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Controlling supramolecular assembly remains a major challenge
for materials science and synthetic biology. Biopolymers
organize into multimolecular architectures via two-step nuclea-
tion processes involving dynamic intermediate solute-rich
phases. Here we present spectroscopic analyses of metastable
phases formed with a congener of the Alzheimer’s disease AR
peptide that reveals diverse populations of single -sheets. The
degree of order in this liquid-like particle phase is remarkable
both in the range of sheets and the selection of a single
propagating nucleus. The resulting fibril seed is less stable in
solution and cooperatively transforms into another fibril. The
conformational dynamics of this peptide provide a mechanistic
model for controlling the range of polymorphic amyloid
assembilies in health and disease.

From simple salts" to complex biopolymers,”? self-assembly in
aqueous environments proceeds through nucleation-depend-
ent phase transitions following Ostwald’s step rule.”’ Protein
misfolding diseases also transition through these dynamic
solute-rich phases."™* In disease, polymorphism is prevalent in
the assembled amyloid structures,” suggesting that multiple
nuclei may appear within the disordered phase. Such diversity
may underlie the ability of external templates'™ as diverse as
nucleic acids” to rapidly nucleate the propagation of distinct
assemblies from these peptide-rich liquid phases.**® To explore
how these intermediate liquid-like phases might pre-order
peptide nucleation, we sought metastable particle phases
accessible to detailed spectroscopic structural analyses.

The oligomer cascade hypothesis®® of Alzheimer’s disease
holds that the AP peptide transitions via an initial liquid-like
particle phase in the propagation of disease. Two simple AR
congeners, KLVFFAE® and KLVFFAQ,"” also undergo multistep
nucleation via a metastable phase. Extensive fluorescence
analyses in solution®? and electron microscopy of dried
samples® have provided evidence for a liquid-solid transition
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occurring within the intermediate solute-rich particles en route
to anti-parallel out-of-register B-sheets.”™'” These metastable
particles have been challenged with preassembled peptides of
distinct parallel or antiparallel $-sheets arrangements and these
seeds successfully nucleate supramolecular propagation. Un-
fortunately, these intermediate particles proved to be too
unstable under these conditions for detailed structural analyses.

Lengthening the peptide slightly and removing the C-
terminal residue gave His-His-GIn-Ala-Leu-Val-Phe-Phe-Ala-NH,
(K16A), as a more robust congener of AB."" In 25 mM MES
buffer at pH 5.6 and 25°C, this peptide transitions through
intermediate oligomeric particles with widths spanning 28 to
35 nm (Figure 1A, Figure S1) en route to fibers containing
parallel in-register B-sheets.®**""%'? When immature assemblies
are centrifuged at 6792xg for 90 min in 4°C, the pellet is
enriched in long fibers with persistence lengths >1 um and
diameters of 3.49+0.25 nm (Figure 1B, S2). The intermediate
spherical oligomers retained in the supernatant are stable and

Figure 1. (A) TEM micrographs of HHQALVFFA-NH, peptides, after 10 days of
assembly at 25°C in 25 mM MES at pH 5.6, show predominantly fibers and
particles. TEM of the pellet (B) and supernatant (C) after centrifugation at
6792 xg for 90 min at 4°C. For comparison, (D) TEM at 12 h of assembly.
Scale bar=100 nm.
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readily visualized when dried on TEM grids, and are larger than
the particles observed initially in the assembly (Figure 1C-D).

Previous attempts to detect early nucleation events have
used metals to enhance TEM contrast within the intermediate
particles®"'%'3 but metals can also template amyloid assembly.
In this peptide, metals introduce conformational heterogeneity
(Figure S3), probably due to diverse metal/histidine associa-
tions, and resolution of fibrous nuclei is not possible. In
contrast, circular dichroism (CD) analyses during assembly
provides clear evidence for a cooperative transition to [-sheets
at 3.8+0.17 days (Figure 2A), a transition time consistent with
the appearance of fibers by TEM (Figure S4).

