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Synchronization and chaos in systems of coupled inner-ear hair cells
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Hair cells of the auditory and vestibular systems display astonishing sensitivity, frequency selectivity, and
temporal resolution to external signals. These specialized cells utilize an internal active amplifier to achieve
highly sensitive mechanical detection. One of the manifestations of this active process is the occurrence of
spontaneous limit-cycle motion of the hair-cell bundle. As hair bundles under in vivo conditions are typically
coupled to each other by overlying structures, we explore the role of this coupling on the dynamics of the
system, using a combination of theoretical and experimental approaches. Our numerical model suggests that the
presence of chaotic dynamics in the response of individual bundles enhances their ability to synchronize when
coupled, resulting in significant improvement in the system’s ability to detect weak signals. This synchronization
persists even for a large frequency dispersion and when tens of oscillators comprise the system. Further, the
amplitude and coherence of the active motion are not reduced upon increasing the number of oscillators. Using
artificial membranes, we impose mechanical coupling on groups of live and functional hair bundles, selected
from in vitro preparations of the sensory epithelium, allowing us to explore the role of coupling experimentally.
Consistent with the numerical simulations of the chaotic system, synchronization occurs even for large frequency
dispersion and a large number of hair cells. Further, the amplitude and coherence of the spontaneous oscillations
are independent of the number of hair cells in the network. We therefore propose that hair cells utilize their
chaotic dynamics to stabilize the synchronized state and avoid the amplitude death regime, resulting in collective
coherent motion that could play a role in generating spontaneous otoacoustic emissions and an enhanced ability
to detect weak signals.
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I. INTRODUCTION

The auditory and vestibular systems exhibit remarkable
sensitivity, frequency selectivity, and temporal resolution [1].
These systems can detect vibrations that induce motion of
only a few angstroms, well below the amplitude induced by
thermal fluctuations in the surrounding fluid. Humans are
able to distinguish sounds that differ in frequency by only
∼0.2%. Further, we are able to resolve two stimulus im-
pulses that differ temporally by only 10 microseconds [2].
These characteristics are crucial for identifying and localizing
sounds, as well as comprehending speech, especially in noisy
environments. These phenomena, among others, are not fully
understood and the physics of hearing remains an active area
of research [3].

Mechanical detection of auditory signals is performed by
hair cells. These specialized sensory cells are named after
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the rodlike stereovilli that protrude from their apical surface.
The stereovilli are arranged in interconnecting rows and are
collectively named the hair bundle. Incoming sound waves or
vestibular accelerations induce deflections of the hair bundle,
which cause a shearing motion between neighboring stere-
ovilli. This shearing causes mechanically gated ion channels
to open, yielding an influx of ionic current into the hair cell
[4–6]. The resulting changes in the membrane potential elicit
further signaling from the hair cell to the auditory neurons,
propagating the information that a mechanical signal has been
detected.

Auditory detection has been shown to require an ac-
tive, energy-consuming process [7]. In some nonmammalian
species, hair bundles have been further shown to oscillate
spontaneously in the absence of external stimulus [8–10].
These limit-cycle oscillations exhibit amplitudes significantly
larger than the motion induced by the thermal fluctuations of
the surrounding fluid, and they have been shown to violate
the fluctuation-dissipation theorem, proving them to be active
[11]. The existence and role of these spontaneous oscillations
in intact animals has not yet been established. However, the
results of several studies suggest that they could be important
for signal detection, as they provide a potential amplifica-
tion mechanism [12]. Further, spontaneously oscillating hair
bundles provide a probe for studying the underlying active
processes of the inner ear.
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Given the existence of essential nonlinearities in the au-
ditory system, nonlinear dynamics theory has been applied
to study its behavior. Specifically, the dynamics of individ-
ual hair bundles have been well described with the normal
form of the Hopf bifurcation [13,14]. This simple differential
equation reproduces many of the experimentally observed
features of the hair-cell dynamics, such as the sensitivity and
frequency selectivity, as well as the spontaneous oscillations
and the compressive nonlinear response. To achieve this ex-
treme sensitivity and frequency selectivity, the system has
been assumed to be poised at a Hopf bifurcation. However,
in the proximity of this bifurcation, the system experiences a
phenomenon known as critical slowing down, meaning that
a stimulus perturbing it away from the steady-state behavior
will result in a long transient before returning to the steady
state [15]. This is inconsistent with the high temporal reso-
lution of the auditory system. To avoid the inherent trade-off
between sensitivity and temporal resolution, we proposed that
the system is poised deeply in the oscillatory regime, rather
than in the immediate vicinity of the Hopf bifurcation. We
have previously shown that a system which exhibits chaotic
dynamics in the oscillatory regime shows an enhancement of
both sensitivity and rapidity of response [16,17]. However, in
this dynamical regime, an individual uncoupled oscillator is
not frequency selective.

