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Transition metal-catalyzed asymmetric transformations of al-
kenes and alkynes can upgrade readily available unsaturated
compounds to valuable building blocks for organic synthesis.
Late transition metals supported by asymmetric ligands,
particularly palladium, rhodium, and iridium, have traditionally
been employed for enantioselective functionalization of al-
kenes and alkynes, but these precious metals are costly. Silver
is a much less expensive late transition metal with good Lewis
acidity that can accommodate diverse ligands and coordina-
tion geometries. Silver(l) complexes are also capable of
engaging in non-covalent interactions with alkenes and al-
kynes to drive selectivity in reactions at both the unsaturated
bond, as well as at an adjacent activated allylic or propargylic
C—H bond. This short review summarizes recent de-
velopments in asymmetric silver-catalyzed reactions of alkene-
containing and alkyne-containing compounds. Direct enantio-
selective transformations of the alkene/alkyne 7 bond are
described, as well as examples where the site of unsaturation
drives functionalization at an adjacent C—H bond.
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Introduction

Transition metal-catalyzed transformations of com-
pounds containing Tt-donors, including alkenes and al-
kynes [1—6], represent a powerful way to access highly
functionalized and valuable synthetic building blocks. A
host of metals have been employed in this regard,
particularly palladium, rhodium, and iridium [7—9], but
there has been a recent resurgence of interest in the use
of less expensive metals, including silver [10,11].
Silver(I) is among the softest Lewis acids and can
interact with both T-donors and n-donors, as exempli-
fied by alkenes, alkynes, allenes, carbonyls, and imines
[12]. Other advantages of this metal include versatility

in its coordination ability with a variety of N-donor and
P-donor ligands, unique redox chemistry and high
oxidizing power, and the ability to catalyze both intra-
molecular and intermolecular reactions of alkenes and
alkynes with high degrees of stereoselectivity and
regioselectivity.

In terms of the historical development of silver catalysts,
carly advances focused mainly on the Lewis acidic
properties of the metal. One of the most common modes
of reactivity of silver catalysts involves activation of a C—
C 1t bond by the Lewis acidic metal, followed by trapping
of the complex with a variety of nucleophiles, resulting in
the formation of diverse C—X bonds (X = C, N, O, P,
halogen) [13,14]. Asymmetric silver-catalyzed reactions
have traditionally involved additions to C = X 7t bonds,
highlighted by examples of enantioselective aldol re-
actions, 1,3-dipolar cycloadditions, and asymmetric ally-
lations [15—19]. However, several enantioselective
functionalizations of alkynes and alkenes ex route to the
synthesis of bioactive [20—23] molecules have been re-
ported in the past two years. This short review highlights
selected examples that furnish enantioenriched alkaloid
scaffolds, fused carbocycles, pyrrolidines, other hetero-
cycles, and propargylamines.

Enantioselective functionalization of the
bond of alkynes and alkenes

Alkynes are more readily activated by silver as compared
to alkenes; thus, most efforts toward enantioselective
transformations involve this functional group. For
example, silver-catalyzed cyclizations have been
employed to form polycyclic cores that are present in a
number of bioactive natural products, including the
akuammiline alkaloids [24—26]. The Unsworth group
recently investigated an Ag(I)-catalyzed enantiose-
lective dearomatization of the indole ring of 4 to form
the alkaloid scaffold 6 (Figure 1a). The precursor ynone-
tethered indoles 4 are easily accessible via radical al-
kylations of commercially available indoles 1 with
various xanthate derivatives 2 and alkyne Grignard re-
agents 7. Unsworth and coworkers also achieved enan-
tioselective dearomatizations utilizing (R)-SPINOL
CPA-H 3 as the ligand in combination with a silver salt
to furnish 6 in up to 96% e¢e (Figurc 1a). Ynone de-
rivatives facilitated the reaction under mild conditions,
due to the binding of the carbonyl group to the Lewis
acidic silver catalyst. A wide range of related enantio-
selective dearomatizative cyclizations was performed on

www.sciencedirect.com

Current Opinion in Green and Sustainable Chemistry 2021, 30:100483


mailto:schomakerj@chem.wisc.edu
mailto:schomakerj@chem.wisc.edu
https://doi.org/10.1016/j.cogsc.2021.100483
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cogsc.2021.100483&domain=pdf
www.sciencedirect.com/science/journal/24522236
www.sciencedirect.com/science/journal/24522236

2 Metals

diverse substrates to give 6 in high yields and stereo-
selectivities in most cases [24,27,28].

The Michelet group recently reported that ynone de-
rivatives of form 7 (Figure 1b) can be cyclized in high
ee via intramolecular, silver-catalyzed [4 + 2] cycload-
ditions. This chemistry delivers enantioenriched carbo-
and heterocyclic motifs that are present in several
bioactive natural products [29]. After evaluating several
ligands for the asymmetric [4 + 2] cycloadditions of 7, a
chiral phosphine (R)-1.8 was found to give 9 in yields of
28—76% and ee of up to 50% (Figure 1b) [29]. Although
these results are promising, further ligand screening is
required to improve the low-to-moderate ee.

