EXPANSIONS OF THE REAL FIELD BY DISCRETE
SUBGROUPS OF Gl,(C)

PHILIPP HIERONYMI, ERIK WALSBERG, AND SAMANTHA XU

ABSTRACT. Let I' be an infinite discrete subgroup of Gl,(C). Then either
(R, <, +,-,T) is interdefinable with (R, <, +, -, AZ) for some real number \, or
(R, <,+,-,T') defines the set of integers. When I is not virtually abelian, the
second case holds.

1. INTRODUCTION

Let R = (R, <,+,-,0,1) be the real field. For A € Rsq, set A% := {\™ : m € Z}.
Throughout this paper I' denotes a discrete subgroup of Gl,,(C), and G denotes a
subgroup of Gl,,(C). We identify the set M,,(C) of n-by-n complex matrices with
C™ and identify C with R? in the usual way. Our main result is the following
classfication of expansions of R by a discrete subgroup of Gl,,(C).

Theorem A. Let I' be an infinite discrete subgroup of Gl,,(C). Then either
o (R,T) defines Z or
e there is A € Ruq such that (R,T) is interdefinable with (R, \%).

If T is not virtually abelian, then (R,T') defines 7Z.

By Hieronymi [12, Theorem 1.3], the structure (R, A%, u%) defines Z whenever
logy ¢ Q, and is interdefinable with (R, \?) otherwise. Therefore Theorem A
extends immediately to expansions of R by multiple discrete subgroups of Gl,,(C).

Corollary A. Let G be a collection of infinite discrete subgroups of various Gl,,(C).
Then either

o (R, (F)Feg) defines Z or

e there is A € Ruq such that (R, (F) is interdefinable with (R, \%).

Feg)

The dichotomies in Theorem A and Corollary A are arguably as strong as they can
be. An expansion of the real field that defines Z has not only an undecidable the-
ory but also defines every real projective set in sense of descriptive set theory (see
Kechris [18, 37.6]). From a model-theoretic/geometric point of view such a structure
is as wild as can be. On the other hand, by van den Dries [5] the structure (R, \%)
has a decidable theory whenever A is recursive, and admits quantifier-elimination
in a suitably extended language. It satisfies combinatorical model-theoretic tame-
ness conditions such as NIP and distality (see [10, 16]). Furthermore, it follows
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from these results that every subset of R definable in (R,A?) is a boolean com-
bination of open sets, and thus (R, \*) defines only sets on the lowest level of the
Borel hierarchy. See Miller [20] for more on tameness in expansions of the real field.

Our proof of Theorem A relies crucially on the following two criteria for the defin-
ability of Z in expansions of the real field.

Fact 1.1. Suppose D C R* is discrete.

(1) If (R, D) defines a subset of R that is dense and co-dense in a nonempty
open interval, then (R, D) defines Z. B
(2) If D has positive Assouad dimension, then (R, D) defines Z.

The first statement is [13, Theorem EJ, a fundamental theorem on first-order ex-
pansions of R, and the second claim is proven using the first in Hieronymi and
Miller [15, Theorem A]. We recall the definition of Assouad dimension in Section
5. This important metric dimension bounds more familiar metric dimensions (such
as Hausdorff and Minkowski dimension) from above. We refer to [15] for a more
detailed discussion of Assouad dimension and its relevance to definability theory.

The outline of our proof of Theorem A is as follows. Let I' be a discrete, infinite
subgroup of Gl,,(C). Using Fact 1.1(1), we first show that (R, T") defines Z whenever
I" contains a non-diagonalizable matrix. It follows from a theorem of Mal'tsev that
(R,T) defines Z when T is virtually solvable and not virtually abelian. In the case
that I' is not virtually solvable, we prove using Tits’ alternative that I' has positive
Assouad dimension, and hence (R,T) defines Z by Fact 1.1(2). We conclude the
proof of Theorem A by proving that whenever I' is virtually abelian and (R,T")
does not define Z, then (R,T") is interdefinable with (R, %) for some A € Ryg.
Along the way we give (Lemma 3.4) an elementary proof showing that a torsion
free non abelian nilpotent subgroup of Gl,(C) has a non-diagonalizable element.
Since every finitely generated subgroup of Gl,,(C) is of polynomial or exponential
growth, every finitely generated subgroup of Gl,(C) is either virtually nilpotent
or has exponential growth by Gromov’s theorem [8]. As every finitely generated
subgroup of Gl,,(C) is virtually torsion free by Selberg [28], this yields a more direct
proof of Theorem A in the case when I is finitely generated.