In vivo, hair bundles are mechanically coupled by an over-
lying membrane. The nature of this coupling varies across
species and across the organs of the inner ear [6]. It tends to
be strong and, in some cases, may suppress the spontaneous
oscillations. However, the inner ear does spontaneously emit
faint tones in the absence of stimulus [18]. These sponta-
neous otoacoustic emissions (SOAEs) are ubiquitous across
vertebrate species and occur only in live animals with intact
inner ears, suggesting that they arise from an active process
[19]. The mechanism responsible for their production has not
yet been established, but several theoretical studies suggest
they may arise from the spontaneous motion of actively os-
cillating coupled hair bundles, through a phenomenon known
as frequency clustering [20,21]. For actively oscillating hair
bundles to produce SOAEs, they would need to overcome a
phenomenon known as amplitude death, which occurs when
active oscillators with large frequency dispersion are strongly
coupled, resulting in quenching of the motion [22]. Further,
hair bundles with different characteristic frequencies would
need to be able to synchronize in order to form the narrow
spectral peaks found in SOAE recordings.

We have previously demonstrated a mechanism by which
chaos can aid in an oscillator’s ability to synchronize to exter-
nal signals [23,24]. In the current work, we extend this study
to a system of coupled active oscillators, which provides a
model for the behavior of a full auditory or vestibular end
organ. Specifically, we show that this same chaotic regime
causes Hopf oscillators to avoid amplitude death and instead
synchronize with each other, despite large dispersion in the
characteristic frequencies. We show that this synchronization
is stable, as it persists for large system sizes, providing a
plausible model for biological systems. Neither the amplitude
nor the coherence of the spontaneous motion is compromised
upon increasing the number of oscillators in the network.
We test these theoretical predictions by experimental studies

performed on in vitro preparations of excised epithelia, in
which hair bundles were coupled using artificial membranes.
We find consistent results in our experimental studies and
theoretical predictions. Therefore, we propose that chaotic
dynamics enhance the synchronization of oscillating hair bun-
dles, causing the system to avoid the amplitude death state and
instead produce spontaneous motion that could aid in signal
detection, as well as result in the production of SOAEs.

Using the numerical model of this coupled system, we also
demonstrate that this chaos-induced synchronization results
in enhanced sensitivity and frequency selectivity to weak,
external signals without compromising the speed of the re-
sponse. This mechanism provides an attractive alternative to
the dynamical regime in the immediate vicinity of the Hopf
bifurcation, where the system sacrifices temporal resolution
due to critical slowing down.