Ishihara and coworkers reported the first example of an
asymmetric one-pot Michael addition/Conia-ene cycli-
zation of enones and propargylamines via synergistic
Fe(IlT)/Ag(I) catalysis to furnish enantioenriched
pyrrolidines (Figure 2a), which are useful synthons for
the preparation of a variety of natural products and
bioactive molecules [30]. Optimal conditions employed
a Fe(IlI)/Ag(I) cooperative catalyst supported by the
ligand L12 to couple enone derivatives 10 with prop-
argylic sulfamates 11 to form pyrrolidine scaffolds 13
(Figure 2a) in up to 98% vyield and 91% ee. The success of
this approach was rationalized through the initial acti-
vation of the alkyne by the silver complex to facilitate

the subsequent iron-catalyzed Conia-ene reaction. The
ligand is proposed to predominantly coordinate to the
iron center, with the major role of the silver simply to
activate the triple bond.

Silver-catalyzed strategies to access other attractive
nitrogen-containing scaffolds in enantioenriched form
have also been recently developed by the groups of Che
and Ma [31,32]. In 2019, Che and coworkers investi-
gated the transformation of enantioenriched propargyl-
amines of form 14 (Figure 2b), readily prepared using
(8)-prolinol as a chiral auxiliary, to axially chiral vinyl
allenes 15 in good yields and excellent e¢ up to 99%.
Technically, this is not an asymmetric reaction; however,
the excellent fidelity in the transfer of point-to-axial
chirality from 14 to 15, which can bear diverse
electron-donating and withdrawing groups, is note-
worthy. The utility of the chiral vinyl allenes 15 was
further highlighted in subsequent (hetero)-Diels—Alder
reactions with both azodicarboxylates 16 and malei-
mides 18 in the presence of water. These reactions also
displayed excellent axial-to-point chirality transfer to
give the heterocyclic products 17 and 19 in up to 99% e¢
[31,33].

In recent years, the combination of chiral phase-transfer
and transition-metal catalysis has been widely utilized
for the preparation of chiral alkynes that comprise
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(a) Silver-catalyzed asymmetric indole dearomatization of 4 to furnish alkaloid scaffolds 6. (b) Silver-catalyzed enantioselective intramolecular [4 + 2]

cycloadditions of enynes 7.
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Figure 2
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(a) One-pot asymmetric tandem Michael addition/Conia-ene cyclization via cooperative Fe(lll)/Ag(l) catalysis. (b) AgNOs-mediated synthesis of axially
chiral vinyl allenes and use in hetero-Diels—Alder reactions. (c) Enantioselective, silver-catalyzed alkynylations of ketones.

valuable synthetic building blocks [34]. In this context,
Maruoka and colleagues in 2019 investigated the
asymmetric, silver-catalyzed alkynylation of imines to
furnish chiral propargylic alcohols. While this has been
accomplished using other late transition metals, the
successful use of silver would provide a much less
expensive route [34,35]. The formation of the alkyne
nucleophile 21 was achieved in presence of a silver
catalyst formed 2 situ from AgOAc and a chiral (S,8)-1L22
ligand. This enantioenriched phase-transfer catalyst was
able to discriminate between the two enantiotopic faces
of 20 during nucleophilic addition of alkyne 21 to furnish
alcohol 23 in high yield and ¢e of up to 96%. The addition

of K,COj as the base and careful control of the tem-
perature proved essential for the success of this reaction.
A wide range of amines 20 and alkyne derivatives 21 was
well-tolerated under the reaction conditions (Figure 2c)
[34,36,37].

An efficient approach toward the silver-catalyzed func-
tionalization of 2-(1-alkynyl)-Z-alken-1-ones 24 with 2-
naphthols 25 has been recently disclosed by Ren and
coworkers (Figure 3a). A previously reported silver
catalyst gives highly regioselective and diaster-
eoselective reactions between 24 and 25 to form racemic
fused tetracyclic furan derivatives of form 27 [25]. The
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(a) Enantioselective silver-catalyzed cascade reaction of 2-(1-alkynyl)-2-alken-1-ones with 2-naphthols. (b) Catalytic, asymmetric silver-catalyzed

formation of nitropyrrolidines.

scope and generality of this cascade reaction was also
investigated, showing that a broad range of substrates
bearing functionalities such as halides, cyanide, and
esters, on the naphthalene ring was tolerated to deliver
products of form 27 in up to 84% vyield. The use of
AgTFA resulted in only one isolable diastereomer 27 in a
significantly enhanced yield. Other silver catalysts,
including AgOAc and Ag2CO3, were not effective; thus,
the choice of silver salt is critical. [25, 38, 39] In addi-
tion, the group developed an asymmetric version of the
reaction, employing silver trifluoroacetate supported by
a chiral phosphoric acid 26. The heterocyclic product
27a was furnished in 72% yield and 71:29 er.

