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ABSTRACT: Far-field analysis of small objects is severely constrained by the diffraction limit. Existing tools achieving sub-
diffraction resolution often utilize point-by-point image reconstruction via scanning or labelling. Here, we present a new
technique capable of fast and accurate characterization of two-dimensional structures with at least Ao/25 theoretical resolu-
tion, based on a single far-field intensity measurement. Experimentally, we realized this technique resolving the smallest-
available to us 180-nm-scale features with 845-nm laser light, reaching a resolution of L0/5. A comprehensive analysis of
machine learning algorithms was performed to gain insight into the learning process and to understand the flow of sub-
wavelength information through the system. Image parameterization, suitable for diffractive configurations and highly tol-
erant to random noise was developed. The proposed technique can be applied to new optical characterization tools with
high spatial resolution, fast data acquisition and artificial intelligence, such as high-speed nanoscale metrology and quality

control, and can be further developed to high-resolution spectroscopy
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Optical characterization of an object implies transferring
information about its shape and spectrum to the observer
via electromagnetic waves and the resolution is deter-
mined by the diffraction limit!-6. Existing tools achieving
sub-diffraction resolution rely on resonances to compen-
sate or postpone exponential decay of evanescent radia-
tion’-12 or operate on extremely sparse, often luminescent,
objects to achieve point-by-point image reconstruction3-19,
typically, with multiple measurements per point. The envi-
ronment separating the object and the detector determines
the dispersion laws of the wave propagation and, there-
fore, plays a crucial role in limiting the quantity of infor-
mation that can be relayed by optical means* When the
objects are large and well-isolated, optical systems operat-
ing in the ray-optics limit efficiently generate their images
across the image plane. This regime is well-suited for a
multitude of rapidly emerging computer vision technolo-
gies?1-23 that generally rely on image segmentation fol-
lowed by object detection and classification. Since edge de-
tection is used throughout the computer vision workflow,
sharp edges of well-separated objects are crucial for relia-
ble operation of machine vision.

Unfortunately, existing machine vision techniques are not
readily applicable to highly diffractive configurations. Im-
portantly, while computer vision tools increasingly use
deep learning techniques with ever improving results, the

exact information used by the algorithms to classify the im-
ages often remains unclear, making it almost impossible to
correct the few, but important, misclassifications and pre-
dict the potential pitfalls. As the object size or separation are
decreased, the deviations from ray optics due to diffraction
become increasingly important, merging the images of mul-
tiple objects together and virtually eliminating the ability to
resolve and identify small or closely spaced objects. Existing
techniques to detect and classify small objects, including
scanning optical microscopy, superlensing, structured illu-
mination microscopy, fluorescent microsocopies, and spar-
sity-related super-resolution imaging typically rely on mul-
tiple measurements or reconstruct complex objects one
point at a time®13. However, when an object is positioned in
the vicinity of a diffractive structure, light scattered by such
a system carries substantial information about the object it-
self 2426, For one-dimensional objects and gratings, this in-
formation can be extracted analytically?’. Similarly, the light
scattered by a thin quasi-two-dimensional object posi-
tioned close to a two-dimensional diffractive structure car-
ries the information about the object to the far field. How-
ever, since the increase in dimensionality necessarily yields
exponential increase in complexity, the algorithms devel-
oped with line objects in mind cannot be directly applied to
two-dimensional systems. Machine-learning tools, how-
ever, are implicitly robust in their ability to analyze complex
patterns.



Here we demonstrate that artificial intelligence based on
supervised learning can robustly classify the structure of
the diffractive objects with deep-subwavelength features
based on properly parameterized far-field images. The de-
veloped technique employs the diffraction of light by a fi-
nite-size grating to boost the resolution of object character-
ization, resolving up to A,/25 features of the object, with a
single, noise tolerant, plane-wave-based, intensity meas-
urement. This novel diffractive imaging approach provides
a major speedup in characterization of small-scale features
as compared with existing techniques, does not require
scanning or multiple exposures, and can be further devel-
oped to high-resolution spectroscopy and new computer-
assisted microscopy.

