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INVERSE ITERATION FOR THE MONGE-AMPERE
EIGENVALUE PROBLEM
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(Communicated by Ryan Hynd)

ABSTRACT. We present an iterative method based on repeatedly inverting the
Monge—Ampere operator with Dirichlet boundary condition and prescribed
right-hand side on a bounded, convex domain 2 C R™. We prove that the
iterates uy generated by this method converge as k — oo to a solution of the
Monge—-Ampere eigenvalue problem

detD?u = /\IWA(—U)" in Q,
u=20 on 09Q.

Since the solutions of this problem are unique up to a positive multiplica-

tive constant, the normalized iterates 4p = MJ‘#(Q) converge to the

eigenfunction of unit height. In addition, we show that limy_,oo R(ux) =
limy o0 R(Ur) = Apra, where the Rayleigh quotient R(u) is defined as
—u) detD?u
R(u = Jo(m®) detD?u
Jo(—u)nt1
Our method converges for a wide class of initial choices ug that can be con-

structed explicitly, and does not rely on prior knowledge of the Monge—Ampeére
eigenvalue Apra.

1. INTRODUCTION AND MAIN RESULT

Let € C R" be a bounded, convex domain. The Monge-Ampere eigenvalue
problem seeks to find a convex function u € C?(Q2) N C(Q) and a positive number
A such that

detD?u = A(—u)" in Q,
(1) (—u)

u=20 on Of).
This problem was first considered by Lions in [14], who proved the following result.

Theorem 1.1 (Lions 1985). Assume Q C R™ is a smooth, bounded, uniformly
convex domain. There exist a unique positive constant Apra and a unique (up to
positive multiplicative constants) nonzero convex function u € CHH(Q) N C>(Q)
solving the eigenvalue problem (IJ).
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The constant A\p;4 is called the Monge-Ampere eigenvalue and is defined in
the following manner. Let A(z) € C(Q2) be a symmetric, positive-definite matrix
such that detA(x) > n~" for all z € Q. The collection of all such matrices will be
denoted A. Let L4 be the linear operator L v = — tr(A(z)D?v), and denote by A}
the (positive) first Dirichlet eigenvalue of L 4. Then the Monge-Ampere eigenvalue

is defined as .
= [ inf A} .
Anea (Aueu AA)

The eigenvalue problem (Il) was revisited by Tso in [20] from a variational point of
view. In order to state Tso’s result, we need a few definitions. Consider the class
of functions

={ue C"(Q)NC>(Q) : u convex and nonzero in Q, u =0 on 9N} .
Define the Rayleigh quotient of a function u € Ky as
Jo(—u) detD?u
R(u) = W

It is useful to observe that R(cu) = R(u) for all ¢ > 0.

Theorem 1.2 (Tso 1990). Assume Q2 C R" is a smooth, bounded, uniformly convex
domain. Then

Ama = ulen’g2 R(u).

Owing to recent work of Le [12], Theorems [[.T] and 2] hold for arbitrary convex
domains €2, without assuming uniform convexity. To state Le’s result, we let

K={ueC(Q): uconvex and nonero in , u =0 on 002} .

Given u € K, we denote by Mu the Monge-Ampere measure of u, deﬁned in (8) in

Section Pl The Monge—Ampere energy of u is the quantity [ fQ ) dMu.
The Rayleigh quotient of u is then defined as
I(u) fsz ) dMu
(2) R(u) := - .
HUHLIL ) fﬂ u)n

Note that this definition coincides with the one considered by Lions and Tso when
u e ICQ.

Theorem 1.3 (Le 2018). Assume @ C R™ is a bounded, convex domain. Then
there exists a unique positive constant (still denoted by A\pra) and a unique (up to
positive multiplicative constants) function u € K N C*(Q) satisfying ) with

A= Aya = inf R(u).
ma = inf R(u)
There are two methods currently available for constructing a solution of (),

both relying on compactness arguments. The first, by Lions [I4], considers solving
the following Dirichlet problem for a convex function u, € C%(Q) for each 7 > 0:

3) detD%*u, = (1 — Tu,)" in Q,
ur =0 on 0.

