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EIGENVALUE PROBLEM

FARHAN ABEDIN AND JUN KITAGAWA

(Communicated by Ryan Hynd)

Abstract. We present an iterative method based on repeatedly inverting the
Monge–Ampère operator with Dirichlet boundary condition and prescribed
right-hand side on a bounded, convex domain Ω ⊂ R

n. We prove that the
iterates uk generated by this method converge as k → ∞ to a solution of the
Monge–Ampère eigenvalue problem{

detD2u = λMA(−u)n in Ω,

u = 0 on ∂Ω.

Since the solutions of this problem are unique up to a positive multiplica-
tive constant, the normalized iterates ûk := uk

||uk||L∞(Ω)
converge to the

eigenfunction of unit height. In addition, we show that limk→∞ R(uk) =

limk→∞ R(ûk) = λMA, where the Rayleigh quotient R(u) is defined as

R(u) :=

∫
Ω(−u) detD2u∫

Ω(−u)n+1
.

Our method converges for a wide class of initial choices u0 that can be con-
structed explicitly, and does not rely on prior knowledge of the Monge–Ampère
eigenvalue λMA.

1. Introduction and main result

Let Ω ⊂ R
n be a bounded, convex domain. The Monge–Ampère eigenvalue

problem seeks to find a convex function u ∈ C2(Ω) ∩ C(Ω) and a positive number
λ such that

(1)

{
detD2u = λ(−u)n in Ω,

u = 0 on ∂Ω.

This problem was first considered by Lions in [14], who proved the following result.

Theorem 1.1 (Lions 1985). Assume Ω ⊂ R
n is a smooth, bounded, uniformly

convex domain. There exist a unique positive constant λMA and a unique (up to
positive multiplicative constants) nonzero convex function u ∈ C1,1(Ω) ∩ C∞(Ω)
solving the eigenvalue problem (1).
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The constant λMA is called the Monge–Ampère eigenvalue and is defined in
the following manner. Let A(x) ∈ C(Ω) be a symmetric, positive-definite matrix
such that detA(x) ≥ n−n for all x ∈ Ω. The collection of all such matrices will be
denoted A. Let LA be the linear operator LAv = − tr(A(x)D2v), and denote by λ1

A

the (positive) first Dirichlet eigenvalue of LA. Then the Monge–Ampère eigenvalue
is defined as

λMA :=

(
inf
A∈A

λ1
A

)n

.

The eigenvalue problem (1) was revisited by Tso in [20] from a variational point of
view. In order to state Tso’s result, we need a few definitions. Consider the class
of functions

K2 =
{
u ∈ C0,1(Ω) ∩ C∞(Ω) : u convex and nonzero in Ω, u = 0 on ∂Ω

}
.

Define the Rayleigh quotient of a function u ∈ K2 as

R(u) :=

∫
Ω
(−u) detD2u∫
Ω
(−u)n+1

.

It is useful to observe that R(cu) = R(u) for all c > 0.

Theorem 1.2 (Tso 1990). Assume Ω ⊂ R
n is a smooth, bounded, uniformly convex

domain. Then

λMA = inf
u∈K2

R(u).

Owing to recent work of Le [12], Theorems 1.1 and 1.2 hold for arbitrary convex
domains Ω, without assuming uniform convexity. To state Le’s result, we let

K =
{
u ∈ C(Ω) : u convex and nonero in Ω, u = 0 on ∂Ω

}
.

Given u ∈ K, we denote by Mu the Monge–Ampère measure of u, defined in (8) in
Section 2. The Monge–Ampère energy of u is the quantity I(u) :=

∫
Ω
(−u) dMu.

The Rayleigh quotient of u is then defined as

(2) R(u) :=
I(u)

||u||n+1
Ln+1(Ω)

=

∫
Ω
(−u) dMu∫
Ω
(−u)n+1

.

Note that this definition coincides with the one considered by Lions and Tso when
u ∈ K2.

Theorem 1.3 (Le 2018). Assume Ω ⊂ R
n is a bounded, convex domain. Then

there exists a unique positive constant (still denoted by λMA) and a unique (up to
positive multiplicative constants) function u ∈ K ∩ C∞(Ω) satisfying (1) with

λ = λMA = inf
u∈K

R(u).