II. NUMERICAL MODEL OF COUPLED HAIR
BUNDLE DYNAMICS

The dynamics of the jth oscillator in the system are gov-
erned by the normal form equation for the supercritical Hopf
bifurcation,

dz j (t )
dt

= (µ + iω j )z j (t ) − (α + iβ j )|z j (t )|2z j (t )

+ k[S(t ) − x j (t )] + Fj (t ), (1)

where

z j (t ) = x j (t ) + iy j (t ). (2)

Here, x j (t ) represents the bundle position, while y j (t ) re-
flects internal parameters of the bundle and is not assigned a
specific measurable quantity. However, the existence of this
hidden variable is essential to reproduce the experimentally
observed dynamics. µ represents the control parameter of
the oscillators, which determines the proximity to the Hopf
bifurcation. The natural frequency at this bifurcation point
is given by ω j . For an individual, uncoupled oscillator, the

limit-cycle radius is given by r0 =
√

µ
α

, and the limit-cycle

frequency at finite radius is $ j = ω j − β j r2
0 . Fj (t ) represents

a real-valued external forcing on the jth oscillator.
All oscillators are coupled to the overlying artificial

membrane with coupling stiffness, k. The position of the
membrane, S(t ), is governed by the differential equation,

m
d2S(t )

dt2
+ λ

dS(t )
dt

=
N∑

j=1

k[x j (t ) − S(t )], (3)

where m and λ represent the mass and drag of the artificial
membrane, respectively.

Here, α and β j characterize the nonlinear term of the
system. In most prior studies, β j was set to zero, rendering
the oscillators isochronous. For such a system, the frequency
is independent of the amplitude of the oscillation. However,
when β j #= 0, the system is nonisochronous, and the instanta-
neous frequency depends on the amplitude of the oscillations.
This results in more complex behavior and causes the additive
noise to induce chaotic dynamics in the individual oscillators
[16].
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Hair bundle dynamics occur at a Reynolds number much
below one [25]. This allows us to ignore the inertial forces
of the artificial membrane (m = 0). Since the drag of the
membrane is fairly small in comparison to the drag of the
hair bundles (see the Appendix), we choose λ = 0.1. We set
µ = α = 1, poising the system in the oscillatory regime. We
use a significant coupling stiffness of k = 2, which can lead
to synchronization of the oscillators. We vary β j , $ j , and ω j
throughout this study and define the limit-cycle frequencies of
the slowest and fastest oscillators in a system of N oscillators
to be $1 and $N , respectively. The other oscillators have
limit-cycle frequencies uniformly spaced between $1 and $N .
All numerical simulations were performed using the fourth-
order Runge-Kutta method with time steps of 10−3, unless
otherwise stated.

III. METHODS

A. Biological preparation

Experiments were performed in vitro on hair cells of the
American bullfrog (Rana catesbeiana) sacculus, an organ
responsible for detecting low-frequency airborne and ground-
borne vibrations. Sacculi were excised from the inner ear
of the animal and mounted in a two-compartment chamber
with artificial perilymph and endolymph solutions [8]. Hair
bundles were accessed after digestion and removal of the
overlying otolithic membrane [11]. All protocols for animal
care and euthanasia were approved by the UCLA Chancellor’s
Animal Research Committee in accordance with federal and
state regulations.

B. Artificial membranes

Mica powder was added to a vial of artificial endolymph
solution. This solution was thoroughly mixed and then filtered
through several steel mesh gratings. These gratings served as
bandpass filters to separate the mica flakes into several desired
sizes. This process was expedited by using vacuum suction to
pull the solution through the grating. The solution contain-
ing the artificial membranes was pipetted into the artificial
endolymph solution, above the biological preparation. Many
of the membranes would land in the desired orientation and
adhere to hair bundles underneath. These hair bundles could
then be imaged through the transparent artificial membranes.

C. Data collection

Hair bundle motion was recorded with a high-speed camera
at frame rates between 250 and 1000 frames per second. The
records were analyzed in MATLAB using a center-of-pixel-
intensity technique to determine the position of the center of
the hair bundle in each frame. The motion was tracked along
the direction of increasing stereovilli height. Typical noise
floors of this technique, combined with stochastic fluctuations
of the bundle position in the fluid, were 3–5 nm.