It is shown in [I4, Theorem 1] that the quantity
(4) p:=sup{7 > 0: there exists a solution u, of B}

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



INVERSE ITERATION FOR, MONGE-AMPERE EIGENVALUE 4877

is strictly positive, that lim,_,,- ||u;|[z~@) = 0o, and that (up to choice of a

subsequence) the functions ., := m converge to a solution of (Il) as 7 — ™.
,

Furthermore, pu = )\]%4 4; thus, @) provides a third characterization of the Monge—
Ampere eigenvalue Ay 4.

The second method of constructing a solution of (), by Tso [20], is to fix con-
stants o,p > 0 and consider the Dirichlet problem

{detDzu =o(—u)? in Q,

5
(5) u=20 on 0f2.

Notice that the equation (Bl is the Euler-Lagrange equation of the functional

1 o

(6) Ipo(u) = T /Q(—u) detD?*u — o /Q(—u)p'H.
Using variational methods, Tso proves the existence of unique minimizers in KCo
of the functional J, , for p < n and 0 = Apra. By establishing estimates for the
minimizers that are uniform in p, Tso shows there exists a sequence p, ' n such
that the solutions wuy of (B) with p = p, and o = Ajr4 converge to a solution of ().

The primary contribution of the present work is to present an iterative method
for constructing a sequence of functions u; € K that converges uniformly to a
solution of (). This sequence is obtained by repeatedly inverting the Monge—
Ampere operator with Dirichlet boundary condition. We show, moreover, that
limg 00 R(ug) = Apra. Similar inverse iteration methods have been considered for
equations in divergence form such as the p-Laplace equation [I,2][11]. The present
work establishes the first inverse iteration result for the eigenvalue problem of a
fully nonlinear degenerate elliptic equation.

Theorem 1.4. Suppose @ C R" is a bounded, conver domain. Let ug € C(£2)
satisfy the following conditions:

(i) g is conver and ug < 0 on 0N,
(i) R(uo) < oo,
(iil) Mug > L™ in 2, where L™ denotes n-dimensional Lebesque measure.
For k > 0, define the sequence uy, € K to be the solutions of the Dirichlet problem

1) {detDzukH = R(ug)(—ug)™ in £,

Ug41 =0 on 0N).

Then {uy} converges uniformly on Q to a nonzero Monge-Ampére eigenfunction
Uso- Consequently, the sequence Uy = m converges uniformly on € to the
unique solution u of (@) satisfying ||ul|p~ ) = 1. Furthermore, limy_, o R(uy) =

limki)oo R(’Ilk) = )\MA~

We briefly outline the strategy behind the proof of Theorem [[4l The starting
point is a monotonicity relation, proved in Lemma 3.l which provides control over
the Rayleigh quotients R(uj) and enables us to prove uniform Holder estimates
for the functions wg; see Proposition The sequence {ug} is, therefore, com-
pact; hence, there exists a subsequence {uy(;} en converging to a limiting function
Uso. Comparison principle arguments using the eigenfunctions from Theorem [L3]
show that ||ug||Le(q) stays uniformly away from zero; see Proposition B3l Conse-
quently, u., € K is a candidate to solve the eigenvalue problem (Il). However, in
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4878 FARHAN ABEDIN AND JUN KITAGAWA

order to prove that u, is an eigenfunction, it is necessary to show that the shifted
subsequence {uy(;)+1}jen also converges to us. The monotonicity relation and a
continuity property of the Monge—Ampeére energy, Lemmal[2.9] are essential to verify
the aforementioned claim, as well as to establish that any convergent subsequence
of {uy} must converge to the same eigenfunction .

