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ABSTRACT: The field of Surface Organometallic Chemistry (SOMC) aims to blend L R
the positive attributes of homogeneous and heterogeneous catalysis. Significant insight
into heterogeneous systems has been gained over the years through the synthesis,
characterization, and application of well-defined surface organometallic catalysts,
predominantly supported on silica and alumina. Considerable research efforts have @\
focused on the application of homogeneous methods to the synthesis and
characterization of these systems. Homogeneous catalysis has thrived on its ability to
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electronically and sterically tune ligands to yield desired reactivity and selectivity. Efforts

in SOMC, however, have only recently turned to harnessing the stereoelectronic diversity of potential inorganic support materials
beyond silica and alumina in order to exert similar control on the reactivity of the organometallic active site. The support material is
intrinsically linked to electronic structure and reactivity of heterogeneous organometallic systems in the same way that ligands exert
control over homogeneous catalyst systems. The ability to tune the reactivity of heterogeneous catalysts by changing the support is
of great value, and it is anticipated that this will represent an area of significant growth in the field. In this Perspective, the use and
future of nontraditional catalyst supports, such as sulfated metal oxides, modified silicas, and redox active supports are discussed.
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1. INTRODUCTION

Catalysis plays a vital role in major sectors of the world’s
economy, such as petroleum (oil and gas), energy production,
synthesis of fine chemicals, polymers, and the food industry.
Together, these industries account for more than $10 trillion of
the world’s gross domestic product (GDP)." 1t is estimated
that catalysis is responsible for 35% of global GDP, with the
largest contribution coming from the production of fuels (e.g.,
gasoline, diesel, H,). The catalyst market alone is projected to
have an approximate value of $35 billion by 2025, and
heterogeneous catalysts dominate this marketplace in large part
because of their simple separation and recyclability. Con-
tinuous design and improvement are necessary to produce
more active, selective, and stable catalysts.

Catalysts are divided into homogeneous catalysts, which are
soluble in the reaction medium, and heterogeneous catalysts,
which remain in the solid state. A heterogeneous catalyst
typically consists of an active component (e.g., metal
nanoparticles), promoters (e.g, tin, zinc, gallium, boron),
and an inorganic inert, high-surface-area support material (e.g.,
metal oxides or chlorides, amorphous carbon). Silica (SiO),,
alumina (Al,0;), and magnesium chloride (MgCl,) are the
common support materials in industry, with silica being the
most significant. Currently, ~80% of industrial processes rely
on the use of heterogeneous catalysis, especially in the
petrochemical and fine chemical industries. The widespread
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application of supported catalysts in industry led to the
development of numerous synthetic methods which enable
their manufacture on a large scale; these methods are often
complex and require several successive steps. The most
common methods are” (1) homogeneous deposition-precip-
itation,” (2) impregnation,4 and (3) thermal deposition.s’é
These synthetic methods usually form ill-defined mixtures of
active and dormant sites (e.g., different particle size, structure,
and composition). Thus, understanding structure—reactivity
relationships in these systems is complicated by uncertainties
in the nature’ and number® of catalytically active sites.

Surface organometallic chemistry (SOMC) has emerged as a
new synthetic strategy for developing single-site, homogeneous-
in-function heterogeneous catalysts.”' This deposition method
consists of the chemisorption of a well-defined, organometallic
molecular fragment onto surfaces to yield an immobilized
reactive organometallic species (Figure 1).

In many of these instances the homogeneous organometallic
precursors exhibit far lower (or in some cases negligible or no)
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Figure 1. Simplified depiction of a grafted organometallic complex.

catalytic activity in comparison with the supported species.' ">

In addition, the inability of the supported organometallic
species to undergo bi- or multimolecular degradation,'”'* a
common deactivation pathway in homogeneous catalysis,
results in more persistent reactive catalytic species. Conversely,
the limited stability of some organometallic species toward
oxygen, water, and temperature is often sustained upon
grafting to supports. This approach can also provide a nuanced
understanding of active-site structures and catalytic mecha-
nisms similar to that achieved in the study of homogeneous
catalysts. The active sites are amenable to kinetic and
spectroscopic characterization techniques, thereby providing
opportunities for systematic investigation of the roles of the
metal and the supporting ligand in the catalytic cycle. In this
regard, advancement in spectroscopic techniques, such as
solid-state dynamic nuclear polarization (DNP) nuclear
magnetic resonance (NMR)'>™'® spectroscopy, X-ray absorp-
tion spectroscopy (XAS),'”™** and periodic and cluster model
calculations™ has played a pivotal role in the progress of
SOMC. Recent advances in predictive modeling of various
spectroscopic signatures in well-defined catalysts represents a
synergy between these two areas and enables previously
inaccessible molecular level characterization of the supported
organometallic fragments.”*">° Pioneering works from the
groups of Marks,””~*° Basset,>*"** Copé1‘et,33_?’5 Gates,**™*
Tille)7,39_42 Scott,™ ™ and others**™* have demonstrated
effective tuning of the activity and selectivity of single-site
catalysts through precursor engineering and control over
support platforms, harnessing fundamental structural and
mechanistic insights into catalytic species for chemical
processes which include polymerization/oligomerization,
metathesis, hydrogenolysis, hydrogenation, dehydrogenation,
and hydroelementations (Si, B). The bulk of this work focuses
on grafting organometallic precursors onto amorphous
dehydroxylated silica (and alumina), likely due to its facile
synthesis, controlled surface hydroxyl concentration (200 °C
density of Si—OH ~ 4.9 OH nm™? 500 °C density of Si—OH
~ 1.8 OH nm™% 700 °C density of Si—OH ~ 0.9 OH
nm2),°>*® high surface area (50 to 1000 m> g~!), and
availability of different structures and morg)hologies (micro-
porous: silica gel,57 Mesoporous: MCM41,° SBA1559).
Other materials and surfaces can also serve as supports for
single-site organometallic catalysts. In this Perspective, we will
describe examples of organometallics grafted onto underex-
plored supports, such as sulfated metal oxides, modified silicas,
redox active supports, and others. The reader will recognize
that some of these inorganic supports can function as both
ancillary ligands and activators, reminiscent of noninnocent
organic ligands in homogeneous catalysis.”’"*> We envision
that noninnocent inorganic supports will become increasingly
important as the field of SOMC continues to progress,

enabling novel reactivity through stereoelectronic manipula-
tion of the surface environment. We will emphasize future
opportunities to advance SOMC and discover unprecedented
catalytic reactivity for each class of support. When possible, we
will draw parallels between the new supports and homoge-
neous catalysis and underlie elementary mechanisms and
mechanistic motifs. Additionally, we foresee that advanced
spectroscopy and imaging tools, coupled with data science and
computational efforts, will facilitate rigorous characterization of
the structure and reactivity of supported organometallic
fragments on nonclassical surfaces. The hope is that this
integrated approach will ultimately bridge the gap between
homogeneous and heterogeneous catalysis.

