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Abstract. Billions of people rely on groundwater as being an
accessible source of drinking water and for irrigation, espe-
cially in times of drought. Its importance will likely increase
with a changing climate. It is still unclear, however, how
climate change will impact groundwater systems globally
and, thus, the availability of this vital resource. Groundwa-
ter recharge is an important indicator for groundwater avail-
ability, but it is a water flux that is difficult to estimate as
uncertainties in the water balance accumulate, leading to pos-
sibly large errors in particular in dry regions. This study in-
vestigates uncertainties in groundwater recharge projections
using a multi-model ensemble of eight global hydrological
models (GHMs) that are driven by the bias-adjusted out-
put of four global circulation models (GCMs). Pre-industrial
and current groundwater recharge values are compared with
recharge for different global warming (GW) levels as a re-
sult of three representative concentration pathways (RCPs).
Results suggest that projected changes strongly vary among

the different GHM—-GCM combinations, and statistically sig-
nificant changes are only computed for a few regions of
the world. Statistically significant GWR increases are pro-
jected for northern Europe and some parts of the Arctic, East
Africa, and India. Statistically significant decreases are sim-
ulated in southern Chile, parts of Brazil, central USA, the
Mediterranean, and southeastern China. In some regions, re-
versals of groundwater recharge trends can be observed with
global warming. Because most GHMSs do not simulate the
impact of changing atmospheric CO; and climate on vege-
tation and, thus, evapotranspiration, we investigate how esti-
mated changes in GWR are affected by the inclusion of these
processes. In some regions, inclusion leads to differences in
groundwater recharge changes of up to 100 mm per year.
Most GHMs with active vegetation simulate less severe de-
creases in groundwater recharge than GHMs without active
vegetation and, in some regions, even increases instead of de-
creases are simulated. However, in regions where GCMs pre-
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dict decreases in precipitation and where groundwater avail-
ability is the most important, model agreement among GHMs
with active vegetation is the lowest. Overall, large uncertain-
ties in the model outcomes suggest that additional research
on simulating groundwater processes in GHMs is necessary.

1 Introduction

The critical role of groundwater as an accessible source for
irrigation and of drinking water, in particular during dry peri-
ods, droughts, and floods, will intensify with climate change
because increased precipitation variability is expected to de-
crease the reliability of surface water supply (Taylor et al.,
2013; Do6ll et al., 2018; Kundzewicz and D611, 2009). While
demand for groundwater is likely to increase in the fu-
ture, groundwater abstractions have already led to depleted
aquifers in many regions around the globe (Thomas and
Famiglietti, 2019; Cuthbert et al., 2019a; Wada et al., 2012;
Konikow and Kendy, 2005; D6ll et al., 2014b). They have
also resulted in the reduction in groundwater discharge to
rivers, with negative impacts on water availability for hu-
mans and freshwater biota, in particular during low-flow pe-
riods (Herbert and D&ll, 2019). To what extent groundwater
can serve to sustain ecosystem health and to support human
adaptation to climate variability and change strongly depends
on future groundwater availability, which is strongly affected
by climate change (Kundzewicz and Do6ll, 2009; Déll, 2009;
Taylor et al., 2013; Cuthbert et al., 2019b).

Groundwater recharge (GWR) is a central indicator of po-
tential groundwater availability (Herbert and Do6ll, 2019).
GWR is the vertical water flux to the groundwater from the
soil (diffuse GWR) and from surface water bodies (point or
focused recharge; Small, 2005). It is a function of the lo-
cal climate, topography, soil, land cover, land use (urban-
ization, woodland establishment, crop rotation, and irriga-
tion practices), atmospheric CO, concentrations, and geol-
ogy (Small, 2005). Changes in GWR alter groundwater lev-
els and their temporal patterns, which affect vital ecosystem
services (Klgve et al., 2014). Knowledge of the dynamics
and process interactions determining GWR is a fundamen-
tal prerequisite for assessing groundwater quality and quan-
tity under climate change (Green et al., 2011). The simula-
tion of GWR is possibly one of the most challenging compo-
nents of the water budget as it accumulates the uncertainties
of all other components of the budget. Especially in semi-
arid regions, uncertainties in precipitation and evapotranspi-
ration (Wartenburger et al., 2018) lead to considerable uncer-
tainty in recharge. An additional factor in estimating ground-
water recharge is the simulation of the groundwater table
and, thus, capillary rise and focused recharge. This has not
been achieved yet in GHMs; however, recently, global hy-
drological models (GHMs) started integrating gradient-based
groundwater models to better estimate the flows between sur-
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face water and groundwater and the impact of humans and
the changing climate on the groundwater system (de Graaf
et al., 2019; Reinecke et al., 2019). Neglecting capillary rise
may lead to an overestimation of the decreases and increases
in GWR due to a changing climate.

Assessing the response of GWR to climate change is diffi-
cult even at the local scale, with one of the reasons being that
groundwater recharge, different from streamflow, is rarely
measured, and long time series of groundwater recharge are
not available (Earman and Dettinger, 2011). In local ground-
water modeling, groundwater recharge is often determined
by calibration using hydraulic head observation, while in-
tegrated modeling relies on the partitioning of precipitation
into evapotranspiration, storage change, and runoff (GWR
plus surface and subsurface runoff). Moreover, projections
of GWR often neglect the impact of changing climate and
higher CO; levels on plants and, thus, evapotranspiration and
GWR (Taylor et al., 2013). With higher CO; levels, terres-
trial plants open their stomata less, which reduces evapotran-
spiration and increases runoff (physiological effect), while
they might grow better, increasing evapotranspiration (struc-
tural effect; Gerten et al., 2014). Vegetation models that in-
clude these effects disagree about the balance of both effects
(Gerten et al., 2014). However, based on a large ensemble
of GCMs that include the impact of CO, and changing cli-
mate on vegetation and evapotranspiration, rising CO, can
be expected to decrease transpiration and, thus, increase to-
tal runoff (Milly and Dunne, 2016). Therefore, GHMs that
do not consider active vegetation may underestimate runoff,
and, thus, GWR increases, or they may overestimate GWR
decreases.

While there have been review articles on the relation be-
tween groundwater and climate change (Smerdon, 2017; Jing
et al., 2020; Refsgaard et al., 2016), global-scale studies that
quantify the impact of climate change on GWR are rare. They
have evolved regarding the way climate scenarios are imple-
mented and how many global climate models (GCMs) and
GHMs are included in the study. While Doll (2009) could
only use the delta change method to integrate information
from two GCMs in the GHM WaterGAP (Alcamo et al.,
2003; Miiller Schmied et al., 2014), Portmann et al. (2013)
could feed their simulations of future changes in GWR with
WaterGAP directly by means of the bias-adjusted output
with five GCMs. They found that changes in GWR increase
with increasing greenhouse gas emissions. Acknowledging
that not only GCMs but also GHMs contribute to the uncer-
tain translation of emissions scenarios to changes in GWR
(Moeck et al., 2016), the study of Dol et al. (2018) included
two GHMs (WaterGAP and LPJmL — Lund Potsdam Jena
managed Land; Rost et al., 2008; Schaphoff et al., 2013)
driven by the bias-adjusted output of four GCMs. They eval-
uated relative changes in GWR with climate change, which
can arguably serve as a better indicator of climate change
hazard than absolute changes in GWR. On the other hand, the
usage of relative change led to the result that change in GWR
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could not be reliably computed for 55 % of the global land
area due to very small GWR for the reference period simu-
lated by LPJmL (Dol et al., 2018). While the LPJmL model
considered, differently to the WaterGAP model, the effect of
rising CO; on groundwater recharge, the impact of this on
GWR projections were not analyzed in D61l et al. (2018). In
general, studies investigating the difference between GHMs
with and without dynamic vegetation are rare (Davie et al.,
2013).

This study assesses the impact of climate change on GWR
based on the output of a multi-model ensemble encompass-
ing eight GHMs, each forced by the bias-adjusted output of
four GCMs under three different representative concentra-
tion pathways (RCPs). The ensemble was generated in the
framework of the Inter-Sectoral Impact Model Intercompar-
ison Project (ISIMIP) using simulation protocol ISIMIP2b
(Frieler et al., 2017). The ISIMIP global water sector in-
corporates global models, including water resources models,
land surface models, and dynamic vegetation models, which
can compute water flows and storages on the continents of
the Earth; in this study, all three model types are referred to
as GHMs. The ISIMIP2b ensemble has already been used in
multiple climate change studies investigating, for example,
flood risk (Willner et al., 2018; Thober et al., 2017; Alfieri
et al., 2017), low flows in Europe (Marx et al., 2018), evapo-
transpiration (Wartenburger et al., 2018), runoff and snow in
Europe (Donnelly et al., 2017), drought severity (Pokhrel et
al., 2021), heat uptake by inland waters (Vanderkelen et al.,
2020), and multi-sectoral impacts (Byers et al., 2018; Lange
et al., 2020).

