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EXPONENTIAL CONVERGENCE OF

PARABOLIC OPTIMAL TRANSPORT ON BOUNDED DOMAINS

FARHAN ABEDIN AND JUN KITAGAWA

We study the asymptotic behavior of solutions to the second boundary value problem for a parabolic PDE
of Monge–Ampère type arising from optimal mass transport. Our main result is an exponential rate of
convergence for solutions of this evolution equation to the stationary solution of the optimal transport
problem. We derive a differential Harnack inequality for a special class of functions that solve the
linearized problem. Using this Harnack inequality and certain techniques specific to mass transport, we
control the oscillation in time of solutions to the parabolic equation, and obtain exponential convergence.
Additionally, in the course of the proof, we present a connection with the pseudo-Riemannian framework
introduced by Kim and McCann in the context of optimal transport, which is interesting in its own right.

1. Introduction

Given two smooth domains �, �⇤ ⇢ Rn, two probability measures µ, ⌘ defined respectively on �
and �⇤, and a Borel measurable cost function c :�⇥�⇤ ! R, the optimal transport problem is to find a
µ-measurable map T : �! �⇤ satisfying T#µ = ⌘ (where T#µ(E) := µ(T

�1(E)) for all measurable
E ⇢�⇤) such that Z

�

c(x, T (x)) dµ(x) = max
S#µ=⌘

Z

�

c(x, S(x)) dµ(x). (1)

Under mild assumptions on the cost function and the measures, it can be shown that the solution T to
(1) exists; see, for example, [Brenier 1991; Gangbo and McCann 1996]. If the measures µ and ⌘ are
absolutely continuous with respect to Lebesgue measure, and c satisfies the bitwist condition (6) below,
the map T is µ-a.e. single-valued and can be determined by the implicit relation

rx c(x, T (x)) = ru(x),

where the scalar-valued potential u is a c-convex function (see Definition 2.1) satisfying the Monge–
Ampère-type equation

⇢
det[D

2
u(x)�A(x,ru(x))] = B(x,ru(x)), x 2�,

T (�) =�⇤,
(2)

where A is a matrix-valued function and B is scalar-valued, defined in terms of the cost function c and
the densities of the measures µ, ⌘. The issue of existence and regularity of solutions to the PDE (2) has
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been an active area of research for many years. For higher-order regularity results, we refer the reader to
[Ma et al. 2005; Trudinger and Wang 2009; Urbas 1997].

One possible approach to finding a solution to the PDE above is to solve the parabolic PDE
8
<

:

@t u(x, t) = log det[D
2
u(x, t) � A(x, ru(x, t))] � log B(x, ru(x, t)), x 2�, t > 0,

G(x, ru(x, t)) = 0, x 2 @�,

u(x, 0) = u0(x), x 2�,

(3)

for appropriate initial and boundary conditions u0 and G (see Section 2), and view a stationary solution as
t ! 1 as a solution to (2). The study of existence, regularity, and asymptotic behavior of solutions to the
parabolic problem (3) was initiated only recently through the works [Kitagawa 2012; Kim et al. 2012].

The main result of this paper is the following theorem on an exponential convergence rate of solutions
to the parabolic equation (3). The notation C

k1
x

C
k2
t will denote functions on a space-time domain which

are C
k1 in the space variable and C

k2 in the time variable, with corresponding norms finite. Our main
result is as follows:

Theorem 1.1. Suppose u 2 C
4
x
C

3
t
(�⇥[0, 1)) is a solution on �⇥[0, 1) to the parabolic equation (3)

converging uniformly on � to a stationary solution u
1

as t ! 1, and K is a constant such that

kuk
C4

x
C

2
t (�⇥[0,1)) + kck

C4(�⇥�⇤)  K. (4)

If the cost function c satisfies the bitwist condition (6), and � and �⇤
satisfy the c-convexity conditions (8)

and (9), then

ku( · , t) � u
1

kL1(�)  C1e
�C2t

for all t � 0,

for some constants C1, C2 > 0 depending only on K and the dimension n.

Previous work in [Kitagawa 2012] establishes the existence of a function u 2 C
2
x
C

1
t
(�⇥ [0, 1)) that

solves (3) for all times t � 0 and converges in C
2(�) to a function u

1( · ) as t ! 1, where u
1( · )

satisfies the elliptic optimal transport equation (2). Using this result and a bootstrapping argument, we
obtain the following corollary.

Corollary 1.2. Suppose the cost function c satisfies the bitwist condition (6) and the Ma–Trudinger–Wang

condition (10), and suppose � and �⇤
satisfy the c-convexity conditions (8) and (9) with �, �⇤ > 0.

Suppose the source and target measures µ and ⌘ are absolutely continuous with smooth densities that

are bounded away from zero and infinity on � and �⇤
respectively. Finally, suppose the initial condition

u0 2 C
4,↵(�) for some ↵ 2 (0, 1] is locally, uniformly c-convex (as in Definition 2.1) and satisfies the

boundary compatibility conditions (12). Then u satisfies the hypotheses of Theorem 1.1 above.