Diffractive signatures of subwavelength objects

We illustrate the capabilities of the proposed imaging
paradigm by identifying the structure of a series of objects
with subwavelength features coupled to finite diffraction
gratings with lateral periods A, =303 + 2nm,A, =
335 + 2 nm, with the individual elliptical openings of short
axis r, =83 + 2 nm and long axis ,, =90 * 2 nm. To mimic
the behavior of small objects of complex shape that block
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the propagation of light through some of the grating open-
ings, we used focused ion-beam-milling (see Methods) to
fabricate a series of diffractive objects (summarized in Fig.
1 and in Methods). The structures were characterized using
laser light with free- space wavelengths of 4, = 532 nm and
845 nm (note that 7, = 1,/10), through the Fourier-op-
tics-based diffractive imaging system (see Methods). The
images recorded by the CCD camera were then post-pro-
cessed to remove the background noise and suppress the
contributions of the main diffraction maxima. The resulting
images are shown in Fig. 1. The overall structure of these
images is typical of a finite-size periodic grating. In particu-
lar, images corresponding to 1, = 532 nm exhibit the two
main maxima representing the zero- and first-order diffrac-
tion grating peaks with their separation being proportional
to the inverse period of the grating (zero-order diffraction
maximum is partially obscured by the lens glare). Images
corresponding to 4, = 845 nm exhibit one main (zero-or-
der) diffraction peak. The positions and intensities of the
auxiliary maxima represent the finer-scale structure of the
grating, such as the number of openings, and the relative
transparencies of individual openings.
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Figure 1. SEM images of the of the objects in the study (top sets) and post-processed diffraction imaging signatures of these objects
for incident wavelength 1, = 532 nm (middle sets) and 1, = 845 nm (bottom sets). Nomenclature of the objects is given in Table 1.

The full set of 14 samples contains two samples I and two samples L.

In general, diffraction theory can be used to predict the
pattern produced by a given structure. However, the in-
verse problem of identifying the structure of the grating

based on the pattern at hand is a rather difficult one. It is
clearly seen that while some diffractive images, for example,
those of the objects P and D, produce signatures that are



easily identifiable by the naked eye, the differences between
the signatures produced by the majority of the samples are
rather subtle. Artificial intelligence can accomplish the task
of classification and identification of these complex image
patterns.

In order to recognize the complex patterns that pertain to
the particular objects, the Al system needs to be trained.
The training set should mimic the experimental conditions
and should convey the difference between experimental im-
perfections (i.e., abnormally sized or slightly moved open-
ing) and an object completely blocking the particular set of
openings. With this goal in mind, we digitally generated the
training set of images. To produce the resulting library of
diffractive signatures, the position and size of the holes in
the theoretically-generated (phantom) gratings were ran-
domly varied, with variations in position and radius of indi-
vidual opening, aiming to mimic experimental conditions, as
well as experimental noise. For each object in the study 100
phantom gratings were generated. To analyze the ultimate
resolution limits of the proposed diffractive imaging plat-
form, similar image sets have been created assuming iden-
tical CCD parameters but longer operating wavelengths. In
order to avoid resolution enhancement resulting from pos-
sible material resonances, we assumed that diffractive

structures behave as perfectly opaque screens with per-
fectly transparent openings. As expected, the increase of the
operating wavelength results in the expansion of the dif-
fractive patterns, reducing the number of auxiliary maxima
that fit within the numerical aperture of the system, and
thus reducing the number of details that are available for
characterizing the objects. Typical theoretical diffractive
signatures of the same subset of phantom objects for differ-
ent wavelengths of incoming light are illustrated in Fig. 2.