We want to make an extra comment about the case when I' is a discrete, virtually
solvable, and not virtually abelian subgroup of Gl,,(C). The Novosibirsk theo-
rem [24] of Noskov (following work of Mal'stev, Ershov, and Romanovskii) shows
that a finitely generated, virtually solvable and non-virtually abelian group inter-
prets (Z,+,-). It trivially follows that if G is finitely generated, virtually solvable,
and non-virtually abelian, then (R, G) interprets (Z,+,-). However, it does not
directly follow that (R,G) defines Z. We use an entirely different method below
to show that if G is in addition discrete, then (R, G) defines Z. Our method also
applies when G is not finitely generated, but relies crucially on the discreteness of
G. Note that there are discrete subgroups of Gla(C) that are not finitely gener-
ated. It is well-known that the free group F5 on two generators is isomorphic to a
discrete subgroup of Gly(C) and the commutator subgroup of F is a free group on
No generators.
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This paper is by no means the first paper to study expansions of the real field
by subgroups of Gl,(C). Indeed, there is a large body of work on this subject,
often not explicitly mentioning Gl,,(C). Because we see this paper as part of a
larger investigation, we survey some of the earlier results and state a conjecture.
It is convenient to consider three disctinct classes of such expansion. By Miller
and Speissegger [22] every first-order expansion R of R satisfies at least one of the
following:

(1) R is o-minimal,

(2) R defines an infinite discrete subset of R,

(3) R defines a dense and co-dense subset of R.

The open core R° of R is the expansion of (R, <) generated by all open R-definable
subsets of all R¥. By [22], if R does not satisfy (2), then R° is o-minimal.

The case when R is o-minimal, is largely understood. Wilkie’s famous theorem
[31] that (R,exp) is o-minimal is crucial. This shows the expansion of R by the
subgroup

1 0 ¢
0 X 0]:teR
0 0 1

is o-minimal for A € R+, and so is the expansion of R by any subgroup of the form

(¢ 2)en)

for s,7 € Rsg. Indeed, by Peterzil, Pillay, and Starchenko [26], whenever an expan-
sion (R,G) by a subgroup G of Gl,(R) is o-minimal, then G is already definable
in (R, exp). Futhermore, note that by a classical theorem of Tannaka and Cheval-
ley [4] every compact subgroup of Gl,,(C) is the group of real points on an algebraic
group defined over R. Thus every compact subgroup of Gl,(C) is R-definable, and
therefore the case of expansions by compact subgroups of Gl,,(C) is understood as
well.

We now consider the case when infinite discrete sets are definable. Corollary A for
discrete subgroups of C* follows easily from the proof of [12, Theorem 1.6]. While
Corollary A handles the case of expansions by discrete subgroups of Gl,,(C), there
are examples of subgroups of Gl,,(C) that define infinite discrete sets for which the
conclusion of Theorem A fails. Given o € R* the logarithmic spiral

So = {(exp(t) sin(at), exp(t) cos(at)) : t € R}

is a subgroup of C*. Let s and ¢ be the restrictions of sin and exp to [0, 2], re-
spectively. Then (R, S,) is a reduct of (R, s, ¢, \?) when \ = exp(27a), as was first
observed by Miller and Speissegger. As (R, s, ¢) is o-minimal with field of exponents
Q, the structure (R, S,,) is d-minimal® by Miller [20, Theorem 3.4.2] and thus does
not define Z. It can be checked that (R, S,) defines an analytic function that is not

1A expansion R of R is d-minimal if every definable unary set in every model of the theory
of R is a union of an open set and finitely many discrete sets.
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semi-algebraic?, and thus is not interdefinable with (R, \?) for any A € Rsy.