D. Cross-correlation coefficient

We characterize synchronization between spontaneously
oscillating hair bundles using the cross-correlation coefficient,

C[x1(t ), x2(t )] = 〈x̃1(t )x̃2(t )〉
σ1σ2

, (4)

where x̃1(t ) = x1(t ) − 〈x1(t )〉 and x̃2(t ) = x2(t ) − 〈x2(t )〉 rep-
resent the time traces of the motion, σ1 and σ2 represent
their respective standard deviations, and the angled brackets
denote the time average. C = 1 indicates perfectly correlated
motion, while C ≈ 0 is indicative of completely uncorrelated
motion. We find the noise floor on this measure by calculat-
ing C between 1225 unique pairs of uncoupled hair bundles.
The histogram of these cross-correlation coefficients has a
standard deviation of approximately 0.02, with no points ex-
ceeding 0.1 (Fig. 6). To consider a pair of hair bundles to be
coupled, we define our threshold to be C ! 0.1, which is five
standard deviations above the mean.

E. Correlation time

We measure the coherence of the spontaneous oscillations,
which can be characterized by integrating the squared auto-
correlation function to compute the correlation time [26],

Tc(x(t )) =
∫ ∞

0

[ 〈x̃(t )x̃(t + t ′)〉
σ 2

]2

dt ′. (5)

Due to the finite length of the experimental recordings, we
truncate the integration at two mean periods of the sponta-
neous oscillations. We choose this duration, as the oscillations
in the autocorrelation function have typically decayed af-
ter two full periods, and further integration would introduce
unnecessary noise into the measure. Further, we scale this
measure to the correlation time of a sine wave,

τcor = Tc(x(t ))
Tc( sin(t ))

. (6)

Therefore, perfectly sinusoidal motion yields τcor = 1, while
white Gaussian noise yields τcor ≈ 0.

IV. THEORETICAL RESULTS

A nonisochronous system can modify its oscillation fre-
quency by adjusting its amplitude, thus allowing it to easily
entrain to off-resonant frequencies. As a result, two coupled
oscillators with large frequency dispersion can synchronize.
Further, if the degree of nonisochronicity of the oscillators
differs in correspondence with the dispersion of characteris-
tic frequencies, synchronization can be greatly enhanced in
systems of many oscillators. In Figs. 1(c)–1(e), we illustrate
this effect by plotting the instantaneous angular frequency of
uncoupled oscillators,

dθ j

dt
= ω j − β j r2

j , (7)

as a function of the radius of the oscillations, r j . We plot
these curves for four oscillators with frequency dispersion and
show that the curves intersect when we include dispersion
in β j . Oscillators tend to meet at or near the intersection
points, with synchronization enhanced even if the curves do
not all intersect at the same point. We perform simulations
of the numerical model and compare the isochronous case
(β j = 0) to the nonisochronous case, where β j varies linearly
between 0 and βmax, in accordance with ω j . We set $1 = 1
and $N = 2

√
5 ≈ 4.47, choosing the values to be similar to
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FIG. 1. (a) Time traces of five coupled isochronous oscillators (bottom) and five coupled nonisochronous oscillators with β j linearly
spaced from 0 to 6 (top). (b) Average cross-correlation coefficient [Eq. (4)] between all pairs of oscillators as a function of the frequency
dispersion. This system consists of five oscillators in the isochronous (black open circles) and nonisochronous (green filled circles) cases.
(c)–(e) Illustrations of the instantaneous frequencies [Eq. (7)] of four oscillators as a function of the oscillation amplitude for the isochronous,
nonisochronous with identical β j , and nonisochronous with dispersion in β j systems, respectively.

the frequency dispersion observed in the experiments. Sam-
ple traces of these simulations are plotted in Fig. 1(a). We
simultaneously modify β j and ω j to adjust the level of non-
isochronicity, while keeping the limit-cycle frequencies $ j
fixed.

