Downloaded via UNIV OF CALIFORNIA RIVERSIDE on May 6, 2021 at 20:56:07 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Inorganic Chemistry

pubs.acs.org/IC

Forum Article

Ethylene Polymerization Activity of (R;P)Ni(codH)" (cod = 1,5-
cylcooctadiene) Sites Supported on Sulfated Zirconium Oxide

Jessica Rodriguez and Matthew P. Conley*

Cite This: https://doi.org/10.1021/acs.inorgchem.1c00454

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations |

@ Supporting Information

ABSTRACT: PAr; containing 0-OMe, 0-Me, or o-Et substituents reacts
with Brensted sites on sulfated zirconium oxide (SZO) to form
[HPAr;][SZO]. The phosphonium sites on this material react with —
bis(cyclooctadiene)nickel [Ni(cod),] to form [Ni(PAr;)(codH)][SZO] 4
that are active in ethylene polymerization reactions. Selective poisoning
studies with pyridine show that ~90% of the Ni(PAr;)(codH)" sites in this

material are active in polymerization reactions.

Bl INTRODUCTION

Organometallic complexes of nickel and palladium containing
the o-phosphinoarenesulfonate ligand ({PO}) catalyze poly-
merization of olefins. In contrast to (a-diimine)Pd-R*
catalysts," {PO}Pd-R complexes polymerize ethylene to form
linear polymers” and show broad functional group tolerance in
copolymerization reactions with polar comonomers.” The
formation of linear polymers with {PO}Pd-R complexes is
related to the cis arrangement of a strong-trans-influence
phosphine and a weak-trans-influence sulfonate that results in
electronic asymmetry in the palladium complex,* which
inhibits -H elimination and reinsertion steps that result in
branches in the polymer chain.” This general design strategy
continues to find application in new cationic palladium and
nickel catalysts that incorporate electronically dissymmetric
ligands and have very high 6polymerization activities and good
functional group tolerance.

Industrial olefin polymerization catalysts are almost always
heterogeneous.” Silica pretreated with alkylaluminum or
methaluminoxane (MAO) is a very common support for
polymerization catalysts but is not generally compatible with
late-transition-metal polymerization precatalysts. For example,
(a-diimine)Ni catalysts supported on MAO/SiO, have low
polymerization activities, but modified (@-diimine)NiBr,
complexes containing hydroxyl groups react with SiO,/MAO
and polymerize ethylene in the presence of an Et;Al,Cl,
activator to give polymers with broad molecular weight
distributions.”

Formation of well-defined organometallics on oxide surfaces
is a potentially attractive synthetic strategy to access active sites
for polymerization reactions.” In this reaction, a partially
dehydroxylated oxide containing —OH groups on the surface
reacts with an organometallic to form covalent M—O, (O, =
surface oxygen) or an electrophilic M---O,, ion pair. Supports
containing —OH groups with weak Brensted acidity (e.g.,
Si0,) form M—O, and are inactive in polymerization reactions
in the absence of exogenous activators.'’ However, M---O, ion
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pairs form on supports containing —OH sites more Bronsted
acidic than silica, such as sulfated oxides'' or Lewis-acid-
activated silica.'” The reaction of (a-diimine)NiMe, or (a-
diimine)PdMe, with sulfated zirconium oxide partially
dehydroxylated at 300 °C (SZOsq) forms the active sites
shown in Figure la that have activities close to those of their
solution analogues and show single-site behavior."

The application of this strategy to surface analogues of
{PO}M-R (M = Ni, Pd) is not as straightforward.14
{PO}PAR(L) are expected to react with —OH sites on oxides
to form [{PO}ML][SZO;y,] ion pairs that lack the organo-
metallic unit that is critical to propagate polymer growth
(Figure 1b). Early reports of polymerization reactions with
{PO}Pd complexes were generated from the reactions of
Pd,dba; or Pd(OAc), and {PO}H, which presumably forms
{PO}Pd-H under the reaction conditions (Figure 2).'"> The
Bronsted sites on SZO;q, react with sufficiently basic R;P to
form [RyPH][SZO;4],'® which may serve as heterogeneous
{PO}H-type surface sites. This paper describes the reaction of
[RyPH][SZO;o,] with bis(cyclooctadiene)nickel [Ni(cod),]
to produce active sites for the polymerization of ethylene.