2. SULFATED METAL OXIDES (SMOS): A
HETEROGENEOUS WEAKLY COORDINATING
ANION

Weakly coordinating anions are used in homogeneous
catalysis to obtain electrophilic metal species. For example,
perfluorinated phenyl borane and borates (B(CFs); and
[Ph;C][B(C4Fs),], respectively) are used as cocatalyst/alkyl
abstractor’” with Group 4 metallocenes to generate extremely
active, electron-deficient, and coordinatively unsaturated olefin
polymerization catalysts. While not metal based, frustrated
Lewis pairs (FLPs) have analogous characteristics as weakly
coordinating anions and their cationic metal counterparts.”®
These properties allow FLPs to catalyze stereoselective
hydrogenations.*””°

Translation of weakly coordinating anion characteristics and
properties to heterogeneous systems has been a goal of many
groups, especially toward catalysts for hydrogenation and
polymerization reactions.”"”’” High-surface-area sulfated metal
oxides of alumina (SO,/Al,O;) and zirconia (SO,/ZrO,) are
prepared by the high-temperature calcination of H,SO,-doped
parent oxides.”””* DFT studies on periodic ZrO, models show
that sulfuric acid dissociates on Zr—O—Zr bridges to form
Bronsted acidic —OH groups on the surface.”> The Bronsted
acid strength and nature of these sites is a topic of ongoing
debate, having been originally characterized as “superacid”
materials (more acidic than neat sulfuric acid), while more
recent works dispute this characterization and attribute their
reactivity to other factors, including strong oxidizing
behavior.”>7™%

Both silica and SMOs react with organometallics through
protonolysis of a M—R group by a Brensted acid site (Figure
2). Reactivity and spectroscopic trends show that silica reacts
to form =SiO—ML, type surface species (Figure 2a). In
contrast, the more acidic SMOs tend to react with organo-
metallics to form weakly associated [ML,][SMO] ion-pairs
(Figure 2b). In many respects, the weak interaction between
SMOs and the cationic metal complexes are analogous to
homogeneous ion-paired transition metal polymerization
catalysts’”*"** and have been shown to afford similar results.
(Figure 3). In addition to SO,/ALO; and SO,/ZrO,, SOMC
has been used to synthesize organometallic complexes
supported by sulfated Fe,O;, TiO,, and SnO,.*"**

The origin of these ion pairs is complex, but at least partially
related to the difference in acidity of —OH groups on silica
compared with —OH groups on SMOs. Though simplistic, this
model is intuitively satisfying because acid strength is a key
design element of weakly coordinating anions in solution®* and
would be expected to translate to surface species. However,
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Figure 2. Grafting process and coordination mode for traditional
oxide surfaces (A) and sulfated metal oxides (B). M = Si, Al, Zr, Ti,
In, Ce; M’ = transition metal; E = nontransition metal.
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Figure 3. Structures depicting the activation of benzene (A) and
ethylene (B) by the Cp*Zr(CH,;)," cation stabilized by a sulfated
alumina surface (A) and a methyl-tris(pentafluorophenyl)boryl anion
in solution (B).

SMOs can react with organometallic complexes through
mechanisms other than protonolysis (vide infra).*

A wide range of organometallics form well-defined ion-pairs
sites on SMOs. Grafting Cp,ZrMe,, Cp*ZrMe;, Cp*ZrBn;
(Bn = benzyl), and Cp*ZrPh; on SO,/ZrO, and SO,/ALO,
resulted in materials capable of arene hydrogenation.®”** *C
CPMAS NMR and X-ray adsorption spectroscopy (XAS)
studies are consistent with the formation of highly electrophilic
d° single-site catalysts. Compared with their sulfated alumina
homologues, SO,/ZrO,-supported catalysts are an order of
magmtude faster with respect to the hydrogenation of
benzene.*®

The electrostatic interaction(s) of the cationic Zr complex
with SO,/ALOQ; is critical in arene hydrogenation reactions.
The computed mechanism for Cp*ZrH,"/SO,/Al,O;-medi-
ated benzene hydrogenation is shown in Scheme 1. A key step
is the coordination of benzene to the Cp*ZrH,* fragment,
which occurs between the cationic Zr and anionic surface and
is analogous to displacement of a weakly coordinating anion by
substrate in early metal polymerization catalysts.””*"** This
coordination environment results in hydrogenation occurring
on the arene face coordinated to Zr and can be used to
rationalize high selectivity for benzene hydrogenation in
mixtures of arenes including mesitylene, ethylbenzene, and
toluene;*® or to diastereoselectively access all cis- products
from facially selective arene hydrogenation reactions.”

Electrophilic organometallic sites generated on SMOs are
also active in olefin polymerization reactions, which demon-
strates the weakly coordinating nature of SMOs. Organo-

Scheme 1. Computed Catalytic Cycle for Cp*ZrH,*/SO,/
Al,0;-Mediated Benzene Hydrogenation. Reused from Ref
%7, Copyright 2013 National Academy of Sciences
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zirconium complexes react through protonolysis with —OH
groups on SO,/Al,O; nanoparticles to form a cationic surface-
bound organometalhc fragment from *C CPMAS NMR
studies.”” ZrBn,/SO,/ALO; is a very active polymerization
catalyst, and the reaction was found to be more efficient in
heptane relative to toluene, suggesting that toluene inhibits
formation of key Zr(R)(olefin)* intermediates under the
reaction conditions. ZrBn;/SO,/AL,O; incorporates 1-hexene
at greater rates when copolymerized with ethylene than the
Cp*ZrMe,/SO,/ALL,O; system, a reflection of the lower
coordinative saturation of the benzyl-supported catalyst.

Precatalysts for olefin polymerization containing late
transition metal complexes also react with SO,/ZrO, to form
well-defined active sites. The reaction of a (a-diimine)NiMe,
with S$O,/ZrO, forms (a-diimine)NiMe*/SO,/ZrO, that
catalyzes the polymerization of ethylene with a TOF of
21000 h™" at 40 °C in toluene.** This catalyst also incorporates
a small amount of methyl 10-undecenoate polar comonomers
into polymer chains in copolymerization reactions. *C labeling
studies suggest that all Ni—Me" sites in this material are active
in polymerization reactions.”® Pd a-diimine complexes also
graft onto SO,/ZrO, through protonolysis and copolymerlze
ethylene and methyl acrylate with up to 0.46% incorporation.”’
However, this catalyst contains only ~9% active Pd—Me" sites
and is less active than the homogeneous analogues Pd
complexes with fluorinated aryl borate anions for the
incorporation of methyl acrylate (up to 12%) into polyethylene
chains.”