There are two methods currently available for constructing a solution of (1),
both relying on compactness arguments. The first, by Lions [14], considers solving
the following Dirichlet problem for a convex function uτ ∈ C2(Ω) for each τ ≥ 0:

(3)

{
detD2uτ = (1− τuτ )

n in Ω,

uτ = 0 on ∂Ω.

It is shown in [14, Theorem 1] that the quantity

(4) μ := sup{τ > 0 : there exists a solution uτ of (3)}
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is strictly positive, that limτ→μ− ||uτ ||L∞(Ω) = ∞, and that (up to choice of a

subsequence) the functions ûτ := uτ

||uτ ||L∞(Ω)
converge to a solution of (1) as τ → μ−.

Furthermore, μ = λ
1
n

MA; thus, (4) provides a third characterization of the Monge–
Ampère eigenvalue λMA.

The second method of constructing a solution of (1), by Tso [20], is to fix con-
stants σ, p > 0 and consider the Dirichlet problem

(5)

{
detD2u = σ(−u)p in Ω,

u = 0 on ∂Ω.

Notice that the equation (5) is the Euler–Lagrange equation of the functional

(6) Jp,σ(u) :=
1

n+ 1

∫
Ω

(−u) detD2u− σ

p+ 1

∫
Ω

(−u)p+1.

Using variational methods, Tso proves the existence of unique minimizers in K2

of the functional Jp,σ for p < n and σ = λMA. By establishing estimates for the
minimizers that are uniform in p, Tso shows there exists a sequence pk ↗ n such
that the solutions uk of (5) with p = pk and σ = λMA converge to a solution of (1).

The primary contribution of the present work is to present an iterative method
for constructing a sequence of functions uk ∈ K that converges uniformly to a
solution of (1). This sequence is obtained by repeatedly inverting the Monge–
Ampère operator with Dirichlet boundary condition. We show, moreover, that
limk→∞ R(uk) = λMA. Similar inverse iteration methods have been considered for
equations in divergence form such as the p-Laplace equation [1, 2, 11]. The present
work establishes the first inverse iteration result for the eigenvalue problem of a
fully nonlinear degenerate elliptic equation.

Theorem 1.4. Suppose Ω ⊂ R
n is a bounded, convex domain. Let u0 ∈ C(Ω)

satisfy the following conditions:

(i) u0 is convex and u0 ≤ 0 on ∂Ω,
(ii) R(u0) < ∞,
(iii) Mu0 ≥ Ln in Ω, where Ln denotes n-dimensional Lebesgue measure.

For k ≥ 0, define the sequence uk ∈ K to be the solutions of the Dirichlet problem

(7)

{
detD2uk+1 = R(uk)(−uk)

n in Ω,

uk+1 = 0 on ∂Ω.

Then {uk} converges uniformly on Ω to a nonzero Monge–Ampère eigenfunction
u∞. Consequently, the sequence ûk := uk

||uk||L∞(Ω)
converges uniformly on Ω to the

unique solution u of (1) satisfying ||u||L∞(Ω) = 1. Furthermore, limk→∞ R(uk) =
limk→∞ R(ûk) = λMA.

We briefly outline the strategy behind the proof of Theorem 1.4. The starting
point is a monotonicity relation, proved in Lemma 3.1, which provides control over
the Rayleigh quotients R(uk) and enables us to prove uniform Hölder estimates
for the functions uk; see Proposition 3.2. The sequence {uk} is, therefore, com-
pact; hence, there exists a subsequence {uk(j)}j∈N converging to a limiting function
u∞. Comparison principle arguments using the eigenfunctions from Theorem 1.3
show that ||uk||L∞(Ω) stays uniformly away from zero; see Proposition 3.3. Conse-
quently, u∞ ∈ K is a candidate to solve the eigenvalue problem (1). However, in
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order to prove that u∞ is an eigenfunction, it is necessary to show that the shifted
subsequence {uk(j)+1}j∈N also converges to u∞. The monotonicity relation and a
continuity property of the Monge–Ampère energy, Lemma 2.9, are essential to verify
the aforementioned claim, as well as to establish that any convergent subsequence
of {uk} must converge to the same eigenfunction u∞.