Proof. Under the Ma–Trudinger–Wang condition (10) and the uniform c- and c
⇤-convexity of the domains

(i.e., (8) and (9) with �, �⇤ > 0), global C
2,↵
x

C
1,↵
t estimates of the solution u(x, t) to (3) were obtained

in [Kitagawa 2012, Theorems 10.1 and 11.2, and Section 12]. Thus, by applying boundary Schauder
estimates for linear uniformly parabolic equations in nondivergence form with uniformly oblique boundary
conditions (see [Lieberman 1996, Theorems 4.23 and 4.31]) to the linearized equation (18), we obtain the
desired higher regularity of u. ⇤
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Remark 1.3. One particular motivation for this exponential convergence result comes from numerics
for optimal transport. Since the stationary state of (3) gives rise to the solution of the optimal transport
problem between the measures µ and ⌘, one could attempt to implement an algorithm that is initiated with
some c-convex potential function and flows toward the desired solution via (3). Establishing quantitative
rates of convergence for such an algorithm is consequently of paramount importance. One difficulty that
should be noted here is that in the case with nonempty boundary, due to compatibility requirements with
the boundary condition, there are some restrictions on what can be taken as an initial condition (compare
to the case of no boundary, where one can simply take a constant function), and it is not always clear how
to generate initial data that will still provide global existence. We plan to explore this issue of finding
appropriate initial conditions in future work.

1A. Prior results and the contributions of this paper. The parabolic flow (3) on Riemannian manifolds
with no boundary was considered by Kim, Streets, and Warren [Kim et al. 2012], under a strong form of
the Ma–Trudinger–Wang condition (10); their methods strongly use that the boundary is empty. There,
the authors prove exponential convergence of the solution u of (3) to the solution u

1 of the elliptic
equation (2); see [Kim et al. 2012, Theorem 1.1]. Their proof relies on establishing a Li–Yau-type Harnack
inequality for solutions to the linearization of (3), coupled with the observation that this linearization is
actually a heat equation where the elliptic part is a conformal factor times the Laplace–Beltrami operator
of a conformal change of a metric defined from the solution of the parabolic evolution itself; see [Kim
et al. 2012, Proposition 5.1] and the discussion preceding Proposition 2.7 below.

However, presence of a boundary turns out to be a major obstruction to applying the methods of
[Kim et al. 2012]. First, their method of introducing a conformal change of metric cannot be used in
two dimensions: when there is no boundary, it is possible to convert the two-dimensional problem to
a three-dimensional one, but such a technique simply does not work when the boundary is nonempty
and is required to satisfy certain convexity properties. Second, the linearization of (3) is a Neumann
boundary-value problem with respect to a time-varying Riemannian metric, for which there is no general
known Harnack inequality. Existing results require that the metric itself satisfy some specific evolution,
such as Ricci flow [Bailesteanu et al. 2010] or Gauss curvature flow [Chow 1991]. Thus while there
is a sizable body of work on differential Harnack inequalities, none of them are directly applicable
to the linearization of (3). We also mention the result [Schnürer and Smoczyk 2003], which treats a
nonlinear evolution equation arising from Gauss curvature flow that resembles (3) in the case where the
cost function is c(x, y) = hx, yi, with nonempty boundary. The authors of [Schnürer and Smoczyk 2003]
also obtain an exponential convergence result, but assume certain structural assumptions on the function
B in (3) that are not satisfied in the optimal transport case, and impose additional constraints on the initial
data u0.

The contributions of this paper are as follows. First we show it is possible to obtain a Harnack inequality
for a certain subclass of solutions to the linearized equation. In the interior, this can be shown by a
series of estimates similar to that of [Kim et al. 2012] with no boundary, but as mentioned above, a
different method must be employed to settle the two-dimensional case. In dealing with the boundary,
we must carefully exploit the curvature conditions imposed on the boundaries of both the source and
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target domains in order to choose the correct class of solutions for which we can obtain the Harnack
inequality. Once we have a Harnack inequality for such special solutions, we use the fact that solutions
of the parabolic flow come from the optimal transport problem, and hence satisfy a mass-preservation
condition (see Lemma 2.3 below), to finish the proof of exponential convergence. We heavily stress
here that our approach diverges from the traditional proof of exponential convergence via the Harnack
inequality, and crucially uses the fact that there is an underlying optimal transport problem. Additionally,
we show this analysis of the boundary behavior can also be done by exploiting the pseudo-Riemannian
structure introduced in [Kim and McCann 2010] for optimal transport. More specifically, we prove a
relation between the second fundamental form with respect to the time-varying Riemannian metric on the
source domain, with the Euclidean second fundamental forms of the source and target domains under
c-exponential coordinates, which has not previously been explored.

1B. Outline and strategy of proof. The outline of the remainder of the paper and the strategy behind our
proof are as follows. In Section 2 we give the necessary background for the optimal transport problem.
We also recall the method of [Kim et al. 2012] for the proof of exponential convergence on manifolds
with no boundary, and prove here the important parabolic estimate Proposition 2.7, although with a
slightly different proof from that of Kim, Streets, and Warren. In Section 3 we obtain expressions for and
estimates on the boundary condition acting on the relevant auxiliary function. For the benefit of the reader,
we divide the proof of these estimates into the inner product case and the general cost function case. In
Section 4 we finally obtain the exponential convergence result from the estimates derived in the previous
sections; the proof we present relies on the underlying optimal transport structure of the problem. The
final Section 5 provides the aforementioned alternative, geometric approach to the boundary estimates
from Section 3.

2. Preliminaries

2A. Basic notions from optimal transport. We denote by D
2, r, and D� the Hessian matrix, the gradient

vector, and the directional derivative in the direction � of a given function with respect to the space
variable x . Spatial partial derivatives will be denoted by subscript indices, with the actual variable specified
when necessary, while Dx and Dp will be used for the derivative matrix of a mapping with respect to the
variable in the subscript. We will also follow the convention of summing over repeated indices. Time
derivatives will be denoted by @t .