Most work in the case of expansions that define dense and co-dense sets concerns
expansions by finite rank subgroups of C* (see the introduction of [3] for a thorough
discussion of expansions by subgroups of C*). In [6] van den Dries and Giinaydin
showed that an expansion of R by a finitely generated dense subgroup of (R, -)
admits quantifier-elimination in a suitably extended language. Gilinaydmn [9] and
Belegradek and Zilber [1] proved similar results for the expansion of R by a dense
finite rank subgroup of the unit circle U := {a € C* : |a| = 1}. This covers the
case when G is the group of roots of unity. In all these cases the open core of the
resulting expansion is interdefinable with R. This does not always have to be the
case. In Caulfield [2] studies expansions by subgroups of C* of the form

{Nexp(ial) : k,1 € Z} where A € Ryg and a € R\ 7Q.

Such an expansion obviously defines a dense and co-dense subset of R, but by [2]
its open core is interdefinable with (R, A\*). Futhermore, even if the open core is
o-minimal, it does not have to be interdefinable with R. By [14] there is a co-
countable subset A of Ry such that if » € A and H is a finitely generated dense
subgroup of (R, -) contained in the algebraic closure of Q(r), then the open core
of the expansion of R by the subgroup

6o

is interdefinable with the expansion of R by the power function t — t" : Ry — Rxg.

All these previous results suggest that the next class of subgroups of Gl,(C) for
which we can hope to prove a classification comparable to Theorem A, is the class of
finitely generated subgroups. Here the following conjecture seems natural, but most
likely very hard to prove. Let Rpoyw be the expansion of R by all power functions
R.o — Ryg of the form ¢ — t" for r € R*.

Conjecture. Let G be a finitely generated subgroup of Gl,(C) such that (:,G)
does not define Z. Then the open core of (R, Q) is a reduct of Rpow or of (R, Sy)
for some a € R+g.

Even when the statement “(R,G) does not define Z” is replaced by “(R,G) does
not interpret (Z,+,-)”, the conjecture is open. However, this weaker conjecture
might be easier to prove, because the Novosibirsk theorem can be used to rule out
the case when G is virtually solvable and non-virtually abelian. It is worth pointing
out that Caulfield conjectured that when G is assumed to be a subgroup of C*,
then the open core (R, G) is either R or a reduct of (R, S,,) for some a € Rsg. See
[2, 3] for progress towards this latter conjecture.

2By induction on the complexity of terms it follows easily from [5, Theorem II] that the
definable functions in (R, AZ) are given piecewise by finite compositions of  — max ({0} U (AZ N
[7oo,m])) and functions definable in R. From this one can deduce that every definable function
in this structure is piecewise semi-algebraic.
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2. NOTATION AND CONVENTIONS

Throughout m,n range over N and k,! range over Z, G is a subgroup of Gl,(C),
and T is a discrete subgroup of Gl,,(C). Let Rr be the expansion of R by a (2n)%-
ary predicate defining I'. We set Ry := R,z. A subset of R¥ is discrete if every
point is isolated. We let UT,,(C) be the group of n-by-n upper triangular matrices,
D,,(C) be the group of n-by-n diagonal matrices, and U be the multiplicative group
of complex numbers with norm one.

All structures considered are first-order, “definable” means “definable, possibly with
parameters”. Two expansions of (R, <) are interdefinable if they define the same
subsets of R* for all k. If P is a propety of groups, then a group H is virtually P
if there is finite index subgroup H' of H that is P.

3. LINEAR GROUPS

We gather some general facts on groups. Throughout this section H is a finitely
generated group with a symmetric set .S of generators. Let S, be the set of m-fold
products of elements of S for each m. If S’ is another symmetric set of generators
then there is a constant & > 1 such that

E7YSm| <180 < k|S,| for all m.

Thus the growth rate of m +— |S,,| is an invariant of H. We say H has exponential
growth if there is a C' > 1 such that |S,,| > C™ for all m and H has polynomial
growth there are k,t € R+ such that |S,,| < tm* for all m. Note that finitely
generated non-abelian free groups are of exponential growth. Gromov’s theorem [§]
says H has polynomial growth if and only if it is virtually nilpotent. Gromov’s
theorem for subgroups of Gl,(C) is less difficult and may be proven using the
following two theorems:

Fact 3.1. If G does not contain a non-abelian free subgroup, then G is virtually
solvable.