Attenuated total reflectance isotope-edited (IE) FTIR spectra
have greatly extended assignments in the assembly of similar
peptides.®®* While the early vibrational spectra recorded
during the assembly of H-HHQALVF[1-"*CJFA-NH, contain low
signal-to-noise (Figure 2B, S6), this system exhibits extended {3-
sheet H-bonding signatures almost immediately. The absorp-
tions at 1640 cm™' and 1608 cm™' (Figure S6) are most consis-
tent with anti-parallel -sheet assemblies, but these modes
cooperatively transition as the fibers appear in solution.®®'” The
final red-shifted °C and "C amide-I stretches at 1629 cm™" and
1606 cm™" and the corresponding drop in the °C band intensity
are consistent with a cooperative transition from anti-parallel to
parallel B-sheets.*®'*'¥ This orientation transition, occurring at
4.7 £0.67 and 4.3+ 0.44 days for band splitting and the height
ratio of the amide-l band respectively, correlates with the
transition time observed by CD.

To validate this early anti-parallel orientation in the initial
particle phase, a *C/*N enrichment scheme was designed to
quantify specific *C—"*C and "*C—"°N distances by NMR (Fig-
ure 3). The expected intramolecular distance between the *C
carbonyl of Ala4 and the "N of Phe7 in an extended strand is
predicted to be ~7 A, but with peptides organized in parallel -
sheets, the intermolecular *C—"3C distance between H-bonded
strands (Figure 3E) should be detectable with *C DQF-DRAWS
solid-state NMR experiments. With anti-parallel p-sheets, the Ala
carbonyl ®C’s are too far apart in adjacent peptides for
detection, but distances to the "N’s on adjacent strands
(Figure 3F) should be accessible with "C{"°N}REDOR experi-
ments.

A £
£ 225 132
E£220 12T
g215 118
£ 210 1.0 %
= 09 2
3205 08 =
=200 et
2195 = 3
5 1901 e S, o,

2 4 6 10 ¢

Time (days)

Figure 2. (A) Time-dependent CD showing a red shift of A, ellipticity of a

1 mM HHQALVFFA-NH, peptide solution at 25 °C. (B) FT-IR *C-"C splitting
(black) and "C/"*C intensity ratio (red) for enriched (HHQ[1-"*CJALV["*N]FFA-
NH,) under identical conditions. The '>C amide-l band is at 1640 cm™' at t=0
and 1629 cm ™' in fibers.
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Figure 3. NMR analyses of isotope-enriched HHQ[1-"*CJALV["*N]FFA-NH,
assembled in pH 5.6 25 mM MES buffer at 25 °C. (A) °*C CP-MAS NMR
spectrum of lyophilized fibers and (B) in a mixture containing particles and
fibers with individual contributing components indicated with colored lines.
(C) *C{"*N}REDOR dephasing for resonances at 171.4 ppm (red squares) and
176 ppm (green squares). The 171.4 ppm resonance fits (red line) to a
mixture of 92.9 +1.4% parallel and 7.1 +3.2% anti-parallel $-sheets. The
predicted dephasing for fibers assembled with 100% parallel B-strands is
represented by the solid black line. The 176 ppm resonance fits (green line)
to 65 % anti-parallel 3-strands. (D) Normalized DQF-DRAWS experimental
data for fibers with chemical shift at 171 ppm (red squares) and particles
(green squares) fit to an array of "*C's separated by 4.7 A in parallel f-strands
(solid lines). Models of (E) parallel and (F) anti-parallel 3-sheets. [1-2ClAla
indicated with black circles/letters and ["°N]Phe with green circles/letters.

Isotopically enriched HHQ[1-">CJALV["N]FFA-NH, was pre-
pared by solid-phase synthesis and allowed to assemble for
6 days before being concentrated via centrifugation at 4°C
(Figure 1B). The supernatant was decanted and the retained
pellet was lyophilized to a white powder. As shown in
Figure 3A, the "*C CP-MAS spectrum of the pellet is dominated
by the enriched carbonyl of [1-°CJAla 4 at 171.4 ppm. When
this sample is mixed with ~15mL of the supernatant (Fig-
ure 1C) and lyophilized to a new white powder, both fibers and
spherical oligomers are detected by TEM (Figure S7). The [1-'*C]
Ala4 carbonyl resonance however populates several distinct
magnetic environments, resonating at 1723 (6.5%), 172.9
(14.7%), 173.8 (6.3%), and 176 (6.6%) ppm, in addition to the
fiber resonance at 171.4 ppm (Figure 3B).