Let us point out an elementary construction of an initial function ug satisfying the
hypotheses of Theorem [[4] for any bounded, convex domain 2 C R™. Let Bg(zo)
be any ball centered at o € R™ of radius R > 0 such that Q@ € Bgr(zo). Consider
the parabola Pr(z) = % (| — xo|* — R?), which satisfies detD?Pr(x) = 1 for all
x € R™ and vanishes on 0Br(zg). Then ug(z) = Pr(z) satisfies all the properties
required in the statement of Theorem [[.4]

We highlight some other noteworthy attributes of the iteration (7). First, let us
point out that both the approaches of Lions and Tso outlined above for construct-
ing a solution of (d) require a priori knowledge of the Monge-Ampere eigenvalue
Arma. The iterative method () solves for both the eigenfunction and eigenvalue
simultaneously and thus requires no advance knowledge of Aps4. Additionally, (7))
provides a means to estimate Ay;4 by computing the Rayleigh quotients R(uy) for
k large. An approximation of the Monge-Ampere eigenvalue is of interest, as Ay
is known to satisfy analogues of the classical Brunn—Minkowski, isoperimetric, and
reverse isoperimetric inequalities; we refer to the works [3|[10,[12/[I8] for the exact
statements of these inequalities. It has also been noted in [I3L[I7] that Apsa should
determine the rate of extinction for a class of nonparametric surfaces flowing by
the nth root of their Gauss curvature.

Second, the methods of Lions and Tso necessitate solving Dirichlet problems for
Monge-Ampere equations of the form detD?u = f(u), where the right-hand side is
some function f of the unknown u. The iteration (), on the other hand, requires
solving Dirichlet problems for Monge-Ampere equations of the form detD?u = g,
where the right-hand side g depends only on the previous iterate, hence is a known
function. This makes () appealing from the point of view of numerical analysis.
There is a vast literature on numerical methods for the Dirichlet problem for the
Monge—-Ampere equation and, more generally, fully nonlinear elliptic equations. We
refer the reader to the recent survey [16] for an extensive overview.

Finally, let us recall that the Monge—Ampere operator can also be written in
divergence form:

1
det D*u = —div(®, Vu),
n

where ®,, () is the cofactor matrix of D?u(z), given by det D*u(x)(D?u(x))~* when
D?u(x) is invertible. An integration by parts shows that one can write the Rayleigh
quotient () in the more familiar manner

) — L[ (@, Vu, Vu)
R(u) = fﬂ(_u)n+1

This form of the Rayleigh quotient suggests using appropriate versions of Poincaré-
and Sobolev-type inequalities (see [I5,[19]) to prove Theorem [[4 However, this
would require explicit control of the cofactor matrix ®,, at each step of the iteration,
which is difficult as the smallest eigenvalue of D?u degenerates near 05, due to
imposing the Dirichlet boundary condition. Our proof of Theorem [[4] thus relies
heavily on techniques for tackling nondivergence form equations and makes full use
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of various fundamental attributes of convex functions and solutions of the Monge—
Ampere equation.

Let us mention that Theorem [[.4] does not provide an independent proof of ex-
istence and uniqueness (up to scaling of the eigenfunction) of an eigenpair (u, A)
solving ([I); it merely provides a computational method for obtaining the eigenfunc-
tion u of unit height and the eigenvalue Ajr4. In fact, the proof of Theorem [I4]
uses Theorem [L3]

The rest of this paper is structured as follows: in Section [2] we state some basic
properties of convex functions and the Monge-Ampere equation. The proof of the
main result, Theorem [[L4] is carried out in Section [Bl

2. BACKGROUND ON THE MONGE-AMPERE EQUATION

This section is devoted to stating some basic results on convex functions and
weak solutions of the Monge-Ampeére equation that will be used in the proof of
Theorem [[L4l From here onward, we will assume that the domain € is bounded
and convex.

Given a function u € C(Q), the subdifferential of u at z € () is the set

ou(z) ={peR":u(y) >u(z)+p- (y—x) for all y € Q}.
If w is differentiable at x, then Ju(z) = {Vu(z)}. Given a set E C Q, we define

Ou(E) := U ou(x).

€N

The Monge-Ampere measure of « is defined as

(8)
Mu(E) := L"(0u(E)) for all E C Q such that Ou(F) is Lebesgue measurable,

where, L™ denotes n-dimensional Lebesgue measure. It is well known that Mu is
a Radon measure (see [8, Lemma 1.2.2]) and that if u € C?(£),

Mu(E) = / detD?u.
E

The following result shows that Monge-Ampére measures are stable under uniform
convergence.

