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Simultaneous Bayesian
Calibration and Engineering
Design With an Application
to a Vibration Isolation System
Calibration of computer models and the use of those design models are two activities tra-
ditionally carried out separately. This paper generalizes existing Bayesian inverse analy-
sis approaches for computer model calibration to present a methodology combining
calibration and design in a unified Bayesian framework. This provides a computationally
efficient means to undertake both tasks while quantifying all relevant sources of uncer-
tainty. Specifically, compared with the traditional approach of design using parameter
estimates from previously completed model calibration, this generalized framework
inherently includes uncertainty from the calibration process in the design procedure. We
demonstrate our approach to the design of a vibration isolation system. We also demon-
strate how, when adaptive sampling of the phenomenon of interest is possible, the pro-
posed framework may select new sampling locations using both available real
observations and the computer model. This is especially useful when a misspecified model
fails to reflect that the calibration parameter is functionally dependent upon the design
inputs to be optimized. [DOI: 10.1115/1.4050075]

1 Introduction

This paper connects two distinct areas of research concerning
computer models of real phenomena. One area is that of computer
model calibration, where the goal is to find a posterior distribution
of unknown or imperfectly known, parameters by calibrating a
computer model using real-world observations of the modeled
phenomenon. The second area is that of enlisting a computer
model for design, using the model to find settings for controllable
system inputs such that the resulting system output is optimized
with respect to some design goal. These two problems are struc-
turally similar, both involving finding estimates or distributions of
model inputs to achieve some desired effect on model outputs. In
the case of calibration, the desired effect is that the model outputs
approximate reality, and in the case of design, the desired effect is
that the model outputs approximate the optimal achievable out-
puts. Since calibration and design are typically carried out sepa-
rately, existing design techniques operate under the assumption
that the model is an accurate approximation of the real system of
interest. In practice, models used for design typically are known

or suspected to be biased representations of the phenomenon of
interest, and often have inputs that require calibration. The goal of
the work described here is to provide a unified framework for cali-
bration and design. We refer to this new approach as dual calibra-
tion to target outcomes (DCTO). In addition to avoiding the
idealization that the model used for design is unbiased, DCTO
allows one to focus calibration efforts on regions of interest, pri-
oritizing them over other areas of the model range. For example,
one may be more interested in calibrating the model to be accurate
in the optimal region of some design variable hd than elsewhere.
Having a combined framework for calibration and design is espe-
cially of interest when those two activities are nontrivially inter-
twined, as in the case when the value of the calibration parameters
is functionally dependent upon the design settings.

Bayesian methods for computer model calibration are devel-
oped by Kennedy and O’Hagan [1]. Since their seminal paper, the
methodology has seen numerous extensions and refinements
[2–7]. Henceforth, we refer to this approach to calibration as
“KOH”. Common to the KOH approach is the Bayesian frame-
work in which one places a prior on the calibration parameters hc,
often pairing it with a Gaussian process (GP) metamodel of the
computer model of interest and a GP prior on the model discrep-
ancy dð�Þ, and using the available observations yr of the real sys-
tem to find a posterior distribution hc; dð�Þjyr . Such an approach is
notable for providing not merely a point estimate of the
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calibration parameter, but for providing a full posterior distribu-
tion quantifying remaining uncertainty about hc and about dð�Þ.

Herein, we leverage the KOH framework to find a posterior dis-
tribution, not only on unknown model parameters but also on con-
trollable design settings. We achieve this via an approach called
counterfactual Bayes. In traditional model calibration, one uses
Bayes’ rule to discover a posterior distribution of calibration
parameters using real observations, so that the observations are
the source of the Bayesian learning. In a design case, there are no
relevant observations. One wants to find design settings that
induce the system to behave optimally, but one typically has not
observed the system doing so, and therefore there seems to be no
relevant source of Bayesian learning that could drive the use of
Bayes’ rule to discover a posterior distribution of optimal design
settings. The idea of counterfactual Bayes is to identify artificial
observations, or target outcomes, yt such that the resulting likeli-
hood is highest in the optimal design region, i.e., target outcomes
yt such that their occurrence is strong evidence that the design set-
tings are optimal. Hence, in addition to calibrating the unknown
model parameters against experimental observations, one uses the
KOH framework to also find a posterior distribution of design set-
tings given the target outcomes. Given the nature of yt, this is
defacto a distribution of optimal design settings for the system.
The result retains the benefits of the Bayesian model calibration
tools on which it is based, namely, the quantification of remaining
uncertainty regarding the optimal design settings. And like KOH,
DCTO is especially well-suited to problems that rely on black-
box functions.

The combined approach to calibration and design presented
here thus contrasts with traditional approaches by providing for
quantification of remaining uncertainty in the joint posterior distri-
bution of the calibration and design inputs using an integrated
framework incorporating both sets of inputs. The rest of the paper
is organized as follows. Section 2 reviews related approaches to
calibration and design. Section 3 describes the difficulties
involved in extending KOH into a framework that incorporates
both design and calibration, illustrating this by considering the
failings of a na€ıve method for combining the two procedures, fol-
lowed by a description of the proposed DCTO framework for
extending KOH. Section 4 considers how DCTO may be useful in
the case where sequential sampling is possible. In particular,
sequential sampling with DCTO is attractive when the calibration
parameter is known or suspected to be functionally dependent
upon the design settings. We showcase the application of DCTO
with sequential sampling using a synthetic example, comparing its
results to that of a more traditional approach of design following
calibration. In Sec. 5 we apply DCTO to a dynamic vibration sys-
tem, using a set of experimental observations simultaneously to
calibrate a finite element model and to select gain factor settings
to achieve the optimal vibration isolation outcome while demon-
strating DCTOs thorough quantification of the relevant uncertain-
ties. Section 6 concludes with a discussion of the results and
thoughts about future directions.2

2 Related Work

We may divide optimization approaches for design broadly into
three camps [8]. Gradient-based approaches [9] are of limited util-
ity when dealing with black-box functions, where we cannot

evaluate the objective function’s derivative. Approximation of the
derivative requires additional function evaluations, rapidly inflat-
ing the computational cost when each evaluation involves signifi-
cant expense. Heuristic approaches [10] such as evolutionary
algorithms [11–13], particle swarm optimization [14,15], and
simulated annealing [16] avoid the need to know or approximate
derivatives but often require prohibitively many function evalua-
tions. Furthermore, such methods, like gradient-based approaches,
do not inherently provide quantification of remaining uncertainty
about optimal design settings and the system outputs at those set-
tings. Methods exist for using heuristic approaches while accom-
modating and quantifying uncertainties [17,18], but these come at
the cost of even further inflating the number of function evalua-
tions required. This problem can be mitigated by relying on a sur-
rogate model, but the resulting uncertainty quantification is
accomplished by separate methods that are layered on top of the
independent heuristic approach. By contrast, our combined
approach to calibration and design includes uncertainty quantifica-
tion as an intrinsic aspect of the framework.