Analysis of information flow

Once the training library of images is created, the prob-
lem of identifying the subwavelength objects is reduced to
image classification, a three-stage supervised learning pro-
cess that involves (i) the development of the approach that
maps the image to its digital signature, (ii) training a com-
puter classifier on the signatures of known objects, and fi-
nally (iii) the utilization of the trained classifier to identify
(classify) unknown images based on their digital signatures.
Note that once the classifier is trained, the actual recogni-
tion process can be completed based on a single diffractive
image that corresponds to the single experimental meas-
urement.
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Figure 2. Diffractive signatures generated theoretically for free- space wavelength of (a) 532 nm, (b) 1 um, (c) 2 um, and (d) 4 um.
In each stack the images from bottom to the top represent objects I, S1, S4, R, P,and D

The first stage of this process is the most crucial one since
itis responsible for optimal encoding of optical information
into digital form. Conventional techniques, built with com-
puter vision in mind, call for image segmentation, edge
identification, and analysis of edge distribution within the
image?8-30. However, while sharp edges do contain a signifi-
cant portion of the information in ray-optics imaging, the
onset of diffraction makes edges increasingly fuzzy. In addi-
tion, unavoidable CCD noise adds parasitic edges to the
complex diffractive patterns. The combination of these phe-
nomena renders the conventional computer vision tools al-
most unusable for diffractive imaging and new approaches
are needed.

As seen in Fig. 2, the information carried by the diffractive
optical system is encoded not in the edges of the diffraction
maxima but in the distribution of their position, shape, and
intensity. Such information can be readily extracted when
the intensity of the diffractive image distribution is repre-
sented in the Bessel transform form3?,

10k, $) = S Gy I (s i) €05 (mep) (1)

where ¢ is the polar angle, a,,,; represents the j-th zero of
Bessel function J,,,(x), the parameters k, and k, represent
the radial component of the wavenumber and its maximal
value, and the indices m,j describe the behavior of the in-
tensity in the angular and radial directions, respectively
(see Materials and Methods and Supporting Information
[SI]). Note that since both Bessel functions and cosines form
orthogonal families of functions, Eq. (1) uniquely defines
the values of the coefficients Cy,; independent of the num-
ber of terms in the sum.

In order to identify the subset of the components that
carry the information about the most important features of
the subwavelength objects, we utilize support vector ma-
chine (SVM)-based classifier3?35 to analyze the library of
diffractive images parameterized by a particular combina-
tion of {m, j} pairs and analyze the accuracy of the resulting
classifier as a function of the {m, j} set. In this work, we limit



ourselves to considering subsets of the coefficients, where
each of the indices {m, j} is limited to the interval of a fixed
length [ (see SI for details). Typical results of such a param-
eter sweep are shown in Fig. 3(a-d) where each point on the
diagram represents recoveries based on the set of [? coeffi-
cients Cpj ... Cpyyy j41 for 1 = 5.

To produce each individual point in the dataset, the nu-
merically generated library of the diffractive signatures was
separated into the training- and testing- subsets. The SVM
was trained on the training subset, and its performance was
validated by classifying the diffractive signatures of the ob-
jects from the testing subset. The original library was then
split into different combination of training and testing sub-
sets and the training/validation process was repeated to
gain statistical understanding of the SVM performance.

By analyzing the data (Figs. 3a-d, S3 and S4) it is seen that
the lower-m (m < 15) harmonics are critical to accurate
identification of the subwavelength features. Therefore, we
conclude that the majority of information is contained in
these harmonics. At the same time, as the wavelength in-
creases the useful information shifts towards smaller j
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values, reflecting the slower oscillations of intensity in the
radial direction with an increase of operating wavelength.
Similar sweeps for larger values of parameter [, where each
object is characterized by increasingly larger number of co-
efficients, suggest that the point of “maximum perfor-
mance” approaches the origin (m = 0,j = 1). Combined,
our analysis suggests that for best performance, the har-
monics highlighted in Fig. 3(a-d) must be included in the fi-
nal training and classification routines. The addition of har-
monics that represent lower values of parameter j (and,
thus, classify slower oscillations) may improve the results.
Addition of higher-j harmonics leads to overfitting. The
analysis shows that the performance of the classifiers sig-
nificantly degrades only when the operating wavelength
reaches 4um, almost 15 times the period of the structure,
and almost 50 times the radius of an individual opening.
This analysis provides a valuable insight into the dynamics
underlying the machine learning process, highlighting the
relative importance of different components of the image
for the resulting image classification, a process that is often
hidden from view in conventional image recognition sys-
tems.
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Figure 3. (a-d) Accuracy of the SVM classifiers trained on the subset of the Bessel harmonics parameterized by the set of indices
{m,j}forl =5, 6r/(r) = 15%, trained with 50 images per configuration and (e-h) classification accuracy of the particular object for
different operating wavelengths: (a,e) 532 nm, (b,f) 1 pm, (c,g) 2 pm, and (d,h) 4 um.