We analyze how GWR is projected to change globally and
regionally for multiple global warming (GW) levels, deter-
mine the contributions from GHMs and GCMs to the vari-
ance of simulated changes, and discuss the implications for
future assessments of global groundwater resources. Further-
more, we show the effect of including the physiological im-
pacts of evolving CO, on global estimates of GWR. To this
end, the remainder of this paper is structured as follows.
Section 2 provides an overview of the used GHMs and the
methods for calculating changes in GWR per GW level and
sources of uncertainty. The results in Sect. 3 show the signif-
icant changes in GWR per GW and the differences between
GHMs and GCMs. We then compare the influence of GCMs,
GHMs, and RCPs on the variance of simulated GWR, assess
the differences in GWR due to including dynamic vegetation
in GHMs, and compare the GHM simulations to interpolated
measured GWR. The paper closes with a discussion of these
findings (Sect. 4) and conclusions (Sect. 5).
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2 Methods
2.1 Simulation of groundwater recharge

This study encompasses eight GHMs that differ in their rep-
resentation of various hydrological processes. Four of these
models are able to simulate the impact of evolving CO, con-
centrations on vegetation: CLM 4.5, JULES-W1, LPJmL,
and MATSIRO (Table 1). In the following, we use the term
active vegetation for models that consider the physiological
effect of changes in CO, on vegetation and the term dynamic
vegetation for the models that allow for changing vegeta-
tion regarding leaf area index (LAI) and/or vegetation type.
A comprehensive overview of GHMs and their properties
can be found in Sood and Smakhtin (2015). Detailed model
descriptions and evaluations of the models can be found in
the primary publications referred to in the subsections below
and Telteu et al. (2021; for the model parameterization see
Sect. 2.2). The definition of GWR and groundwater varies in
between GHMs (discussed in Sect. 4). The analysis in this
study is based on monthly GWR (variable gr in ISIMIP) in
0.5° x 0.5° grid cells simulated by the eight GHMs taking
part in the ISIMIP2b protocol (Frieler et al., 2017). Some
GHMs contained small negative GWR values, for example,
due to capillary rise; these values were set to zero in the anal-
ysis. We do not consider focused recharge in this study as
no model has offered a reliable implementation of these pro-
cesses until now. Also, none of the models simulate the depth
of the groundwater table beneath the land surface, which
does not allow us to correctly attribute delays in recharge due
to water table depth.

2.1.1 WaterGAP2

The WaterGAP2 model (Alcamo et al., 2003) computes hu-
man water use in five sectors and the resulting net abstrac-
tions from groundwater and surface water for all land areas
of the globe, excluding Antarctica. These net abstractions are
then taken from the respective water storages in the Water-
GAP Global Hydrology Model (WGHM; Miiller Schmied
et al.,, 2014; Doll et al., 2003, 2012, 2014b). With daily
time steps, WGHM simulates flows among the water stor-
age compartments canopy, snow, soil, groundwater, lakes,
human-made reservoirs, wetlands, and rivers. GWR in Wa-
terGAP?2 is calculated as being a fraction of runoff from land
based on soil texture, relief, aquifer type, and the existence
of permafrost or glaciers, taking into account a soil-texture-
dependent maximum daily groundwater recharge rate (Doll
and Fiedler, 2008). If a grid cell is defined as semiarid or arid
and has a medium or coarse soil texture, GWR will only oc-
cur if daily precipitation exceeds a critical value (D61l and
Fiedler, 2008); otherwise, the water runs off. Runoff from
land that does not contribute to GWR is transferred to sur-
face water bodies as fast surface runoff. WaterGAP further
computes focused recharge beneath surface water bodies in
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Table 1. Overview of which models are able to simulate the impact of evolving CO; concentrations on vegetation and how it is implemented.

R. Reinecke et al.: Uncertainty of simulated groundwater recharge at different global warming levels

GHM Considers  Summary of considered vegetation processes in ISIMIP2b Reference
COy

WaterGAP2 No - -

CLM4.5 Yes Photosynthesis depends on rootzone soil moisture availability. Di Liu and Mishra
The description is similar to LPJmL listed below. The area a (2017)
population of plant functional types (PFTs) takes up is prescribed
and only changes if the input data changes.

HO8 No - -

JULES-W1 Yes Evapotranspiration is considered from five PFTs and four non- Best et al. (2011),
vegetative surface types. Each grid cell is composed of different Clark et al. (2011)
fractions of those nine surface types. Transpiration occurring from
vegetation is based on the photosynthetic process, which is subject
to stomatal conductance regulated by the CO, concentration.

Furthermore, transpiration is also controlled by soil moisture
availability in the rootzone.

LPJmL Yes Vegetation composition is determined by the fractional coverage of ~ Schaphoff et al.
PFTs at the grid scale. PFTs are defined to account for the variety (2018)

in structure and function within a stand and are therefore simulated
as average individuals competing for light and water according to
their crown area, LAI, and rooting profiles. The vegetation
dynamics component of LPJmL includes carbon allocation to
different PFT tissue compartments, PFT interaction, and
establishment and mortality processes. Photosynthesis and
stomatal response are simulated following Farquhar et al. (1980)
and the generalization by Collatz et al. (1991) for global

modeling, based on the function of absorbed photosynthetically
active radiation, temperature, day length, and canopy conductance

for each PFT present in a grid cell.

PCR-GLOBWB  No -

CWatM No -

MATSIRO Yes

The consideration of CO, effects is functionally similar to that in

Takata et al. (2003)

CLM, and there is no dynamic vegetation scheme. CO> is
prescribed in the model, which is used in the photosynthesis
scheme to calculate stomatal conductance, among other
parameters, following Farquhar et al. (1980). Soil moisture stress
on photosynthesis is considered, using moisture availability in the
rootzone with root the distribution fraction in each soil layer. All
of that is done for different vegetation or plant functional types.

semiarid and arid grid cells, which is not considered in this
study.

2.1.2 CLM4.5

The Community Land Model version 4.5 (CLM4.5;
Lawrence et al., 2011; Oleson et al., 2013; Swenson and
Lawrence, 2015) is the land component of the Community
Earth System Model (CESM), a fully coupled, state-of-the-
art Earth system model (Hurrell et al., 2013). CLM is a land
surface model representing the physical, chemical, and bio-
logical processes through which terrestrial ecosystems influ-

Hydrol. Earth Syst. Sci., 25, 787-810, 2021

ence and are influenced by climate, including CO,, across a
variety of spatial and temporal scales (Lawrence et al. 2011).
Individual land grid points can be composed of multiple land
units due to the nested tile approach, which enables the im-
plementation of multiple soil columns and represents biomes
as a combination of different plant functional types. Ground-
water processes, including sub-surface runoff, recharge, and
water table depth variations, are simulated based on the SIM-
TOP scheme (SImple groundwater Model TOPgraphy based;
Niu et al., 2007; Oleson et al., 2013).

https://doi.org/10.5194/hess-25-787-2021
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2.1.3 HO8

HOS8 (Hanasaki et al., 2018) is a GHM that includes various
components for water use and management. It consists of five
major components, namely a simple bucket-type land surface
model, a river routing model, a crop growth model, which is
mainly used to estimate the timing of planting, harvesting,
and irrigation in cropland, a reservoir operation model, and a
water abstraction model. The abstraction model supplies wa-
ter to meet the daily water demand of three sectors (irrigation,
industry, and municipality) from six available and accessi-
ble sources (river, local reservoir, aqueduct, seawater desali-
nation, renewable groundwater, and non-renewable ground-
water) and one hypothetical one termed unspecified surface
water. It has two soil layers; one is to represent the unsatu-
rated rootzone and the other the saturated zone (groundwa-
ter). The scheme of GWR computation is identical to Doll
and Fiedler (2008).

2.14 JULES-W1

The Joint UK Land Environment Simulator (JULES; Best
et al., 2011; W1 stands for water-related simulations in the
ISIMIP framework) is a land surface model initially devel-
oped by the Met Office as the land surface component of the
Met Office Unified Model. JULES is a process-based model
that simulates the carbon, water, energy, and momentum
fluxes between land and atmosphere, including plant—carbon
interactions (Clark et al., 2011). The rainfall that reaches the
ground is partitioned into Hortonian surface runoff and an
infiltration component. A total of four soil layers represent
the soil column, with a total thickness of 3 m, with a unit
hydraulic head gradient lower boundary condition and no
groundwater component. The water that infiltrates the soil
moves down the soil layers that are updated using a finite
difference form of the Richards equation (Best et al., 2011).
The saturation excess water from the bottom soil layer be-
comes subsurface runoff that can be considered to be GWR
(Le Vine et al., 2016).