Lemma 2.1 (Weak convergence of Monge—Ampere measures; [8, Lemma 1.2.3] and
[T, Proposition 2.6]). If ux are convex functions in Q converging locally uniformly
to a function u, then the associated Monge—Ampére measures Muy, converge weakly
to the measure Mu; that is,

lim [ ¢ dMuy = / @ dMu  for all ¢ € C.(Q).
k—eo /o Q

Given a nonnegative Borel measure v on 2, we say that the convex function
u € C(Q) is an Aleksandrov solution of detD?*u = v in Q if Mu = v as measures.
We also write Mu > v in Q (resp., Mu < v in Q) if Mu(E) > v(E) (resp.,
Mu(E) < v(E)) for all Borel sets E C Q. If v is absolutely continuous with
respect to n-dimensional Lebesgue measure and has a density f, then we will write
detD?u = f.

We next state the interior gradient estimate, the Aleksandrov maximum princi-
ple, and the comparison principle for Aleksandrov solutions.
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4880 FARHAN ABEDIN AND JUN KITAGAWA

Lemma 2.2 (Interior gradient estimate; [8, Lemma 3.2.1]). Suppose u € C(Q) is
convex and vanishes on 0. Then

SUpgq |u|
9 <
( ) ‘p| =4

W for all z € Q, p € du(x).

Theorem 2.3 (Aleksandrov maximum principle; [8, Theorem 1.4.2]). Suppose u €

C(Q) is convex and vanishes on 0. Then there exists a constant Cp, > 0 depending
only on the dimension n such that

(10) lu(x)|" < Cpdiam(Q)" dist(z, Q) Mu(Q)  for all x € Q.

Lemma 2.4 (Comparison principle; [8, Theorem 1.4.6)). Suppose u,v € C(Q) are
convex and satisfy u > v on IQ and Mu < Mwv in Q. Then u > v in Q.

The following result due to Hartenstine [9] shows that the Dirichlet problem for
the Monge-Ampére equation on any bounded, convex domain with zero boundary
data always has a unique Aleksandrov solution; see also [7, Theorem 2.1.3].

Theorem 2.5 (Solvability of Dirichlet problem; [9, Theorem 1]). Given a Borel

measure v with v(Q) < oo, there exists a unique convex function u € C() that is
an Aleksandrov solution of the Dirichlet problem

detD?u = v in Q,
u=20 on 0N).

Aleksandrov solutions of the Dirichlet problem with zero boundary conditions
are closed under uniform limits, as shown by the following lemma.

Lemma 2.6 (Stability of Aleksandrov solutions; [7, Proposition 2.12]). Let {v}
be a sequence of Borel measures in ) such that sup,, v (Q) < oo, and let uj, € C(€2)
be Aleksandrov solutions of the Dirichlet problem
detD%ur, = vy, mn Q,
ur =0 on 0.
If v, converges weakly to a Borel measure v on ), then uy, converges locally uni-
formly to the Aleksandrov solution w of the Dirichlet problem
detD?*u =v in €,
u=20 on 0.

A hallmark result in the theory of Monge-Ampere equations is the strict convex-
ity and regularity of Aleksandrov solutions established by Caffarelli in the seminal
works [4H6]. We summarize these important contributions as follows.

Theorem 2.7 (Regularity results for Aleksandrov solutions; see also [7, Corollaries
4.11, 4.21, and 4.43] and [8, Theorem 5.4.8]). Let u be an Aleksandrov solution of
the Dirichlet problem
detD?u = f in Q,
u=0 on 0.
Suppose there exist constants C1,Co > 0 such that Cy < f < Cs in Q. Then the
following results hold:

(i) w is strictly convez and u € CL%(9).