To test the robustness of the developed platform and to
assess the effect of various parameters on its performance,
the studies have been repeated with phantom sample li-
braries with different mean radius of individual openings
(r), with different variation in radius 67, and with random
point noise added to the simulated diffractive signatures.
The analysis suggests that the parameters which determine
the ultimate resolution represent a combination of sample-
to-sample variation of geometry and the noise level. In our
studies, we parameterize the geometry variations via varia-
tions in the radius of the opening 67 and variations in the
position of the openings dx.

To mimic the structure of the experimental samples, fab-
ricated with focused ion beam milling, we assume &x <
ér. In this limit, the mean radius of the opening, by itself,

does not affect the resolution, provided that the openings
are wide enough to transmit diffractive information to the
far field, with the relevant dimensionless parameter that
controls the accuracy of the classifier being 6r/(r) (see SI).
Figures 3,4 indicate that the algorithm is highly robust in
determining the positions of the blocked openings as long
as &r/(r) < 30% and is also highly robust to random noise
of the detector.

The variation of the position of the openings may also
play significant role in the ultimate accuracy of the pro-
posed technique (Fig. 3). Interestingly, although not sur-
prisingly, the effect of variations in positions of the openings
is strongly dependent on the wavelength. The strongest ef-
fectis observed for shorter wavelengths as can be seen from



the difference in accuracy of classification of the objects
with identical §r but different 6x (Fig. 3e-h).

We further analyzed the accuracy the SVM achieves in
identifying each individual object by averaging the data
over multiple {m, j} realizations. As expected, not all the ob-
jects are classified with the same accuracy. Generally, the
more compact (smaller) an object is, the lower its classifica-
tion accuracy. We can therefore associate the scale of the
smallest object to be accurately classified with the resolu-
tion of the proposed diffractive imaging technique. Based on
the analysis shown in Fig. 4, the resolution limit in our study
is of the order of 1,/25 corresponding to resolving S1 ob-
ject, ~150 nm in size, at 4, = 4 pm with 50% accuracy.

However, this ideal resolution limit may be affected by var-
ious experimental factors. For example, the measured im-
ages are affected by the presence of a lens glare or CCD sat-
uration effects, all of which can distort the diffractive infor-
mation.

The performance of the classifiers is also affected by the
total number of elements in the finite diffraction grating, as
well as by the number of objects that are being analyzed,
with larger number of holes in the gratings or larger variety
of the objects yielding smaller accuracy. For example, when
the number of samples is reduced from 12 to 6, accuracy of
identification of remaining samples is increased by ~20 %.
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Figure 4. Classification accuracy of a testing subset as a function of the training set size for different values of the parameter [ that
determines the number of C,,; coefficients used in parameterization of each object: (solid lines) S1 object, which is the most chal-
lenging object to recover, and (dashed lines) C4 object for (a) 6r/(r) = 15% using a full set of 12 objects, and (b,c) r/(r) = 30%
using (b) a full set of 12 objects, and (c) a shortened set of 6 objects [I,R,C4,D,S1,P].

The size of the training set is an important parameter in
the analysis of the performance of any Al-based system.
Conventional ray-optics machine vision systems often re-
quire millions of training images to properly train a deep
learning network. Recent theoretical studies of applications
of convolutional neural networks to subwavelength imag-
ing3¢ confirm these trends, requiring ~2 x 10* training sets
and multiple “measurements” of both field amplitude and
phase to resolve the dimensions and a separation between
two 1D linear objects. Increase of dimensionality as well as
limitation of intensity-based imaging tend to further in-
crease the complexity of recovery algorithms and decrease
the resulting resolution*2%. In contrast, the training process
for the SVM-based 2D diffractive imaging is rather efficient,
with only ~50 representations of each object being enough
to ensure classification accuracy of above 50% for even the
worst-case- S1 object for A, < 4 pm, based on a single far-
field diffractive intensity pattern (Fig. 4). Classification of
larger objects is even more robust, with ~20 representa-
tions of each object being enough to achieve 80% accuracy
for 4y < 4 pm.