2.1.5 LPJmL

Lund Potsdam Jena managed Land (LPJmL) is a dynamic
global vegetation model that simulates the growth and pro-
ductivity of both natural and agricultural vegetation as be-
ing coherently linked through their water, carbon, and en-
ergy fluxes (Schaphoff et al., 2018). The soil column is di-
vided into six active hydrological layers, with a total thick-
ness of 13 m depth. Percolation of infiltrated water through
the soil column is calculated according to a storage routine
technique that simulates free water in the soil bucket (Arnold
et al., 1990). Excess water over the saturation levels pro-
duces lateral runoff in each layer (subsurface runoff). GWR
is considered to be percolation (seepage) from the bottom
soil layer. As there is no groundwater storage in LPJmL, for
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the ISIMIP2b protocol, seepage from the base soil layer is re-
ported as both GWR and groundwater runoff, which is routed
directly (with no time delay) back into the river system.

2.1.6 PCR-GLOBWB

PCR-GLOBWB (PCRaster Global Water Balance; Sutanud-
jajaetal., 2018); simulates the water storage in two vertically
stacked soil layers and an underlying groundwater layer. Wa-
ter exchanges are simulated between the layers (infiltration,
percolation, and capillary rise) and the interaction of the top
layer with the atmosphere (rainfall, evapotranspiration, and
snowmelt). PCR-GLOBWRB also calculates canopy intercep-
tion and snow storage. Natural groundwater recharge is fed
by net precipitation, and additional recharge from irrigation
occurs as the net flux from the lowest soil layer to the ground-
water layer, i.e., deep percolation minus capillary rise. The
ARNO (a semi-distributed conceptual rainfall-runoff model;
Todini, 1996) scheme is used to separate direct runoff, in-
terflow, and GWR. Groundwater recharge can be balanced
by capillary rise if the top of the groundwater level is within
5 m of the topographical surface (calculated as the height of
the groundwater storage over the storage coefficient on top
of the streambed elevation and the sub-grid distribution of
elevation).

2.1.7 CWatM

The Community Water Model (CWatM) is a large-scale inte-
grated hydrological model which encompasses general sur-
face and groundwater hydrological processes, including hu-
man hydrological activities such as water use and reservoir
regulation (Burek et al., 2020). CWatM takes six land cover
classes into account and applies the tile approach. This hy-
drological model has three soil layers and one groundwater
storage. The depth of the first soil layer is 5 cm, and the depth
of second and third layers vary over grids, depending on the
rootzone depth of each land cover class, resulting in total soil
depth of up to 1.5m. Groundwater storage is designed be-
ing as a linear reservoir. CWatM includes preferential bypass
flow directly into groundwater storage and capillary rise from
groundwater storage and percolation from the third soil layer
to groundwater storage. Hence, the groundwater recharge re-
ported by CWatM in ISIMIP2b is the net recharge calculated
from these three terms.

2.1.8 MATSIRO

The Minimal Advanced Treatments of Surface Interaction
and RunOff (MATSIRO; Takata et al., 2003) is a global
land surface model initially developed for an atmospheric—
ocean general circulation model, the Model For Interdisci-
plinary Research On Climate (Hasumi and Emori, 2020).
This process-based model calculates water and energy flux
and storage at and below the land surface, also consider-
ing the stomatal response to CO; increase in the photosyn-
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thesis process. The offline version of MATSIRO used for
the ISIMIP2b simulation explicitly takes vertical ground-
water dynamics into account, including groundwater pump-
ing (Pokhrel et al., 2012, 2015). Soil moisture flux between
the 15 soil layers is expressed as a function of the verti-
cal gradient of the hydraulic potential, which is the sum
of the matric potential and the gravitational head, and the
soil moisture movement is calculated by Richards equation.
MATSIRO calculates net groundwater recharge as a bud-
get of gravitational drainage into and capillary rise from the
layer where the groundwater table exists. A simplified TOP-
MODEL (TOPography-based MODEL; Beven and Kirkby,
1979; Stieglitz et al., 1997) is used to represent surface runoff
processes, and groundwater discharge is simulated by using
an unconfined aquifer model (Koirala et al., 2014).

2.2 Model simulations

Each GHM is forced by bias-adjusted data from the fol-
lowing four GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-
CMS5A-LR, and MIROCS. Further details on the selection of
climate models and the bias correction can be found in Frieler
et al. (2017), Lange (2018, 2019), Hempel et al. (2013), and
online at ISIMIP (2018). The bias adjustment method used
for the GCMs in ISIMIP2b is using a trend-preserving al-
gorithm (Frieler et al., 2017) with the EWEMBI data set
(Lange, 2018) as the baseline (reference) climate condition.
The simulations in this study span the period from 1861
to 2099. All GHMs (except for PCR-GLOBWB, which
misses the RCP8.5 run) simulate the RCPs 2.6, 6.0, and 8.5.

The pre-industrial period (PI) is defined in ISIMIP
from 1661 to 1860, whereas the historical period is defined
from 1861 to 2005. Additionally, for the RCP and histori-
cal simulations, ISIMIP defines PI simulations that repre-
sent an extended state of emissions scenarios from the PI
period until 2099 (and partially until 2300; not applicable
in this study). In this study, we always, unless stated other-
wise, refer to PI by the simulation period of 1960-2099, with
the continued concentration levels of 1661-1860. Details on
the simulation setup can be found on the ISIMIP web page
(ISIMIP, 2019) or in Frieler et al. (2017).

Regarding the non-climatic drivers, all GHMs use, for
the time before 2006, so-called historical socioeconomic
pathway assumptions, e.g., historical water use, except for
CLM 4.5, which used the socioeconomic state of 2005. All
simulations for 2006-2099 are based on this assumed socio-
economic state of 2005. For some models this affects the
abstraction from groundwater, which is not stimulated by
all models (JULES-W1), or GWR directly due to irriga-
tion (HO8, CLM, and PCR-GLOBWB). Details on the per-
tinent scenario variables can be found in the ISIMIP protocol
(Frieler et al., 2017). Land use change was not considered.

Hydrol. Earth Syst. Sci., 25, 787-810, 2021

2.3 Determining stabilized warming levels

In order to derive policy-relevant information, we assessed
impacts framed in terms of GW levels (1, 1.5, 2, and 3°C)
with respect to the GW of 0°C in PI conditions (James et
al., 2017). The time of passing a warming level is defined
as the first time the 31-year running mean of the global aver-
aged annual mean temperature reaches above that level. Each
GCM reaches different GW at different times (Table 2), de-
pending on the RCPs (van Vuuren et al., 2014). For each
GW level (1, 1.5, 2, and 3°C), time slice of 31 years (i.e.,
15 before the level was reached, and 15 after) for each GCM
and for each RCP, in which that GW is reached, are used.
Using this time slice, a yearly mean GWR at 0.5° spatial res-
olution was calculated for the GHMs that were forced with
the particular combination of GCM and RCP (Fig. 1). Addi-
tionally, a PI reference was calculated for each GCM, RCP,
and GHM combination for the same time slice in which the
GW level was reached in a particular RCP-GCM combina-
tion using the PI reference simulation (see Sect. 2.2). Fig-
ure 1 illustrates the methodology by showing two unspecified
RCPs and the PI comparison paths.

Considering that not all RCP/GCM combinations reach
higher warming levels (Table 2), not all ensembles have the
same size. Theoretically, the maximum ensemble size is 96,
with a combination of 8 GHMs, 4 GCMs, and 3 RCPs (2.6,
6.0, and 8.5). Because projections under RCP8.5 were not
available for PCR-GLOBWB, the maximum ensemble size
is 84. The smallest ensemble (for 3°C) consists of 36 mem-
bers.

2.4 Calculation of model variance

To calculate whether the variance in absolute GWR change
is mainly introduced through the GHMs or the GCMs, the
following equation was applied per model grid cell and
GW level.

Rvarfig! = 0dyr (GCMSs) / (0 (GCMs)

+0dwr(GHMS)) eh)

where Rvarg‘{,’gﬁl is the variance ratio of GCMs to GHMs,
aéWR(GHMs) is the average variance of GWR change of all
GHMs per GCM per RCP, and O’éWR(GCMS) is the average
variance in GWR change of all GCMs per RCP per GHM.
The variance relative to the choice in RCP Rvarg%)R can be

calculated similarly as follows:
RvarGi = 0dwr (RCPS)/ (0w (RCPs)
+aéWR(GHMs)) , )

where aéWR(RCPs) is the average variance in GWR of all
RCPs per GCM per GHM.
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Figure 1. Conceptual representation of how GW levels are determined for different GCMs, RCPs, and the PI comparison period.