Let us point out an elementary construction of an initial function u0 satisfying the
hypotheses of Theorem 1.4 for any bounded, convex domain Ω ⊂ R

n. Let BR(x0)
be any ball centered at x0 ∈ R

n of radius R > 0 such that Ω � BR(x0). Consider
the parabola PR(x) = 1

2

(
|x− x0|2 −R2

)
, which satisfies detD2PR(x) = 1 for all

x ∈ R
n and vanishes on ∂BR(x0). Then u0(x) = PR(x) satisfies all the properties

required in the statement of Theorem 1.4.
We highlight some other noteworthy attributes of the iteration (7). First, let us

point out that both the approaches of Lions and Tso outlined above for construct-
ing a solution of (1) require a priori knowledge of the Monge–Ampère eigenvalue
λMA. The iterative method (7) solves for both the eigenfunction and eigenvalue
simultaneously and thus requires no advance knowledge of λMA. Additionally, (7)
provides a means to estimate λMA by computing the Rayleigh quotients R(uk) for
k large. An approximation of the Monge–Ampère eigenvalue is of interest, as λMA

is known to satisfy analogues of the classical Brunn–Minkowski, isoperimetric, and
reverse isoperimetric inequalities; we refer to the works [3, 10, 12, 18] for the exact
statements of these inequalities. It has also been noted in [13,17] that λMA should
determine the rate of extinction for a class of nonparametric surfaces flowing by
the nth root of their Gauss curvature.

Second, the methods of Lions and Tso necessitate solving Dirichlet problems for
Monge–Ampère equations of the form detD2u = f(u), where the right-hand side is
some function f of the unknown u. The iteration (7), on the other hand, requires
solving Dirichlet problems for Monge–Ampère equations of the form detD2u = g,
where the right-hand side g depends only on the previous iterate, hence is a known
function. This makes (7) appealing from the point of view of numerical analysis.
There is a vast literature on numerical methods for the Dirichlet problem for the
Monge–Ampère equation and, more generally, fully nonlinear elliptic equations. We
refer the reader to the recent survey [16] for an extensive overview.

Finally, let us recall that the Monge–Ampère operator can also be written in
divergence form:

detD2u =
1

n
div(Φu∇u),

where Φu(x) is the cofactor matrix of D2u(x), given by detD2u(x)(D2u(x))−1 when
D2u(x) is invertible. An integration by parts shows that one can write the Rayleigh
quotient (2) in the more familiar manner

R(u) =
1
n

∫
Ω
〈Φu∇u,∇u〉∫

Ω
(−u)n+1

.

This form of the Rayleigh quotient suggests using appropriate versions of Poincaré-
and Sobolev-type inequalities (see [15, 19]) to prove Theorem 1.4. However, this
would require explicit control of the cofactor matrix Φu at each step of the iteration,
which is difficult as the smallest eigenvalue of D2u degenerates near ∂Ω, due to
imposing the Dirichlet boundary condition. Our proof of Theorem 1.4 thus relies
heavily on techniques for tackling nondivergence form equations and makes full use
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of various fundamental attributes of convex functions and solutions of the Monge–
Ampère equation.

Let us mention that Theorem 1.4 does not provide an independent proof of ex-
istence and uniqueness (up to scaling of the eigenfunction) of an eigenpair (u, λ)
solving (1); it merely provides a computational method for obtaining the eigenfunc-
tion u of unit height and the eigenvalue λMA. In fact, the proof of Theorem 1.4
uses Theorem 1.3.

The rest of this paper is structured as follows: in Section 2 we state some basic
properties of convex functions and the Monge–Ampère equation. The proof of the
main result, Theorem 1.4, is carried out in Section 3.

2. Background on the Monge–Ampère equation

This section is devoted to stating some basic results on convex functions and
weak solutions of the Monge–Ampère equation that will be used in the proof of
Theorem 1.4. From here onward, we will assume that the domain Ω is bounded
and convex.