We assess the stability of the synchronized state of five
coupled Hopf oscillators by measuring the average cross-
correlation coefficient [Eq. (4)] between all pairs of oscillators
as a function of the frequency dispersion. In the isochronous
case, synchronization becomes unstable for large frequency
dispersions, pushing the system into the incoherent state.
Upon an increase in the coupling strength, the isochronous
system transitions into the amplitude death regime and the
system becomes quiescent. However, in the nonisochronous
system, the synchronized state persists even with fivefold
frequency dispersion [Fig. 1(b)]. Further, for the non-
isochronous system, the stability of the synchronized state
preserves the amplitude (root mean square) and coherence
[Eq. (6)] of the oscillators, rendering these measures inde-
pendent of the system size (Fig. 2). This is in contrast to the
isochronous system, for which the oscillation amplitude and
coherence fall off with increasing network size.

We next determine the effects of nonisochronicity on the
system’s ability to detect weak signals. We apply a weak
Gaussian white-noise stimulus, Fj (t ) = η j (t ), to each of the
bundles. The noise terms of the oscillators are independent,
with correlation function, 〈η j (t )η j (t ′)〉 = 2Dδ(t − t ′). We use
a noise strength of D = 0.01 and integrate the stochastic
differential equations using the second-order Runge-Kutta
method. We then calculate the power spectrum of the response

of the oscillator, x(N+1)/2, which displays the median natural
frequency. This method assumes the noise strength to be small
enough to warrant consideration of only the linear response of
the system.

The nonisochronous system exhibits much higher sensitiv-
ity and simultaneously provides a more narrow bandpass filter
on the white-noise stimulus in comparison to the isochronous
system [Figs. 3(a) and 3(b)]. We quantify the increase in
sensitivity by finding the maximum value in the power spec-
trum and normalizing it by the maximum value of the power
spectrum of the isochronous system. This measure of gain
indicates the factor by which nonisochronicity enhances the
sensitivity of the system [Fig. 3(d)]. Likewise, we calculate
the quality factor of these peaks and normalize them by the
quality factor of the isochronous system [Fig. 3(e)]. We find
that these measures of sensitivity and frequency selectivity
increase with system size, consistent with prior theoretical
studies [27]. For a system of 20 oscillators, the synchro-
nization induced by nonisochronicity leads to a sensitivity
increase of over 300-fold and a frequency selectivity increase
of over 100-fold.

Lastly, we show that this large enhancement in the sen-
sitivity and frequency selectivity of response does not come
at the cost of reduced temporal resolution, in contrast with
close proximity to a Hopf bifurcation. We provide an abrupt
step-function stimulus to the system and average the re-
sponses of all of the oscillators. We then calculate the time
it takes for the averaged response to settle to a constant
value. As the plateau value fluctuates, we calculate the time
required to settle within five standard deviations of the mean
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FIG. 2. (a),(b) Time traces of coupled oscillators for the isochronous and nonisochronous (βmax = 6) systems, respectively. The bottom,
middle, and top sets of traces correspond to system sizes of N = 1, 3, and 10, respectively. (c) Root-mean-square (RMS) amplitude of the
autonomous oscillations for a range of system sizes for the isochronous (black open circles) and nonisochronous (orange filled circles) cases.
(d) Normalized correlation time [Eq. (6)] for the isochronous (black open circles) and nonisochronous (purple filled circles) systems.

plateau value. We use this method to characterize the re-
sponse time or temporal resolution of the system. We scale
the response time of the nonisochronous system to that of the
isochronous system and show that nonisochronicity not only
does not degrade the temporal resolution, but in fact slightly
enhances the rapidity of the response. Further, the speed
of the system is independent of the system size [Figs. 3(c)
and 3(f)].

V. EXPERIMENTAL RESULTS

To experimentally test our theoretical predictions, we cre-
ated hybrid systems, in which groups of biological hair cells
were artificially coupled by mica flakes of various sizes
(see Sec. III). The mica membranes were introduced into the
solutions bathing the top surface of the biological epithelia,
and allowed to adhere to the underlying hair bundles, thus
providing coupling. As the thin sheets of mica are transparent,
they allow for precise imaging of the motion of the underlying
hair bundles [Figs. 4(a)–4(c)]. Hair bundles often exhibited
synchronization, despite dispersion in their natural frequen-
cies as large as fivefold [Figs. 4(d)–4(g)] [28], consistent with
our theoretical predictions for nonisochronous oscillators. Af-
ter recording the motion of the coupled hair bundles, the arti-
ficial membranes were removed through fluid exchange. This
process did not result in any measurable damage of the prepa-

ration and the hair bundles continued to display robust spon-
taneous oscillations in all experiments [Figs. 5(a) and 5(b)].