Table 2. Overview of the warming levels and in which year they are reached in the corresponding GCM (ISIMIP, 2019).

Warming RCP GFDL-ESM2M  HadGEM2-ES IPSL-CMS5A-LR  MIROCS

level

1°C 2.6 2014 2012 1993 2015
6.0 2016 2014 1993 2023
8.5 2014 2012 1993 2014

1.5°C 2.6 - 2026 2009 2048
6.0 2056 2032 2010 2052
8.5 2036 2025 2009 2033

2°C 2.6 - - 2029 -
6.0 2076 2050 2029 2071
8.5 2053 2037 2024 2048

3°C 2.6 - - - —
6.0 - 2076 2068 -
8.5 2082 2056 2046 2071

2.5 Determining significant changes

A model ensemble allows us to consider the uncertainty in
modeling physical processes as different models use differ-
ent algorithms and parameters for computing groundwater
recharge. To determine whether changes in GWR due to
GW computed by the model ensemble are statistically sig-
nificant, we used the two-sample Kolmogorov—Smirnov (K-
S) test to compare the GWR values computed by all GHM—
GCM model combinations under, for example, PI conditions
with the values at the various GW levels. The use of a two-
tailed ¢ test is not advisable in this setting due to the small
sample size (max. 84 in this study). Because the K-S test
does not allow us to check whether the ensemble agrees on
the sign of change in GWR, we applied an additional cri-
terion to determine a significant change similar to Doll et
al. (2018). A change is only marked as statistically signifi-
cant if the K-S test indicates a significant difference and at
least 60 % of the model realizations of the ensemble (RCP,
GCM, and GHM combinations) agree on the sign of change
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(i.e., a decrease or increase). In case of a low significance, all
models may show large responses to climate change while
their agreement on the amount or sign of change is low.

3 Results

3.1 Changes in groundwater recharge at different
warming levels

To assess the impact of GW on GWR, Fig. 2 shows the en-
semble mean change of GWR between the current 1°C world
and a potential 3°C GW. We chose to express changes as ab-
solute change rather than relative change because zero, or
close to zero, GWR in some regions of the world leads to
undefined or extremely large percentage increases and de-
creases (Figs. S1 and S2 in the Supplement). The model
mean shows large decreases of over 100 mm per year in
South America and in the Mississippi Basin and decreases of
up to 50 mm per year in the Mediterranean, East China, and
West Africa. Increases of over 100 mm per year are promi-
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nent in Indonesia and East Africa. Individual GHM-GCM
model combinations compute much larger changes.

Ensemble mean changes, as shown in Fig. 2, may be low
in some areas, but this could be due to large positive changes
computed by some GHM-GCM model combinations being
canceled by large negative changes by other model combi-
nations. To assess the changes which show a high statistical
agreement between the model combinations, we determine
where computed changes of GWR are statistically significant
(Sect. 2.5). As a reference for the intensity of the changes,
Fig. 3a shows the mean GWR at PI averaged over all GHMs,
RCPs, and GCMs from 1861 to 2099. The spatial pattern of
GWR roughly agrees with the pattern of Mohan et al. (2018),
which is derived by inferring it from more than 700 small-
scale GWR estimates. The global mean GWR for the PI pe-
riod is 140 mm per year, which is very similar to the value of
134 mm per year determined by Mohan et al. (2018) for the
period 1981-2014 (see also Sect. 4).

Figure 3b—e show the (statistical) significant (bright col-
ors; Sect. 2.5) mean absolute changes in GWR of the multi-
model ensemble under a GW of 1.0, 1.5, 2.0, and 3.0°C
compared to PI, i.e., GWR of the PI runs for the corre-
sponding time slices (Sect. 2.3). For all GW levels com-
pared to PI (Fig. 3b—e), consistent patterns of decreasing
GWR emerge for southern Chile, Brazil, central continen-
tal USA, the Mediterranean, and East China. Consistent and
significant increases can be observed for northern Europe
and in general northern latitudes and East Africa. Signifi-
cant changes could only be derived for a small percentage of
the total grid cells. Only about 15 % of the cells, on average
for all GW levels, show significant increases or decreases.
However, the patterns of non-significant (light colors) mean
changes are consistent with the significant changes and show,
for example, larger areas of increases and decreases around
the significant changes for the Amazon. The identification of
non-significance in most areas is due to the K-S test. The
sign criterion affects mainly the Sahara and central Asia.

At 1°C, GW (Fig. 3b) decreases of more than 100 mm per
year are simulated in Southeast Asia, East China, Guyana,
and southern Brazil. Decreases between 100 and 50 mm per
year can be seen in central continental USA, southern Brazil,
southern Chile, the Mediterranean, central Africa, and East
China. Increases in GWR of 50 and over 100 mm per year
are visible in the center of the Amazon, while decreases show
in the northeastern and southern part that increase with GW.
Overall, the significant global change is —17 mm per year at
1°C.

A 1.5°C GW shows only a limited increase in the Amazon
but similar increases in the rest of the world. Decreases in
GWR over 100 mm per year are now visible in Central Amer-
ica, but decreases for Southeast Asia have vanished. Smaller
decreases, for example, in Australia, have also vanished in
a 1.5°C world. These effects are not necessarily due to no
changes in GWR but due to disagreements in the ensemble
that do not allow us to determine a reliable and significant
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change for this warming level. The global significant mean
change is —12 mm per year at 1.5°C GW.

At 2°C GW, increases in GWR over 100 mm per year are
present in northern Java, the Amazon, and East Africa. De-
creases are similar to 1.5°C GW, except for southern Chile
and the northern Andes, where decreases become more se-
vere. However, on the significant global mean, these changes
balance out to —1 mm per year .

In a 3°C world, large areas of decreases in GWR of over
100 mm per year in the Amazon Basin close to the Andes
occur, and this is also the case in Guyana, Venezuela, West
Africa, and the Mississippi Basin. Increases in GWR of over
100 mm per year, in contrast, are visible in East Africa, India,
and northern Java. Increases of 50 to 100 mm per year domi-
nate in northern latitudes at 3°C warming compared to other
GW levels. The global significant mean increases by +3 mm
per year .

We have already reached a GW of approximately 1°C
(IPCC, 2018). Figure 3f shows the changes in GWR of a
3°C GW compared to the present-day GW of already 1°C
instead of the PI. Overall, the agreement among the mod-
els is smaller than when the 3°C world is compared to PI.
Only 8 % of the cells show significant changes. Decreases
over 100 mm per year are present in the Amazon Basin
close to the Andes and on the coast of Guyana. Decreases
of 50 to 100mm per year are visible in Chile, the Missis-
sippi Basin, the Caribbean, and southern France. Increases
in GWR are again to be expected in the northern latitudes,
southern Brazil, East Africa, and Southeast Asia, whereas the
latter shows increases over 100 mm per year for Malaysia.
The global significant mean change is +8 mm per year. Fig-
ure S3 shows the mean and median changes of GWR per
latitude for all four GW levels, together with the standard de-
viation without a significance test. A decrease in mean GWR
can be observed for all GW levels at 40° S, around 20° S
(i.e., Namibia and Australia), and 5° N (Guyana). Increases
are visible at 60° N (northern Europe) and in the south, close
to the Equator, presenting a large spread and sudden change
in direction in the tropics. Increases at greater than 60° N are
likely due to a combination of different rain and snow pat-
terns and snowmelt timing.

Large areas of insignificant changes of GWR (light colors)
in Fig. 3 can be traced back to the uncertainty in GWR in
between GHMs and GCMs. Figure 4 shows absolute GWR
changes in a 1.5°C world compared to PI (Fig. 4a and b) and
the absolute GWR at PI (Fig. 4c and d) for the SREX (Special
Report on Managing the Risks of Extreme Events and Dis-
asters to Advance Climate Change Adaptation; Murray and
Ebi, 2012; see Fig. S6 for a map of the SREX regions) region
of the Amazon (left) and southern Europe/Mediterranean
(right). Corresponding plots for all other SREX regions are
provided in the Supplement. Similar to box plots, the letter-
value plots in Fig. 4 show the distribution of values among
the 0.5° grid cells belonging to the SREX region. Letter-
value plots have the advantage of showing the distribution

https://doi.org/10.5194/hess-25-787-2021



R. Reinecke et al.: Uncertainty of simulated groundwater recharge at different global warming levels 795

3° compared to present day (1°) [ensemble mean]

-100 -50 -10 -1 0

Figure 2. Ensemble mean change in GWR (mm yr_l) between conditions of present-day warming of 1°C GW and at 3°C GW, averaged

over the GWR changes of all GHM-GCM model combinations.

of values outside of the usual interquartile range (IQR; Q25—
075). For example, for Fig. 4b CLM 4.5 with GFDL-ESM2-
ES, the mean change in GWR is —19 mm per year, the mid-
dle box represents the IQR showing that 50 % of changes are
close to zero or smaller than zero, the smaller box towards the
negative changes shows that 12.5 % are smaller than —47 mm
per year, whereas the additional missing box in the positive
direction hints that almost no values are larger than zero. The
horizontal size of the boxes is automatically scaled and does
not carry any additional information.