B RESULTS AND DISCUSSION

This study focuses on Ar;P containing two aryl fragments with
ortho subsituents that are common in typical {PO}M-R
catalysts. The reaction of triarylphosphines with the Bronsted
sites on SZOjo, is expected to form [Ar;PH][SZO;q,],
provided that the pK, value of [Ar;PH] is greater than ~6 in
acetonitrile (MeCN).'® For example, P(0-OMeC¢H,),Ph
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Figure 1. Heterogeneous (a-diimine)Ni or -Pd catalysts supported on
SZ0;, for the polymerization of olefins (a). Related reaction of a
{PO}Pd—R catalyst with SZO;, to form [{PO}Pd][SZO4q,], which
are unreactive toward olefins (b).
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Figure 2. Reaction of {PO}H with Pd(0) to form Pd-H that is active
in olefin polymerization in solution and design of [HPAr;][SZO5q]
to form heterogeneous {PO}M-R active sites.

reacts with SZO5o to form [HP(0-OMeC¢H,),Ph][SZO;q,]
(1; Figure 3a). The 3p magic-angle-spinning (MAS) NMR
spectrum of 1 contains a signal at 10 ppm (Figure 3b, top
spectrum). The Fourier transform infrared (FTIR) spectrum of
1 is shown in Figure 3¢ (top) and contains a characteristic vpy
stretch at 2456 cm™!, consistent with formation of the
phosphonium in [1H][SZO;4]. Similar results were obtained
for reactions of P(0-MeC4H,),Ph or P(o-EtC(H,),Ph with
SZ0;0, to form [HP(o-MeC¢H,),Ph][SZO0,y,] ([2H]-
[SZ034]) or [HP(0-EtCgH,),Ph][SZO5q0] ([3H][SZOs)),
respectively.

1-3 react with a clear yellow solution of Ni(cod), in diethyl
ether (Et,0) to form orange [Ni(PAr;)(codH)][SZOsq0]
(1Ni—3Ni; Figure 3a). This reaction also evolves 1,5-
cyclooctadiene (0.10 mmol g™"), which is consistent with the
loss of one cod per Ni in 1Ni—3Ni. Figure 3b (bottom) shows
the FTIR spectrum of 1Ni, which lacks a vpy stretch. In
addition, the *'P MAS NMR spectrum of 1Ni contains a new
signal at 47 ppm, 37 ppm downfield from that of 1. These
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Figure 3. Formation of [Ni(PAr;)(codH)][SZO] (a). *'P{'H} MAS
NMR spectrum of 1 (top) and [Ni(P(o-OMeC¢H,),Ph)(codH)]-
[SZO;0,] (bottom, b). FTIR of 1 (top) and [Ni(P(o-
OMeC¢H,),Ph)(codH)][SZO44] (bottom, c).

results indicate that the phosphonium in 1 reacts with
Ni(cod), to form INi. The cross-polarization *C MAS
NMR spectra of INi—3Ni contain signals assigned to the
(codH)* fragment in Ni(PAr;)(codH)*."” The key NMR and
FTIR features of 1 and INi are summarized in Table 1.