The third camp is the diverse collection of response surface
methodologies (RSMs) [19] used for optimization. RSMs operate
by fitting a predictive model to an existing set of model runs, to
form a computationally inexpensive metamodel which is then
used to explore the model output. The concept of calibration to
target outcomes that are built into DCTO is an example of an
RSM, using GPs for its metamodel fit. Other popular versions of
RSMs include efficient global optimization (EGO) [20,21] and
stepwise uncertainty reduction (SUR) [22–28]. EGO and SUR
are both designed to facilitate sequential sampling from the sys-
tem of interest in a search for the global optimum. They differ in
their acquisition functions, which determine the location of the
next sampling location throughout the optimization process.
EGO finds the spot that maximizes the expected improvement
[20,29], whereas SURs acquisition function seeks to reduce the
volume of excursion sets below the current best-known solutions
[24]. Furthermore, the acquisition functions employed by EGO
and SUR attempt to balance exploitation (proposing a new sam-
ple location that optimizes system output) with exploration (pro-
posing a location that promotes learning for subsequent rounds of
sampling). Because they rely on sequential sampling, EGO and
SUR are of limited utility when one is constrained to rely on a
pre-existing set of observations, or in general when the observa-
tion locations cannot be chosen purely to suit the goal of optimi-
zation. The value of exploration is in guiding future adaptive
sampling to avoid settling on merely local optima. In cases where
adaptive sampling is not possible, this value cannot be realized,
and hence it is preferable to adopt a pure-exploitation result. As a
result, although these acquisition functions constitute distribu-
tions of sampling locations, by their nature they are not interpret-
able as distributions of the optimal design settings for a given
problem, and hence these distributions do not quantify uncer-
tainty regarding the location of that optimum. By contrast, our
combined approach (understood as a pure-exploitation method)
quantifies the remaining uncertainty regarding the location of the
system optimum.

An example of an RSM more closely resembling our approach
to design is described by Olalotiti-Lawal and Datta-Gupta [30].
Their approach defines a distribution that is designed to lie both
on and near the Pareto front of the objective function and gener-
ates a posterior distribution that includes quantified uncertainties
via Markov Chain Monte Carlo (MCMC) [31]. However, the pos-
terior distribution in that work is designed by the authors and is
not dictated by the model itself; as such, its interpretability is not
entirely clear. By contrast, our approach provides a posterior dis-
tribution based on the likelihood of the optimal design settings
given the (hypothetical) observation of target outcomes yt, and
thus the uncertainty quantified by design using the KOH frame-
work is model-driven and interpretable as uncertainty regarding
the optimal values for the design inputs and the resulting system
output.

2Note that KOH is usually conceived of as a means of calibrating a computer
model with respect to a set of experimental observations. However, the KOH
framework, and by extension DCTO, are applicable more generally whenever one
has access to both low-fidelity and high-fidelity sources of information and seeks to
calibrate the former with respect to the latter. This includes the case in which both
the high-fidelity and low-fidelity sources of information are computer models (e.g.,
with different levels of computational expense). For ease of exposition, we follow
the common convention and present DCTO in terms of calibrating a computer model
using experimental observations. Nonetheless, in some cases (such as in our
discussion of sequential sampling in Sec. 4), the methods discussed may apply more
naturally in the context of employing two computer models of varying fidelity.
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3 Dual Calibration to Target Outcomes

3.1 Separate Calibration and Design. The version of KOH
considered here is that which finds a posterior distribution of a
parameter of interest for calibration, h, using a GP emulator with
hyperparameters /g. Similarly, one may also use a GP prior with
hyperparameters /d to the model discrepancy between the com-
puter model gð�Þ and the true function f ð�Þ that it represents. In the
work described here, we employ stationary GPs with a Gaussian
kernel covariance structure Cðx; x0Þ ¼ 1=k� expð�bðx� x0Þ2Þ,
so that /g ¼ ½b; k�. In our adaptation, h ¼ ðhc; hdÞ is partitioned
into parameters hc to be calibrated and inputs hd to be optimized
for design purposes. Setting priors on h and on /d, we train the
GP emulator on observations g and use MCMC to explore the
distribution

pðh;/g;/djDÞ / pðDjh;/g;/dÞ � pðhÞ � pð/gÞ � pð/dÞ (1)

where D ¼ ðgT ; yTÞT for some observations y.
In a computer calibration problem, y is a set of observations of

the system modeled by gðÞ. When calibrating to target outcomes
as in DCTO, by contrast, y is a set of target outcomes representing
the way that one wishes to induce the system to behave (rather
than observations one has made of the system in reality). When
one wishes to perform design leveraging a simulation model that
also requires traditional calibration, then, one might consider com-
bining the two approaches by using Eq. (1) with y ¼ ðyTr ; yTt Þ

T
, an

array containing both real observations yr (for calibration) and tar-
get outcomes yt (for design). However, this approach will not
work for two reasons. First, though the matter of whether a given
input is considered to be a calibration parameter is dependent
upon the nature of the research problem under investigation, typi-
cally the inputs to be calibrated are not design settings under
researcher control. Second, for successful calibration, one must
train one’s model on observations of reality rather than on unob-
served target outcomes.