When considering a Riemannian manifold (M, g), we will denote the inner product and norm with
respect to the metric g by h · , · ig and | · |g respectively. The notation rg, Hessg, 1g, and Ricg will be
used for the gradient, Hessian, Laplacian, and Ricci tensor with respect to g.

Regarding the cost function c(x, y), derivatives in the x-variable will be denoted by subscripts preceding
a comma, while derivatives in the y-variable will be denoted by subscripts following a comma. The
notation c

i, j denotes the entries of the inverse of the matrix ci, j .
We will assume from here onward that �, �⇤ are open, smooth, bounded domains in Rn. The outward-

pointing unit normals to @� and @�⇤ will be denoted by ⌫ and ⌫⇤ respectively. The function h
⇤ will be
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a normalized defining function for �⇤; i.e., h
⇤ = 0 on @�, h

⇤ < 0 on �, and rh
⇤ = ⌫⇤ on @�⇤. The

measures µ, ⌘ are assumed to be absolutely continuous with respect to n-dimensional Lebesgue measure,
with densities ⇢, ⇢⇤ respectively satisfying the bounds 0 < �  ⇢, ⇢⇤  3 < 1 and the mass balance
condition Z

�

⇢ =

Z

�⇤

⇢⇤. (5)

We will also assume c 2 C
4,↵(�⇥�⇤) for some ↵ 2 (0, 1], and

y 7! rx c(x, y) is a diffeomorphism for all x 2�,

x 7! ryc(x, y) is a diffeomorphism for all y 2�⇤.
(6)

For any p 2rx c(x, �⇤) and x 2� (resp. q 2ryc(�, y) and y 2�⇤), we denote by Y (x, p) (resp. X (q, y))
the unique element of �⇤ (resp. �) such that

(rx c)(x, Y (x, p)) = p (resp. (ryc)(X (q, y), y) = q). (7)

We say � is c-convex with respect to �⇤ if the set ryc(�, y) is a convex set for each y 2�⇤. Similarly,
�⇤

is c
⇤
-convex with respect to � if the set rx c(x, �⇤) is a convex set for each x 2�. Analytically, these

conditions are satisfied if we have

[⌫
j

i
(x) � c

`,k
ci j,`(x, y)⌫k(x)]⌧ i⌧ j

� �|⌧ |2 for all x 2 @�, y 2�⇤, ⌧ 2 Tx(@�), (8)

[(⌫⇤)
j

i
(y) � c

k,`
c`,i j (x, y)(⌫⇤)k(x)](⌧ ⇤)i (⌧ ⇤) j

� �⇤|⌧ ⇤
|
2 for all y 2 @�⇤, x 2�, ⌧ ⇤

2 Ty(@�
⇤) (9)

for some constants �, �⇤ � 0 respectively, where we will always sum over repeated indices. If � (resp. �⇤)
is strictly positive, we say that � is uniformly c-convex with respect to�⇤ (resp. �⇤

is uniformly c
⇤
-convex

with respect to �).
Define the matrix-valued function A by A(x, p) := (D

2
x
c)(x, Y (x, p)). Since Y (x, p) satisfies the

equation (rx c)(x, Y (x, p)) = p, we can differentiate implicitly in p to get

(D
2
x,yc)(x, Y (x, p))DpY (x, p) = In.

Similarly, differentiating the equation (rx c)(x, Y (x, p)) = p in x gives

(D
2
x
c)(x, Y (x, p)) + (D

2
x,yc)(x, Y (x, p))Dx Y (x, p) = 0.

We have chosen the convention (DY )`m = Y
`
m

for differentiation either in the x- or p-variables. It follows
that

A(x, p) = (D
2
x
c)(x, Y (x, p)) = �(DpY )�1(x, p)Dx Y (x, p).

Definition 2.1. A function ' :�! R is said to be c-convex if for any point x0 2�, there exists a y0 2�⇤

and �0 2 R such that
'(x0) = c(x0, y0) + �0,

'(x) � c(x, y0) + �0 for all x 2�.



2188 FARHAN ABEDIN AND JUN KITAGAWA

A function ' 2 C
2(�) is said to be locally, uniformly c-convex if D

2'(x)� A(x, r'(x)) > 0 as a matrix
for every x 2�.

Although we will not use it explicitly in this paper, we also mention the, by now well-known, Ma–
Trudinger–Wang condition. This condition (or rather a stronger version of it) was first used to obtain
interior C

2,↵ regularity of solutions to the elliptic optimal transport equation (2) in [Ma et al. 2005]. It
was proven to be a necessary condition for regularity theory in [Loeper 2009], and it was shown that
classical solutions for the parabolic equation (3) exist under the same condition in [Kitagawa 2012].

Definition 2.2. The cost function c(x, y) satisfies the Ma–Trudinger–Wang (MTW) condition if

Dpi p j
Ak`(x, p)⇠ i⇠ j⌘k⌘` � 0 for all x 2�, p 2 rx c(x, �⇤), ⇠ ? ⌘. (10)

2B. The parabolic optimal transport problem. For a function u 2 C
4
x
C

2
t
(�⇥ [0, 1)) (which, in the

sequel, will be the solution to the parabolic optimal transportation problem), we will employ the following
notation:

T (x, t) = Y (x, ru(x, t)),

B(x, p) = |det (D
2
x,yc)(x, Y (x, p))| ·

⇢(x)

⇢⇤(Y (x, p))
,

G(x, p) = h
⇤(Y (x, p)),

�(x, t) = rpG(x, p)|p=ru,

W (x, t) = D
2
u(x, t) � A(x, ru(x, t)).

The components of the matrix W (x, t) will be denoted by wi j , while the components of the inverse matrix
will be denoted by wi j.