The electrophilic Cp*(PMe;)IrMe* organometallic frag-
ment, a canonical early examgle of C—H bond activation
studied in detail in solution,”” ™" represents a compelling
probe for the electronic interaction between the surface and
supported organometallic complex because of the strong
dependence between activity and Ir—Oy (Ox = surface
oxygen) covalency. Cp*(PMe;)IrMe* grafted on SO,/ZrO,
catalyzes H/D exchange reactions of methane and arenes at
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Figure 4. Observation of anomalous Cp* deuteration during the chemisorption of Cp*(PMe;)IrMe, onto sulfated surfaces and proposed operant

redox mechanism involving surface pyrosulfate groups.

room temperature,*®*” whereas the analogous silica-supported
Ir complex is essentially inactive under these reaction
conditions. This system is also shown to recapitulate the
stoichiometric reactivity of the homogeneous cationic iridium
complex in a number of reactions including aldehyde
decarbonylation and the formation of the Ir(V) trihydride in
the presence of dihydrogen. These results underscore the
potential of the SO,/ZrO, support in facilitating the formation
of an electrophilic reactive metal center that is not possible on
traditional inorganic scaffolds such as silica.

Imbuing electrophilic character to an organometallic iridium
center was extended to enable catalytic olefin hydrogenation
and stoichiometric alkane dehydrogenation upon supporting
(“"Phebox)Ir(OAc), on SO,/ZrO, (“Phebox = 2,6-bis(4,4-
dimethyloxazolinyl)-3,5-dimethylphenyl).*”  (“"Phebox)Ir-
(OAc),/S0,/ZrO, mediates stoichiometric dehydrogenation
of nonane at 120 °C, which forms an iridium hydride on the
surface. The molecular iridium diacetate requires 200 °C to
achieve appreciable conversion of in nonane dehydrogenation.
Computational interrogation of this process suggested that the
rate limiting transition state for dehydrogenation was lowered
by 5.1 kcal/mol for the complex on the sulfated surface, and
that the slow elementary step in this process is f-hydride
elimination, consistent with previous observations for the
molecular system.”® Interestingly, the noncoordinating nature
of the surface facilitates desorption after the addition of an
exogenous coordinating X-type ligand, such as tetrabutylam-
monium acetate, which enables characterization of intermedi-
ates by solution NMR spectroscopy. The SO,/ZrO,-supported
complex was also an efficient catalyst for olefin hydrogenation,
effecting greater than 20 000 turnovers in the hydrogenation of
propene at 120 °C after 52 h on stream. The molecular
complex supported on silica was found to be inactive under
these conditions.

While the noncoordinating nature of the sulfated oxide
surface has been reliably translated into enhanced reactivity in
a number of organometallic catalytic systems as detailed above,
the reactivity of these surfaces is not limited to Brensted
acidity. SMOs can also act as strong oxidants, and oxidative
sites on SMOs are invoked in mechanistic proposals for key
steps in SO,/ZrO,-catalyzed alkane isomerization.”””” The

11825

redox activity of these sulfated surfaces toward organometallic
complexes was first observed as a side reaction in the
chemisorption of Cp*(PMe;)IrMe, (Figure 4). During
grafting reactions, the excess in solution unexpectedly
incorporates deuterium in Cp*-Me groups. This occurs
through reversible electron transfer from the Ir(IlI) complex
to a highly electron deficient pyrosulfate group on the surface,
followed by abstraction of a hydrogen atom to form the
cationic tetramethylfulvene-Ir(III) cation on the surface.
Computational investigation into the electron affinity of
various candidate surface species found that the addition of
an electron to a surface pyrosulfate structure was energetically
favorable by 21.5 kcal/mol, whereas electron transfer to a
representative electron deficient monosulfate structure was
disfavored by 17.6 kcal/mol, strongly supporting the surface
pyrosulfate as the identity of the redox active moiety. The
relative surface coverage of strong Brensted acid sites and
redox active sites could be modulated as a function of sulfate
loading (consistent with the redox activity of the aggregated
pyrosulfate) and surface hydration. Dehydrating conditions are
required to form the oxidizing pyrosulfate, and chemisorption
of water is required to generate strong Brensted acidic sites.
The electron transfer in this system ultimately results in
isotopic labeling of the organometallic precursor through a
reversible oxidative grafting event and is not translated into a
catalytic transformation; however, the observation of this redox
interaction does open intriguing questions of whether or not
the redox activity of the sulfated oxides can be leveraged as a
redox noninnocent functionality to enable a productive
catalytic process. For more on the potential application of
redox active oxide surfaces in SOMC, see Section S.

This discussion shows that SMOs are an example of support-
directed reactivity, and this work underscores the importance
of the metal—support electronic interaction in controlling
supported organometallic reactivity. These examples demon-
strate the reliable generation of electrophilic active sites with
reactivity similar to complexes with weakly coordinating
counterions in solution. The complex chemical landscape of
surface sulfate speciation can lead to significant differences in
reactivity as a function of sulfate loading, calcination
temperature, and dehydroxylation conditions. However, careful
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preparation of the SMO surface to generate uniform Brensted
acid sites affords a valuable platform for heterogeneous
electrophilic organometallic catalysis. This class of material
and other Bronsted acidic modified oxides such as borated,
phosphated, and tungstated zirconia and other oxides are
expected to be increasingly leveraged in SOMC in years to

7,98
come.”””?

3. MODIFIED SILICA SUPPORTS

Just as there are reactions that require electron-rich or -poor
metal centers in homogeneous catalysis, tuning the electronic
environment of an active site in a heterogeneous catalyst can
affect catalytic rates and selectivity.”” While silica is particularly
effective as an inert high surface area support to achieve site
isolation of reactive catalytic species, the lack of variety in its
electronic characteristics is a limitation for efforts in SOMC
that rely on it exclusively as a medium for heterogenization.
Synthetic efforts to modify surface functionalities on silica'®
and modulate its properties are analogous to organic ligand
modification in homogeneous catalysis. Below we discuss the
effects of substituting —OH groups on silica with —NH,
groups, or activation of surface silanols with Lewis acids.

3.1. Ammonia-Treated Silica. As discussed above, silica is
the most prevalent support material for SOMC. Some recent
efforts have built upon that base knowledge to leverage the
well-studied surface chemistry of silica to generate new
stereoelectronically diversified catalytic environments through
surface modification. Treatment of partially dehydroxylated
SBA-15 with a flow of ammonia at 500 °C forms mostly =Si-
NH, surface species and a small amount of geminal silanols
(=Si(OH),)."" 7' Silica treated at 1100 °C (SiO,_,100)
contains a very low surface coverage of =Si—OH as well as
strained siloxane bridges (=Si—O—Si=). Adsorption of
ammonia at 200 °C (NH,/SiO,_;;q) results in opening of
siloxane bridges to =Si—OH and =Si-NH, sites, some of
which are close in space from solid-state NMR spectroscopy.