(ii) If f € C*(Q), then u € CH%(Q).

loc

(iii) If f € C=(R), then u € C*(Q).
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Standard bootstrap arguments using Theorem 2.7 show that Aleksandrov solu-
tions of the Monge—Ampere eigenvalue problem are strictly convex and smooth in
the interior (see [12, Proposition 2.8]).

Proposition 2.8 (Interior regularity). Let o,p > 0 be fived constants. Suppose

u € C() is a nonzero Aleksandrov solution of the Dirichlet problem

detD?*u = o (—u)P in £,
u=20 on 0f.

Then u is strictly convex and v € C*°(Q) N C ().

We next prove a continuity property of the Monge-Ampere energy, I(u) =
Jo(—u)dMu along a sequence of convex functions {vy} converging uniformly and
satisfying uniform upper bounds on Muv; with respect to Lebesgue measure (cf.
[20, Proposition 1.1]).

Lemma 2.9. Suppose v, € C(Q) are convexr functions converging uniformly on Q
to a function v, and there exists a constant A > 0 such that Mv, < AL™ for all
k> 0. Then limg_yo0 I(v) = I(v).

Proof. Let ¢ € C.(2) be arbitrary. We have

‘/gpv de—/govk dMwoy,
Q Q

< /(pv dMU—/(p’U dMuy, —l—‘/gp(v—vk) dMuy,
Q Q Q

<| [ v anto~ [ oo dbton] + llelloyllo = vull ooy Mon ()
Q Q

< /@U de—/wv dMug| + [|¢l| L= @)l|v — vil| Lo (@) AL™ ()
Q Q
=: A + By.

By Lemma 2.1l we know limy,_, o, A = 0, while limy_, . Br = 0 due to the uniform
convergence of v to v. Therefore,

(11) lim [ v dMo, = / wv dMv  for all p € C.(£2).
Q Q

k—oc0

Now let € > 0 be fixed, and let Q. be an open set such that Q. € Q and £"(Q\Q,) <
e. Let ¥ € C.(Q) be such that 0 < ¢, < 1in Q and ¥ = 1 on Q.. Then, for any
k > 0, we can write

I(vg) = 1(v)

:/vde—/vdevk
Q Q

:/Qwev dMU—/Qwevk dek—l-/Q(l—l/JE)v de—/Q(l—dJe)vk dMuy,

— /Qwev dMv —/Q Yevg, dMuy, —i—/ﬂ\ﬂe(l — e )v dMv —/ (1 = ) dMuy,.

o\Qe
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4882 FARHAN ABEDIN AND JUN KITAGAWA
Since Mv < AL™ for all £k > 0, the lower semicontinuity on open sets of the

Monge-Ampere measure under uniform convergence (see [8 Lemma 1.2.2 (ii)])
implies Mv(U) < AL™(U) for any open set U C . Therefore,

/ (1 —e)v dMwv
o\

<1 = el oo () [[0]] oo () Mu(2\ )
< [vl]poe (@) AL\ Q) < Che,

where C7 > 0 is a constant independent of e. Similarly,

/ g b < Il o Mk 21 92)
Q\ Q.

< vkl Lo @) AL\ Q) < Cae,

where Cy > 0 is a constant independent of ¢ and k. Therefore, there exists a
constant C' > 0 independent of k and € such that

[I(vg) —I(v)] < ’/Qwev de—/Qwevk dMuy| + Ce.

Consequently, by (1), we have
limsup |I(vg) — I(v)| < Ce.

k—o0

Since € > 0 was arbitrary, we conclude that

lim I(vg) = I(v).

k—oco

O

We conclude this section by showing that if u € C(Q) is convex and vanishes on
09, then all LP norms of u are comparable.

Lemma 2.10. If u € C(Q) is conver and vanishes on 0, then

1
l[ull Lo () 1 g
—_—— < [ = P < o Ip>1.
n+1 = |Q|/Qu| = ||uHL (Q) fora b=

Proof. The second inequality is trivial. For the first, we let K be the convex
cone with base Q, height —||u|[z~ (), and vertex at the point where u achieves
its minimum. Then v < K < 0 on 2 by convexity of u. It follows from Jensen’s
inequality that for any p > 1,

(ﬁfg'“@ = gy =

3. PrROOF OoF THEOREM [1.4]

In this entire section, ug, & > 0, will always denote the functions from the
statement of Theorem [[.4l We begin the proof of Theorem [[.4] by introducing an
important monotone decreasing quantity associated to the iteration ().