Fact 3.1 is Tits’ alternative [29]. Fact 3.2 is due to Milnor [23] and Wolf [32].

Fact 3.2. Suppose H is virtually solvable. Then H either has exponential or poly-
nomaial growth. If the latter case holds then H is virtually nilpotent.

Note that Fact 3.1 and Fact 3.2 imply that every finitely generated subgroup of
G1,(C) is of polynomial or exponential growth. This dichotomy famously does not
hold for finitely generated groups in general, see for example [7].

Fact 3.3. Let E be a nilpotent, torsion-free, and non-abelian group. Then there
are a,b,c € E such that c is not the identity of E and

[a,b] =¢, ac=ca, bc=ch.

Proof. Let e be the identity element of E. We define the lower central series (Ef)ken
of E by declaring Ey = F and Ej, = [Fx_1, F] for k > 1. Nilpotency means there is
an m such that E,, # {e} and [E,,, E] = {e}. Moreover m > 1 as F is not abelian.

On the one hand, [E,,—1, E] = E,, # {e} and so E,,_1 is not contained in Z(E).
Thus, there exists a € E,,—1 \ Z(F) and b € E,, that does not commute with a.
On the other hand, [E,,, E] = {e} implies E,, is contained in the center Z(E) of E
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and is thus abelian. So, ¢ := [a, b] is an element of Z(E) and commutes with both
a and b.
]

3.1. Non-diagonalizable elements. We show certain linear groups necessarily
contain non-diagonalizable elements.

Lemma 3.4. If G is nilpotent, torsion-free, and not abelian, then G contains a
non-diagonalizable element.

Lemma 3.4 follows from Fact 3.3 above and Lemma 3.5 below.
Lemma 3.5. Suppose a,b,c € Gl,(C) satisfy

[a,b] = ¢, ac=ca, bc=ch,
and c is not torsion. Then either a or c is not diagonalizable.

Proof. Suppose a, c are both diagonalizable. As a,c commute, they are simultane-
ously diagonalizable and share a basis 28 of eigenvectors. As c is not torsion, there
is Ac € C* which is not a root of unity and v € 95 such that cv = A.v. Let A\, € C*
be such that av = A\v.

By way of contradiction, we will show a(b*v) = (A AF)(b*v) for all k£ > 1. As
A is not a root of unity, this implies a has infinitely many eigenvalues, which is
impossible for an n x n matrix. The base case holds as

a(bv) = bacv = (AgAe)(bv).
Let k > 2 and suppose a(b*'v) = (A A1) (b5 1v). As ¢ commutes with b,
a(b*v) = ab(b*~1v) = bac(b*~1v) = bab*~Lev = () (bab" " v).
Applying the inductive assumption,
(A (bab®~tv) = (A)b(AaAe ™10 o) = (AaAD) (b 0).
0

We now prove a slight weakening of Lemma 3.4 for solvable groups. Recall a €
G1,,(C) is unipotent if some conjugate of a is upper triangular with every diagonal
entry equal to one. The only diagonalizable unipotent matrix is the identity. We
recall a theorem of Mal'tsev [19].

Fact 3.6. Suppose G is solvable. Then there is a finite index subgroup G’ of G
such that G’ is conjugate to a subgroup of UT,(C).

We now derive an easy corollary from Fact 3.6.

Lemma 3.7. Suppose G is solvable and not virtually abelian. Then G contains a
non-diagonalizable element.

Proof. Suppose every element of G is diagonalizable. After applying Fact 3.6 and
making a change of basis if necessary we suppose G’ = GNUT,,(C) has finite index
in G. Let p: UT,,(C) — D, (C) be the natural quotient map; that is the restriction
to the diagonal. Every element of the kernel of p is unipotent. Thus the restriction
of p to G’ is injective, and so G’ is abelian. O
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4. NON-DIAGONALIZABLE MATRICES

Lemma 4.1. Suppose G contains a non-diagonalizable matrixz. Then there is a
rational function h on GL,(C) x Gl,(C) such that h(G x G) C C is dense in Rxg.