Chiral pyrrolidines bearing nitro groups are of interest
due to their bioactivity, which includes potential as anti-
adhesives  and  significant  inhibitory  activity
toward various skin cancers [40]. The nitro group can
also be transformed into other functional groups of great
utility in organic synthesis; in addition, its presence
imparts a unique conformation to the five-membered
ring of the pyrrolidine that is of benefit for the

biological activity [40]. An asymmetric synthesis of
nitropyrrolidines 31 (Figure 3b) was achieved through a
regioselective and diastereoselective Michael addition
of 29 to 28, controlled by the chiral phosphoramidite-
silver-benzoate complex 30 [40,41]. When one equiva-
lent of both 28 and 29 was employed, nitroprolinates 32
were formed via the expected catalytic [3 4+ 2] cyclo-
addition (Figure 3b) [42,43]. As a further extension of
this chemistry, a one-pot reaction utilizing one equiva-
lent of imine 29 and 2 equivalents of the nitroalkene 28
was envisaged to furnish 31. The sequence proceeds via
an asymmetric [3 + 2] cycloaddition catalyzed by L30,
followed by a Michael addition, to give 31 in good yield
and up to 95% dr and 99% ¢e. The benzoic acid additive
aids in the activation of 28 toward the Michael addition
[21,40,44].

Enantioselective functionalization of C—H
bonds adjacent to the w bond of alkenes
and alkynes

The 7 bond of an alkyne can also be engaged to
activate the adjacent propargylic C—H bond
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toward silver-catalyzed nitrene transfer to form a new
carbon-nitrogen bond. The Schomaker group recently
reported the design of a novel ligand for silver-
catalyzed asymmetric aminations of the propargylic
C—H bond in 33 to ultimately furnish y-amino alcohol
motifs 34 (Figure 4) [45,46]. The ligand design was
critical to achievmg both good site- sclect1v1ty between
competing B-C(sp? H Ponds or v C(sp®)—H bonds, as
well as high enantioselectivity [45,47]. Various ligand
designs were evaluated to assess the effects of elec-
tronics, steric bulk, substrate-ligand T—1t, and metal—
ligand cation—Tr interactions on site-selectivity and
enantioselectivity. The ligand optimization studies
culminated in the design of Min-BOX L35, where key
features important to consistently high ¢e include the
aryl substitution, bulk at the 3- and 5-positions of the
aromatic ring, and a quaternary stereodefined carbon
bearing a methyl group. Much lower ¢¢ was observed
using BOX ligands lacking the fully substituted carbon
center. Both the steric bulk and the introduction of
the a-Me group substitution on the BOX ligand 35 are
hypothesized to minimize rotation around the Ar—C
bond of the ligand, leading to a more restricted
conformation in the transition state and enhancing the
enantioselectivity. Alkynes 33 containing bulky alkyl or
aryl substituents at the distal alkyne carbon gave the
highest ¢¢, but a variety of electron-donating and
clectron-withdrawing substituents, regardless of ste-
rics, were well-tolerated, as were alkynes bearing
heterocycles, such as furan and thiophene [46]. The
mechanism is proposed to involve formation of an in-
termediate iminoiodinane from the reaction of the

alkyne precursor with PhIO. Subsequent transfer to
the chiral Ag(I) catalyst furnishes the silver-nitrene
complex 36. The nitrogen of the metal-supported
nitrene, believed to be an Ag(Il) radical anion, ab-
stracts one of the prochiral propargylic hydrogens in an
H-atom transfer (HAT') step, as depicted in transition
state 37. Rapid radical recombination vyields the
desired product 34 with high enantioselectivity.
Further applications of this chemistry will enable the
formation of valuable building blocks for bioactive
molecules and synthetic containing 1,3-aminoalcohol
functionality [11,45,48,49].

Concluding remarks

This review addresses recent developments in the
application of silver catalysis to the enantioselective
functionalization of alkenes and alkynes. These power-
ful transformations are capable of forming a variety of
useful compounds, including enantioenriched alkaloid
scaffolds, fused carbocycles, pyrrolidines, diverse het-
erocycles, and propargylamines. These motifs occur in
many molecules with potential bioactivity and are of
significant interest to synthetic and medicinal chemists
alike. The practicality of these methods is demonstrated
by their generally broad substrate scope, excellent
functional group compatibility, and high yields and
enantioselectivity. In particular, the low cost and toxicity
of silver catalysts, coupled with their versatile coordi-
nation with diverse classes of chiral ligands, will increase
interest in the future design and applications of new
asymmetric silver catalysts.

Figure 4
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Enantioselective silver-catalyzed propargylic C—H bond amination with AgCIO, supported by a new MinBOX ligand.
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