Hence, model calibration and system design must be separated.
An obvious choice here is to perform KOH calibration first, with-
out involving any target outcomes, and then to use the calibrated
model for model-assisted design. Under this approach, with obser-
vations yr of the system of interest, one would employ the model
described in Eq. (1) with h ¼ hc (the parameters to be calibrated)

and with D ¼ Dc ¼ ðgT ; yTr Þ
T
. The result would be a posterior dis-

tribution of hc and of dð�Þ, the systematic discrepancy between the
computer model gð�; �Þ and the true system f ð�Þ. These can be used

to produce estimates ĥc and d̂ð�Þ such that f ðzÞ � gðz; ĥcÞ þ d̂ðzÞ
for all z in the domain of f. The result is a calibrated model

gcðzÞ ¼ gðz; ĥcÞ þ d̂ðzÞ which can be used for design.
With gc in hand, one can partition z into ðx; hdÞ where hd is the

set of inputs over which one wishes to optimize, and x are all
other inputs in the operational domain, within which the calibrated
model’s predictions are reliable. We can write gcðzÞ as gcðx; hdÞ.
Then one can perform design again using Eq. (1), this time with

h ¼ hd and D ¼ Dt ¼ ðgTc ; yTt Þ
T
where gc ¼ gþ d̂ ¼ gþ ðd̂ðz1Þ;

…; d̂ðznÞÞT : Notice that a single set of simulator runs g can be
used both for KOH and for subsequent design. A crucial differ-
ence between calibration and design is that for the design step one
would not attempt to model any systematic discrepancy between
gc and f, since an estimate of that discrepancy is already included
in gc. For the purposes of Eq. (1), this amounts to setting a degen-
erate prior on /d that is a point mass at 0.

A problem with the above-described approach of performing
calibration before a separate design optimization is that relying on
static calibration estimates ĥc ignores uncertainty remaining after
calibration with respect to the true value of hc (if one takes a
Bayesian view, one may prefer to consider calibration as finding
optimal settings for inducing a model to approximate reality,
rather than as finding true values of some parameter; for ease
exposition, we will continue to use the latter phrasing). In order to

produce results that take into account all sources of uncertainty, it
is necessary to integrate calibration and design, so that the uncer-
tainty remaining from calibration is propagated through the design
process. This can be accomplished either asynchronously (so that
the posterior distribution of ĥc is sampled while undertaking
design) or, for lower computational overhead, synchronously (so
that a single MCMC run is used to perform both calibration and
design). In either case, it will be useful to produce an integrated
model for the combined tasks of calibration and design which
describes the use of both procedures, and which makes clear the
relationship between them. This integrated model will also serve
to demonstrate the unified framework underlying the combined
approach.

3.2 Integrated model. Consider g as having three inputs
ðx; tc; tdÞ where tc denotes the parameters targeted for KOH cali-
bration, td denotes the input settings targeted for design, and x
denotes the remaining controllable inputs. If g can be run quickly,
then we use it directly in MCMC. However, if it is computation-
ally expensive, we employ a surrogate by setting a GP prior on g
with mean mgðx; tc; tdÞ and covariance function Cgððx; tc; tdÞ;
ðx0; t0c; t0dÞÞ. From here on in this discussion, assume that a GP sur-
rogate is used for g. We model the systematic discrepancy
between g and f at the true value of tc ¼ hc with another GP prior
dð�; �Þ having mean mdðx; tdÞ and covariance function
Cdððx; tdÞ; ðx0; t0dÞÞ. In addition to systematic discrepancy between
g and reality, measurement error er may be included in the model
for real observations yr , and additional Gaussian observation error
ed may be included for target outcomes yt.

The purpose of additional observation error ed is twofold.
Depending on the distribution of ec, the target outcomes yt may or
may not be possible outputs of a model that lacks ed. Including ed
ensures that there is a nonzero probability of an observation fall-
ing in the vicinity of the targets. Second, including ed and estimat-
ing its variance r2d provides computational benefits. For example,
even if the target outcomes are compatible with a model that does
not include ed, they may (depending on the choice of targets) be
extreme outliers to the extent that the relevant likelihoods are
small enough to generate significant numerical errors during
MCMC. In terms of the interpretation of the model, adding ed
amounts to supposing that the counterfactual target outcomes
were observed with greater than usual observation error, where
that additional error is distributed as Nð0;r2dÞ. Though it is not
necessary to assume that ec is Gaussian, for simplicity of presenta-
tion we assume here that it is distributed as Nð0;r2cÞ. Finally, we
assume that g; d, ec, and ed are all mutually independent.

A collection of simulation runs is needed to train the GP code
surrogate. Let ðxs; tcs; tdsÞ be the design matrix for the settings of
the simulation runs, and let ys denote the output of these runs.
Similarly, let yr be observations made at xr; tdr, and let yt be
target outcomes we wish to observe at xt. Finally, let
y ¼ ðyTs ; yTr ; yTt Þ

T
, and 1 a vector of ones. Then it follows that

y � Nðm;CÞ, where:

m ¼
msðxs; tcs; tdsÞ

msðxr; 1hTc ; tdrÞ þ mdðxr; tdrÞ
msðxt; 1hTc ; 1hTd Þ þ mdðxt; 1hTd Þ

0
BB@

1
CCA (2)

C ¼
C11 C12 C13

C21 C22 C23

C31 C32 C33

0
@

1
A (3)

C11 ¼ Cgððxs; tcs; tdsÞ; ðxs; tcs; tdsÞÞ (4)

C21 ¼ Cgððxs; tcs; tdsÞ; ðxr; 1hTc ; tdrÞÞ (5)

C31 ¼ Cgððxs; tcs; tdsÞ; ðxt; 1hTc ; 1hTd ÞÞ (6)
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C12 ¼ CT
21 (7)

C22 ¼ Cgððxr; 1hTc ; tdrÞ; ðxr; 1hTc ; tdrÞÞ
þCdððxr; tdrÞ; ðxr; tdrÞÞ þ r2cI

(8)

C32 ¼ Cgððxr; 1hTc ; tdrÞ; ðxt; 1hTc ; 1hTd ÞÞ þ Cdððxr; tdrÞ; ðxt; 1hTd ÞÞ
(9)

C13 ¼ CT
31 (10)

C23 ¼ CT
32 (11)

C33 ¼ Cgððxt; 1hTc ; 1hTd Þ; ðxt; 1hTc ; 1hTd ÞÞ
þ Cdððxt; 1hTd Þ; ðxt; 1hTd ÞÞ þ r2cIþ r2dI

(12)

Note that when yt and xt are empty and m;C reduce, respectively,
to their first two and upper two-by-two block elements, this is sim-
ply the KOH framework. Thus, DCTO is an extension of the
KOH framework to include design using target outcomes.