We compare the amplitude (root mean square) of the hair
bundles’ spontaneous oscillations across different sizes of
artificial membranes, and hence different sizes of coupled
networks [Figs. 5(a) and 5(c)]. Due to the variation in heights
of neighboring hair bundles, not every bundle under the mem-
brane makes contact with it or becomes coupled. Therefore,
we define a network by considering only those hair bundles
that have motion correlated to another bundle in the network.
We use a cross-correlation [Eq. (4)] threshold of 0.1 to ensure
that every bundle in the network is coupled. As an additional
test, we repeat the calculation for a higher cross-correlation
threshold of 0.5, ensuring that all of the oscillators in the
network are fully synchronized [Fig. 7(a)]. Figures 4 and 5
show representative traces of fully synchronized hair bundles.
For both choices of cross-correlation threshold, we consis-
tently observe that the amplitude of the coupled motion is
not reduced with increasing number of hair bundles. This
finding is consistent with the behavior of nonisochronous
oscillators and contrasts that of the isochronous system. In the
isochronous case, coupling 10 oscillators together results in
an amplitude reduction of more than threefold as compared
to the individual, uncoupled oscillators [Fig. 2(c)]. However,
in the nonisochronous case, the amplitude remains constant
across all system sizes.

013266-5



FABER, LI, AND BOZOVIC PHYSICAL REVIEW RESEARCH 3, 013266 (2021)

FIG. 3. (a) Average response of the system to weak sinusoidal stimulus, illustrated by the black curves. The stimulus frequency was set to
the median limit-cycle frequency of the network, F (t ) = 0.05 sin($ N+1

2
t ). The responses (blue, red, and orange curves) represent the average

over all oscillators, over 20 presentations of the stimulus, each with random initial conditions. Bottom, middle, and top traces correspond to
βmax = 0, 2, and 6, respectively. (b) Spectral curves in response to low-level white-noise stimulus. The curves get increasingly narrow for
increasing βmax. (c) Average oscillator response to a step stimulus, as indicated by the black dashed curve. Middle, top, and bottom plateau
curves correspond to βmax = 0, 2, and 6, respectively. For (a)–(c), the system size was N = 10, and the blue, red, and orange curves represent
βmax = 0, 2, and 6, respectively. (d) Spectral value of the nonisochronous (βmax = 6) system at the resonance frequency in response to weak
white-noise stimulus, scaled to the corresponding spectral response of the isochronous system. (e) Quality factor of the system with βmax = 6
in response to weak white-noise stimulus, scaled to the quality factor of the isochronous system. (f) Response time of the nonisochronous
(βmax = 6) system to a step stimulus, scaled to the response time of the isochronous system. Points and error bars represent the mean and the
standard deviation over 100 presentations of the stimulus, each with random initial conditions.

We also compare the coherence [Eq. (6)] of hair bundle
oscillations across network sizes of all coupled oscillators
[Fig. 5(d)] and of just those displaying synchronization
[Fig. 7(b)]. Consistent with the theoretical predictions for cou-
pled nonisochronous oscillators, the coherence does not fall
off upon increasing the number of oscillators in the network.
In contrast, the coherence of the isochronous system reduces
by nearly twofold for a system of 10 oscillators as compared
to the individual, uncoupled oscillators [Fig. 2(d)].