Lemma 3.1.

(12) R(ug1)|[uks1l| o1 ) < Blug)|[uk|[fnsrqy  for all k > 0.
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INVERSE ITERATION FOR MONGE-AMPERE EIGENVALUE 4883
Proof. Multiplying () by —u4+1 and integrating yields

/(—Uk+1)dMuk+1 :R(uk)/(—ukﬂ)(—uk)”.
Q

Q
Using the definition of R(ugy1), we can rewrite the left-hand side to get

P = Rlu) [ (—uin) ()

R(upt1)||ug1]

Then by Holder’s inequality

/ (=) (—)™ < [
Q

and inequality (I2)) follows after dividing by ||[ugi1||zn+1(0)- O

Lo (@) |k f s Q)

We now use the monotonicity relation (I2) to prove a global Holder estimate for
the functions uy solving ().

Proposition 3.2. There exists C = C(n,Q,ug) > 0 such that for all k > 1,
w, € C%% (Q) with Hélder norm uniformly bounded by C.

Proof. By Theorem 23] and (), we have for any & > 0 and z €
|ug1(x)|™ < Cpdiam(Q)"dist (2, 0Q) Mug.1(9)
= C,diam(Q)" dist(x, 0Q) R(uy) / (—ug)"
Q

< Cpdiam(Q)" dist(z, 09Q) R(ug )| |ug |7 s @€ =)

< (Cndiam(ﬂ)”_lm

7 R(uo) [uol| 1 ) dlist(, 00),

where we have used Holder’s inequality in the third line and the monotonicity
relation (I2)) in the final step. In particular, there exists C; = Cy(n,Q,ug) > 0
such that

sup |ux| < C1.
Q

It follows from the interior gradient estimate Lemma [2.2] that wy is uniformly Lip-
schitz on any compact subset of 2. Next, since uj vanishes on 91, the estimate
above yields a uniform C%% estimate of uy near 9. Consequently, ug is uniformly
1

E—Hélder continuous in Q. |

The next proposition establishes a uniform lower bound for ||ug||ze(q)-
Proposition 3.3. |[ug||L~() > Aya" for all k> 0.

Proof. Let 4 € KN C*(Q) be the solution of () satisfying [[d|[}« ) = Ay
which exists by Theorem We prove by induction that @ > uy for each k& > 0.
To establish the base case, we recall that Mug > L". Therefore, if E C Q is any
Borel set,

Ma(E) = Asa /E ()" < Aradity £7(E) < Muo(E).

Since & = 0 on 9 and ug < 0 on 012, it follows from the comparison principle
Lemma 24 that @ > ug in Q.
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4884 FARHAN ABEDIN AND JUN KITAGAWA

Now suppose 4 > ug on §2 for some k > 0. Then for any Borel E C ), we have
by the characterization of Ap;4 in Theorem [[3]

Mugsr(E) = R(ug) [E (—u)™ > Aara /E (—u)™ > Aara /E (—i)" = Ma(E).

Since ugpy1 = @ = 0 on 99, it follows from the comparison principle Lemma [2.4]
that @ > ug4q in Q. O

Applying Proposition B3] and Lemma 210 to the monotonicity relation (2]
provides an upper bound for the Rayleigh quotients R(uy).

Corollary 3.4. There exists a positive constant C depending only on n, L™(£2),
Ama, and ug such that R(ug) < C for all k > 1.

We are now ready to prove the main theorem.

Proof of Theorem [[L4l. By Proposition B2 the sequence {uy}7°; is uniformly
bounded and equicontinuous. Consequently, by the Arzela—Ascoli theorem, it is
possible to choose a subsequence {k(j)};en of indices such that {wuy(;)}32; con-
verges uniformly on  to a convex function us, € C(2) with us =0 on 99, while
the shifted sequence {u(j)41}72, converges uniformly on Q to a convex function
Weo € C(Q) with we = 0 on 9Q. Proposition implies s, and wy, are not
identically zero. Therefore, Uy, Woo € K.