A primary benefit of DCTO is that the design process includes
quantification of all sources of uncertainty. Performing calibration
and then subsequently undertaking design using static estimates
for ĥc and d̂ does not properly account for the uncertainty sur-
rounding the estimates. Another benefit of the combined approach
appears in cases in which the model is misspecified in failing to
account for functional dependence of hc on hd . In such cases, one
may be interested only or primarily in the value of hc at the opti-
mal value of hd . If one has the freedom to sample adaptively from
the true system, then this freedom can be applied in DCTO to con-
centrate samples disproportionately in the region of interest. This
idea is explored further in Sec. 4.

For DCTO, we employ modularity in the manner of Ref. [32].
A modular analysis intentionally falls short of being a full Bayes-
ian analysis, either for computational benefits, or to quarantine
“suspect” aspects of the model, so that the posterior distributions
of parameters of interest are robust to model misspecification. The
target outcomes yt are precisely such a suspect source of Bayesian
learning—they are by their nature extreme outliers, and hence are
a poor guide both for estimating the hyperparameters of the GP
emulator and for estimating the parameter hc. To modularize
DCTO, we estimate the emulator hyperparameters via
maximum likelihood, and we refrain from including yt in the
updates of hc during MCMC. That is, rather than calculating the

likelihood of a proposed sample t
ðiþ1Þ
c at step i of the MCMC using

y ¼ ðyTs ; yTr ; yTt Þ
T
, we instead calculate its likelihood using only

y ¼ ðyTs ; yTr Þ � Nðmr;CrÞ, where mr and Cr are respectively the
upper two and upper-left two-by-two components of m and C.
Such modularization ensures that all Bayesian learning of hc is
based upon the real observations rather than upon yt.

4 Dependence of hc on hd

4.1 Background. In many cases of computer model calibra-
tion, it is known or suspected that the value of one or more cali-
bration parameters is functionally dependent upon the values of
other model inputs [33–35]. If one is interested to understand the
functional form of the calibration parameter, then state-aware
methods can be used to arrive at such an estimate [33,34,36].

In a case where the calibration parameter is functionally
dependent upon the design settings, one might be interested only
to know the value of the calibration parameter in the optimal
design region. When calibration and design are undertaken simul-
taneously, as in DCTO, the machinery of state-aware calibration
is not needed, and effort is better spent focusing on estimating the
fixed calibration parameter value in the region of interest. In such
a case, calibration should be founded on observations for which

the design settings are in the optimal design region. This will
allow one to calibrate the model using observations taken from
the region of design interest, so that the calibration takes on values
that are most applicable in that region.

When observations may be made adaptively, other RSM
approaches such as EGO [20,21] or SUR [22–28] may be more
efficient than the KOH framework for estimating optimal design
settings, though the KOH framework offers more interpretable
and model-driven uncertainty quantification. Further, RSM
approaches, in general, do not include tools to accommodate the
case in which a model stands in need of calibration as well as opti-
mization. DCTO provides such a framework for combined cali-
bration and design.

Algorithm 1 DCTO with adaptive sampling

1 Set y ¼ ½yTr yTt �
T
where yt are the target outcomes and yr ¼ ½ � is

an empty array.

2 Begin MCMC burn-in. Set i¼ 1. Let m be the budget of function
evaluations. While i � m:
2.1 Complete n iterations of MCMC burn-in (where e.g., n¼ 100).
2.2 Draw ĥd from the available size n � i sample of td jy.
2.3 Evaluate f ðxi; ĥdÞ.
2.4 Set yr ¼ ½yTr f ðxi; ĥdÞ�

T
.

3 Continue burn-in until convergence.
4 Draw a sample of the desired size from the posterior distributions of

hc; hd .

Therefore, we now consider under the lens of DCTO the case in
which the design settings of the observations of the true system
may be chosen adaptively. The use of DCTO with adaptive sam-
pling is potentially of greatest use when it is known or suspected
that the calibration parameter is a function hcðtdÞ of the design set-
ting td, and particularly when interest focuses on learning the opti-
mal design setting hd and the corresponding value hcðhdÞ of the
calibration parameter. The process of performing DCTO with
adaptive sampling is described in Algorithm 1. When adaptively
evaluating the objective function, the locations of the input set-
tings xi which are not being optimized for design can be selected
to maximize distance from previous observations, or these loca-
tions can be predetermined according to a space-filling design
over the domain of nondesign inputs. The result of applying this
algorithm is that observations are concentrated around the design
settings of interest so that the unknown calibration parameter val-
ues in those observations are concentrated around the value
hcðhdÞ.

4.2 Simulated Example. To demonstrate the use of DCTO
with adaptive sampling in a case of functional dependence of the
calibration parameter on design settings, we apply the method to a
simulated system described by the function of three inputs

f0ðx; tc; tdÞ ¼ x=ðttc�1
d expð�0:75tdÞ þ 1Þ (13)

Figure 1 shows the output of this function for x¼ 1 over the range
ðtc; tdÞ 2 ½1:5; 4:5� � ½0; 5�. For any value of x and tc, the optimal
(minimizing) value of td is ð4=3Þðtc � 1Þ. Suppose that the calibra-
tion parameter’s “true” value is functionally dependent on the
design input, with the relationship

hc tdð Þ ¼ 2:25� :75

exp 40
td � 1:5

:75
� :5

� �� �

1þ exp 40
td � 1:5

:75
� :5

� �� � (14)

which would be unknown in a real application. Figure 2 shows
this relationship. Figure 3 shows the locations of the true value of
hc and the optimal value of hd with respect to the function
f ðx; hcðtdÞ; tdÞ of the design input td (where that optimum is
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independent of the value of x). In Fig. 3 it is clear that the true
value of hc is far from optimal for the purpose of minimizing the
objective function output, in the sense that if this value were
within our control (which, being a calibration parameter, it is not),
we would prefer to place it at the upper end of its support, at 4.5.
Thus g showcases the ability of DCTO to perform simultaneously
both calibration and design in the case when our “truth-seeking”
goals and our design goals are in tension.