INi reacts with 150 psi of ethylene on demand at 50 °C,
which results in the formation of polyethylene containing 35
branches/1000C (Table 2, entry 1). *C NMR analysis of the
polymer shows that methyl, ethyl, and butyl branches are
present in this polymer. Contacting 1Ni with a slight excess of

Table 1. Key Spectral Data for [HPAr;][SZO5o,] and
[Ni(PAr;)(codH)][SZ O3]

[HPAr;][SZ03] [Ni(PAr;)(codH)]
PAr, &8P (ppm)® &P (ppm)”  vpy (em™!) 8P (ppm)”
1 —26.4 10 2456 47
2 224 13 2447 45
3 —-20.8 11 2454 45

“C4Dy solution, referenced to 85% H,PO,. “10 kHz MAS spinning
speed, referenced to 85% H;PO,.
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Table 2. Ethylene Polymerization Activity of
[Ni(PAr;)(codH)][SZO300]

entry PAr; P (psi)’ T (°C) yield (mg) activity” B/1000C*
1 1 150 50 71 3000(150) 35
2 2 150 50 82 3400(100) 20
3 3 100 50 12 510(10) nd.
4 3 150 50 83 3500(100) 2
s 3 200 50 91 3500(500) nd.
6 3 250 65 80 3400(300) nd.

“Catalyst loading (12 pmol) in toluene (see the Supporting
Information for details). “Pressure of ethylene on demand. gy
moly; ™' h™! calculated from triplicate polymerization runs assuming
that all Ni in [Ni(PAr;)(codH)][SZO3y,] is active in polymerization.
The values in parentheses are the associated standard errors based on
the polymer yield. “Measured by 'H NMR spectroscopy in CD,Cl, at
120 °C.

pyridine (Ni:pyridine = 1:1.2) results in complete suppression
of the polymerization activity, indicating that pyridine poisons
Ni sites in the polymerization reaction. The addition of
substiochiometric pyridine to 1Ni followed by reaction with
150 psi of ethylene on demand results in the formation of
polyethylene, although with a lower activity than that of
reactions conducted in the absence of pyridine. Plots of the
activity versus the molar ratio of pyridine to Ni are linear and
indicate that ~90% of the Ni sites in INi are capable of
initiating ethylene polymerization (Figure S8).

The polymerization activity data for INi—3Ni are given in
Table 2. The activity of 1Ni under these conditions is
3000(150) gpr moly, ™" h™". This activity is modest compared
to that of {PO}M—R species but similar to that of catalysts
prepared from {PO}H with similar steric profiles and Pd(0)
sources in situ.'® 2Ni (Table 2, entry 2) and 3Ni (Table 2,
entry 4) show similar activities and similar branching of the
polyethylene produced with these catalysts. Running polymer-
ization reactions at lower pressures with 3Ni results in lower
polymerization activity (Table 2, entry 3), but higher pressures
do not result in significant activity gains (Table 2, entries S and
6). The formation of branched polymer products using 1Ni—
3Ni is in contrast to polymers obtained with homogeneous
{PO}Pd—R or {PO}Ni—R catalysts in solution. The origin of
this difference is unclear but may be related to the formation of
a weakly coordinating ion pair between Ni(PAr;)(codH)" and
the sulfate sites on SZOsg,' which may facilitate chain
walking.

INi—3Ni are not compatible with allyl chloride or methyl
undecenoate, suggesting that further optimization of the Ni
sites in these catalysts is needed to accommodate function-
alized olefins. Attempts to analyze the polymers by gel
permeation chromatography to obtain molecular weight
information were unsuccessful because of the low solubility
of the polymer in 1,2,4-trichlorobenzene at 140 °C and
complications in removing SZO from these solutions."”

B CONCLUSIONS

Triarylphosphines react with SZOjy to form [HPAr,]-
[SZOsp0). Subsequent reactions of the phosphonium sites
with Ni(cod), to form [Ni(PAr;)(cod)H][SZOj;,] are active
in the polymerization of ethylene to give polymers with
moderate branching in the polymer chain. The activity of
[Ni(PAr;)(cod)H][SZO5q] in polymerization is modest but
similar to that of first-generation {PO}Pd catalysts. This

suggests that modification of the coordination environment of
the Ni(codH)" site by tuning the sterics and electronics of the
phosphine may result in more active catalysts or catalysts
tolerant of olefins containing functional groups.
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