Using the above notation, we can now precisely state the parabolic optimal transportation problem.
We seek to find a function u 2 C

4
x
C

2
t
(�⇥ [0, 1)) satisfying the evolution equation

8
<

:

@t u(x, t) = log det[D
2
u(x, t) � A(x, ru(x, t))] � log B(x, ru(x, t)), x 2�, t > 0,

G(x, ru(x, t)) = 0, x 2 @�, t > 0,

u(x, 0) = u0(x), x 2�.

(11)

We require the function u0 2 C
4,↵(�) for some ↵ 2 (0, 1] to be locally, uniformly c-convex as in

Definition 2.1 and satisfy ⇢
h

⇤(Y (x, ru0(x))) = 0 on @�,

T0(�) =�⇤,
(12)

where T0(x) := Y (x, ru0(x)).
Let us establish some basic facts which will be needed throughout.

Lemma 2.3. The function ✓(x, t) := @t u(x, t) satisfies

Z

�

e
✓(x,t)⇢(x) dx =

Z

�⇤

⇢⇤(y) dy for all t � 0. (13)

Proof. Differentiating the identity T (x, t) = Y (x, ru(x, t)), we obtain

T
k

x`
(x, t) = Y

k

x`
(x, ru(x, t)) + Y

k

p j
(x, ru(x, t))ux j x` , k, `= 1, . . . , n.
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In matrix notation,

Dx T (x, t) = Dx Y (x, ru(x, t)) + DpY (x, ru(x, t))D
2
u(x, t)

= DpY (x, ru(x, t))(D
2
u(x, t) � A(x, ru(x, t))

= DpY (x, ru(x, t))W (x, t)

= (D
2
x,yc)�1(x, Y (x, ru(x, t)))W (x, t). (14)

Consequently,

|det Dx T (x, t)| =
det W (x, t)

|det(D2
x,yc)(x, T (x, t))|

. (15)

From (11), it follows that

e
@t u(x,t)⇢(x) = |det Dx T (x, t)|⇢⇤(x, T (x, t)). (16)

Integrating over � and using the change of variables formula yields the desired identity. ⇤

Observe that, by (13) and the mass balance condition (5), ✓ must satisfy

sup
�

✓( · , t) � 0 and inf
�
✓( · , t)  0 for all t � 0. (17)

Lemma 2.4. Let ⌫ denote the outward-pointing unit normal to �, and let W and � be defined as above.

Then

⌫(x) =
W (x, t)�(x, t)

|W (x, t)�(x, t)|
for all (x, t) 2 @�⇥ [0, 1).

Proof. Fix t �0. The boundary condition G(x, ru(x, t))=0 on @� is equivalent to saying h
⇤(T (x, t))=0

on @�. Therefore, by differentiating in any direction ⌧ tangential to @�, we get

h
⇤

k
(T (x, t))T

k

xi
(x, t)⌧ i

= 0.

In matrix notation,
hW (x, t)(DpY )T (x, ru(x, t))rh

⇤(T (x, t)), ⌧ i = 0.

By definition,
�(x, t) = (DpY )T (x, ru(x, t))rh

⇤(Y (x, ru(x, t))).

Therefore,
hW (x, t)�(x, t), ⌧ i = 0.

It follows that W� is parallel to the unit outward-pointing normal vector field ⌫ on @�. Since h
⇤ < 0 on �,

we can write W� = �⌫, where � � 0. Notice that by (15) and (16), W is positive definite. By bitwist (6),
and the fact that rh

⇤ = ⌫⇤, we also know � is nonzero. Consequently, � = |W�| is nonzero. ⇤

2C. The linearized equation. Differentiating (11) in t gives the following linear equation for ✓ :
⇢
L✓ := wi j (✓i j � Dpk

Ai j✓k) + Dpk
(log B)✓k � @t✓ = 0 on CT :=�⇥ [0, T ],

D�✓ = 0 on @�⇥ [0, T ),
(18)
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where D�✓ := h�, r✓i, and where, in the coefficients, p = ru(x, t). By the global C
2 estimates

established in [Kitagawa 2012], the operator L is uniformly parabolic and, by Theorems 7.1 and 9.2
of that paper, the boundary condition D�✓ = 0 is uniformly oblique for all time. Hence, there exist
positive constants c1, c2 > 0 depending only on �, �⇤, B, c and u0, but independent of t , such that
wi j⇠i⇠ j � c1|⇠ |

2 for all (x, t) 2� and ⇠ 2 Rn, and h�, ⌫i � c2 > 0 for all x 2 @�, t > 0.
Solutions to the linearized equation (18) satisfy the following maximum principle; see also [Kitagawa

2012, Theorem 8.1].

Proposition 2.5. Suppose v is a solution to the linearized equation (18). Then

max
(x,t)2CT

v(x, t) = max
x2�

v(x, 0), min
(x,t)2CT

v(x, t) = min
x2�

v(x, 0).

Proof. By the parabolic maximum principle, the maximum of v occurs on the parabolic boundary
@PCT := (�⇥ {0}) [ (@�⇥ (0, T )). Suppose there exists (x0, t0) 2 @�⇥ (0, T ) such that v(x0, t0) =

max(x,t)2CT
v(x, t). It then follows from Hopf’s lemma, see [Lieberman 1996, Lemma 2.8 and following

paragraph], that D�v(x0, t0) > 0. However, this violates the boundary condition D�v = 0, and so the
maximum cannot occur on @�⇥ (0, T ). The argument for the minimum follows in similar fashion. ⇤

2D. Exponential convergence on manifolds with no boundary. In this section we recall the proof for
exponential convergence in the case of no boundary as done in [Kim et al. 2012]. At the end of the
section, we reprove the parabolic estimate Proposition 2.7 for the linearized operator, but we note our
method differs slightly from that of [Kim et al. 2012].