VI. DISCUSSION

Auditory and vestibular systems have provided an ex-
perimental testing ground for concepts in nonequilibrium
thermodynamics [29], condensed-matter theory [30], and non-
linear dynamics [13]. How active hair cells exhibit notable
performance as signal detectors, displaying sensitivity of re-
sponse, frequency selectivity, and high temporal resolution,
all within a noisy fluid environment, is a longstanding open
question in this area of study. Further, auditory organs tend
to contain overlying structures that impose a strong degree of

coupling between individual hair cells, which in turn exhibit
dispersion of the characteristic frequencies. It has not been
established which role the presence of both strong coupling
and significant frequency dispersion play in achieving the
detection characteristics, or how the system avoids amplitude
death to form clusters of synchronized oscillators necessary
for generating SOAEs.

Simulations of our numerical model of coupled hair
bundles indicate that the nonisochronicity of the oscilla-
tors, which results in chaotic dynamics, is responsible for
this robust synchronization. The synchronization yields great
enhancement of the system’s sensitivity and frequency se-
lectivity to weak external signals. Unlike proximity to the
Hopf bifurcation, this enhancement does not come at the cost
of reduced temporal resolution. Further, this synchronization
persists for large numbers of oscillators and despite large
frequency dispersion. Neither the amplitude nor the coherence
of the oscillations is reduced upon increasing the number of
oscillators. These results are consistent with the remarkable
signal-detection attributes of the auditory system and the ex-
perimental observations of sharp spectral peaks in the SOAE
recordings.

013266-6



SYNCHRONIZATION AND CHAOS IN SYSTEMS OF … PHYSICAL REVIEW RESEARCH 3, 013266 (2021)

FIG. 4. (a) Illustration of the experimental system from a side view, displaying the hair cells (HC), hair bundles (HB), and an artificial
membrane. (b),(c) Top-down images of biological preparations. The hair bundles appear as white dots, and the shadow cast by the transparent
artificial membrane can be seen in the center of the images. (d),(e) Time traces and power spectra of three spontaneously oscillating hair
bundles coupled by an artificial membrane. These bundles are circled in (b) with colors corresponding to their time traces. The top, middle,
and bottom traces correspond to the topmost, leftmost, and bottommost circles in (b). (f),(g) Time traces and power spectra of the three hair
bundles in (d) and (e) after removal of the artificial membrane.

The results from our experimental recordings of coupled
hair bundles are consistent with those of the numerical model.
By coupling various numbers of hair cells with artificial mem-
branes, we find that hair bundles with differences in charac-
teristic frequencies as large as fivefold still routinely synchro-
nize. Further, the amplitude and coherence of the spontaneous
oscillations are both independent of the number of hair bun-
dles in the network. These results can be reproduced by the
numerical model only when the oscillators are chaotic (β j #=
0). This suggests that the instabilities that give rise to chaotic
dynamics of the individual hair bundles enhance the synchro-
nization and the signal detection of the coupled system.

The coupling strength of the networks of hair bun-
dles in our experiments is likely strong, as it results in
synchronization between bundles with vastly different charac-
teristic frequencies. However, frequency dispersion, coupling
strength, and topology of the coupling vary greatly across
species and sensory organs [6]. The mammalian cochlea, for
example, has a tonotopic organization of the hair cells and
has a compliant overlying connecting structure, leading to
smaller domains of coupling [31]. Therefore, cochlear hair

cells would likely not synchronize over a frequency range
as large as that observed in our experiments. However, our
numerical model suggests that the benefits of synchroniza-
tion grow rapidly with the number of oscillators [Figs. 3(d)
and 3(e)]. Hence, even if synchronization is limited to small
groups of hair bundles and over narrow ranges of characteris-
tic frequencies, we expect the improvement in signal detection
to be substantial.