Experimental realization of diffractive image analysis

We now apply the developed formalism to classify the ob-
jects fabricated experimentally. In order to more compre-
hensively assess the perspectives of the machine-learning-
based diffractive imaging, each sample was characterized

with four different illumination directions, labeled here as
Left, Right, Up, and Down, with data representing each di-
rection analyzed independently and, therefore, with each
classification performed based on the result of single exper-
imental measurement. Statistical analysis of such recover-
ies (Fig. 5) illustrates the robustness of the developed clas-
sifier that has been trained exclusively on theory-generated
data. The classifier is capable of detecting each object (with
smallest available to us dimension of 180 nm) with 532 nm
and 845 nm laser light wavelengths. Note that while coher-
ent laser light has been used in this work, our previous
study?” has indicated that gratings-assisted imaging works
with incandescent white-light illumination.

Similar to the theoretical studies reported above, not all
the objects are classified with the same accuracy. In agree-
ment to theory-based studies, the objects that exhibit the
worst classification accuracy tend to be the smallest objects
and the combination of {m,j} indices that results in the
highest accuracy being localized in the range of small m and
wavelength-dependent j values. In our studies, the best ac-
curacy of recovery of experimental images (13/14 for 4, =
532 nm and 12/14 for A1, = 845 nm, see details in SI) was
achieved with classifiers trained on theoretical image sets
with 87 /(r) = 30%. We note that while in the present work
theory-based SVM training has been used, in practical set-
tings where the experimental setup is used to characterize
multiple similar objects (for example, on production lines),



SVMs can be trained on the diffractive signatures of known
objects. Such procedure would incorporate systematic arti-
facts, including lens glare, CCD noise and imperfections, etc.
into the training process itself.
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Figure 5. (a,c) The dependence of the accuracy of identification
of the experimental objects in Fig. 1 for different combinations
of m,j parameters, averaged over [ € [5,10,20], and different
classifier settings. (b,d) Accuracy of characterization of the ex-
perimental objects as a function of orientation of illumination
(Left, Right, Up, Down) for a subset of data shown in (a) result-
ing in recoveries of more than 6 samples for operating wave-
length of 532 nm (a,b) and 845 nm (c,d).

Methods

Sample fabrication

The 2-dimensional gratings were fabricated in a 100 nm
thick gold film using focused ion beam milling. The gold film
was deposited on a glass coverslip covered with a 15 nm
tantalum pentoxide (Taz0s) adhesion layer using a DC mag-
netron sputtering. The ideal structure, without defects, con-
sists of an 11x11 array of elliptical holes of short axis 83 + 2
nm and long axis 90 + 2 nm; two ideal structures have been
fabricated. The lattice periods are 303 + 2 nm and 335 + 2
nm in the short and long axis directions, respectively. Vari-
ous geometrical defects were introduced in the fabrication
of the other gratings by omitting holes, producing variations
in the Fourier diffraction patterns experimentally and theo-
retically observed. Defects included single missing holes
and square patterns of 2x2 or 3x3 missing holes, located ei-
ther in the center of the array or within a first quadrant of
the structure; a 2x3 rectangle; the combination of a 3x3
square and 2x3 rectangle; a diagonal line defect; a 1x5
straight line (two structures have been fabricated); as well
as a complex pattern of missing holes. Each of the 12 types
of objects used in the study is assigned a unique legend con-
sisting of a (set of) letters and numbers (Table 1).