The surface N-donor ligands draw direct comparisons to
homogeneous ligands featuring amine functional groups and
are well suited for grafting of organometallic species. For
example, the reaction of NH;/SiO,_;;40 with Zr(CH,Bu),
yields either (=Si-NH),Zr(CH,Bu), or (=Si-NH)(=Si—
0)Zr(CH,Bu),.'”” The corresponding Zr hydride species
(isolated via treatment with hydrogen) catalyzes hydro-
genolysis of butane to methane and ethane.'””'** W(=
C'Bu) (CH,'Bu); reacts with NH;/SiO,_; ;00 to form a mixture
of =Si—O—W(=C'Bu)(CH,'Bu), and (=Si-NH)(=Si—
O)W(=CH'Bu),(CH,'Bu) (W-[N,0]-Si0,; Figure 5).'%
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DFT studies determined that in the absence of the Si-NH,
group the equilibrium favors the neopentyl/neopentylidyne
structure over the bis(neopentylidene) structure. This is
consistent with the observation of only the neopentyl/
neopentylidyne structure upon grafting W(=C'Bu)(CH,'Bu);
on silica.'”® The presence of the Si-NH, moiety enables the a-
H exchange from a neopentyl ligand to the neopentylidyne
ligand, thereby forming the bis(neopentylidene). W-[N,O]-
SiO, catalyzes propane metathesis through the formation of a
bis(neopentylidene) complex, which is facilitated by a nearby
Si-NH, moiety. This is consistent with the silica-supported
neopentylidyne complex’s lack of reactivity with propane.'®”

This support may have practical applications in studies of
homogeneous systems that contains hemilabile ligands.'”® The
Si-NH, fragment in this system enables transformations at the
metal center and can also dissociate to accommodate different
coordination spheres. Additionally, incorporation of a more
basic ligand on the surface could lead to stronger coordination
and more electron-rich metal centers.

3.2. Lewis Acid-Modified Silica. Chemisorption of Lewis
acids onto silica forms adducts with silanols to form strong
Bronsted acid sites, or induces complex reorganization to form
mixtures of strong Bronsted and strong Lewis sites.'*”""" This
concept is closely related to acidic bridging silanols in zeolites
(Figure 6a) and Lewis acid activated Brensted acids that have
found extensive utility in organic synthesis (Figure 6b).""!
Studies by Walzer''” and Basset''”> showed that B(C4Fs),
reacts with partially dehydroxylated silica in the presence of
amines to form [RyNH][(CF;);B-OSi=] that react with
zirconocenes to from cationic metallocene species active in
polymerization reactions (Figure 6¢). Scott showed that
H,0*B(CF;); reacts with silica through formation of
(CgFs),BOH to form strong Lewis acid =SiO-B(C(Fs),
sites on the silica surface (Figure 6¢).""*

PhF*AI(OC(CF,),);'" reacts with silica to form stable
bridging silanols (=Si—OH—AI(ORF),, RF = C(CF;);, Figure
6¢)."'® This behavior is in contrast to the examples of
B(C4Fs); discussed above because PhF*AI(OC(CF,),); is a
stronger Lewis acid than B(CFs);. DFT studies using small
cluster models accurately reproduce key spectroscopic features
of =Si—OH—AI(OR"); and gas phase acidity calculations
show that the bridging silanol is significantly more acidic than
silanols in zeolite cluster models and common strong acids
(HCl, H,SO,, HSO;CF,).

The deposition of a submonolayer of Zn** onto silica
increases the Bronsted acidity of nearby hydroxyl sites that are
sufficiently acidic to react with (C;H,Me)PtMes, an organo-
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Figure 6. An acidic bridging silanol (a); a representative Lewis acid
activated Brensted acid (b); reactions of partially dehydroxylated
silica with Lewis acids (c).

metallic unreactive to native silica.''” This anchoring site
stabilizes a discrete and persistent Pt**—H species on the
surface and allows for its preparation and characterization
under relatively mild reaction conditions (Figure 7A), which is
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Figure 7. Comparison of Zn modified silica-supported Pt species (A)
and Lewis acid modified homogeneous Pt complex (B). The Pt/Zn-
SiO, system was active toward the chemoselective hydrogenation of
nitro-aromatics to anilines (C).

unusual because Pt is known to readily aggregate to form
nanoparticles on silica.''*™'*° The Pt/Zn/SiO, species is
active in the hydrogenation of butenes and nitro-aromatics.
The conversion of nitro-aromatics to anilines was performed
with high chemoselectivity, avoiding hydrogenation of
aldehyde, ester, cyano, and halogen substituents (Figure 7B).

In addition to allowing for site-isolated surface organo-
metallic species, the Zn also changes the reactivity of the Pt
species. Other systems with Pt nanoparticles on silica have
shown that addition of Zn leads to higher turnover rates for

dehydrogenation catalysis likely due to the electronic
modulation of the Pt center.''” Similar effects have been
studied in the homogeneous literature with the use of Lewis
acid triggers.'”'7'** In these systems, remote binding of a
Lewis acid to the ligand framework has been shown to
modulate the reactivity of the transition metal (Figure 7C).
Specifically, the binding of B(C4F;); at remote nitrogen
positions of the pyrazine ligand leads to an increase in
electrophilicity at the Pt, which then led to a 64 000-fold rate
acceleration for biaryl reductive elimination.

Future work for this support should delve into the electronic
effects of Zn and other Lewis acid additives to silica. One area
of interest could be methane activation via supported Pt
complexes. It has been shown that electrophilic homogeneous
Pt complexes activate methane C—H bonds.'*'*® Grafting
these systems to a Zn-modified silica could result in analogous
rate increases to C—H activation for the new supported
catalysts.

4. SURFACE PARAMETRIZATION OF
NONTRADITIONAL SUPPORTS IN SOMC

Factors controlling the formation of covalently bound =EO—
ML, or [ML,][OE=] ion-pairs shown in Figure 2 in well-
defined surface species have obvious implications in catalysis.
Organometallic Ir(III) complexes activate C—H bonds and are
catalysts for H/D exchange reactions.”” ™ Surface Cp*IrMe-
(PMe,)/oxide analogues are accessible from the reaction of
Cp*IrMe,(PMe;) and —OH sites on partially dehydroxylated
silica, alumina, zirconia, B,05/ZrO,, and SO,/ZrO, (Figure
8).*® Well-defined iridium sites are formed in these materials,
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Figure 8. H/D exchange of arenes and alkanes catalyzed by supported
Cp*IrMe(PMe,) on a variety of oxides.

and [Cp*IrMe(PMe;)]*/SO,/ZrO, is highly active in H/D
exchange of unactivated C—H bonds. Cp*IrMe(PMe,)/SiO, is
essentially inactive in this reaction; Cp*IrMe(PMe;)/Al, 0,
and Cp*IrMe(PMe,)/ZrO,, show moderate reactivity, and
[Cp*ItMe(PMe;)]*/B,0;/ZrO, exhibits increasing H/D
exchange activity although still well below that of [Cp*IrMe-
(PMe,)]*/SO,/ZrO,. This activity trend reflects the formation
of [Cp*IrMe(PMe;)]* on the ion-doped supports, which
opens a coordination site at iridium to activate substrate in the
H/D exchange reaction. This is not possible in the silica-
supported sample because =SiO—Ir(Cp*)(Me)(PMe;) does
not form an ion-pair under the reaction conditions.