Computed changes vary strongly among both GHMs and
GCMs (Fig. 4a and b). In the Amazon, JULES-W1 shows
a mean increase of 225 mm per year. Compared to Water-
GAP2, JULES-W1 estimates of GWR change are 147 mm
per year higher for MIROCS and 44 mm per year lower for
HadGEM. These differences are even large relative to the
higher mean PI GWR in the Amazon compared to other re-
gions of the world (compare to MED in Fig. 4). Neverthe-
less, the PI estimates also differ by, for example, 122 mm
per year between JULES-W1 and WaterGAP2 on the mean
for all GCMs and RCPs, and PI GWR is 625 mm per year
smaller for HO8 than for MATSIRO in the Amazon.

In the Mediterranean, almost all GHMs show the largest
decreases in GWR with IPSL-CM5a-LR, followed by GFDL
input, while HadGEM results in almost no change. However,
the changes computed with each GCM input vary strongly
among the GHMs. In general, CLM 4.5 and PCR-GLOBWB
project the most considerable changes. The decrease in GWR
computed by CLM 4.5 with IPSL-CM5a-LR is 33 % of the
mean GWR calculated for PI with that model combination.

Conversely, JULES-W1 simulates for most grid cells in
this SREX region the smallest PI GWR values (but also
very high outliers) and, likely related, the smallest (mean)
changes, together with MATSIRO and CWatM, which show
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altogether small GWR changes in all grid cells of the SREX
regions. HO8 and WaterGAP2, which apply similar ap-
proaches to modeling GWR as a function of total runoff,
show somewhat similar GWR changes.

The four GHMs that take into account the impact of in-
creasing CO; (Sect. 2.1) do not result in similar changes as
compared to the other four models. It is to be expected from
the literature (Davie et al., 2013) that, with the physiolog-
ical effect, the decreases in GWR would be slighter in the
case of the CO;-sensitive models, but that is not the case.
This is likely due to the approach of analyzing GW lev-
els instead of RCPs and periods because different GCMs
reach a particular GW level at different times and CO» levels.
This is further investigated in Sect. 3.3. On the global mean
and for 1.5°C GW, LPJmL simulates the lowest PI GWR,
whereas MATSIRO and CLM 4.5 produce the highest global
mean GWR (Fig. S4). PCR-GLOBWB simulates the largest
global mean decreases with HadGEM (Fig. S5). In contrast,
JULES-W1 and MATSIRO simulate increases of GWR on
the global mean for all GCMs except for HadGEM (Fig. S5).

To provide an overview of changes in GWR in each
SREX region, Table 3 shows the median, mean, and P»5 and
P75 changes in GWR compared to PI for all regions (see
Fig. S6 for a map of the SREX regions). Overall, north-
ern Europe shows the largest consistent increases in GWR,
whereas the Amazon shows the largest consistent decreases,
except for 2°C, where southern Europe/Mediterranean shows
the largest decreases of 18.6 mm per year as the median. For
3°C, the Amazon shows the highest decreases in GWR with
—41.0 mm per year as median. Notably, Southeast Asia first
shows decreases of 13.1 mm per year with 1.0°C GW and
then no change with 1.5 and 2°C and an increase in GWR
of 13.5mm per year with 3°C. Relative to PI, the changes
in the 3°C GW in the the Amazon only account for 10 % of
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Figure 3. Mean GWR (mm yr_l) for pre-industrial greenhouse gas concentrations, averaged over the GWR of all GHMs and GCMs (a).
Ensemble mean absolute change in GWR (mm yr_l) at 1.0°C (b), 1.5°C (c), 2.0°C (d), and 3.0°C (e) GW compared to PI. The ensemble
mean absolute change in GWR (mm yr_l) for 3.0°C GW compared to GWR at the current GW of 1°C (f). For (b) to (f), only those cells are
displayed in solid colors where the Kolmogorov—Smirnov (K-S) test with a p of 5 % indicated that the ensemble GWR distribution for PI
(for (f) the GWR distribution at 1°C) and for the GW level difference, and at least 60 % of the models agree on the sign of the change. The
ensemble size is shown in brackets. Lighter colors (upper color bar) show (statistical) insignificant mean differences.

the GWR, compared to the 19 % relative increase of GWR in
northern Europe with 3°C and the 40 % decrease in GWR in
southern Europe/Mediterranean at 2°C GW.

3.2 Sources of ensemble variance

To investigate whether the main variance in projected GWR
changes is caused by GHMs, GCMs, or the different RCP
scenarios, we apply Egs. (1) and (2) (see Sect. 2.4) for
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1.5 and 3°C GW. Figure 5 shows the GCM to GHM vari-
ance ratio for 1.5°C (Fig. 5a) and 3°C (Fig. 5b) per grid cell;
the GHM RCP variance ratio is not shown here (see Fig. S7;
mean of GHM RCP ratio — 22 %) as the primary influence
can be appropriated to the GCM and GHM selection (this is
also the case when choosing only the CO; sensitive models).
For the simulated variance at PI, see Figs. S1 and S4.
Overall, GHMs cause more significant variance in 1.5°C
than in a 3°C world, which is plausible because of increased
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Table 3. Median (X), mean (X), P>s, and P75 of absolute GWR change (mm yr_l) for four warming levels for each SREX region compared
to PL. X, X, P55, and P75 describe the distribution of changes of spatially averaged GWR in each SREX region among all 36-84 ensemble
members (Sect. 2.3). P»5/75 are the 25th and 75th percentile in the ensemble for a given region and a given GW level. The last column
shows absolute GWR at PI. The following regions are not included due to the coarse spatial resolution of the models and low confidence in
the reliability of results: the Arctic, Canada, Greenland, and Iceland, Antarctica, the Pacific islands, the southern tropical Pacific, the small
island region of the Caribbean, and the West Indian Ocean. Maximum and minimum values per GW level are given in bold. No statistical

test is applied to filter the values.

1.0°C 1.5°C 2.0°C 3.0°C PI

SREX Name X, X X, X X, X X, X X, X
Pys, Pis5 Pys, P75 Pys, Pi5 Pys, P75 Pys, P75

AMZ Amazon -10.7, —14.5 -19.1, -22.3 —14.6,—-18.2 —41.0,-59.9 409.6, 550.4
—30.4, —6.8 —38.3, —9.7 —34.5,34 —81.1,—-39.2 419.7,614.6

CAM Central America/ —2.4,—-17.1 —4.8, -21.0 —4.3,—-12.9 —10.0, —36.0 79.8, 280.4
Mexico —23.1,—-6.5 —26.8,—-9.0 —18.9,—7.7 —458,-24.0 222.3,327.7

CAS  Central Asia 0.0, —0.4 0.0 0.0 0.0, —0.8 0.0, —2.6 1.8,25.9
—-0.7,0.3 -0.7,1.0 —1.4,-0.3 -39,—-14 17.2,37.2

CEU Central Europe 4.1,6.8 1.2,3.1 —-0.4,0.1 0.1,2.8 114.6,1354
0.5,13.3 —55,11.8 -9.7,11.3 -99,223 117.9,155.8

CAN  Central North —-6.5,—16.7 —=5.6,—18.3 —3.3,—-16.6 —9.9,-30.5 98.1,128.6
America -20.2, —-12.3 -=20.2,-12.7 -=20.0,—-12.5 —32.8,—18.2 76.4, 183.5

EAF East Africa 0.0, —0.8 0.0,2.7 0.0, 8.1 0.6, 23.3 32.2,95.0
—2.7,3.3 —-0.2,-7.8 1.2,13.9 9.0,32.4 63.4, 134.1

EAS East Asia —0.5, —15.7 0.0,—-13.9 0.0, —10.3 0.0, —13.7 50.5, 147.3
-20.0,—-83 —16.9,-6.8 —10.7,-3.7 —14.2,—-4.5 113.1,154.3