We apply DCTO to four versions of the problem. First, we
assume that g is free from discrepancy, i.e., that gðx; hc; tdÞ is an
unbiased estimator of the “true” system f0ðx; tdÞ, described by
Eq. (13) above. The other three versions each assume that g suf-
fers from some form of discrepancy. Let f1; f2; f3 denote the “true”
systems in these three cases. We set

f1ðx; tdÞ ¼ gðx; hc; tdÞð1� aðx� :5Þðx� 1Þ=xÞÞ (15)

f2 x; tdð Þ ¼ g x; hc; tdð Þ � a x� :5ð Þ x� 1ð Þ td �
4

3

� �2

þ b (16)

f3ðx; tdÞ ¼ gðx; hc; tdÞ þ axtd þ b (17)

where a, b are constants that determine how severe the discrep-
ancy is in each case. The function f1 has a multiplicative discrep-
ancy dependent only on x and a. This discrepancy does not affect
the optimal value of td. The discrepancies of f2 and f3 are both
additives. Figure 4 shows the discrepancies for two different ver-
sions (corresponding to different settings of (a, b)) of each fi.

We apply DCTO with and without adaptive sampling to each of
seven cases, without using an emulator: the nondiscrepancy case,
and the two different versions of each fi shown in Fig. 4. In each
case, we gather 20 “observations” of fi on a Latin hypercube
design over the supports of x and td, setting hc equal to its “true”
value of hcðtdÞ. After standardizing the response to have mean 0
and standard deviation 1, we add independent and identically dis-
tributed N(0,0.05) noise to the response. An example of the result-
ing “observations” from nonadaptive DCTO, with noise, appears
in Fig. 5. We carry out DCTO using Metropolis-Hastings-within-
Gibbs MCMC, drawing 8000 realizations each (discarding the
first 4000 as burn-in) of tc; td;qd; kd; r

2
d , where /d ¼ ðqTd ; kdÞ

T
.

For the adaptive sampling application of DCTO, we begin the
MCMC with 0 observations of fi, making a new observation after
every 100 steps of MCMC until we reached the total budget of 20.
An example of the resulting difference between the adaptive sam-
pling approach and relying on a space-filling design, with regard
to the sampling distribution of our observations of the objective
function, appears in Fig. 6. There, one can see that the adaptive
sampling approach manages to expend its budget on observations
that are near to the region of design interest. This explains the
superior performance of adaptive sampling (discussed below) in
both design and in calibration (since the value of the calibration
parameter is dependent upon that of the design input). This ame-
liorative effect would likely be even greater in a higher-
dimensional case, in which a space-filling design would (due to

Fig. 1 Example computer model output over the support of
the calibration parameter tc and the design parameter td

Fig. 2 True value of the calibration parameter hc for each value
in the domain of td

Fig. 3 The top plot shows the computer model output at x5 1
and the optimal design setting for each value of the calibration
parameter tc. The bottom plot shows the model output at
x 5 1; tc 5 hc(td ) for each value of the design parameter td.
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the curse of dimensionality) tend to generate observations even
farther from the region of design interest.

In both versions of DCTO, we modularize the analysis by draw-
ing each of hc; qd; kd using the likelihood-based only on ðyTs ; yTr Þ

T

rather than on ðyTs ; yTr ; yTt Þ
T
. Convergence was verified visually

and by the Gelman-Rubin statistic (�1:01; Ref. [37]).

The resulting optimal design settings and a calibration parame-
ter value at the optimum vary in the discrepancy cases, though
hcðhdÞ is near 2.16 in each case. Representative results from per-
forming DCTO with adaptive sampling in each discrepancy case
appear in Fig. 7, along with results from applying DCTO nona-
daptively (using a space-filling set of observations). A summary

Fig. 4 The ith row shows fi (the objective function with discrepancy), g (the computer model, identical in
each panel), and the discrepancy fi2g, all at x50.75. In each row, a less aggressive version of the dis-
crepancy appears on the left, and a more aggressive on the right. In each plot, the topmost surface is fi,
the middle surface is g, and the bottom surface is the discrepancy fi2g.
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of the results of thirty applications of DCTO both with and with-
out adaptive sampling, for each of the discrepancy cases, appears
in Table 1.

The results show superior performance for the adaptive sam-
pling DCTO over DCTO using a space-filling design of experi-
ments for the true phenomenon (or high-fidelity model, in a case
of calibrating a low-fidelity model to use for design purposes).
The adaptive DCTO posterior means have lower root-mean-
square error (RMSEs) in all cases for hd, and in all cases except
one for hc. Though both models suffer from the misspecification
of treating as constant a calibration parameter that is more prop-
erly understood as functionally dependent upon other model
inputs (particularly, e.g., in the case of f3), the adaptive form of
DCTO is consistently more robust to these difficulties. By using
the estimate ĥd to sample from the region of interest, DCTO
learns from observations such that hcðĥdÞ is near to the value
hcðhdÞ. This promotes better calibration with respect to the region
of interest, and thereby better estimation of the optimal design set-
tings. By relying on DCTO rather than on performing KOH using
samples gathered using heuristic optimization methods, or other
RSM approaches, we achieve these estimates with quantification
of all relevant model-driven uncertainty with respect to the values
of hc and hd.

5 Case study Application: Vibration Isolation Design

The application of DCTO methodology is demonstrated on a
vibration isolation design problem. Vibration isolation relies on
the balance of inertia, damping, and stiffness properties where, in
active vibration isolation, an additional active gain factor enhan-
ces the system’s damping behavior. To achieve the optimal vibra-
tion isolation outcome, the design engineer typically specifies the
resonance and isolation frequencies and then balances mass,
damping, stiffness, and the gain factor.