Given a function u ∈ C(Ω), the subdifferential of u at x ∈ Ω is the set

∂u(x) := {p ∈ R
n : u(y) ≥ u(x) + p · (y − x) for all y ∈ Ω}.

If u is differentiable at x, then ∂u(x) = {∇u(x)}. Given a set E ⊂ Ω, we define

∂u(E) :=
⋃
x∈Ω

∂u(x).

The Monge–Ampère measure of u is defined as
(8)
Mu(E) := Ln(∂u(E)) for all E ⊂ Ω such that ∂u(E) is Lebesgue measurable,

where, Ln denotes n-dimensional Lebesgue measure. It is well known that Mu is
a Radon measure (see [8, Lemma 1.2.2]) and that if u ∈ C2(Ω),

Mu(E) =

∫
E

detD2u.

The following result shows that Monge–Ampère measures are stable under uniform
convergence.

Lemma 2.1 (Weak convergence of Monge–Ampère measures; [8, Lemma 1.2.3] and
[7, Proposition 2.6]). If uk are convex functions in Ω converging locally uniformly
to a function u, then the associated Monge–Ampère measures Muk converge weakly
to the measure Mu; that is,

lim
k→∞

∫
Ω

ϕ dMuk =

∫
Ω

ϕ dMu for all ϕ ∈ Cc(Ω).

Given a nonnegative Borel measure ν on Ω, we say that the convex function
u ∈ C(Ω) is an Aleksandrov solution of detD2u = ν in Ω if Mu = ν as measures.
We also write Mu ≥ ν in Ω (resp., Mu ≤ ν in Ω) if Mu(E) ≥ ν(E) (resp.,
Mu(E) ≤ ν(E)) for all Borel sets E ⊂ Ω. If ν is absolutely continuous with
respect to n-dimensional Lebesgue measure and has a density f , then we will write
detD2u = f .

We next state the interior gradient estimate, the Aleksandrov maximum princi-
ple, and the comparison principle for Aleksandrov solutions.
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Lemma 2.2 (Interior gradient estimate; [8, Lemma 3.2.1]). Suppose u ∈ C(Ω) is
convex and vanishes on ∂Ω. Then

(9) |p| ≤ supΩ |u|
dist(x, ∂Ω)

for all x ∈ Ω, p ∈ ∂u(x).

Theorem 2.3 (Aleksandrov maximum principle; [8, Theorem 1.4.2]). Suppose u ∈
C(Ω) is convex and vanishes on ∂Ω. Then there exists a constant Cn > 0 depending
only on the dimension n such that

(10) |u(x)|n ≤ Cndiam(Ω)n−1dist(x, ∂Ω)Mu(Ω) for all x ∈ Ω.

Lemma 2.4 (Comparison principle; [8, Theorem 1.4.6]). Suppose u, v ∈ C(Ω) are
convex and satisfy u ≥ v on ∂Ω and Mu ≤ Mv in Ω. Then u ≥ v in Ω.

The following result due to Hartenstine [9] shows that the Dirichlet problem for
the Monge–Ampère equation on any bounded, convex domain with zero boundary
data always has a unique Aleksandrov solution; see also [7, Theorem 2.1.3].

Theorem 2.5 (Solvability of Dirichlet problem; [9, Theorem 1]). Given a Borel
measure ν with ν(Ω) < ∞, there exists a unique convex function u ∈ C(Ω) that is
an Aleksandrov solution of the Dirichlet problem{

detD2u = ν in Ω,

u = 0 on ∂Ω.

Aleksandrov solutions of the Dirichlet problem with zero boundary conditions
are closed under uniform limits, as shown by the following lemma.

Lemma 2.6 (Stability of Aleksandrov solutions; [7, Proposition 2.12]). Let {νk}
be a sequence of Borel measures in Ω such that supk νk(Ω) < ∞, and let uk ∈ C(Ω)
be Aleksandrov solutions of the Dirichlet problem{

detD2uk = νk in Ω,

uk = 0 on ∂Ω.