Proof. Suppose a € G is non-diagonalizable. Let b € Gl1,,(C) be such that bab~! is
in Jordan form, i.e.

A, O ... O

O As ... O
bab~ ! =

O O ... A

where each A; is a Jordan block and each O is a zero matrix of the appropriate
dimensions. We have

Ao ... 0
o A5 ... O

b~ = . for all k.
O O ... Af

As a is not diagonalizable, A; has more than one entry for some j. We suppose A;
is m-by-m with m > 2. For some A € C* we have

A1 0 0 0

0 A1 ... 00

0 0 A 0 0
A=

0 0 O Al

0 0 O 0 A

It is well-known and easy to show by induction that for every k > 1:

P P P U B ( DU (A DU
D N (A 6 U PN () AP
00N (A G L (N
oo 0 (e (e
Ar=19 0 0 0 Ak (|5 )Ak=mts
0 0 0 E E AP (M)AF—t
0 0 0 0 A

Let g;; be the (¢, j)-entry of g € G1,(C). Thus, for each k > 1,
(baFb™ )19 = kN1 and  (ba®bT1)g = AF.
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We define a rational function 2’ on Gl,,(C) x Gl,,(C) by declaring

/ N 912952
h (979 ) T
912922

for all g, ¢' € G1,,(C) such that gos, gj5 # 0. Then define h by declaring
h(g,g') == h'(bgb~",bg'b™")

We have
.y EATHN) .
h(a',a) = ——~——5 =~ foralli,j>1.
(@) = GV =
Thus Q- is a subset of the image of G x G under h. ([

Corollary 4.2. IfT' contains a non-diagonalizable matriz, then Rr defines Z. In
particular, if T' is either

e solvable and not virtually abelian, or
e torsion-free, nilpotent and non-abelian,

then Rp defines 7.

Proof. Applying Lemma 4.1, suppose h is a rational function on Gl,(C) x Gl,(C)
such that the image of I' x I" under h is dense in R-y. Note I' is countable as I is
discrete. It follows that the image of I' X I' under any function is co-dense in R+ .
Fact 1.1(1) implies that Ry defines Z. The second claim follows from the first by
applying Lemma 3.4 and Lemma 3.7. (]

Corollary 4.3. Ifa € GI,(C) is non-diagonalizable, then (R, {a* : k € Z}) defines
Z.

Proof. Set G := {a* : k € Z}. The proof of Lemma 4.1 shows that in this case
Q=0 is the intersection of h(G x G) and Rsg. Thus the corollary follows by Julia
Robinson’s classical theorem of definability of Z in (Q, +, ) in [27]. O

5. THE CASE OF EXPONENTIAL GROWTH

We recall the Assouad dimension of a metric space (X, d). See Heinonen [11]
for more information. The Assouad dimension of a subset Y of R” is the Assouad
dimension of Y equipped with the euclidean metric induced from R”.

Suppose A C X has at least two elements. Then A is d-separated for § € R
if d(a,b) > ¢ for all distinct a,b € A, and A is separated if A is d-separated for
some § > 0. Let 8(A) € R be the supremum of all § > 0 for which A is d-separated.
Let D(A) be the diameter of A; that is the infimum of all § € RU {oo} such that
d(a,b) < ¢ for all a,b € A, and A is bounded if D(A) < co. Note S(A) < D(A)
and every separated and bounded set is finite. The Assouad dimension of (X, d)
is the infimum of the set of 5 € R+ for which there is a C' > 0 such that
D(4)\
Al < C <S(A)> for all bounded and separated A C X.

If the set of such 8 is empty then the Assouad dimension of (X,d) is declared to
be oo. The proof of Fact 5.1 is an elementary computation which we leave to the
reader.
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Fact 5.1. Suppose there is a sequence { A tmen of bounded separated subsets of
X with cardinality at least two, and B,C > 1,t > 0 are such that

D(Anm)
> m < m
|Am| > C and S(A) = tB for all m

then (X,d) has positive Assouad dimension.