5.1 Case Study Problem. The experimental dynamical sys-
tem studied herein is a one-mass oscillator subjected to passive
and active vibration isolation. The system consists of a rigid rec-
tangle frame, a rigid mass held by four identical orthogonally
placed leaf springs mounted to the frame, and a voice coil actuator
(VCA) for passive and active damping.

In Fig. 8(a) and as a simplified model, a rigid mass m oscillates
in the z-direction due to a base point excitation w(t). A damper
with the damping coefficient b and a spring element with a stiff-
ness constant k connects the mass to the base point. The damper

and spring provide the system’s internal passive damping force,
active damping force, and stiffness force Fb ¼ b½ _zðtÞ �
_wðtÞ�; Fa ¼ �g _zðtÞ; Fk ¼ k½zðtÞ � wðtÞ� with Fa derived from a
simple velocity feedback control with the gain factor g.

The inhomogeneous differential equation of the one-mass oscil-
lator’s motion in Fig. 8(a) can be written as

€z tð Þþ 2Dpx0þ
g

m

� �
_z tð Þþx2

0z tð Þ¼2Dpx0 _w tð Þþx2
0w tð Þ¼x2

0r tð Þ

(18)

using the abbreviation 2Dpx0 ¼ b
m ; andx

2
0 ¼ k

m including the

damping ratio Dp from passive damping, with 0 < Dp < 1, and

the angular eigenfrequency x0. The term x2
0rðtÞ in EQ. (18) is the

excitation function, which, in this case, is the linear combination
of the damper and spring base point excitation 2Dpx0 _wðtÞ
þx2

owðtÞ.
Figure 8(b) depicts the laboratory setup used in this study, in

which a rigid frame with mass mf serves as a base point structure.
The frame is fixed by a gliding support assumed to have no fric-
tion perpendicular to the z-direction. The frame is constrained by
a damper with the damping coefficient bf and springs with a total
stiffness kf in the z-direction and in the same plane.

In the laboratory application, the frame suspends from a rigid
mount via elastic straps vertical to the z-direction, allowing the
frame to move freely in the z-direction. The idealized damping bf
and kf that constrain this movement are relatively small, compared
to the b and k of the mass. The frame moves in a translational z-
direction because of a time-dependent translational excitation dis-
placement w(t) in the z-direction. As shown in Fig. 8(c), the frame
retains two supports that fix a leaf spring at its ends at A and C,
with the effective bending length l on sides A-B and B-C, with the
rigid mass m in the center position at B. The leaf spring is the
practical realization of the spring elements in Figs. 8(a) and 8(b).
Its stiffness k	 ¼ 12EI=l3 is a function of the bending stiffness EI,
where E is Young’s modulus of the leaf spring made from carbon
fiber reinforced polymer (CFRP), I is the geometrical moment of
inertia, and l is the length of the leaf spring. Two leaf springs are
mounted in parallel with length l on each side of A-B and B-C
(see Figs. 8(c)). With four leaf springs, the total stiffness becomes
k ¼ 4k	. The two supports at A and C in Fig. 8(c) are adjustable

Fig. 5 Noisy observations of the system and the true system
mean, for f5 f0 (no discrepancy)

Fig. 6 Design input values for observations made under the
adaptive sampling (AS) approach and under a SFD, along with
the optimal value hd visible as the system global minimum in
Fig. 3
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along l to tune the leaf spring’s bending deflection and therefore
its effective stiffness k.

A VCA realizes an electromotive force FVCA as the passive
damping and the active force Fb and Fa (Fig. 8(c)). The force

sensor SFVCA
at B in Fig. 8(c) measures the sum of forces Fb and

Fa acting on the moving mass m. The acceleration sensors Sa;z and
Sa;w measure directly the accelerations of mass and frame, €z and
€w. The accelerations are transformed into velocities _w and _z by

Fig. 7 Prior and posterior distributions of the calibration parameter hc and design parameter hd, along
with their true/optimal values, for DCTO with AS and with predetermined SFD in each of the cases stud-
ied. For each fi, a and b control the size of the discrepancy as specified in Eqs. (15)–(17).
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numerical integration in the SIMULINK-dSpace environment. The
masses of Sa;z; SFVCA

, and parts of the leaf spring are included in
mass m (Table 2).

Figure 8(c) also shows a modal hammer with a force sensor SF
to excite the frame. The hammer creates the impulse force

F̂ðt0Þ ¼
ð1
�1

FðtÞ � dðt� t0Þdt (19)

including the Dirac-impulse function dðt� t0Þ that leads to the
vibrational response of the frame

w tð Þ ¼ F̂ t0ð Þ
mfxD;f

� e�Dfx0;f t sinxD;f t (20)

in the time domain, with damping ratio Df, angular eigenfre-
quency x0;f and damped angular eigenfrequency x0;f of the
frame’s movement in z-direction. Equation (20) is only valid for
low damping 0 < Df < 1. This leads to the total vibration

response zðtÞ ¼ r0 1� e�Dx0 t½cosxDt� D x0

xD
sinxDt�

n o
.

The particular solution r0 is part of the general excitation func-

tion x2
orðtÞ in Eq. (18), which takes the form of an excitation step

function rðtÞ ¼ rorðt� t0Þ when multiplied with the unit step
function rðt� t0Þ as the integral of the Dirac-impulse function

dðt� t0Þ in Eq. (19). From the relation 2Dpx0 _wðtÞ þ x2
0wðtÞ ¼

x2
0rðtÞ in Eq. (18), it follows that r0 ¼ 1

x0
2Dp _w0 þ w0 with the

velocity _w0 and displacement w0 at t¼ t0 that is derived from
Eq. (20).

Table 1 Posterior root-mean-square error (RMSE) for the cali-
bration variable hc and the design variable hd, for DCTO with AS
and a predetermined SFD. The estimator ĥ i is the posterior
mean of ti for i5c;d. For each fi, a and b control the size of the
discrepancy as specified in Eqs. (15)–(17).