We verify that the corresponding Rayleigh quotients also converge. Indeed,
Proposition and Corollary B4 show that there exists a constant A > 0 in-
dependent of k such that Mu, < AL™ in Q for all £k > 1. Therefore we can apply
Lemma 2.9 and Proposition [3.3] to conclude that lim; o R(ug(;)) = R(uc) and
limj o0 R(up(j)+1) = R(Woo)-

Next, Lemma 2.T]implies that the measures v; 1= R(uy(j))(—ug(j))"L" converge
weakly to the measure v := R(uoo)(—Uoo )" L™ as j — co. Furthermore, Proposition
and Corollary [3.4] imply sup; v;(Q) < oco. Since Muyj)41 = vj and ug(j)41
converge uniformly to w.., we may apply Lemma 28] to conclude that det D?wq =
R(too)(—Uoo)™ in the Aleksandrov sense.

We claim wo, = uso. By the monotonicity relation [I2)), we have

R(ug+i)llusg+nlEn ) < Blukgy+)lusgy+llLa o)
< R(ur) lus(pllpnsr )y 7 €N

Letting j — oo, we conclude that
(13) R(wao)l [ s ) = Rlttoo) oot -

On the other hand, multiplying the equation detD?*ws, = R(too)(—too)”™ by —wWeo
and integrating yields

Rl [we 1 ) = / (—to0) dMw

~ R(us) / (—t00) (—t1o0)"
< R(“OO)HWOOHL"H(Q)HUOO‘
— R(wao) lwscl L 0 by (3.

Inti(qy by Holder’s inequality
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This shows that we have equality in Holder’s inequality, and so there exists a
constant ¢ > 0 such that (—we)" ! = ¢(—us )" . In particular, R(us) = R(weo).
It follows from (I3) that ¢ = 1, and consequently, ws, = Uoo. Since detD?*uy, =
R(too)(—Uoo)™ in the Aleksandrov sense, Theorem [[3] implies uo is a Monge—
Ampere eigenfunction and R(us) = Aprsa-

We next show that the full sequence {u};2, converges to the same eigenfunction
Uso- Indeed, suppose {ug, (j)}321 and {ug,(;)}52; are two subsequences of {u}32,
converging uniformly to u; o and us o, respectively. By the argument outlined in
the preceding paragraphs, both u1 o and ug o are eigenfunctions and R(u1,00) =
R(u2,00) = Amra. We construct two new subsequences {u;, (j) 152, and {u,(;)}524
by setting i1 (1) = k1(1), and then inductively defining

ia(j) = min{ka() | Bo()) > G0, G2 1,
i1G) = minfk () | ki () > ia(i = D}, 522

Clearly {u;, (;)}32; and {u;,(;)}52, converge uniformly to the original limits u; o
and wug o respectively, while i1(j) < i2(j) and 42(j) < 41(j + 1) for all j. Thus by
repeated application of the monotonicity relation (IZ), we find

Ry ()| [ti () |1 () < Ry ()11, ()7 nr1 05
R(Uil(j+1))||uz‘1(j+1)||7£n+1(9) < R(“iz(a‘))Huiz(jﬂ\Znﬂ(ﬂ)-

Taking 7 — oo in both inequalities above and then dividing by Aj;a yields
1,00 Lrt1(0) = [[t2,00]|Lnt1(0)- Since both wy o and up o are eigenfunctions,
they must be multiples of each other; this shows they are equal. Since this equality
holds for any arbitrary pair of subsequences {uy, (j)}5<; and {up, ;) }52; of {ur}3;,
the entire sequence {uy }7° | must converge uniformly to the same eigenfunction u.

Finally, since ||ug||pe(q) is uniformly bounded away from zero by Proposition
B3l we see the sequence {m} converges uniformly to the unique eigenfunc-

tion with L norm equal to 1, finishing the proof. O
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