A related argument that can explain the H/D reactivity
trends in this class of catalysts is the difference in acidity
between boric acid and sulfuric acid, the mineral acids used to
form B,0;/ZrO, and SO,/ZrO,, respectivley. Sulfuric acid is
significantly more acidic than boric acid, which would suggest
that a weaker ion pair forms between Cp*IrMe(PMe;)* and
S0,/Zr0O, compared with Cp*IrMe(PMe;)* and B,0;/ZrO,,
and this explains the higher reactivity of the former catalyst in
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H/D exchange reaction. This is intuitive because of the well-
known effects of jon pairing in solution; anions (X~) form
weaker ion-pairs as the conjugate acid (HX) becomes stronger.

Though intuitive, quantification of acid strength on solids is
challenging."”"** A common methodology to determine solid
acidity is to soak the material in an aromatic Hammett
indicator then determine the protonation state of the indicator
colorimetrically; however, this method can produce misleading
results.'"” For example, SO,/ZrO, was claimed to be a
superacid on the basis of the low-temperature activity of SO,/
ZrO, in isomerization of alkanes” and colorimetric studies
with Hammett indicators.”* This is inconsistent with DFT
studies showing that SO,/ZrO, contains —OH sites slightly
less acidic than gas phase H,SO,.”> Additionally, experimental
studies have proven that SO,/ZrO, cannot protonate weakly
basic small molecules."*”'*" Indeed, a systematic evaluation of
the effects of (‘Bu),ArP, where the para position of the Ar
group contains substituents that donate or withdraw electron
density, showed that SO,/ZrO, has fairly low aflinity for these
phosphines and that SO,/ZrO, does protonate p-nitroaniline
in MeCN (pK,(anilinium) = 6.22 in CH;CN), which confirms
the lack of superacidic —OH groups on $O,/ZrO,.”*

Solid-state NMR methods are valuable in determining how a
surface will interact with a substrate in a grafting reaction. DNP
enhanced ""O{'H} windowed-proton-detected local field with
quadrupolar Carr Purcell Meiboom Gill (wPDLE-
QCPMG)"**"** experiments measure the dipolar coupling
constants (Rpp) between '"O and 'H spins and give O—H
bond distances with picometer resolution."** Ca(H,PO,), is
inarguably more acidic than Ca(OH),. O{'H} wPDLF-
QCPMG measurements show that —OH groups in Ca-
(H,PO,), have Rpp of 15.1 + 0.2 kHz, corresponding to an
O—H distance of 1.025 + 0.005 A. The O—H bond distance in
Ca(OH), is 1.006 + 0.002 A (Rpp = 16.0 + 0.1 kHz), which is
shorter than the O—H bonds in Ca(H,PO,), as expected. The
O{'H} wPDLF-QCPMG NMR spectra of Zn** modified
silica, discussed above, show that the average O—H bond
distance is 1.034 + 0.007 A, longer than the average O—H
bond distance in unfunctionalized silica (1.022 + 0.006 A).""”
This result indicates that silanols in Zn** modified silica are
more acidic than those on unfunctionalized silica, consistent
with reactivity trends and temperature programed desorption
(TPD) measurements.

Adsorption of small molecule probes (pyridine, phosphines,
phosphine oxides, etc.) and measurement of FTIR and/or
NMR properties of the adsorbate is a common method to
assess acidity on oxide surfaces.'”> However, the Lewis acid
activated Bronsted acid in =Si—OH—AI(ORF); (Figure 6¢)
reacts with Lewis bases to form LB — AI(ORY), that desorb
from the silica surface.'’® The reaction of =Si—OH-—
AI(ORF); with allyltriisopropylsilane forms ['Pr;Si]-
[(RFO);Al-0Si=] (Figure 9a). The *Si CPMAS NMR
spectrum of ["Pr;Si][(RFO);Al-0Si=] contains a signal at 70
ppm and is consistent with silylium-like'*® surface species. This
signal is ~17 ppm downfield from 'Pr;Si/SO,/ZrO,"" 53
ppm downfield from R;Si-functionalized zeolites,"** and 57
ppm downfield from trimethylsiliyl functionalized silica.'**~"*'
This trend indicates that the [(RFO);Al—0Si=] surface anion
is more weakly coordinating toward R;Si-fragments than SO,/
ZrQ,, zeolites, or silica.

Figure 9b shows the *’Si NMR chemical shift of oxides
functionalized with silanes, which tracks closely with trends
found for molecular RySi—X and [R,Si][X]. As the R Si—X
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Figure 9. Generation of ['Pr,Si][(RF0);Al-0Si=] (a); a *Si NMR
chemical shift trend for R;Si—oxides, selected R;Si—X and selected
[R;Si][X] (b). Molecular RySi—X and [R,Si][X] are shown in blue.
Part b of figure adapted with permission from ref 142. Copyright 2020
The Royal Society of Chemistry.

approaches a free silylium ion, the **Si NMR chemical shift
becomes more deshielded. This trend also tracks with ion-
pairing; ['Pr;Si][CHB,,Cls] has a significantly more de-
shielded °Si NMR chemical shift than ‘Pr,Si—OTf. This trend
in deshielding is related to paramagnetic shielding of the *Si
nucleus, which couples filled og;c bonding orbitals to the 6%y
antibonding orbital (or an empty p orbital in free R;Si*). The
energy between these states decreases as R;Si—X approaches
the free R;Si* cation, resulting in larger paramagnetic
deshielding."** This trend holds for the surface species as
well. Paramagnetic deshielding increases, resulting in downfield
29Si NMR chemical shifts, as the surface anion becomes more
weakly coordinating. The **Si NMR chemical shift is an easy
and practical probe to determine how R;Si-functionalized
surfaces form ion-pairs, which could provide information about
how to design surfaces more weakly coordinating than the
[(RFO);Al-0Si=] surface anion.