ĥc RMSE ĥd RMSE

Objective AS SFD AS SFD
f0 (no discrepancy) 0.188 0.433 0.163 0.479
f1; a ¼ 1:5 0.233 0.32 0.243 0.414
f1; a ¼ 3:5 0.188 0.247 0.213 0.393
f2, a¼ 0. 15, b¼ 0.075 0.221 0.263 0.187 0.348
f2, a¼ 0.65, b¼ 0.075 0.228 0.16 0.183 0.206
f3, a¼ 0.055, b¼ 0 0.452 0.506 0.182 0.329
f3, a¼ 0.055, b¼ 0.1 0.448 0.468 0.167 0.292

Fig. 8 Schematic diagram of the test rig for the dynamic vibration system: (a) simplified schematic representation of the
one-mass oscillator, (b) one-mass oscillator with an additional frame as the base point, and (c) schematic representation of
the real test setup

Table 2 Geometrical, mass, and material values of each component in the vibration isolation test rig, including minimum (min)
and maximum (max) of variable properties of the test rig

Category Property Variable Value Unit

Rigid frame structure Sum mass mf 6.2073 kg

Vibrating rigid mass Sum mass,min m 0.7853 kg
20� add. weights, small mws 0.0760 kg
24� add. weights, large mwl 0.2880 kg

Sum mass,max m 1.1493 kg

Geometry Leaf spring length,min l 0.04 m
Leaf spring length,max l 0.08 m

Leaf spring cross section, width d 0.04 m
Leaf spring cross section, height h 0.11 m

Material Elastic modulus E 6:2� 109 N/m2

Stiffness CFRP,min k 25788.1 N/m
Stiffness CFRP,max k 206305.0 N/m

VCA Passive damping coefficient,min b 16 Ns/m
Passive damping coefficient, max b 130 Ns/m

Passive damping ratio,min Dp 0.0481 —
Passive damping ratio,max Dp 0.628 —
Active gain factor,min g 0 Ns/m
Active gain factor,max g 95 Ns/m
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In this demonstration, the design problem is formulated with
the gain factor g being the design parameter hd. The elastic modu-
lus E of the four-leaf spring is assumed to be poorly known and is
assigned as the calibration parameter hc. The mass m of the system
that needs to be vibration isolated is treated as the control parame-
ter x, and the damping ratio is the design objective y.

5.2 Experimental Observations. For the dual model calibra-
tion, 12 operational conditions for the test rig are designed for
varying values of the mass m and gain factor g (shown in Table
3). A space-filling experimental design is used because a func-
tional relationship of the calibration parameter upon the design
input is not expected in this case. To excite the test rig, an impulse
force is applied in the translational z-direction via a modal ham-
mer. The time history response of the hammer excitation is shown
in the left panel of Fig. 9. The right panel shows the acceleration
response €zðtÞ of the mass, as measured by the acceleration sensor
Sa;z. Since the rigid frame is constrained by a spring of small stiff-
ness in the z-direction, the resulting relatively low resonance fre-
quency of the frame (�1.5Hz) does not significantly affect the
mass vibration with its higher eigenfrequency (>20Hz) when
vibrating in the z-direction. The low-frequency content is filtered
out in the measurement chain. The hammer impact is repeated
five times, and the impact force and the system response measure-
ments are averaged.

One significant character of an oscillatory system is its damping
(i.e., how rapidly a vibration system will decay after the
initial excitation). The damping ratio is a dimensionless measure

that describes the damping level, and is calculated as

D ¼ ð1þ ð2p=dÞ2Þ�1=2
, where d ¼ 1

n lnð€zðtÞ=€zðtþ nTÞÞ; €zðtÞ is

the first peak value of mass acceleration, €zðtþ nTÞ is the nþ 1th
peak value of mass acceleration, and n is the number of peak
intervals. d is the logarithmic decrement, which is used to com-
pute the damping ratio Dp. By following these two equations, the
system responses under various numerical simulations are sum-
marized in Table 3.

Table 3 A variety of experiment tests and five-times averaged results

Case Control parameter x Design parameter hd Five-times avg. system response y

Variable unit Mass (kg) Gain factor (Ns/m) Overall damping ratio*
1 1.1493 0 0.0523
2 0.9653 0 0.0481
3 0.7853 0 0.0549
4 1.1493 8 0.0798
5 0.9653 8 0.0864
6 0.7853 8 0.0871
7 1.1493 41 0.308
8 0.9653 41 0.264
9 0.7853 41 0.259
10 1.1493 95 0.542
11 0.9653 95 0.527
12 0.7853 95 0.628

Fig. 9 Schematic diagram of the applied impulse force in the time domain (left) and five-times averaged acceleration
response of the rigid mass in the time domain (right)

Fig. 10 The dynamic vibration system: (1) the rigid frame, (2)
the leaf springs, (3) the mass oscillator, (4) the damper, (5) the
active force, and (6) the spring
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5.3 Numerical Investigation. To fully explore the domain of
the control parameter in this dual model calibration problem, a
finite element model of the one-mass oscillator is built in ANSYS v.
2018 (Fig. 10). The frame and oscillatory mass are represented by

a linear solid element type C3D8R in ABAQUS. Both the frame and
the mass are assigned very high stiffness values to reflect rigid
body behavior.3 The rigid frame is constrained in the z�direction
of vibration by spring of a small stiffness value, and laterally, by
assumed gliding support (see Fig. 8(c)). A passive damping force,
an active damping force (that results from the gain factor g), and
elastic forces (from the leaf springs) apply on the mass oscillator.
Dashpot elements are used for the damper and gain to model
velocity-dependent forces. The damper represented by DASH-
POT2 element introduces a damping force as a function of the rel-
ative velocity between the rigid frame and the mass oscillator, the
active damping force due to gain is modeled as a function of the
absolute velocity of the mass oscillator through DASHPOT1
element, and the spring is represented by SPRING1 element in
ABAQUS. A Latin hypercube sampling is completed with 98 runs
for parameters values partially shown in Table 4 for which the
damping ratio of the system is calculated.