ENA  East North 3.3,4.8 9.9,11.9 10.6, 15.9 14,25 221.8,257.8
America —2.0,11.2 —0.8,19.8 —1.5,26.3 —-9.1,20.5 167.4,338.1

NAS North Asia 0.4,6.0 0.5,7.9 3.1,12.5 4.6,18.5 24.2,59.2
3.0,7.2 5.1,9.1 9.0, 13.1 13.0, 20.4 46.2,73.4

NAU North Australia 0.0, —4.5 0.0, —2.7 0.0, 1.1 -0.9, -3.0 59,43.1
—6.9, —2.2 -3.9,-0.8 —0.8,3.5 —-7.1,0.0 28.5,52.1

NEU North Europe 13.1,24.9 13.9,27.7 18.6, 34.9 29.2,51.6 154.8,226.4
15.9, 35.7 14.7,41.3 16.8, 53.0 25.0,78.2 182.1,280.4

NEB Northeast Brazil -8.9, —-30.3 —10.5, —22.9 —-6.2,—14.4 —-6.0,—94 161.6,2274
—35.6,—21.2 —31.3,—132 —24.9,-2.1 —20.7,2.1 147.1,315.0

SAH  Sahara 0.0, —0.7 0.0, 0.3 0.0, —0.2 0.0, —0.4 0.1,42
—1.0, —0.3 0.1,04 -0.2,0.0 —-0.5,0.0 0.8,4.4

SAS South Asia —3.3,—-134 0.0, —4.8 —2.3,—11.6 3.8,26.9 151.8,274.9
—15.9, —8.3 —6.1,0.1 —17.5,-5.3 23,455 229.5,319.2

SAU South Australia/ —-29, -8.6 -2.3,-10.3 -2.1,—15.3 —4.2, —20.0 18.1, 135.7
New Zealand —11.1,-45 —12.4,-65 —17.8,-9.4 —222,—-143 111.4,157.6

MED South Europe/ —3.9,—-14.3 —-6.3, —18.1 —16.8, —23.7 —12.5, -28.9 43.9 84.9
Mediterranean -17.6,—-9.3 -21.6,—12.8 —-274,—-16.8 —31.8, —19.1 72.1,87.6

SEA Southeast Asia —13.1, —36.1 —0.1,-5.2 —0.6, 23.1 13.5,46.1 547.9,725.2
—-55.7, —10.7 —18.0, 8.6 —1.7, 36.5 3.0,68.9 528.0,881.2

SSA Southeastern 0.0, —6.3 0.0, =5.2 0.0,—-94 —14,-11.8 61.0,129.5
South America —-8.3,-5.1 —8.9, —4.4 —12.9, —4.5 —15.7,0.3 87.9, 164.6

SAF Southern Africa 0.0, —8.1 —0.4, —-10.3 0.0, —6.6 —0.1, —10.5 20.0,95.9
—13.0, —3.4 —159, —4.4 —10.7, —0.5 —16.3, —2.0 77.9, 102.0
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Table 3. Continued.
1.0°C 1.5°C 2.0°C 3.0°C PI
SREX Name X, X X, X X, X X, X X, X
Pas, P15 Pys, P15 Pys, P15 Pys, P15 Pys, P15
TIB Tibetan Plateau 0.0, —0.8 0.0, —0.3 0.0,04 0.0,1.1 0.0, 14.3
-0.7, -0.3 —-0.4,0.4 —-0.3,1.1 —-0.2,1.6 9.3,16.8
WAF West Africa —4.5, -28.4 —-2.5,-21.8 —5.6, —25.6 —8.4,—-26.5 175.3,282.3
-38.2,-204 -29.7,—11.0 -39.2,-10.3 —44.0, —6.1 215.0,392.1
WAS West Asia 0.0, —2.6 0.0, -3.9 0.0, —4.4 0.0, —6.7 0.4, 24.8
—34,—-14 —4.7,-2.5 -5.2,-2.8 —8.1, —4.6 18.3, 30.0
WSA West Coast South 0.0, —8.6 0.0, —10.5 0.0, —13.9 0.0, —21.2 57.2,271.1
America —11.5,-5.5 —14.5, =55 —17.7,—=7.6  —25.1,—15.2 186.9, 346.3
WNA  West North 0.0,34 0.0, =3.5 0.0,6.2 0.0, 6.8 23.5,104.8
America 0.5,5.6 —-0.1,7.1 1.1, 11.6 1.7, 14.7 81.9, 126.7
(a) 2000 - ! ! ' ! ! ' -(b) 400 - ' ' ' ! ' ! -
AMZ = s MED = ressrces
Q [~ ipél{nﬁ'\ia—lr = in;‘:‘isrl‘;({rg\iar\r
- 1000 - : + = - 200 - : -
: I i A ?11 v T e e
5 ; R ENE e T Ty
g ! ! i ! !
g -1000 - : - -200 - i : -
g =2000 - ' - —400 - - 875%
~3000 - - ~600 - \ E E , , ) N Media
(€) mn- o e -(d)
‘g 1500 - llil - 1500 - -
glunnill illi |||i | | ' |7 1000 -} i . — _
1| i L
: | I Ig | | i i
2 s00- i | ‘ 1 I I | = 500 |
Ec; I I : | | I | 9. 96 | | |
2 TTH] pIYY W el T RN T I T T T ey
e T T LU HEON hims kiee [01) gaBd dlisl mefln gesd
.:ln:as cw;tm mlm iule;-wl \m‘m\ mat‘s\ro Dcr-g\‘obwb watelrgapz clml45 cw;lm htllE ju\e;-wl ijlm\ mat‘s\rn pcr-g\lubwb wale;gapZ

Global hydrological model Global hydrological model

Figure 4. Letter-value plot (Hofmann et al., 2017) of absolute changes in GWR in 0.5° grid cells (mm yr_l) at 1.5°C GW compared
to PI (a, b) and absolute PI GWR (mm yr_l) (¢, d) for the Amazon (a, ¢) and the southern Europe/Mediterranean (b, d) SREX region (for
all other regions and GW levels (2, 3°C), see the Supplement). No statistical test is applied, and all grid cells inside a region are included.
Each box may include multiple simulations with different RCPs.
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Figure 5. GCM variance in percent of the total variance of GWR change from eight GHMs and four GCMs at 1.5°C (a) and a 3°C (b) GW
(see also Sect. 2.4). Red depicts areas where the GCMs are responsible for the majority of the variance in GWR change. Blue areas indicate

where the main variance is introduced through GHMs.

GCM trends with increased CO» concentrations. This is pos-
sibly also due to the missing RCP8.5 simulations for PCR-
GLOBWRB for all GCMs. A clear spatial pattern of GCM in-
fluence in the Amazon shows that it relates to the region of
Fig. 3 where increases of GWR are calculated. On the other
hand, the region in the Amazon where decreases are simu-
lated (see Fig. 3) shows mainly the GHMs as the source of
variance. In the Mediterranean, the influence shifts as well
from GCMs (1.5°C) to GHMs (3°C). This could be due to
a high agreement in GCMs in this region and a considerable
disagreement in GHMs. Similar patterns can be found when

https://doi.org/10.5194/hess-25-787-2021

comparing absolute GWR, but the influence of GCMs is less
pronounced, especially in the Amazon (Fig. S8).

3.3 Impacts of evolving carbon dioxide concentrations
on groundwater recharge estimates

Including vegetation dynamics in GHMs may alter the model
response in future estimates of GWR as evolving CO; con-
centrations alter the fluxes of energy and water (Davie et
al., 2013). To investigate the influence of simulating the
physiological impacts of evolving CO, on GWR, we com-
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pared GWR changes computed by two CLM 4.5 runs, each
of which were driven by GFDL-ESM2M climate input; the
standard run included the ensemble analysis above, with
CO; concentrations changing according to the RCP, and an
additional run was done in which CO, concentrations af-
ter 2005 were held constant at the 2005 level. Unfortunately,
no other GHM-GCM combinations with these alternative
CO, concentration variants are available in the framework
of ISIMIP2b.

Figure 6 shows differences in simulated GWR between a
dynamic and a static CO; simulation for 2°C (Fig. 6a) and
3°C (Fig. 6b). In most grid cells, GWR simulated with dy-
namic CO; is larger than GWR simulated with static CO,
levels of 2005 (Fig. 6a and b). In the tropics, GWR with dy-
namic CO, can be higher than with constant CO, by 10-
50mm per year for 2°C GW (Fig. 6a), while difference
reaches 50-100 mm per year in the 3°C world (Fig. 6b).
Decreases in GWR are spatially consistent (for example, in
Brazil, Central US, and India) at 2 and 3°C GW and rarely
exceed 10 mm per year.