If νk converges weakly to a Borel measure ν on Ω, then uk converges locally uni-
formly to the Aleksandrov solution u of the Dirichlet problem{

detD2u = ν in Ω,

u = 0 on ∂Ω.

A hallmark result in the theory of Monge–Ampère equations is the strict convex-
ity and regularity of Aleksandrov solutions established by Caffarelli in the seminal
works [4–6]. We summarize these important contributions as follows.

Theorem 2.7 (Regularity results for Aleksandrov solutions; see also [7, Corollaries
4.11, 4.21, and 4.43] and [8, Theorem 5.4.8]). Let u be an Aleksandrov solution of
the Dirichlet problem {

detD2u = f in Ω,

u = 0 on ∂Ω.

Suppose there exist constants C1, C2 > 0 such that C1 ≤ f ≤ C2 in Ω. Then the
following results hold:

(i) u is strictly convex and u ∈ C1,α
loc (Ω).

(ii) If f ∈ Cα(Ω), then u ∈ C2,α
loc (Ω).

(iii) If f ∈ C∞(Ω), then u ∈ C∞(Ω).
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Standard bootstrap arguments using Theorem 2.7 show that Aleksandrov solu-
tions of the Monge–Ampère eigenvalue problem are strictly convex and smooth in
the interior (see [12, Proposition 2.8]).

Proposition 2.8 (Interior regularity). Let σ, p > 0 be fixed constants. Suppose
u ∈ C(Ω) is a nonzero Aleksandrov solution of the Dirichlet problem{

detD2u = σ(−u)p in Ω,

u = 0 on ∂Ω.

Then u is strictly convex and u ∈ C∞(Ω) ∩ C(Ω).

We next prove a continuity property of the Monge–Ampère energy, I(u) =∫
Ω
(−u)dMu along a sequence of convex functions {vk} converging uniformly and

satisfying uniform upper bounds on Mvk with respect to Lebesgue measure (cf.
[20, Proposition 1.1]).

Lemma 2.9. Suppose vk ∈ C(Ω) are convex functions converging uniformly on Ω
to a function v, and there exists a constant Λ > 0 such that Mvk ≤ ΛLn for all
k ≥ 0. Then limk→∞ I(vk) = I(v).

Proof. Let ϕ ∈ Cc(Ω) be arbitrary. We have∣∣∣∣
∫
Ω

ϕv dMv −
∫
Ω

ϕvk dMvk

∣∣∣∣
≤

∣∣∣∣
∫
Ω

ϕv dMv −
∫
Ω

ϕv dMvk

∣∣∣∣ +
∣∣∣∣
∫
Ω

ϕ(v − vk) dMvk

∣∣∣∣
≤

∣∣∣∣
∫
Ω

ϕv dMv −
∫
Ω

ϕv dMvk

∣∣∣∣ + ||ϕ||L∞(Ω)||v − vk||L∞(Ω)Mvk(Ω)

≤
∣∣∣∣
∫
Ω

ϕv dMv −
∫
Ω

ϕv dMvk

∣∣∣∣ + ||ϕ||L∞(Ω)||v − vk||L∞(Ω)ΛLn(Ω)

=: Ak +Bk.

By Lemma 2.1, we know limk→∞ Ak = 0, while limk→∞ Bk = 0 due to the uniform
convergence of vk to v. Therefore,

(11) lim
k→∞

∫
Ω

ϕvk dMvk =

∫
Ω

ϕv dMv for all ϕ ∈ Cc(Ω).

Now let ε > 0 be fixed, and let Ωε be an open set such that Ωε � Ω and Ln(Ω\Ωε) ≤
ε. Let ψε ∈ Cc(Ω) be such that 0 ≤ ψε ≤ 1 in Ω and ψε ≡ 1 on Ωε. Then, for any
k ≥ 0, we can write

I(vk)− I(v)

