri River, Mississippi River), however, the 
improvements are not substantial (i.e., compared to CTRL and DarcyLat_NoPump) in terms of reproducing 
the observed seasonal cycle (Table S2). Furthermore, the differences between the simulations—which use 
the exponential decay formula for baseflow generation—are not always obvious, again in terms of the sea-
sonal cycle (e.g., Susquehanna River, Ohio River).

In general, model overestimation in many of basins/catchments could be attributed to the lack of water 
withdrawals for other sectors than agriculture (e.g., industrial, domestic, thermoelectric power), absence 
of reservoir operation, and systematic biases in ET, irrigation return flow, and forcing data. Furthermore, 
the small difference in river discharge among different simulations highlights the fact that: (1) inclusion of 
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Year

USGS (km3 year−1) CTRL_PumpNoLat (km3 year−1) DarcyWellLat_Pump (km3 year−1)

Irrigation 
withdrawal

GW 
source IWR

Total 
withdrawal

GW 
source

SW 
source IWR

Total 
withdrawal

GW 
source

SW 
source

2015 19.7 17.5 17.06 16.68 15.63 1.05 17.05 16.69 15.63 1.06

2010 19.8 16.8 19.22 18.88 17.82 1.07 19.21 18.88 17.81 1.07

2005 24.6 22.3 22.30 21.85 20.62 1.23 22.26 21.82 20.59 1.24

2000 26.5 23.6 24.56 23.94 22.46 1.48 24.40 23.77 22.32 1.45

Abbreviations: CTRL, control experiment; GW, groundwater; HPA, High Plains Aquifer; IWR, irrigation water 
requirement; SW, surface water; USGS, US Geological Survey.

Table 3 
Comparison of Irrigation Water Withdrawals Over the HPA From the CTRL_PumpNoLat and DarcyWellLat_Pump 
Simulations With the USGS Data
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lateral flow and groundwater pumping does not substantially alter river discharge simulations over large 
basins (e.g., Mississippi River, Ohio River), especially at the current model grid of ∼13 km, (2) the impact of 
pumping was minimal because pumping occurs mostly in semiarid and dry regions where the water table is 
relatively deep and has low impact on river flow (again, at the current model grid and spatial extent) (Win-
ter et al., 1998), and (3) the subsurface runoff parameters (i.e., qdrai,max and fdrai) are not specifically calibrated 
for the selected basins and hence are not highly sensitive to groundwater table depth that characterized the 
primary difference between the four simulations (Bisht et al., 2018). It is expected that by increasing the 
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Figure 8.  Comparison of simulated river discharge (103 m3 s−1) with the USGS streamflow data at the major gauging stations across the US. See Table S2 for 
statistical measures. USGS, US Geological Survey.
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MOSART resolution and calibrating the subsurface runoff parameters, the direct impact of lateral flow and 
pumping on the river discharge could be better represented.

4.  Conclusions
A new prognostic groundwater scheme, which accounts for lateral groundwater flow and conjunctive use 
of groundwater and surface water for irrigation, is implemented in the latest version of CLM (CLM5). Four 
sets of simulations (all combinations by turning lateral flow and pumping on and off) are conducted at 
5-km grids and over the CONUS. To simulate groundwater pumping for irrigation use, we introduce—for 
the first time—an explicit representation of the steady-state well equation in LSMs. Results show that the 
new groundwater model significantly improves the simulation of groundwater-level change and promis-
ingly captures most of the hotspots of groundwater depletion across the HPA and CVA, the most heavily 
exploited aquifers in the US. While the simulations equipped with pumping improve TWS over CVA and 
river discharge in most of the major river basins across the US, they tend to overestimate TWS depletion 
rate, especially across HPA where groundwater supplies the majority of irrigation water use. Furthermore, 
incorporation of lateral flow results in improved subsurface response to pumping (i.e., by smoothening the 
pixelated groundwater-level change to form a cone of depression) as well as natural wet and dry cycles; 
however, the impact is not substantial at the basin scale or coarse grids. There are certain limitations to 
this study that open avenues for future work. First, the use of newly available datasets that describe global 
aquifer properties such as the global permeability and depth-to-bedrock datasets could improve the rep-
resentation of lateral flow and pumping. Second, it is essential to further assess uncertainties in the GRACE 
products over high-depletion regions. Third, inclusion of lateral flow and pumping is expected to have 
larger impacts on river discharge that may require spatial calibration of the subsurface runoff parameters. 
Future studies could also consider water withdrawals for all sectors and include reservoir operation in the 
river routing scheme. Lastly, the uncertainties arising from forcing data could be quantified using ensemble 
simulations with multiple forcing datasets. Despite these limitations, this study provides important ad-
vances in simulating groundwater dynamics in LSMs by considering lateral flow, aquifer pumping, and 
conjunctive water use for irrigation.

Data Availability Statement
All data used to generate the major figures are publicly available on CUAHSI HydroShare. The USGS irri-
gation and groundwater use data are available at: https://water.usgs.gov/watuse/data/index.html; GRACE 
data are available at: https://podaac.jpl.nasa.gov/GRACE; USGS observational wells data are available at: 
https://ne.water.usgs.gov/projects/HPA/data.html.
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