Compared to the absolute changes between PI and the
GW levels for dynamic CO, (Fig. 6¢c and d), the decreases
in GWR are rather small (e.g., up —10 mm per year in Brazil
(see Fig. 6a and b), while change compared to PI exceeds
—100 mm per year; see Fig. 6¢ and d). Also, increases in
GWR due to dynamic CO;, are in regions with large (>
100 mm per year; see Fig. 6¢ and d) increases in recharge.

The preceding analysis focused on GW levels parallel to
other studies of GHM ensembles. To investigate the differ-
ence in including active vegetation processes in GHM fur-
ther, we compared the four GHMs that include these pro-
cesses with the four models that do not (Table 1). Because
different RCPs decide the concentration of CO5 in the atmo-
sphere, we compare RCP2.6 and RCP8.5 time slices instead
of GW levels.

Figure 7 compares the precipitation and GWR changes be-
tween the period 1981-2010 and the period 2070-2099 for
the two RCPs, and the two different model types for the
SREX regions investigated in Table 3. Changes in precipi-
tation and GWR are only based on the GCM HadGEM2-ES
(see Fig. S9 for the average over all GCMs) as the relation-
ship between GWR and precipitation is not linear, and the
plot is comparable to Davie et al. (2013), who investigated
differences in runoff. Compared to the average precipitation
of all GCMs where only two regions show a decrease larger
than 100 mm per year (Fig. S9b), HadGEM2-ES shows seven
regions for RCP8.5 with such a decrease in precipitation.

GWR changes vary between RCPs and model type and
in between GHMs (Fig. S10). The relation between precip-
itation and GWR and the difference between model types
becomes clearer with RCP8.5 than with RCP2.6. Models
with active vegetation (Fig. 7; green markers) agree that
with more precipitation GWR should increase, for exam-
ple, for South Asia (SAS); however, they disagree in regions
where decreases in precipitation are expected and the risk
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for groundwater availability is highest, for example, Central
America (CAM) and South Europe/Mediterranean (MED).
GHMs without active vegetation (Fig. 7; orange markers), on
the other hand, show a more consistent decrease in GWR for
regions with decreases in precipitation and only some agree-
ment in regions with increased precipitation.

Decreases in precipitation may lead to a decrease in vege-
tation productivity (if not counteracted by an increased water
use efficiency due to elevated CO, concentrations; Singh et
al., 2020) and, thus, to a decrease in transpiration. GHMs
assume shares for evapotranspiration (ET) in relation to po-
tential ET and the available precipitation. In contrast, tran-
spiration in CO»-driven models responds to active vegeta-
tion and the relations between different water flux compo-
nents that simpler GHMs do not. This can explain why the
dynamic vegetation models exhibit inter-model regional dif-
ferences in the GWR response to P decrease. Furthermore,
some models (MATSIRO) may not calculate LAI which im-
pacts transpiration. For models with active vegetation, the in-
crease in water use efficiency due to stomatal conductance
(also referred to as CO; fertilization) can compensate for the
decrease in precipitation to some extent, making more wa-
ter available for groundwater recharge as compared to the
GHMs (Table 1). Though, in some regions, as seen in Fig. 7
(and Fig. S10), this feedback is not enough to overcome the
warmer and drier climate in terms of groundwater flux. Over-
all, the capability of a model to simulate actual ET largely
influences its capability to simulate groundwater recharge.

CWatM often lies in the middle of simulated GWR
changes at RCP2.6. Davie et al. (2013) showed generally
higher runoff values for JULES-W1 than for LPJmL; the re-
verse is true for GWR (Fig. S10). For RCP8.5, CWatM al-
ways simulates the largest increases and lowest decreases in
GWR of all models without active vegetation.

A spatially more refined difference between the model
types is shown in Fig. 8 for RCP8.5 (for RCP 2.6, almost no
significant changes were found). For each grid cell, the map
shows the significant (K-S test; p is 5 %) absolute difference
in simulated change in GWR between models that include
dynamic vegetation processes and models that do not include
them. In the northern latitudes, both models with and without
dynamic vegetation agree on an increase in GWR but differ
by up to 100 mm per year. Similarly, in the Mediterranean
and central Brazil, both model types simulate a decrease in
GWR, but the magnitude is significantly different between
the model groups. In the Amazon, patches of significant dif-
ferences between the models show increases in GWR com-
puted by GHMs with dynamic vegetation, whereas GHMs
without dynamic vegetation show a decrease. A similar ef-
fect is visible in central Africa, India, and parts of Indonesia;
however, decreases are also simulated instead of increases
for the Congo and Zambezi catchment. Both in the Mediter-
ranean and South America, models with dynamic vegeta-
tion show up to 100 mm per year difference in change com-
pared to models without — even though no physiological ef-
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-100  -50

Figure 6. GWR (dynamic CO;) compared to GWR (static CO,; mm yr_l) for 2.0°C (a) and 3.0°C (b) GW. GWR (dynamic CO;) compared
to PI (dynamic COj; mm yr_l) for 2.0°C (c) and 3.0°C (d) GW. The figure only includes the GHM CLM 4.5 and the GCM GFDL-
ESM2M. Maps show changes in GWR at a certain GW (including all RCPs that lead to that GW with a certain CO; concentration), with
dynamically evolving CO, compared to static CO, concentrations from 2005. Green and blue mean that GWR is higher when evolving CO,

concentrations are considered; red and purple indicate lower GWR.

fect should be dominant. According to Fig. 6, this is likely
due to CLM 4.5 because JULES-W1 and LPJmL show a
slighter GWR decrease than the models without dynamic
vegetation. It is likely that the shown differences are due to
the implementation of dynamic vegetation in the GHMs (see
Fig. S10); however, it is possible that other model peculiari-
ties and processes are relevant as well.

4 Discussion

Estimating GWR is challenging (Moeck et al., 2016). Our re-
sults show that, even for the PI period, the estimates of GWR
vary largely among different GHMs. This is likely caused
by the very different treatment of the runoff partitioning, im-
plementation of the soil layer(s), inclusion of dynamic veg-
etation processes, and simulation of capillary rise. Because
GWR is hard to measure directly (Scanlon et al., 2002), it is
also challenging to verify the accuracy of the estimates.

To the best of our knowledge, the data set of Mohan et
al. (2018) is the only available gridded global GWR data
set that is not based on global hydrological modeling. This
data set of mean 1981-2010 GWR in 0.5° grid cells was de-
veloped from a regression analysis that combined gridded
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data sets of mean precipitation and potential evapotranspi-
ration and land use and/or land cover with local estimates
of GWR at 715 locations worldwide. Figure 9 compares the
GHMs under investigation for PI conditions to this data set.
The used data for comparison are one ensemble member of
the analysis of Mohan et al. (2018) that was deemed best
in their study. The global mean GWR in this member is
slightly lower, at 110 mm per year, than the reported mean
of 134 mm per year. Overall, the GHMs best agree with Mo-
han et al. (2018) in arid regions like the Sahara, Australia,
southern Africa, and the Andes. Underestimates are predom-
inant in the northern latitudes and Central Asia, whereas un-
derestimates appear in Europe and the eastern USA for all
models. All models, except for HO8 and WaterGAP2 which
show underestimates, result in overestimates in East Asia.
In the Amazon, MATSIRO and CLM 4.5 overestimate by
more than 100 mm per year compared to Mohan et al. (2018),
whereas all other models show a mix of over- and under-
estimates across continents. A similar pattern is visible in
central Africa, where CLM, MATSIRO, and CWatM over-
estimate, and all other models show a mixture of over- and
underestimates of —100 to 100 mm per year. HO8 and Water-
GAP2 have the best agreement according to the NSE (Nash—
Sutcliffe efficiency; calculated spatially; Nash and Sutcliffe,
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Figure 7. Relation of changes in precipitation (P; means from 1981-2010 to 2070-2099) to changes in GWR (means from 1981-2010 to
2070-2099), depending on the model type (with or without CO,; see also Table 1) per SREX (selection as in Table 3) for RCP2.6 and

RCPS8.5 for the GCM HadGEM2-ES.

1970) of 0.4 and 0.2, while the bias (mean (GHM / Mohan et
al.)) is lowest for JULES-W1. All GHMs show much lower
GWR in permafrost regions as they assume that there is no
or little GWR in such regions. It is possible that the GWR
of Mohan et al. (2018) is overestimated here as no measure-
ments informed their results in these regions.