=

∫
Ω

v dMv −
∫
Ω

vk dMvk

=

∫
Ω

ψεv dMv −
∫
Ω

ψεvk dMvk +

∫
Ω

(1− ψε)v dMv −
∫
Ω

(1− ψε)vk dMvk

=

∫
Ω

ψεv dMv −
∫
Ω

ψεvk dMvk +

∫
Ω\Ωε

(1− ψε)v dMv −
∫
Ω\Ωε

(1− ψε)vk dMvk.
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Since Mvk ≤ ΛLn for all k ≥ 0, the lower semicontinuity on open sets of the
Monge–Ampère measure under uniform convergence (see [8, Lemma 1.2.2 (ii)])
implies Mv(U) ≤ ΛLn(U) for any open set U ⊂ Ω. Therefore,∣∣∣∣

∫
Ω\Ωε

(1− ψε)v dMv

∣∣∣∣ ≤ ||1− ψε||L∞(Ω)||v||L∞(Ω)Mv(Ω \ Ωε)

≤ ||v||L∞(Ω)ΛLn(Ω \ Ωε) ≤ C1ε,

where C1 > 0 is a constant independent of ε. Similarly,∣∣∣∣
∫
Ω\Ωε

(1− ψε)vk dMvk

∣∣∣∣ ≤ ||1− ψε||L∞(Ω)||vk||L∞(Ω)Mvk(Ω \ Ωε)

≤ ||vk||L∞(Ω)ΛLn(Ω \ Ωε) ≤ C2ε,

where C2 > 0 is a constant independent of ε and k. Therefore, there exists a
constant C > 0 independent of k and ε such that

|I(vk)− I(v)| ≤
∣∣∣∣
∫
Ω

ψεv dMv −
∫
Ω

ψεvk dMvk

∣∣∣∣ + Cε.

Consequently, by (11), we have

lim sup
k→∞

|I(vk)− I(v)| ≤ Cε.

Since ε > 0 was arbitrary, we conclude that

lim
k→∞

I(vk) = I(v).

�

We conclude this section by showing that if u ∈ C(Ω) is convex and vanishes on
∂Ω, then all Lp norms of u are comparable.

Lemma 2.10. If u ∈ C(Ω) is convex and vanishes on ∂Ω, then

||u||L∞(Ω)

n+ 1
≤

(
1

|Ω|

∫
Ω

|u|p
) 1

p

≤ ||u||L∞(Ω) for all p ≥ 1.

Proof. The second inequality is trivial. For the first, we let K be the convex
cone with base Ω, height −||u||L∞(Ω), and vertex at the point where u achieves
its minimum. Then u ≤ K ≤ 0 on Ω by convexity of u. It follows from Jensen’s
inequality that for any p ≥ 1,(

1

|Ω|

∫
Ω

|u|p
) 1

p

≥ 1

|Ω|

∫
Ω

|u| ≥ 1

|Ω|

∫
Ω

|K| =
||u||L∞(Ω)

n+ 1
.

�

3. Proof of Theorem 1.4

In this entire section, uk, k ≥ 0, will always denote the functions from the
statement of Theorem 1.4. We begin the proof of Theorem 1.4 by introducing an
important monotone decreasing quantity associated to the iteration (7).

Lemma 3.1.

(12) R(uk+1)||uk+1||nLn+1(Ω) ≤ R(uk)||uk||nLn+1(Ω) for all k ≥ 0.
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Proof. Multiplying (7) by −uk+1 and integrating yields∫
Ω

(−uk+1)dMuk+1 = R(uk)

∫
Ω

(−uk+1)(−uk)
n.

Using the definition of R(uk+1), we can rewrite the left-hand side to get

R(uk+1)||uk+1||n+1
Ln+1(Ω) = R(uk)

∫
Ω

(−uk+1)(−uk)
n.

Then by Hölder’s inequality∫
Ω

(−uk+1)(−uk)
n ≤ ||uk+1||Ln+1(Ω)||uk||nLn+1(Ω),

and inequality (12) follows after dividing by ||uk+1||Ln+1(Ω). �

We now use the monotonicity relation (12) to prove a global Hölder estimate for
the functions uk solving (7).

Proposition 3.2. There exists C = C(n,Ω, u0) > 0 such that for all k ≥ 1,

uk ∈ C0, 1
n (Ω) with Hölder norm uniformly bounded by C.