Table 1. Nomenclature of the objects shown in Fig. 1

La- Object Description  Label  Object Description
bel
I Ideal grating, noin- S9R Grating with a 9-

tentional defects hole square and a 6-

hole rectangular
area blocked

R Grating with a 6- C1 Grating with a cen-
hole rectangular ter hole blocked
area blocked

C4 Grating with a 4- (9
hole square area in
the center blocked

Grating with a 9-
hole square area in
the center blocked

D Grating with 8- L Grating with a 5-
hole oblique line hole horizontal line
blocked blocked

S1 Grating with a sin- S4 Grating with a 4-
gle off-center hole hole off-center
blocked square area blocked

S9 Grating with a 9- P Grating with a com-
hole off-center plex pattern blocked

square are blocked

Optical measurements

Optical measurements were performed using the experi-
mental setup (Fig. 6) similar to the one described in Ref.
(27). The structures were illuminated by a quasi-plane-
wave, generated by focusing a 532 nm CW laser beam onto
the back focal plane of a 40x objective (0.95 NA) incident on
the metal film. The angle of incidence on the sample was
controlled by displacing the focal spot onto the back focal
plane of the illumination objective. The scattered light from
the structures was collected in transmission through the
substrate by an oil immersion 100x objective (NA= 1.49).
The back focal plane of the detection objective (Fourier
plane) was then imaged onto an imaging spectrometer us-
ing a set of relay lenses.

2D Galvo
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100x
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Plane 1.49 X
- = Fourier
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Fourier | e
Plane Relay Lenses

Figure 6. Optical setup for performing diffractive imaging at
Ao = 532 nm. A similar setup was used for 1, = 845 nm but
with a collection objective of NA=1.3. Inset shows the different
orientations of illumination direction (Left, Right, Up, Down),
the angle of incidence is theta=50° for all orientations

For each structure, a measurement at normal incidence
from the sample was taken, along with a set of measure-
ments at an angle of incidence of 50° for four cardinal orien-
tations of the illumination direction (see inset in Fig. 6). The
power of the laser was set to 150 uW and two sets of meas-
urements were then recorded for exposure times of 10 ms
and 40 ms, in order to collect more intensity in the higher



diffraction orders for analysis. Background images on the
gold film were also recorded. The same setup was used for
incident light with 845 nm wavelength, with the exception
of the collection objective, replaced by an oil immersion
100x objective with NA=1.3 and the corresponding adjust-
ment of exposure time.

Theoretical generation of library of images

Far-field (Fraunhofer) approximation is used to generate
the Fourier signatures of different samples in the theoreti-
cal studies. Numerically, we begin with computer-gener-
ated binary mask representing the geometry of the particu-
lar grating, with openings randomly displaced from the
“ideal” periodic grating by at most 2.5 nm, simulating the
precision of the fabrication technique, and with randomly
generated opening radius of (r)+ér with (r)e
[60 nm, 120 nm], and 67 € [5 nm, 20 nm]. We assume that

the openings of the grating are fully transparent to the mon-
ochromatic plane wave while the space between the open-
ings fully blocks the incoming radiation. Therefore, the spa-
tial distribution of the electromagnetic field just behind the
grating is proportional to the binary mask of the grating it-
self.

This spatial profile is then Fourier-transformed, and the
bandwidth of the resulting Fourier representation is cut to
mimic the numerical aperture of the optical setup used in
the experiments. To mimic the aberration of the experi-
mental setup, we followed the coordinate transformation
{kx, ky} - {kx, ky[1—a k,%]}, with the value of the parame-
ter a based on experimental images. The slight ellipticity of
the holes in the experiment has been neglected as the devi-
ations from the circular holes (+15 nm) are beyond the res-
olution of the proposed set-up.

Figure 7. Diffractive signatures generated theoretically for a free space wavelength of 532 nm (a,e), 1 um (b,f), 2 um (c,g), and 4 pm
(d,h) with ér/(r) = 15% (a-d) and with 67/(r) = 30% (e-h). In each stack the images represent (from bottom to top) represent

objects |, S1, S4, R, P, and D, respectively

Image post-processing

Prior to machine learning analysis, each CCD image was
post-processed according to the following algorithm. First,
the background pattern (representing transmission
through smooth gold film) was subtracted. Next, the CCD
noise and the saturated signals were discarded (by impos-
ing lower and upper cut-off values). CCD signals represent-
ing CCD space outside the numerical aperture of the imag-
ing signal was discarded as well. Finally, the intensity was
converted to the log scale to enhance the diffractive signals.
Theoretically-produced intensity distributions were post-
processed in similar fashion. In all analyses, only the portion
of the image representing 0 < k < k,, —% <¢p< % (see Eq.