The variance in modeled GWR is possibly caused by the
different implementation of the hydrological processes in be-
tween the models. Furthermore, models differ in their defini-
tion of groundwater and GWR. Some include groundwater
storage that is recharged by a fraction of precipitation; oth-
ers do not include a groundwater component at all but define
the saturation of excess water from the bottom soil layer as
GWR. Models may include only some of the processes that
affect GWR, for example, capillary rise, percolation from the
soil, preferential flow bypassing the soil matrix, the interac-
tion between surface water and the aquifer, changing land
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use over time (not considered here), and changing vegetation
(e.g., reducing infiltration capacity). Furthermore, important
processes like evaporation, infiltration, percolation, or runoff
and GWR separation are implemented with different equa-
tions and simplifications. For evapotranspiration, a standard
deviation of 0.15 mm per day globally for the period 1989—
2005 was found in the ISIMIP ensemble (Wartenburger et
al., 2018). Some models even use sub-grid information or
sub-daily time steps, e.g., for changes in unsaturated conduc-
tivity. Notably, models that include dynamic vegetation pro-
cesses showed the largest spread in GWR in regions with de-
creasing precipitation. It is also important to distinguish the
capability of the models to compute groundwater recharge
during a historical period from their capability to estimate
changes in groundwater recharge due to climate change. A
model that simulates the current groundwater recharge pat-
tern correctly may be incapable of computing future ground-
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Figure 8. Significant absolute difference in GWR change between 1981-2010 and 2077-2099 for RCP8.5 in between four GHMs with (dyn)
and four GHMs without dynamic (or active) vegetation (no dyn). See also Table 1. A reddish color (left side of the color bar) indicates that
the mean change in GWR, as computed by the models with dynamic vegetation, is more negative or less positive than change computed by
other models. White regions indicate no significance is based on the K-S test (Sect. 2.5). Solid colors indicate that the majority of the two
model groups (three out of four models for each group) do not have the same sign; i.e., that including dynamic vegetation leads to different
signs in the GWR change. Lighter colors indicate where the majority agrees on the sign of change.

water recharge if it cannot correctly simulate the impact of
climate change and changing atmospheric CO, concentra-
tions on actual evapotranspiration correctly.

To illustrate the model differences further, the following
describes the impact of changes in precipitation for Water-
GAP and LPJmL, which is representative for the different
model types used in this study. In WaterGAP, a simulated
percent change in total runoff translates to the same per-
centage change in GWR unless, for example, due to more
extreme precipitation events, the infiltration capacity is ex-
ceeded more often — such that the relative increase in GWR
is smaller than total runoff. Absolute changes in GWR are al-
ways smaller than changes in total runoff. In LPJmL, changes
in total runoff do not translate to proportional changes in
groundwater runoff and GWR. Any flux or storage that takes
water before it is partitioned to the soil will impact the
groundwater and GWR. Possible reasons for a reduction
in GWR (percolation past the bottom hydrologically active
layer at 3 m depth; see Sect. 2.1) can be changes in precipita-
tion amount and/or intensity, transpiration due to vegetation
productivity, transpiration due to changes in vegetation water
use efficiency due to CO; fertilization, or changes in anthro-
pogenic water use demands.

This difference in behavior is reflected in Fig. 7, where the
response between precipitation and GWR of GHMs without
any active and/or dynamic vegetation is relatively uniform.
The non-uniform response of the models that include vege-
tation changes is likely due to the complicated process feed-
backs between vegetation and water (transpiration changes
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due to available water together with vegetation productivity)
and complex feedbacks in between changes in CO,, temper-
ature, and precipitation which affect vegetation.

This study highlights that uncertainties and differences in
GHMs need to be investigated further, and that, in order to es-
timate global groundwater vulnerability, improved estimates
of global GWR are required.

This study is limited not only by the uncertainty in cor-
rectly representing the process of GWR but also in the prop-
agation and aggregation of uncertainties. Future greenhouse
gas emission scenarios are created based on the input of in-
tegrated assessment models. They are translated into emis-
sion scenarios of atmospheric concentrations and forcings
that are, in turn, used to evaluate their impacts on the climate
simulated by GCMs. Outputs of the GCMs are then bias ad-
justed and spatially downscaled to be used in the assessment
with impact models like GHMs (Déll et al., 2014a). Further-
more, the analysis is limited by the number of GCMs that
were used, as discussed in McSweeney and Jones (2016), al-
though the GCMs are carefully selected to be most represen-
tative of the CMIP (Taylor et al., 2012) ensemble.

The multi-model ensemble study presented here assesses
GWR at GW of 1.5, 2, and 3°C compared to GWR simu-
lated under pre-industrial climate conditions and 1°C of GW.
Changes are assessed based on transient time slices of the
30 years around the year that crosses the specific warming
level. These slices are an approximation of the stabilized cli-
mate state of that warming level; they rely on the assump-
tion that, for a given warming level, the impacts are the same
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Figure 9. Pl GWR per GHM compared to the 34-year (1981-2014) mean GWR (mm yr_l) of Mohan et al. (2018). Bias is the mean
(GHM / Mohan et al. 2018). NSE (Nash—Sutcliffe efficiency; Nash and Sutcliffe, 1970) is calculated spatially over all cells instead of time.

regardless of the time it took to reach it or whether equilib-
rium has been reached at all (Boulange et al., 2018). How-
ever, this kind of analysis has limitations as the transient na-
ture of climate is aggregated over a relatively short period
(31 years). Components like the ocean might not equilibrate
at these timescales (Donnelly et al., 2017).

Hydrol. Earth Syst. Sci., 25, 787-810, 2021

Additionally, different RCPs are combined, which limit
the possibility to investigate processes that are sensitive to
different CO, concentrations. Investigations in this study
based on RCPs show the difference between these model
types. On the other hand, using GW levels reduces the un-
certainties from GCM variability due to the use of different
time slices, depending on when a GCM reaches a GW level.
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The variance in GWR is caused by GCMs and GHMs
alike, depending on the region similar to a multi-model en-
semble study on the climate change impacts on streamflow
(Schewe et al., 2014). Again, the assessment is limited by
the number of used GCMs. Furthermore, this study did not
include changes in land cover and land use and, thus, irriga-
tion, which can have a tremendous impact on GWR, espe-
cially as irrigation patterns and used crops will change with
a changing climate (Hauser et al., 2019; Hirsch et al., 2017,
2018; Thiery et al., 2017, 2020). The only similar study on
the global impacts of GW on GWR, to the knowledge of the
authors, was conducted by Portmann et al. (2013). The study
used five GCMs and one GHM, WaterGAP, which (a slightly
different version) was also included in this study. Overall re-
sults are spatially consistent; however, Portmann et al. (2013)
showed more consistent trends among GW levels (compare
Table 3). Portmann et al. (2013) acknowledge that including
impacts of evolving CO; levels on vegetation will have an
impact on the simulated GWR and that WaterGAP is likely
overestimating the decreases in GWR. Similarly, Davie et
al. (2013) found that the simulation of runoff was not con-
sistent across models, depending on whether CO, was con-
sidered. The results presented in this study show that this as-
sumption is true for some regions, where differences of up to
100 mm per year can be observed.

Despite the uncertainties, this study provides further ev-
idence that climate change will impact groundwater avail-
ability in many regions of the world. A notable decrease can
be expected in the Mediterranean, the Amazon, and Brazil,
whereas increases can be expected in northern Europe. It
is nevertheless troublesome that, especially in regions that
are known to be vulnerable to climate change, for example,
southern Africa, model agreement in between model types is
low.

5 Conclusions

Potential GWR changes due to climate change require in-
creased attention from the scientific community and from
decision makers because they affect future water availability
in many regions and, thus, the wellbeing of billions of peo-
ple. This study shows that simulated global-scale estimates
of GWR vary strongly among GHMs, which contribute more
strongly to the overall uncertainty of future GWR than the
applied GCM output. However, statistically significant in-
creases and decreases in GWR could be identified in specific
regions per GW level. The presented inter-model ranges of
GWR changes are an important input for processes aiming at
developing strategies for climate change adaptation, as risk-
averse decision makers may want to orient their strategies
towards adapting to the worst-case GWR change and not to
the projected ensemble mean change.

This study shows that including vegetation processes in
GHMs can change projected GWR changes substantially.
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However, consideration of these processes does not lead to
a uniform increase in groundwater recharge, as might be
expected from the physiological effect of increasing atmo-
spheric CO» concentration. In some regions with decreas-
ing groundwater recharge, where groundwater availability is
a major concern, models that include these processes show
the largest differences among themselves. Further research is
necessary to understand GWR on large scales and how it is
affected by climate. Simulation of groundwater recharge in
global models and the connected uncertainties needs to be
analyzed in greater detail by, e.g., the application of exten-
sive sensitivity analysis. Such an assessment should also ex-
tend to the benefit of integrating gradient-based groundwater
flow models in GHMs.
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