Proof. By Theorem 2.3 and (7), we have for any k ≥ 0 and x ∈ Ω

|uk+1(x)|n ≤ Cndiam(Ω)n−1dist(x, ∂Ω)Muk+1(Ω)

= Cndiam(Ω)n−1dist(x, ∂Ω)R(uk)

∫
Ω

(−uk)
n

≤ Cndiam(Ω)n−1dist(x, ∂Ω)R(uk)||uk||nLn+1(Ω)|Ω|
1

n+1

≤
(
Cndiam(Ω)n−1|Ω| 1

n+1R(u0)||u0||nLn+1(Ω)

)
dist(x, ∂Ω),

where we have used Hölder’s inequality in the third line and the monotonicity
relation (12) in the final step. In particular, there exists C1 = C1(n,Ω, u0) > 0
such that

sup
Ω

|uk| ≤ C1.

It follows from the interior gradient estimate Lemma 2.2 that uk is uniformly Lip-
schitz on any compact subset of Ω. Next, since uk vanishes on ∂Ω, the estimate
above yields a uniform C0, 1

n estimate of uk near ∂Ω. Consequently, uk is uniformly
1
n -Hölder continuous in Ω. �

The next proposition establishes a uniform lower bound for ||uk||L∞(Ω).

Proposition 3.3. ||uk||L∞(Ω) ≥ λ
−1/n
MA for all k ≥ 0.

Proof. Let û ∈ K ∩ C∞(Ω) be the solution of (1) satisfying ||û||nL∞(Ω) = λ−1
MA,

which exists by Theorem 1.3. We prove by induction that û ≥ uk for each k ≥ 0.
To establish the base case, we recall that Mu0 ≥ Ln. Therefore, if E ⊂ Ω is any
Borel set,

Mû(E) = λMA

∫
E

(−û)n ≤ λMAλ
−1
MALn(E) ≤ Mu0(E).

Since û = 0 on ∂Ω and u0 ≤ 0 on ∂Ω, it follows from the comparison principle
Lemma 2.4 that û ≥ u0 in Ω.
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Now suppose û ≥ uk on Ω for some k ≥ 0. Then for any Borel E ⊂ Ω, we have
by the characterization of λMA in Theorem 1.3,

Muk+1(E) = R(uk)

∫
E

(−uk)
n ≥ λMA

∫
E

(−uk)
n ≥ λMA

∫
E

(−û)n = Mû(E).

Since uk+1 = û = 0 on ∂Ω, it follows from the comparison principle Lemma 2.4
that û ≥ uk+1 in Ω. �

Applying Proposition 3.3 and Lemma 2.10 to the monotonicity relation (12)
provides an upper bound for the Rayleigh quotients R(uk).

Corollary 3.4. There exists a positive constant C depending only on n,Ln(Ω),
λMA, and u0 such that R(uk) ≤ C for all k ≥ 1.

We are now ready to prove the main theorem.

Proof of Theorem 1.4. By Proposition 3.2, the sequence {uk}∞k=1 is uniformly
bounded and equicontinuous. Consequently, by the Arzelà–Ascoli theorem, it is
possible to choose a subsequence {k(j)}j∈N of indices such that {uk(j)}∞j=1 con-

verges uniformly on Ω to a convex function u∞ ∈ C(Ω) with u∞ ≡ 0 on ∂Ω, while
the shifted sequence {uk(j)+1}∞j=1 converges uniformly on Ω to a convex function

w∞ ∈ C(Ω) with w∞ ≡ 0 on ∂Ω. Proposition 3.3 implies u∞ and w∞ are not
identically zero. Therefore, u∞, w∞ ∈ K.

We verify that the corresponding Rayleigh quotients also converge. Indeed,
Proposition 3.2 and Corollary 3.4 show that there exists a constant Λ > 0 in-
dependent of k such that Muk ≤ ΛLn in Ω for all k ≥ 1. Therefore we can apply
Lemma 2.9 and Proposition 3.3 to conclude that limj→∞ R(uk(j)) = R(u∞) and
limj→∞ R(uk(j)+1) = R(w∞).