The authors of [Kim et al. 2012] consider the parabolic flow (11) on a Riemannian manifold with no
boundary and show exponential convergence of the solution u of (11) to the solution u

1 of the elliptic
equation (2). A key ingredient in their proof of exponential convergence is a Li–Yau-type Harnack
inequality for positive solutions v of the linearized equation Lv = 0; see [Kim et al. 2012, Theorem 5.2].
This strategy is motivated by the observation that the operator L is a heat-type equation with respect
to the time-varying Riemannian metric g with components gi j = wi j (see the discussion preceding
Proposition 2.7 below).

Suppose v is a positive solution to the linearized equation Lv = 0 on CT , where T > 0 is chosen to be
sufficiently large. Let f = log v and consider the quantity

F = t (|rg
f |

2
g
�↵@t f ) = t (wi j

fi f j �↵@t f ), (19)

where ↵ > 0 is a constant to be determined and rg denotes the gradient of a function with respect to the
metric g. It is shown in [Kim et al. 2012, Theorem 5.2] that F is sublinear in t everywhere in CT ; that is,
there exist constants C1, C2 > 0 (independent of T ) such that F(x, t)  C1 +C2t for all x 2�, t 2 [0, T ].
The sublinearity in t of F implies the differential Harnack inequality

wi j
fi f j �↵@t f 

C1

t
+ C2 (20)

for some possibly different constants C1 and C2 > 0. A standard argument applying the fundamental
theorem of calculus to f along an appropriate space-time curve, and then using (20) to estimate the term
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involving @t f (see, for instance, [Kim et al. 2012, p. 4345, Proof of Theorem 5.2]), yields the parabolic
Harnack inequality

sup
�

v( · , t)  C inf
�

v( · , t + 1) for all t � 1, (21)

where C > 0 is a constant independent of t . One then applies (21) to the nonnegative solutions

v+

k
(x, t) := sup

�

v( · , k) � v(x, k + t) and v�

k
(x, t) := v(x, k + t) � inf

�
v( · , k), k = 0, 1, 2, . . . ,

to obtain decay of oscillation of ✓ in time; see [Kim et al. 2012, Section 7.1]. This shows that ✓ converges
exponentially fast to a constant function on � as t ! 1. Invoking (17), we conclude that limt!1 ✓ ⌘ 0,
and so u( · , t) converges exponentially fast as t ! 1 to a function u

1( · ) solving (2).
Below we show the sublinearity of F, which is a standard argument provided here for completeness.

The proof relies on an important parabolic inequality satisfied by F, (24), which we will prove in
Proposition 2.7 below.

Proposition 2.6. If F does not attain a positive maximum on @�⇥ (0, T ), then there exist constants C
0

1
and C

0

2 > 0 independent of T such that

F(x, t)  C
0

1 + C
0

2t for all (x, t) 2 CT . (22)

Proof. First note that F( · , 0) ⌘ 0 because inf� v( · , 0) > 0, and so the bound holds at t = 0. Suppose
there exists a first time ⌧ 2 (0, T ) such that F(y, ⌧ ) � C

0

1 +C
0

2⌧ for some y 2�. By going further in time
if necessary, we may assume there exists a point (x0, t0) 2 �⇥ (0, T ] such that F(x0, t0) > C

0

1 + C
0

2t0

and F attains a local maximum at (x0, t0). If (x0, t0) is an interior point of CT , it follows from (24) that

C1 F(x0, t0)
2
� F(x0, t0) � C2t

2
0  0,

from which we conclude

F(x0, t0) 
1 +

p
1 + 4C1C2t

2
0

2C1
 eC1 + eC2t0 (23)

for a different set of constants eC1, eC2 > 0 and for t0 > 0 sufficiently large. If C
0

1, C
0

2 were chosen at the
beginning to satisfy C

0

1 > eC1 and C
0

2 > eC2, then we reach a contradiction based on (23). ⇤

Thus it is clear that on a manifold with no boundary, Proposition 2.6 combined with the discussion
above yields exponential convergence, as is shown in [Kim et al. 2012].

We finish this section by establishing the parabolic inequality (24) satisfied by F. It is shown in [Kim
et al. 2012, Proposition 5.1] that if n � 3 and

 (x, t) :=

✓
⇢⇤(T (x, t))2 det Dx T (x, t)

|det D2
x,yc(x, T (x, t))|

◆1/(n�2)

,

then
Lv =  1 gv � @tv,
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where 1 g is the Laplace–Beltrami operator with respect to the time-varying metric  g with gi j := wi j .
By adapting the proof of the differential Harnack inequality for the heat equation established in [Li and
Yau 1986], the authors of [Kim et al. 2012] establish a parabolic inequality for F similar to (24) in the
case of manifolds with no boundary of dimension n � 3. The case n = 2 is treated in [Kim et al. 2012]
through the introduction of a third dummy dimension in a manner giving the solution u of (11) a product
structure; see [Kim et al. 2012, Section 7.1.2] for details. In the presence of a boundary, such an argument
for dealing with the two-dimensional case is almost certain to fail due to the requirement of uniform c-
and c

⇤-convexity of the domains involved.
We elect to take a different approach which considers the weighted Laplacian1� :=1g �hrg�, rg · ig

for the manifold with density (�, g, e
��

d Volg), where

�(x, t) := log
✓

|det D
2
x,yc(x, T (x, t))|

⇢⇤(T (x, t))2 det Dx T (x, t)

◆1/2

.