Let |v| be the usual euclidean norm of v € C". Given g € M,,(C) we let
llgll = inf{t € Rq : |gv| < t|v| for all v € C™}

be the operator norm of g. Then ||| is a linear norm on M, (C) and satisfies
lghll < llglllln|| for all g,h € M, (C). As any two linear norms on M, (C) are bi-
Lipschitz equivalent the metric induced by |||] is bi-Lipschitz equivalent to the usual
euclidean metric on R™ .

Proposition 5.2. Suppose I' contains a finitely generated subgroup I of exponen-
tial growth. Then I' has positive Assouad dimension.

Proof. Because Assouad dimension is a bi-Lipschitz invariant (see [11]), it suffices
to show that I' has positive Assouad dimension with respect to the metric induced
by ||||. We let I be the n-by-n identity matrix. Let S be a symmetric generating
set of I, and let S,, be the set of m-fold products of elements of S for m > 2. Set

B:=max{||g]|: g€ S} and D:=min{|lg—1I|:g¢€ S}

Note that D > 0. The subgroup of matrices of norm one is compact. Since I' is
infinite and discrete, there is g € S such that ||g|| # 1. Because S is symmetric,
we obtain g € S such that ||g|| > 1. Thus B > 1. Induction shows that ||g|| < B™
when g € S,,. The triangle inequality directly yields D(S,,) < 2B™. Each S,, is
symmetric as S is symmetric. Therefore ||g=t|| < B™ for all g € S,,,. Let g,h € T.
We have
1= g Rl < g~ llg — Al

Equivalently,

I—g'hl
Mg < g~ .
oI

Suppose g, h € S,, are distinct. Then g~ 'h # I, and hence ||I — g~ th|| > D. So
1 -9~ 'h| _ D
lg—n) > =g Al D
llg=l Bm
Hence 8(S,,) > D/B™. Thus
D(S,) _ 2B™ 2
<

2m

8(Swm) = D/B™ D
As T has exponential growth, there is a C' > 0 such that |S,,| > C™ for all m. An
application of Fact 5.1 shows that I' has positive Assouad dimension. (I

Proposition 5.3. Suppose I' is not virtually abelian. Then Ry defines Z.

Proof. By Corollary 4.2 and Lemma 3.7 we can assume that I' is not virtually
solvable. Thus by Fact 3.1, the group I' contains a non-abelian free subgroup.
Therefore I' has positive Assouad dimension by Proposition 5.2. We conclude that
Rr defines Z by Fact 1.1(2). O
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6. THE VIRTUALLY ABELIAN CASE
We first reduce the virtually abelian case to the abelian case.

Lemma 6.1. Suppose G is virtually abelian and every element of G is diagonal-
izable. Then there is a finite index abelian subgroup G of G such that (R,G) and
(R,G") are interdefinable.

Proof. Let G” be a finite index abelian subgroup of G. As every element of G”
is diagonalizable, G” is simultaneously diagonalizable. Fix g € Gl,,(C) such that
gag~' is diagonal for all @ € G”. Let G’ be the set of a € G such that gag™!
is diagonal, i.e. G’ is the intersection of G and g~'D,,(C)g. Then G’ is abelian,
(R, G)-definable, and is of finite index in G as G” C G’. Because G’ has finite index
in G, we have

G=¢gG'U...Ug,,G for some g1,...,9m € G.
So G is (R, G')-definable. O

Proposition 6.2 and an application of Corollary 4.2 finishes the proof of Theorem
A.

Proposition 6.2. Suppose I' is abelian andf@r does not define Z. Then there is
A € Ry such that Rr is interdefinable with R .

Let u: C* — U be the argument map and | | : C* — Ry be the absolute value
map. Thus z = u(z)|z| for all z € C*. Let U,, be the group of mth roots of unity
for each m > 1. In the following proof of Proposition 6.2 we will use the immediate
corollary of [12, Theorem 1.3] that the structure (R, A%, u%) defines Z whenever
log, 11 ¢ Q, and is interdefinable with (R, \%) otherwise.

Proof. Fact 1.1(1) implies every countable Rp-definable subset of R is nowhere
dense. It follows that every Rp-definable countable subgroup of U is finite and every
Rr-definable countable subgroup of (Rsq, -) is of the form A\? for some A € R.