5. REDOX ACTIVE SUPPORTS

Industrially relevant processes are often catalyzed by nano-
particles supported on metal oxides. While in many cases the
support acts simply as a high surface area dispersant for the
reactive nanoparticles, an increasing appreciation for the role of
the support as an active participant in catalysis has emerged in
the recent literature. For example, ceria-supported rhodium
and platinum systems are widely employed as three-way
catalysts for automotive exhaust emission control. These
systems perform (1) the reduction of NO to N, (2) and the
oxidation of CO to CO, and (3) hydrocarbons to CO, and
H,0.'** Experimental and computational studies have shown
that surface defect sites (steps and kinks) and oxygen vacancies
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Table 1. State of the Art of Redox Active Supports Used for SOMC
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“COD = 1,5-cyclooctadiene, “acetyl acetone. “Cp = C5Hy, “ITO = Tin doped Indium Oxide, °L* = 2-(2'pyridyl)-2 propanolate, /IMes = 1,3-

Dimesitylimidazol-2-ylidene.

at the metal—support boundary participate in the catalytic
process by stabilizing reactive intermediates and lowering the
activation barriers for the three reactions."**'*> A more subtle
cooperation between the catalyst and the support is observed
in cases of electronic metal support interactions (EMSI), a
form of strong metal support interaction (SMSI). EMSI results
from the dynamic interplay between the electronic structure of
the metal oxide support and the supported catalyst.'*>'*” In an
early example of the recognition of this effect, Rodriguez and
co-workers found that when comparing the transition states for
the water splitting reaction across different catalysts, metal
oxide-supported platinum nanoparticles were better at
stabilizing reactive intermediates compared with bare plati-
num."** While this discrepancy can be partially rationalized by
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the size and morphology of the Pt particles, charge transfer
from the support to the active species also plays a major role in
catalysis. UV photoelectron spectroscopy showed the
supported systems exhibited a higher density of Pt 5d states
for the supported platinum compared with the bare nano-
particles.'*® Hence, the performance of the catalyst was related
to the physical and chemical properties of the support. In
another compelling example of EMSI between an oxide
support and a metal nanoparticle, Saeys, Seebauer, and co-
workers have shown that the ethylene hydrogenation perform-
ance of Pt on TiO, is strongly dependent on the carrier
concentration of the support, which was inversely proportional
to its size."*” Theoretical calculations by Verykios and co-
workers have shown that the charge transfer capability of
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titania drops from roughly 0.5 to 0.01 electrons (per support
metal atom) when increasing the cluster size from 2.0 to 10
nm, consistent with the experimental trends.'>® This
phenomenon is referred to as the Schwab effect.">' While
great progress has been made in the use of EMSI to enable
catalytic activity and tune the performance of metal oxide-
supported nanoparticles, leveraging this effect in SOMC has
not been fully realized. Only a handful of examples of SOMC
on redox active supports capable of EMSI have been reported,
and electron transfer between the organometallic active site
and support material has not been identified in these systems
(Table 1).15271¢

TiO, is commonly used as a support for nanoparticle
catalysts for a broad range of reactions. Its low cost, large
carrier lifetimes, and tunable physical and electronic properties
make it attractive for applications in electronics, catalysis, and
photovoltaics."*>'** Additionally, TiO, is an ideal support for
traditional SOMC because of its high surface area (up to 400
m?g~!, depending on the synthesis and phase)'® and the
presence of Bronsted acidic hydroxyl groups on its surface.'*®
Sato and co-workers have shown that Rh(allyl); can be
successfully grafted onto TiO, at room temperature.'>”
Addition of the rhodium precursor to partially dehydroxylated
TiO, (pretreated under vacaum at 200 °C) resulted in the
complete deposition of the organometallic species within 20
min. Partial characterization using FTIR and TPD were
employed to confirm that each Rh metal was coordinated to
one allyl ligand and two surface hydroxyl groups (in a bipodal
fashion) (Figure 10A); however, further structural information
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Figure 10. Structures of the allyl (A) and hydride (B) capped
rhodium complexes on TiO, and the hydrogenolysis reaction they
catalyze as reported by Sato (C) and the diallyl thodium complex on
TiO, (D) as prepared by Basset.

was not provided.'””> The coordination environment and
podality of the surface bound rhodium complex could be
further confirmed via solid state 'H and *C NMR measure-
ments.”>'®” Furthermore, given the dynamic electronic
structure of titania, X-ray absorption, and photoelectron
spectroscopies could elucidate the nature of electron transfer
between the rhodium and the support.'®® Treatment of the
allyl capped complex with H, at room temperature results in
the release of propane (1 equiv) and the formation of hydride
species on the surface (Figure 10B). The same reduction at
elevated temperatures (200° to 500°) forms rhodium nano-
particles. While all three were found to catalyze the
hydrogenolysis of ethane, the allyl capped material was found
to be more active than both the hydride and nanoparticle
variants (Figure 10C).

Basset and co-workers also examined the structural
implications of 1grafting Rh(allyl); onto a series of oxides
including TiO,.””> When comparing the kinetics of the
reaction, it was found that the oxides reacted in the following
order TiO, > SiO, > ALO; > MgO, consistent with the
increasing acidity of the hydroxyl groups on the surface of the
support.>>'® Upon addition of the Rh precursor to TiO,
(pretreated under vacuum at 250 °C), Rh(allyl); releases a
single equivalent of free propene, suggesting that the %rafted
Rh complex only forms a single Ti—O—Rh linkage.">> This
reactivity was rationalized by the sparse hydroxyl surface
coverage (~1 OH nm™?) on the titania surface. Subsequently,
a stable 18 electron configuration could only be attained
through binding to both a surface hydroxyl and a lattice oxygen
(Ti—O-Ti) (Figure 10D). These findings were supported by
FTIR measurements, DFT calculations, and previously
reported EXAFS and TEM measurements.'*”'”" The ability
of TiO, and other metal-oxides to bind to catalytically active
organometallic precursors suggests that they can be employed
as supports, while their dynamic electronic structure imparts
them with broader reactivity, akin to redox noninnocent
ligands in homogeneous catalysis."”"

In most examples of SOMC, the support acts as an ancillary
ligand that maintains a consistent electronic environment
around the metal center. However, targeting support materials
capable of EMS], the role of the support can be expanded to
actively play a part in the catalytic cycle, akin to a noninnocent
ligand in homogeneous catalysis (Figure 11).°"'7>'”> Redox
noninnocent ligands facilitate bond-making/breaking steps by
reversible electron transfer to the catalyst during key steps
throughout the catalytic cycle.’ For example, work by Chirik
and co-workers showed that iron and cobalt complexes
stabilized by pyridine diimine pincer ligands catalyze multi-
electron transformations by reversibly storing one or more
electrons in the 7z-system of the supporting ligand.'”*~""’
Similarly, conducting and semiconducting supports capable of
EMSI could provide an orthogonal handle for modulating the
activity of the grafted catalyst and unlocking new mechanisms
of reactivity. Recent work by Basset and co-workers has shown
that (CH;),Pt(COD) (COD = 1,5-cyclooctadiene) can be
chemisorbed onto high surface area, highly exposed, partially
fluorinated (2.81 wt % F), {001} anatase titania under mild
conditions (Figure 12)."°* The resultant material was
characterized using DRIFTS to confirm that the surface
hydroxyl stretch (v OH at 3665 cm™") disappears upon the
addition of the organometallic precursor, suggesting that
grafting occurs through protonolysis and the formation of a
Ti—O—Pt bond.