It was first noted in [Warren 2014, Section 3] that for such a choice of weighted manifold, L =1� � @t .
The advantage of using this representation of L is that the case of dimension n = 2 does not need to
be treated separately. As mentioned above, in the case of nonempty boundary, the conversion of the
two-dimensional problem to a three-dimensional one as in [Kim et al. 2012] cannot be carried out. To
summarize, the following proof follows the spirit of [Kim et al. 2012, Section 6] (which in turn is based
on [Li and Yau 1986, Theorem 1.2]), but the details differ as we use the representation of the linearized
operator as a weighted Laplacian from [Warren 2014], in contrast with the conformal factor approach
used in [Kim et al. 2012].

Proposition 2.7. Under the same hypotheses as Theorem 1.1, there exist constants C1, C2, and C3 > 0,
depending only on the constant K defined in (4) and the dimension n, such that whenever v satisfies

Lv = 0,

LF + 2hr
g

f, rg
Fig �

1
t
(C1 F

2
� F � C2t

2
+ C3t |r

g
f |

2
g

F). (24)

Proof. We recall the well-known weighted Bochner formula

1�(|r
g

f |
2
g
) = 2kHessg f k

2
+ 2hr

g
f, rg(1� f )ig + 2 Ric�(rg

f, rg
f ), (25)

where Ric� := Ricg + Hessg �. Clearly, Ric� � �K, where K is defined in (4). Since Lv = 0, the function
f := log v solves the equation

@t f =1� f + |r
g

f |
2
g
. (26)

Consider the auxiliary function

F := t (|rg
f |

2
g
�↵@t f ), ↵ > 0.

By using (25), we obtain

1�F = t (1�(|r
g

f |
2
g
) �↵1�(@t f ))

= t
�
2kHessg f k

2
+ 2hr

g
f, rg(1� f )ig + 2 Ric�(rg

f, rg
f ) �↵1�(@t f )

�
.
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Direct computation shows that

1�(@t f )  @t(1� f ) + C(kHessg f k + |r
g

f |g),

where C = C(@t g, @trg, @tr�) � 0 depends only on K. Therefore,

1�F � t
�
2kHessg f k

2
+2hr

g
f,rg(1� f )ig+2Ric�(rg

f,rg
f )�↵@t(1� f )�↵C(kHessg f k+|r

g
f |g)

�

� t
�
kHessg f k

2
+2hr

g
f,rg(1� f )ig�↵@t(1� f )�C1|r

g
f |

2
g
�C2

�
,

where we have used Cauchy’s inequality and the lower bound for Ric� . From (26) and the definition of F,
it follows that

1� f = �

✓
F

t
+ (↵� 1)@t f

◆
.

Therefore,

2hr
g

f, rg(1� f )ig = �2
⌧
r

g
f, rg

✓
F

t
+ (↵� 1)@t f

◆�

g

= �
2
t
hr

g
f, rg

Fig � 2(↵� 1)hrg
f, rg(@t f )ig.

Furthermore,

@t F =
F

t
+ t (@t |r

g
f |

2
g
�↵@2

t
f ).

Therefore,

�↵@t(1� f ) = ↵@t

✓
F

t
+ (↵� 1)@t f

◆

= ↵

✓
@t F

t
�

F

t2 + (↵� 1)@2
t

f

◆

= ↵

✓
@t F

t
�

F

t2

◆
+ (↵� 1)↵@2

t
f

= ↵

✓
@t F

t
�

F

t2

◆
+ (↵� 1)

✓
F

t2 �
@t F

t
+ @t |r

g
f |

2
g

◆

=
@t F

t
�

F

t2 + (↵� 1)@t |r
g

f |
2
g
.

It follows that

2hr
g

f, rg(1� f )ig �↵@t(1� f )

=
1
t

✓
@t F � 2hr

g
f, rg

Fig �
F

t

◆
+ (↵� 1)(@t |r

g
f |

2
g
� 2hr

g
f, rg(@t f )ig)

�
1
t

✓
@t F � 2hr

g
f, rg

Fig �
F

t

◆
� C3|r

g
f |

2
g
,

where we have used the fact

@t |r
g

f |
2
g
 2hr

g
f, rg(@t f )ig + � |r

g
f |

2
g
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for some constant � = � (@t g) � 0 depending only on K. Inserting the above inequality into the lower
bound for 1�F yields

1�F � t

✓
kHessg f k

2
+

1
t

✓
@t F � 2hr

g
f, rg

Fig �
F

t

◆
� C4|r

g
f |

2
g
� C2

◆
.

Now since 1� f =1g f � hrg�, rg
f ig, we have

(1g f )2
= (1� f + hr

g�, rg
f ig)

2
= (1� f )2

+ hr
g�, rg

f i
2
g
+ 2(1� f )hrg�, rg

f ig

� (1� f )2
+ hr

g�, rg
f i

2
g
�

(1� f )2

2
� 2hr

g�, rg
f i

2
g

=
(1� f )2

2
� hr

g�, rg
f i

2
g

�
(1� f )2

2
� |r

g�|
2
g
|r

g
f |

2
g
.

Therefore, by the arithmetic-geometric mean inequality, we have

kHessg f k
2
�

1
n
(1g f )2

�
(1� f )2

2n
�

1
n
|r

g�|
2
g
|r

g
f |

2
g
.

Since |rg�|g  K, we obtain

1�F �
t

2n
(1� f )2

+ @t F � 2hr
g

f, rg
Fig �

F

t
� C5t |r

g
f |

2
g
� C2t.