Every element of T" is diagonalizable by Corollary 4.2. Thus I' is simultaneously
diagonalizable. After making a change of basis we suppose I' is a subgroup of
D,(C). We identify D, (C) with (C*)". Let I'; be the image of I' under the
projection (C*)" — C* onto the ith cordinate for 1 <i < n.

Each u(T;) is finite. Fix an m such that u(I';) is a subgroup of U,, for all
1 <4< n. For each 1 <i <n, || is a discrete subgroup of R+ and is thus equal
to aiZ for some a; € Ryg. If @; = 1 for all 1 < ¢ < n, then I' is trivial. Thus we
may suppose that there is j such that 1 < j < n and a; # 1. We fix this j. By
[12, Theorem 1.3] each «; is a rational power of ;. Let A € Ry be a rational
power of «; such that each «; is an integer power of A\. We show Rr and Ry are
interdefinable. Note that AZ is Rp-definable; so it suffices to show T' is Ry-definable.

Every element of T'; is of the form o\ for some o € U,,, and k € Z. Thus I' is a
subgroup of

0'1)\k1 0 0

(I 0
F/: . . . . 20’1,...,0nGUm,kl,...,knEZ

0 0 ce O AP
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Note I is Ry-definable. Abusing notation we let u : (C*)® — U" and we let
| |:(C*)"™ = (Rso)™ be given by
w(zy, .oy zn) = (W(z1), .. u(zn)) and  |(z1,...,20)] = (l21l, - - -, |2a])-

Then the map (C*)" — U™ x (Rsq)" given by z + (u(Z),|z|) restricts to a Ry-
definable isomorphism between I'" and Uy, x (A%)". Lemma 6.3 below implies any
subgroup of U7, x (A\*)" is Ry-definable. O
We consider (Z/mZ,+) to be a group with underlying set {0,...,m — 1} in the
usual way so that (Z/mZ,+) is a (Z,+)-definable group. Lemma 6.3 is folklore.
We include a proof for the sake of completeness.

Lemma 6.3. Every subgroup H of (Z/mZ)' x Z" for 1 >0 is (Z,+)-definable.

Proof. We first reduce to the case | = 0. The quotient map Z — Z/mZ is (Z,+)-
definable, it follows that the coordinate-wise quotient Z! x Z" — (Z/mZ)' x Z" is
(Z, +)-definable. It suffices to show the preimage of H in Z*™ is (Z, +)-definable.

Suppose H is a subgroup of Z™. Then H is finitely generated with generators
B .-, B where B; = (bi,...,b}) for all 1 < i < k. Then

k
H{Zqﬂi:cl,...,ckEZ}

i=1

k k
= {(Zcibﬁ,...,Zcibe 1Cl, ..., Cp EZ}.
i=1 i=1
Thus H is (Z,+)-definable. O

7. COUNTABLE (R, \2)-DEFINABLE GROUPS

Fix A € Ry and an o-minimal R with field of exponents Q. Since (R, A%) does not
define Z by [20, Theorem 3.4.2], Theorem A implies every (R, \%)-definable discrete
subgroup of Gl,(C) is virtually abelian. We extend this result to all countable
interpretable groups.

Proposition 7.1. Every countable (R, \?)-interpretable group is virtually abelian.

Proposition 7.1 follows directly from several previous results. Every d-minimal
expansion of R admits definable selection by Miller [21] (d-minimal definable se-
lection also follows from [17, Proposition 6.3]). Therefore an (R, \¥)-interpretable
group is isomorphic to an (R, \%?)-definable group. We now recall two results of
Tychonievich. The first is a special case of [30, 4.1.10].

Fact 7.2. If X C RF is (R, \¥)-definable and countable, then there is an Ry-
definable surjection f : (\2)™ — X for some m.

Fact 7.3 is a minor rewording of [30, 4.1.2].
Fact 7.3. Every (R, \%)-definable subset of (\X)™ is (A2, <, -)-definable.

Facts 7.2 and 7.3 together imply that every countable (R, \%)-definable group is iso-
morphic to a (Z, <, +)-definable group. Now apply the following result of Onshuus
and Vicaria [25] to complete the proof of Proposition 7.1.

Fact 7.4. Every (Z,<,+)-definable group is virtually abelian.
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