(1) and Fig. 7) was used.

Setup of the support vector machine

Support vector machines (SVM) implementation outlined
in Ref. (32-34) was used in this work. To understand and
optimize the information flow through the system, we have
analyzed the recovery accuracy of multiple SVMs, with lin-
ear, polynomial, as well as Gaussian kernels, and with dif-
ferent multiclass classification combinations. The analysis
suggests that linear kernel with the multiclass classifier that
relies on the array of one vs. all binary SVM sub-classifiers
performs the best for the diffractive classification problem.

In order to train and validate SVMs used in this study, the
generated phantom objects were randomly partitioned into
training and testing subsets. In theoretical studies, the
training subset (of the length of t =10-75 images/sample)
was used to train the SVM, whose accuracy was then vali-
dated based on the randomly chosen 15 of the remaining
images/sample. 10 runs were performed for each m, j, 1, t



combination. The accuracy derived from these calculations
was consistent with k-fold estimates provided by automatic
SVM training diagnostics.

In the experimental studies, the SVMs were trained based
on full 100-image/sample theoretical libraries and their ac-
curacy was calculated by analyzing the classification of the
experimental signatures.

Assessing the robustness of classification in simulations

To assess the robustness of the algorithm with respect to
the random noise (for example, generated by the CCD) as
well as fabrication imperfections, we generated phantom li-
braries representing multiple combinations of parameters
(r), 8r,and 6x. Fig. 7 illustrates the diffractive patterns rep-
resenting different levels of radius variation parameterized
by the parameter &r/(r). Noise-affected images were
formed by starting with its no-noise “baseline” counterpart
and adding a set of Gaussian noise spikes at random loca-
tions of the image. The level of noise is parameterized by the
fraction of the total area occupied by the noise spikes. Add-
ing particular noise to the training set can be used to model
the imperfections of the particular image sensor, such as its
shot noise, read-out noise or fixed pattern noise.

Conclusions and Outlook

We have demonstrated the robust classification of sub-
wavelength objects with diffractive imaging and machine
learning approach. Experimentally, smallest available to us
objects of the order of 1,/5 have been detected. Theoretical
results suggest that the technique is highly tolerant to hard-
ware noise and can be used to detect and classify smaller, at
least ~A,/25 objects with ~50% accuracy. Apart from
demonstrating the new optical characterization approach,
we have developed a robust procedure for parameteriza-
tion of diffractive images and identified the primary infor-
mation flow channels used by the machine learning algo-
rithms. As with any machine-learning techniques, the pro-
cess of image recognition can be further optimized by
providing training data that would more closely resemble
experimental data with its systematic aberrations. In this
sense, classification performance can be improved if realis-
tic imaging is trained on experimental data, not on idealized
theoretical predictions of known objects.

All in all, the proposed technique opens the door for ro-
bust classification and characterization of objects with sub-
wavelength structure, including fast and robust quality con-
trol in nanofabrication, and optical analysis of nano-struc-
tural fingerprints of complex objects. The same approach
can be used to analyze, in transmission geometry, the struc-
ture and the spectrum of small objects positioned above the
finite diffraction gratings. In this scenario the object blocks
a number of the openings of the diffraction grating and,
therefore, modifies the transmission through the structure.
A properly trained classifier can then be used to identify the
subset of the blocked holes and thus, to recover the struc-
tural information about the object. Repeating the same pro-
cess for different incident wavelength yields spectral, in ad-
dition to structural, information about the object. The pro-
posed technique can be further extended to characteriza-
tion of complex metasurfaces with resonant elements in ei-
ther reflection or in transmission mode. In this case, the

classifier should be trained on signatures that take into ac-
count the (geometry- and materials-dependent) optical re-
sponse of the metasurface components.
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