Solid-state '*C NMR experiments on the free and supported
platinum complexes were used to confirm that the methyl
groups are lost from the platinum complex (as methane) upon
grafting. XANES and EXAFS data, along with DFT
calculations showed that platinum grafts to the surface in a
bipodal fashion via a Pt—O—Ti linkage and a dative Pt—F —
Ti interaction with no change in the platinum oxidation state.
Finally, unlike the bare TiO,, the supported platinum complex
was photoactive toward the hydrogen evolution reaction for up
to 24 h.">? It was hypothesized that the migration of valence
band electrons from the support to the surface was responsible
for the hydrogen evolution activity.'”*"””

The EMSI in this example suggests that metal-oxides with
tunable electronic properties can act as electron and hole
reservoirs, storing and delivering multiple equivalents of
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Figure 12. Structure of (CH,;),Pt(COD) upon grafting to high
surface area {001}TiO,. Upon grafting, Pt maintains an oxidation
state of 2+. The grafted platinum material was active toward the
hydrogen evolution reaction.

ments for supported catalysts, while their solubility and
physical properties make them amenable for investigations
using a myriad of spectroscopic, magnetic, and electrochemical
techniques, potentially allowing for rapid design iteration
toward performance optimization. In recent work, Velian and
co-workers prepared and characterized a series of well-defined
nanopropellers of the form Fe;CogSegLg (L = Ph,PNTol, Ph—
phenyl, Tol = 4-tolyl) (Figure 13a).”’° These nanoclusters
consisted of a CogSeg core that acts as a support for three iron
complexes.

electrons to a substrate with little to no kinetic barriers, and
also function similarly to traditional supports by forming Ti—
O—M linkages on the oxide surface. These physical properties
are particularly exciting for applications toward difficult
multielectron transformations, like water splitting or the
reduction of CO, and N,."*7'% Lessons learned from the
nanoparticle literature can guide future work with supported
organometallics on redox active supports. The chemical and
physical manipulation of conductive supports can evoke novel
reactivity from the supported catalysts via EMSI and beyond.
Perovskite-supported catalysts, for example, have been shown
to catalyze the hydrogenation and dehydrogenation of small
molecules (C,Hy, N,, and CO,) through a hydrogen spillover
mechanism reliant on the proton-conductive properties of the
support.m_186 In a more pertinent example to EMSI, electron
transfer is governed by the properties of the support and can
be optimized through the modification of its chemical
properties. The introduction of dopants and defects can
influence the charge transfer properties of the support. For
example, the presence of iron, manganese, and other dopants
has shown to modulate the charge transfer and subsequentl
catalytic activity of photoreduced TiO, and CeO,.*>"*"~**!
Similarly, the introduction of oxygen and other defects on the
surface has also been a useful strategy for augmentlng the
performance of single site catalysts on metal oxides.'”*'"> T
chemical and physical manipulation of redox noninnocent
supports represents a new frontier in the field of supported
organometallics and catalysis. Finally, there is an inverse
relationship between the size of a support material and its
electron transfer ability."*”'*""® Further utilization of this
relationship results in the application of atomically precise
nanoclusters as analogues for noninnocent surfaces. Small, 20—
30 atom metal oxide or sulfide clusters represent robust
synthons for the investigation of EMSL'*’~"” Their well-
defined structures serve as controlled coordination environ-

11831
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Figure 13. Schematic depicting the structure of the Fe;CogSegLy
cluster (A) and the reaction scheme for the cluster catalyzed
formation of tosyl carbodiimide from TsN; and CN'BU (B). Figure
reprinted with permission from ref 200. Copyright 2019 American
Chemical Society.

The cluster was chemically reduced and oxidized, and the
resulting redox series was characterized using M0ssbauer and
UV—vis-NIR spectroscopies, along with cyclic voltammetry.
Oxidation of the clusters led to the formation of reactive Fe'!
species, while reduction occurred mostly on the inorganic
support.””"?** These findings suggest that the redox active
cluster could funnel electrons to a metal active site and bound
substrate on the surface, drawing analogy to EMSI in extended
redox active support systems. As a proof of concept, the
clusters were shown to catalyze the reaction of TsN; (Ts =
Tosyl) and CN'Bu to make TsNCN'Bu (Figure 13B). The
activity of the cluster was rationalized as the synergistic
interaction between the chemically accessible iron complexes
on the surface and the electron reservoir of the cluster support.
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6. ADDITIONAL SUPPORTS

6.1. Magnesium Chloride — MgCl,. Heterogeneous
Ziegler—Natta catalysts account for a large fraction of
polyethylene and polypropylene produced annually.”***%*
First-generation catalysts contained TiCl, supported on
MgCl, with an alkyl aluminum cocatalyst. Later iterations
contain Lewis bases and other electron donors that increase
activity and selectivity of the polymerization. These catalysts
are very active but usually produce polymers having very broad
molecular weight distributions characteristic of “multi-site”
polymerization catalysts. Information about the structure of the
active site(s) in TiCl,/MgCl,/AIR, is limited, but inference
from extensive studies of organometallics in solution®” suggests
this catalyst contains a Ti"' —R".

The MgCl, surface chemistry is complex. Studies of
MgCl, as alcohol solvates suggest that the specific ratio of
alcohol to MgCl, in the material results in different structures,
which then affects activity and stereoselectivity in polymer-
ization reactions.”’””*'* Internal donors, such as ethyl
benzoate or phthalates, increase surface area of the MgCl,
support and may also coordinate directly to Ti.”'*~**° For
example, solid-state NMR studies of
MgCL(THF),4,(TiCl,)o0o showed that THF coordinates to
Ti-sites and ring opens to form Ti-alkoxy species.””"

This is an area in which the application of SOMC
techniques could play a pivotal role in providing answers to
understanding how organometallics interact with MgCl,.
Cp*,ThMe, reacts with anhydrous MgCl, through Lewis
acid li%and abstraction to form Cp*,ThMe* and MeMgCl,~
sites.””” Approximately 50% of the Th—Me" sites are active in
ethylene polymerization, with the reaction occurring exclu-
sively at the Th-Me". The chemistry of well-defined Ti
organometallics with internal donors already coordinated to
the metal could help elucidate their role in polymerization
chemistry.