Finally, by (26), and after relabeling constants, we conclude that

1�F + 2hr
g

f, rg
Fig � @t F �

1
t
[C1t

2(|rg
f |

2
g
� @t f )2

� F � C2t
2
|r

g
f |

2
g
� C3t

2
].

Here the constants C1, C2, C3 > 0 depend only on up to fourth-order derivatives of the cost function
(through Hessg �) and the C

4
x
C

1
t

norm of the solution u to (11) (through the time derivative of g and
bounds on the Ricci curvature of g), and hence only on K and on the dimension n.

Let y = |rg
f |2

g
and z = @t f . Then for any ↵, ✏, � > 0, we have the identity

(y � z)2
=

✓
1
↵

�
✏
2

◆
(y �↵z)2

+

✓
1 �

✏
2

� ��
1
↵

◆
y

2
+

✓
1 �↵+

✏
2
↵2

◆
z

2
+ ✏y(y �↵z) + �y

2.

We now choose ↵, ✏ > 0 such that

1 �
✏
2

�
1
↵

> 0, 1 �↵+
✏
2
↵2

� 0,
1
↵

�
✏
2

> 0.

Note that these conditions impose the restriction ↵ > 1. A direct verification shows that ↵ = 2 and ✏ =
1
2

satisfy the above inequalities. We then choose � =
1
8 2

�
0, 1 �

✏
2 �

1
↵

�
=

�
0, 1

4

�
. With these choices of

↵, ✏, �, we obtain (discarding the second and third terms in the expansion, and using that F = t (y �↵z))

1�F + 2hr
g

f, rg
Fig � @t F �

1
t


C1t

2
⇢

F
2

4t2 + y
F

2t
+

y
2

8

�
� F � C2t

2
y � C3t

2
�
.
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Using Cauchy’s inequality, we may eliminate the �C2t
2
y and C1t

2
y

2/8 terms to get

1�F + 2hr
g

f, rg
Fig � @t F �

1
t


C1t

2
⇢

F
2

4t2 + y
F

2t

�
� F � C4t

2
�
.

Relabeling constants, we have thus established an inequality of the form (24). ⇤

3. Sublinearity of F on domains with boundary

On a domain with boundary, one must deal with the possibility that F attains a maximum at a point
(x0, t0) 2 @PCT = (�⇥ {0}) [ (@�⇥ (0, T )), the parabolic boundary of the cylinder CT . Since F ⌘ 0 on
�⇥{0}, it suffices to assume (x0, t0) 2 @�⇥ (0, T ). The original argument of [Li and Yau 1986, proof
of Theorem 1.1] in the case of the heat equation eliminates the possibility of F attaining a nonnegative
maximum on @�⇥ (0, T ) by means of a contradiction to Hopf’s lemma. For this, they require two
additional hypotheses: namely, the solution to the heat equation also satisfies a Neumann boundary
condition, and the boundary is mean-convex.

We will obtain a similar contradiction to Hopf’s lemma only for the particular nonnegative solution
2(x, t) := sup� ✓( · , 0) � ✓(x, t) of the linearized equation (18) (as well as for translations of 2 in
time) by exploiting the boundary condition D�2 = 0 on @�⇥ [0, T ], and using the assumption that
the domains �, �⇤ are respectively c-convex and c

⇤-convex. This gives the desired sublinearity at the
boundary of the corresponding function F defined in (19) and establishes the Harnack inequality (21)
for 2, which turns out to be sufficient to prove the exponential convergence of u( · , t) to the steady
state solution u

1( · ) as t ! 1 (see Section 4). As mentioned in the Introduction, it is unclear if such
a sublinearity estimate at the boundary holds for an arbitrary nonnegative solution v of the linearized
equation (18).

Let us carry on with the proof of the sublinearity of F outlined in Proposition 2.6, now assuming there
exists (x0, t0) 2 @�⇥ (0, T ) such that F(x0, t0) > C

0

1 + C
0

2t0 and F attains a local maximum at (x0, t0).
It follows from (24) that, in a spherical cap near (x0, t0), we have

LF + 2hr
g

f, rg
Fig � 0.

By the uniform obliqueness of � and Hopf’s lemma, it follows that D�F(x0, t0) > 0. Anticipating a
contradiction, we proceed to explicitly compute D�F(x0, t0). We first make a rotation centered at x0 so the
directions e1, . . . , en�1 form an orthonormal basis for the tangent space to @� at x0, and the direction en is
the outward-pointing unit normal direction to @� at x0. Differentiating F in these coordinates, we find that

D�F(x0, t0) = D� |(x0,t0)t (w
i j

fi f j �↵@t f )

= t0[(D�w
i j ) fi f j + 2wi j (D� fi ) f j �↵D�(@t f )]

��
(x0,t0)

= t0[�wi`w jk(D�w`k) fi f j + 2wi j ((D� f )i ��k

i
fk) f j �↵(@t(D� f ) � (@t�

k) fk)]
��
(x0,t0)

.

Now since D� f = D�v/v=0 on @�, we have @t(D� f )=0 and (D� f )i =0 for i =1, . . . , n�1. Therefore,

D�F(x0, t0) = t0[�wi`w jk(D�w`k) fi f j � 2wi j�k

i
fk f j + 2wnj

f j (D� f )n +↵(@t�
k) fk]

��
(x0,t0)

.
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We claim wnj
f j = 0 at (x0, t0). By Lemma 2.4, W� is parallel to the outward-pointing unit normal

vector ⌫ on @�, so ⌫ = (1/�)W�, where � := |W�|. Again since D� f = 0 on @�,

0 = h�, r f i = hW
�1

W�, r f i = hW�, W
�1

r f i.