These additional amide carbonyl resonance frequencies are
all consistent with [-sheet secondary structure. The best
resolved resonance at 176 ppm, which is slightly downfield of
typical B-sheet backbone carbonyls," is strongly dephased in
BC{"N}REDOR analyses (Figure 3C, green) and fit to 64.6 +8.6%
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of the resonance arrayed as antiparallel (3-sheets (Figure 3F).
3C-DQF-DRAWS also supports additional parallel f-sheet arrays
resonating at the same chemical shift (Figure 3D, green). The
multiplicity and broad line shape however limited accurate
distance assignments (Figure S8),

The parallel in-register (-sheet strand arrangement ex-
pected for the peptide fiber at 171.4 ppm is confirmed in
Figure 3D (red line). The *C DQF-DRAWS analyses"®'® best fits
to a repeating array of carbonyl carbons spaced 4.7 A’s apart as
shown in Figure 3E. However, even the 171.4 ppm resonance
shows greater dephasing in *C{"*N}REDOR analyses (Figure 3C,
red) than seen for the pure fibers (Figure 3C black solid-line),
indicating only 92.9+14% of the enriched carbons exist in
parallel B-sheets. With *C—"°N distances of 7.2 A, 7.9+3.2% of
the peptide would be assigned to anti-parallel $-sheets with
distances to the adjacent stand Ns of 53 A and 5.45A
(Figure 3F). Even with these overlapping resonances, the T, for
the 176 ppm resonance is 51.1+2.0 ms, significantly less than
the 171.4 ppm T, of 59.4+1.4 ms (Figure S9), consistent with
greater crystalline order existing within the parallel peptide
fibers 9

With this peptide congener, IR amide-l vibrational modes
and NMR "C chemical shifts from isotopically enriched samples
provide clear evidence for a mixture of 3-sheet assemblies
forming early in the liquid-like particle phase. Single B-sheets,
maintained primarily by H-bonding in these dehydrated particle
phases, are expected to be flexible, averaging the angular
dependence of the exciton coupling that red shifts the
electronic transitions underlying B-sheet assigned ellipticity."”
Initial simulations suggest that such motions are expected to
attenuate CD intensity more significantly than the H-bonding
distances detected by IR and NMR spectroscopies.

Previous particle imaging experiments provide clear evi-
dence for fiber nucleation occurring within metastable peptide
particle phases.®® 9 The diverse population of P-sheets
documented here suggest, as with simulations of stable H-
bonded chains of H,0 molecules existing in solution,"® that H-
bonding alone is sufficient to stabilize f-sheets in these
peptide-rich phases. Product analyses have further suggested
that facial complementarity of the p-sheet surfaces is critical for
stable nucleation®'®"'%'¥ and allows us to now propose the
assembly pathway diagrammed in Figure 4. We propose that a
critical threshold of B-sheets accumulate as the particle grows,
and facial complementarity allows for selection of a stable
nucleus that propagates in solution.

This detected population of single peptide [3-sheets in two-
step nucleation events™ could also respond to environmental
templates, ranging from metals,"*'* nucleic acids,”” chemical
reactions of the peptides®™ as well as other peptide
assemblies, 8> 191011200 aach nucleating the growth of new
assemblies. The generality of this model will now be further
explored in the context of other intrinsically disordered protein
domains®” and in full-length prions where the range of stable
nuclei could be much greater.*?

Figure 4. Proposed model for 2-step amyloid nucleation. Peptide strands
(red lines) collapse into solute-rich particle phases. Within the particles,
strands sample distinct $-sheets (orange, yellow, green, blue lines). Liquid-
solid phase transition occurs through sheet lamination in the particle,
propagating the selected structure (blue).

Experimental Section

Experimental details can be found in the Supporting Information.
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Sheet complementarity directs
assembly: Amyloid disease progres-
sion begins with neurotoxic oligo-
meric particles that transition into
paracrystalline peptide fibrils. Here
we show with a model amyloid
peptide that oligomer particles
contain multiple 3-sheet assemblies
prior to nucleation where sheet-
sheet lamination dictates the
structure of the emerging fibril.
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