6.2. Magnesium Oxide (MgO). Magnesia is an ionic solid
that contains mildly acidic surface —OH groups that can be
used for grafting organometallic complexes in a fashion similar
as silica. The MgO surface is generally considered to be
significantly more Lewis basic in comparison to traditional
supports such as silica and alumina. The surface of MgO has
been studied by DFT calculations.”*”*** These studies helped
identify the experimental IR stretches and "H NMR resonances
associated with surface hydroxyls in terms of local structure
and coordination environment. Additionally, terminal and
bridging hydroxyl groups have been identified by infrared
spectroscopy.225

One major benefit of MgO as a support is the application of
scanning transmission electron microscopy (STEM) for the
determination of the surface coverage and size of grafted
organometallic species (Figure 14). Ir(C,H,),(acac) (acac =
acetylacetonate) grafts onto MgO by loss of acac and
coordinates bipodally on MgO.226’227 The STEM images
along with IR spectroscopy and EXAFS confirm the site
isolation of the Ir complexes.

The grafted Ir complex catalyzes the hydrogenation of
ethylene. A comparative study determined that MgO-
supported species are less active in hydrogenation than more
acidic zeolite or y-alumina supports.”*®

The electron-rich nature of M§O is an advantage when
combined with Rh(C,H,),(acac).”™ After grafting and loss of
acac, the dimeric Rh species catalyze the industrially important

205—-211

Figure 14. STEM image showing isolated Ir complexes on MgO
crystallite. Reproduced with permission from ref 226. Copyright 2009
The Royal Society of Chemistry.

hydrogenation of 1,3-butadiene to butenes. After treatment
with CO, the MgO-supported Rh dimers are significantly more
selective than zeolite HY-supported catalysts. Other work has
shown that MgO can support site-isolated Os catalysts for CO
oxidation”’® and also Au catalysts for hydrogenation
reactions.””'

7. OUTLOOK AND FUTURE DIRECTIONS

Surface organometallic catalysis combines the positive
attributes of homogeneous catalysis with the chemical and
physical properties of a heterogeneous system. The surface
functional groups bound to the organometallic active site are
generally spectator ligands to the specific catalytic elementary
steps, but these groups do actively interact with and modulate
the energetics of the active site frontier orbitals that are directly
involved in catalytic transformations. In homogeneous
catalysis, the role of the spectator ligand in enabling otherwise
inaccessible modes of reactivity and in accelerating prohib-
itively slow elementary steps has long been recognized. Recent
progress in the execution and interpretation of synthetic,
spectroscopic, and computational techniques has led to the
observation of similar relationships in the SOMC literature.
However, increased understanding of synthetic techniques for
the preparation of uniform sites on inorganic support materials,
as well as the improvement in spectroscopic techniques and
the correlation of these spectra to computational models of
candidate surface structures will be required to define detailed
structure function relationships in these systems. Advances in
these areas have set the stage for a new phase in the expansion
of this field, leveraging rationally designed catalyst-surface
interactions to improve catalytic performance and enable
previously inaccessible mechanistic pathways.

We anticipate that the areas highlighted in this Perspective
will be explored and expanded, and new strategies for support
mediated surface organometallic catalysis will be discovered.
The application of highly Brensted and/or Lewis acidic
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inorganic materials to generate solid noncoordinating diffuse
counterions after ligand abstraction was recognized relatively
early in the SOMC literature as a method for the
heterogenization of cationic olefin polymerization catalysts.
Surfaces such as sulfated zirconia form weak ion-pairs
analogous to the triflate anion. Lewis acid modified silicas
are approaching the weak ion-pairs encountered with
perfluorotetraphenylborate anions in homogeneous catalysis
and show that strategies commonly employed in the
generation of weakly coordinating anions in solution also
apply to oxide surfaces. Future applications, beyond olefin
polymerization and hydrogenation, may include olefin meta-
thesis,”*>***> hydroelementations,”***** and cycloisomeriza-
tion,*® where the rate and/or selectivity of the catalyst is
associated with the electrophilicity of the metal center. In order
to improve these materials further, synthetic refinement will be
necessary to generate well-defined and uniform active sites,
particularly in the area of sulfated oxides, as these materials
show unique complexity in surface speciation and active site
structure. New supports based on strong Lewis acid materials
may present an additional avenue of research. For example,
aluminum trifluoride (AlF;) can be prepared as a high surface
area (150—250 m”/g) mesoporous material, and on the basis
of computational and empirical ammonia and fluoride
dissociation energies, it is comparable to SbFs in Lewis
acidity.””’

Redox active inorganic support materials hold exceptional
promise to play a synergistic role with surface organometallic
catalysts. A support material with the appropriate redox
potential could function as redox noninnocent ligands do in
homogeneous catalysis. The strategic selection of metal oxides
and dopants might produce supports with Fermi energies that
will allow them to reversibly accommodate electrons over the
course of the catalytic cycle. Furthermore, these supports could
serve as electron reservoirs capable of delivering multiple
reducing equivalents for multielectron transformations, such as
N, and CO, reduction, with low kinetic barriers, obviating the
need for iterative chemical reductions. Complex oxide
materials such as perovskites offer an attractive option for
future investigation of redox active materials because of the
diverse range of candidate materials which provide access to a
variety of bandgaps and Fermi levels. Furthermore, the band
structure of some complex oxide materials can be continuously
varied by dopant concentration and element substitu-
tion 238239

Surface organometallic catalysis beyond oxide supports also
represents an area of great promise which is all but completely
unexplored. Expanding beyond oxides to pnictogenides,
halides, and other chalcogenides affords a wide range of
opportunities to explore surface organometallic catalysis in a
variety of coordination structures, bonding motifs, and
electronic environments. One major challenge with the
exploration of these materials is the synthesis of persistently
high surface area morphologies with low oxygen contamination
containing uniform surface coverage of reactive functional
groups. Some progress has been made in the area of amine
substituted silica as a support for organometallic catalysts (vide
supra); however, these materials differ significantly in structure
from the bulk nitride, and structural rearrangement to expose
subsurface oxygen atoms remains a concern under reaction
conditions. Nitride and phosphide materials, as well as the
mixed oxynitride and oxyphosphide ternary compounds offer
decreased bandgaps relative to their oxide analogues and thus

might represent additional candidates for redox active support
materials. Increased donor strength and orbital overlap for
these materials also may be a promising route to the
stabilization of isolated late transition metal surface organo-
metallic complexes and catalytic intermediates.

Decades of research have demonstrated that the immobiliza-
tion of organometallic fragments on oxide supports is a
powerful strategy for harnessing reactive species such as the
canonical low coordinate early transition metal hydrides.”**’
The nature of the organometallic fragment in SOMC has been
extensively studied, with representative examples of nearly
every transition metal having been explored. In contrast,
relatively few inorganic support materials have been studied,
despite the fact that the functional groups on the surface are
inherently related to the reactivity of the supported organo-
metallic complex. As the role of the support as a functional
ancillary ligand continues to be developed and appreciated, a
vast new chemical space will engender innovation in the field,
and new frontiers in surface organometallic catalysis will
emerge.
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