Next, Lemma 2.1 implies that the measures νj := R(uk(j))(−uk(j))
nLn converge

weakly to the measure ν := R(u∞)(−u∞)nLn as j → ∞. Furthermore, Proposition
3.2 and Corollary 3.4 imply supj νj(Ω) < ∞. Since Muk(j)+1 = νj and uk(j)+1

converge uniformly to w∞, we may apply Lemma 2.6 to conclude that detD2w∞ =
R(u∞)(−u∞)n in the Aleksandrov sense.

We claim w∞ = u∞. By the monotonicity relation (12), we have

R(uk(j+1))||uk(j+1)||nLn+1(Ω) ≤ R(uk(j)+1)||uk(j)+1||nLn+1(Ω)

≤ R(uk(j))||uk(j)||nLn+1(Ω), j ∈ N.

Letting j → ∞, we conclude that

(13) R(w∞)||w∞||nLn+1(Ω) = R(u∞)||u∞||nLn+1(Ω).

On the other hand, multiplying the equation detD2w∞ = R(u∞)(−u∞)n by −w∞
and integrating yields

R(w∞)||w∞||n+1
Ln+1(Ω) =

∫
Ω

(−w∞) dMw∞

= R(u∞)

∫
Ω

(−w∞)(−u∞)n

≤ R(u∞)||w∞||Ln+1(Ω)||u∞||nLn+1(Ω) by Hölder’s inequality

= R(w∞)||w∞||n+1
Ln+1(Ω) by (13).
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This shows that we have equality in Hölder’s inequality, and so there exists a
constant c > 0 such that (−w∞)n+1 = c(−u∞)n+1. In particular, R(u∞) = R(w∞).
It follows from (13) that c = 1, and consequently, w∞ = u∞. Since detD2u∞ =
R(u∞)(−u∞)n in the Aleksandrov sense, Theorem 1.3 implies u∞ is a Monge–
Ampère eigenfunction and R(u∞) = λMA.

We next show that the full sequence {uk}∞k=1 converges to the same eigenfunction
u∞. Indeed, suppose {uk1(j)}∞j=1 and {uk2(j)}∞j=1 are two subsequences of {uk}∞k=1

converging uniformly to u1,∞ and u2,∞, respectively. By the argument outlined in
the preceding paragraphs, both u1,∞ and u2,∞ are eigenfunctions and R(u1,∞) =
R(u2,∞) = λMA. We construct two new subsequences {ui1(j)}∞j=1 and {ui2(j)}∞j=1

by setting i1(1) = k1(1), and then inductively defining

i2(j) = min
l
{k2(l) | k2(l) > i1(j)}, j ≥ 1,

i1(j) = min
l
{k1(l) | k1(l) > i2(j − 1)}, j ≥ 2.

Clearly {ui1(j)}∞j=1 and {ui2(j)}∞j=1 converge uniformly to the original limits u1,∞
and u2,∞ respectively, while i1(j) < i2(j) and i2(j) < i1(j + 1) for all j. Thus by
repeated application of the monotonicity relation (12), we find

R(ui2(j))||ui2(j)||nLn+1(Ω) ≤ R(ui1(j))||ui1(j)||nLn+1(Ω),

R(ui1(j+1))||ui1(j+1)||nLn+1(Ω) ≤ R(ui2(j))||ui2(j)||nLn+1(Ω).

Taking j → ∞ in both inequalities above and then dividing by λMA yields
||u1,∞||Ln+1(Ω) = ||u2,∞||Ln+1(Ω). Since both u1,∞ and u2,∞ are eigenfunctions,
they must be multiples of each other; this shows they are equal. Since this equality
holds for any arbitrary pair of subsequences {uk1(j)}∞j=1 and {uk2(j)}∞j=1 of {uk}∞k=1,
the entire sequence {uk}∞k=1 must converge uniformly to the same eigenfunction u∞.

Finally, since ||uk||L∞(Ω) is uniformly bounded away from zero by Proposition
3.3, we see the sequence { uk

||uk||L∞(Ω)
} converges uniformly to the unique eigenfunc-

tion with L∞ norm equal to 1, finishing the proof. �
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