Stochastic noise often limits signal detection. However, it
has been shown that noise can also enhance the ability of
sensory systems, including hair cells, to detect weak signals,
through a phenomenon called stochastic resonance [32]. Sim-
ilarly, low-dimensional chaos is often considered a harmful
element in dynamical systems and something to be avoided.
For example, a chaotic heartbeat is an indicator of cardiac
fibrillation [33]. However, it has also been established that
chaotic oscillators can easily synchronize with each other
or entrain to an external signal [34,35], as instabilities that
give rise to chaotic dynamics can make the oscillators more
adaptable to modifications in their autonomous motion. Since
biological systems tend to have many degrees of freedom and
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FIG. 5. (a),(b) Overlaid traces of coupled hair bundles (top) for system sizes of N = 4 and N = 6, respectively. Below the overlaid traces
are the traces of the individual hair bundles obtained in the absence of coupling. (c),(d) RMS amplitude and the normalized correlation time of
spontaneous oscillations of coupled hair bundles, obtained for various system sizes. Each hair bundle had a cross-correlation coefficient of at
least 0.1 with other bundles in the network. For both panels, points and error bars represent, respectively, the mean and the standard deviation
of the coupled oscillators in the system. For systems with N > 1, each data point represents a separate group of coupled hair bundles. The
points and error bars at N = 1 represent the collective mean and standard deviation across all 10 groups of hair bundles in the absence of
coupling. These 10 groups of hair bundles were obtained from four sacculi from four different frogs.

contain nonlinearities, chaos may be a ubiquitous element
in their dynamics. We speculate that chaos may be impor-
tant in other biological systems where timing, sensitivity,
and synchronization are desired, especially sensory systems
responsible for the detection of external signals.
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APPENDIX

1. Approximation of artificial membrane drag

We approximate the artificial membranes as infinitely thin
circular disks. Due to the low Reynolds number of hair bundle
dynamics, we assume the system obeys Stokes’ law. The

Stokes’ drag of an infinitely thin circular disk moving edge-
wise through an infinite fluid is given by

λs = 16ηd
3

, (A1)

where η is the dynamic viscosity of the fluid and d is
the diameter of the disk [36]. We use the viscosity of wa-
ter, η ≈ 10−3 Pa s, and our approximate experimental range
of membrane diameters (20–50 µm). The diameters of the
membranes are significantly larger than their thicknesses (<
1 µm), so we consider the infinitely thin disk to be a rea-
sonable approximation. Further, the boundary of the fluid is
≈ 1 cm away from the structures of interest, which is much
farther than the length scale of the membranes, so the assump-
tion of an infinite fluid is reasonable.

We, therefore, approximate the drag coefficients of the arti-
ficial membranes to be λs ≈ 100–250 nN s m−1. We compare
this value to the drag coefficient of individual freestand-
ing hair bundles. It has previously been shown that most
of the drag contribution of hair bundles comes from the
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FIG. 6. Histogram of the cross-correlation coefficients between
pairs of uncoupled, spontaneously oscillating hair bundles (1225
unique pairs). The standard deviation of this distribution is < 0.02
and no points exceed 0.1.

channel-gating friction [37]. The lower bound on the total
drag coefficient of an individual freestanding hair bundle was
estimated to be λ0 = 425 ± 70 nN s m−1. Therefore, in our
numerical simulations, we use a small value for the membrane
drag (λ = 0.1), as it contributes only minimally to the drag of
the entire coupled system.

2. Cross-correlation coefficient noise floor

Figure 6 provides a histogram of the cross-correlation coef-
ficients between pairs of uncoupled, spontaneously oscillating
hair bundles.

3. Amplitude and coherence of synchronized hair bundles

Figure 7 provides the RMS amplitude and normalized
correlation time of spontaneous oscillations of coupled hair
bundles for various system sizes.

FIG. 7. (a) RMS amplitude and (b) normalized correlation time
of spontaneous oscillations of coupled hair bundles, obtained for
various system sizes. Each hair bundle had a cross-correlation co-
efficient of at least 0.5 with other bundles in the network in order to
ensure the network is synchronized. For both panels, points and error
bars represent, respectively, the mean and the standard deviation of
the coupled oscillators in the system. For systems with N > 1, each
data point represents a separate group of coupled hair bundles. The
points and error bars at N = 1 represent the collective mean and
standard deviation across all 10 groups of hair bundles in the absence
of coupling.
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