5.4 Application of DCTO to Vibration Isolation Design.
Since our goal is to minimize the damping ratio, we set our target
outcomes yt to be 0 across a range of oscillator masses. Specifi-
cally, we set a grid of size eight over the range of oscillator
masses present in the simulation and experimental data, with tar-
get outcome 0 for each point in that grid. We define our prior GP
surrogate for the FE model using a mean function found via
degree-2 polynomial regression on the available FE runs. For the
hyperparameters of the surrogate’s covariance function, we esti-
mate them as MLEs using the quasi-Newton Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method [38]. We perform 10,000 itera-
tions of MCMC using this surrogate and set of target observations,
of which the first half are discarded as burn-in. The convergence
of the resulting MCMC chains is assessed both visually and using
the Gelman-Rubin statistic (�1:01 and 1.001 for calibration and
design, respectively), Ref. [37].

The total wall time required for the MCMC to complete DCTO
in this case was 94 s (on a laptop with an Intel Core i7-9750H
CPU and 16GB of RAM). The posterior distributions of the cali-
bration and design inputs are shown in Fig. 11. Strong Bayesian
learning has occurred, particularly for the design input. The poste-
rior distribution of the elastic modulus for the system assigns a
high likelihood to the expected value of 6.2� 1010, with a poste-
rior mean of 6.188e10. In comparison with our design results, we
also apply the gradient-free non-dominated genetic sorting algo-
rithm II (NSGA-II) [12], to the trained GP model surrogate. We
use 100 generations and a population size 50, taking a total of 48 s
of computation (wall time). Whereas our method performs both
calibration and design, NSGA-II cannot be used for calibration,
and so we apply it to a model calibrated with a point estimate (the

Table 4 A partial parameterized input and corresponding numerical results

Case Control parameter x Calibration parameter hc Design parameter hd System response y

Variable unit Mass (kg) Elastic modulus (N/m2) Gain factor (Ns/m) Overall damping ratio
1 0.9625 54,037,300,000 11.5 0.0979
2 0.8175 58,698,200,000 46.5 0.217
3 0.9525 72,098,300,000 76.5 0.268
4 0.7275 70,350,500,000 80.5 0.3496
5 1.0125 71,515,700,000 73.5 0.2483
6 1.0875 64,233,000,000 10.5 0.0815
… … … … …
93 1.0575 72,389,600,000 54.5 0.1855
94 0.8775 68,311,300,000 91.5 0.3621
95 0.7675 56,950,400,000 19.5 0.1326
96 0.7525 71,807,000,000 83.5 0.3489
97 0.8125 68,893,900,000 27.5 0.1392
98 1.0525 48,793,800,000 34.5 0.1679

Fig. 11 The posterior distributions of the calibration and
design inputs, respectively, along with their (uniform) priors.
The very narrow posterior distribution of gain is concentrated
at the minimum of its support.

3“Overall damping ratio” refers to the combination of active and passive
damping.
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posterior mean) of elastic modulus from our method’s results. The
results of NSGA-II agree with our own, in finding the optimal
gain setting to be 0.

We also use the surrogate model to estimate the posterior pre-
dictive distribution of the system after DCTO. Figure 12 shows
the resulting posterior distributions of model output at various lev-
els of oscillator mass, along with the distributions of both experi-
mental and simulator system output. For comparison, the figure
also includes the output of the surrogate model using the posterior
mean of elastic modulus along with the NSGA-II estimate of opti-
mal gain. Note that the predicted model outputs fall at the bottom
of the ranges of observed model outputs across the domain of
oscillator masses, implying a successful design outcome for the
system has been achieved.

6 Conclusion

DCTO provides a method for generalizing the KOH framework
for model calibration to include design. The result secures the
benefits of KOH both for calibration and for design. This includes

the ability to quantify uncertainty remaining in the true value of
the calibration parameter, the optimal settings for the design input,
and the resulting model output. DCTO provides a computationally
efficient method of propagating the uncertainties remaining from
KOH calibration through the design procedure. In the case when
observations of the real system can be carried out sequentially at
adaptively chosen locations, DCTO is robust to model misspecifi-
cation where the calibration parameter is functionally dependent
on the value of the design input and the model fails to reflect this.
In such a case, if the functional form of the dependence of hc on
hd is of interest, then state-aware calibration should be used. How-
ever, if one only wishes to estimate the calibration parameter at
the optimal design settings, then DCTO provides a means of doing
so. In this application, DCTO with adaptive sampling uses infor-
mation from both the sequentially performed observations of the
real system and from the existing computer model to identify new
sampling locations. MCMC methods struggle to converge in the
context of high dimensionality; future work on this subject will
include the application to DCTO of ongoing research in the area
of high-dimensional MCMC [39]. Future work will also include
pairing adaptive sampling DCTO with other methodologies for
selecting new sampling locations, such as EGO and SUR.
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Nomenclature

Cgð�Þ ¼ covariance of Gaussian process emulator of g
Cdð�Þ ¼ covariance of Gaussian process model of d

D ¼ gT ; yTÞT for some observations y
f ð�Þ ¼ the system of interest
g ¼ gain of the dynamic vibration system
k ¼ elastic modulus of leaf spring
m ¼ mass of oscillator in the dynamic vibration system

mgð�Þ ¼ mean of Gaussian process emulator of g
mdð�Þ ¼ mean of Gaussian process model of d

T ¼ time period of one oscillation of a dynamic vibration
system

tc ¼ value of calibration parameter used as input in gð�Þ
td ¼ value of design variable used as input in gð�Þ
x ¼ all model inputs in the operational domain of f ð�Þ
yr ¼ vector of observations of the system of interest
ys ¼ vector of outputs of the computer model of f ð�Þ
yt ¼ vector of target outcomes for the system of interest
z ¼ all known and/or controllable inputs of f ð�Þ
b ¼ inverse correlation length for Gaussian process input

dð�Þ ¼ discrepancy between model and true system
ec ¼ measurement error
ed ¼ discrepancy between optimal system output and yt
f ¼ Damping ratio of a dynamic vibration system
g ¼ vector of outputs of gð�Þ

gð�Þ ¼ computer model of the system of interest
hc ¼ true value of the parameter to be calibrated
hd ¼ optimal design input
k ¼ marginal precision of Gaussian process
q ¼ reparameterization of b
r2c ¼ variance of ec
r2d ¼ variance of ed
/d ¼ hyperparameters of Gaussian process model of dð�Þ
/g ¼ hyperparameters of Gaussian process surrogate for gð�Þ
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