Hence,
⌧ := W

�1
r f (27)

is tangent to @�. In the coordinate system defined above, we have ⌫(x0, t0) = en , and so ⌧ n(x0, t0) = 0.
Since ⌧ n = wnj

f j , the claim is proved. It follows that

D�F(x0, t0) = t0[�(D�wk`)⌧
k⌧ ` � 2�k

i
fk⌧

i
+↵(@t�

k) fk]
��
(x0,t0)

. (28)

Note that since ⌧n = 0 at (x0, t0), it suffices to sum the indices in the first term over k, `= 1, . . . , n � 1.

3A. Inner product cost. We first show how to explicitly compute D�F(x0, t0) in the case when the cost
function is given by the Euclidean inner product on Rn (which is known to be equivalent to taking the
cost function to be the Euclidean distance squared). There are a number of simplifications in this case,
as Y (x, p) = p, W (x, t) = D

2
u(x, t), and c- and c

⇤-convexity of sets and functions reduce to the usual
notions of convexity of the domains � and �⇤.

Proposition 3.1. If c(x, y) = hx, yi,

D�F(x0, t0) = t0[��h(D⌫)⌧, ⌧ i � hD
2
h

⇤(ru)r f, r f i +↵hD
2
h

⇤(ru)r✓, r f i]
��
(x0,t0)

. (29)

Proof. We have
W = D

2
u, � = rh

⇤(ru).

Consequently, ⌫ = (1/�)(D
2
u)�. Differentiating ⌫k in the e`-direction for k, `= 1, . . . , n � 1, we find

⌫k

` =

✓
1
�

ukr�
r

◆

`

=
1
�

(u`kr�
r
+ ukr�

r

` ) �
�`

�2 (ukr�
r )

=
1
�

(D�u`k + ukr�
r

` ) � (log�)`⌫
k .

Solving for D�u`k , we obtain

D�u`k = �⌫k

` � ukr�
r

` +�(log�)`⌫
k .

Therefore at (x0, t0), we have (recall (27))

�(D�u`k)⌧
`⌧ k

= �(�⌫k

` � ukr�
r

` +�(log�)`⌫
k)⌧ `⌧ k

= ��⌫k

` ⌧
`⌧ k

+ ukr⌧
k�r

` ⌧
`

= ��⌫k

` ⌧
`⌧ k

+ fr�
r

` ⌧
`,

where we sum the indices k, ` from 1 to n � 1. Substituting this into (28) gives

D�F(x0, t0) = t0[��⌫
k

` ⌧
`⌧ k

��k

i
fk⌧

i
+↵(@t�

k) fk]
��
(x0,t0)

.
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Since �(x, t) = rh
⇤(ru(x, t)), we find that

�k

i
fk⌧

i
= h

⇤

k`(ru)u`i fk⌧
i
= h

⇤

k`(ru) fku`i⌧
i
= h

⇤

k`(ru) fk f`,

and
(@t�

k) fk = h
⇤

k`(ru)(@t u`) fk = h
⇤

k`(ru)✓` fk;

hence (29) follows. ⇤

3B. General cost. We now show how to explicitly compute D�F(x0, t0) in the case of a general cost.

Proposition 3.2. We have

D�F(x0, t0) = t0[��(⌫
j

i
� c

r,`
ci j,r⌫

`)⌧ i⌧ j
� G pk ps

(x, ru) fk fs +↵ G pk ps
(x, ru) fk✓s]

��
(x0,t0)

. (30)

Proof. We have

w jk(x, t) = u jk(x, t) � c jk(x, T (x, t)), �k(x, t) = h
⇤

`(Y (x, ru(x, t)))Y `
pk

(x, ru(x, t)).

Recall that ⌫ = (1/�)W�. As in the case of the inner product cost, we differentiate ⌫ j in the ei -direction
for i, j = 1, . . . , n � 1 to get

⌫
j

i
=

✓
1
�

w jk�
k

◆

i

=
1
�

((w jk)i�
k
+ w jk�

k

i
) �

�i

�2 (w jk�
k)

=
1
�

((w jk)i�
k
+ w jk�

k

i
) � (log�)i⌫

j .

Differentiating w jk gives

(w jk)i = u jki � c jki � c jk,r T
r

i

= (wi j )k + ci j,r T
r

k
� c jk,r T

r

i

= (wi j )k + ci j,r c
r,`w`k � c jk,r c

r,`w`i ,

where we have used (14) in the final line. Therefore,

⌫
j

i
=

1
�

((w jk)i�
k
+ w jk�

k

i
) � (log�)i⌫

j

=
1
�

�
[(wi j )k + ci j,r c

r,`w`k � c jk,r c
r,`w`i ]�

k
+ w jk�

k

i

�
� (log�)i⌫

j

=
1
�

�
D�wi j + [ci j,r c

r,`w`k � c jk,r c
r,`w`i ]�

k
+ w jk�

k

i

�
� (log�)i⌫

j .

Solving for D�wi j , we obtain

D�wi j = �⌫
j

i
� [ci j,r c

r,`w`k � c jk,r c
r,`w`i ]�

k
� w jk�

k

i
+�(log�)i⌫

j .

Therefore, at (x0, t0), we have (again using (27))

�(D�wi j )⌧
i⌧ j

= �
�
�⌫

j

i
� [ci j,r c

r,`w`k � c jk,r c
r,`w`i ]�

k
� w jk�

k

i
+�(log�)i⌫

j
�
⌧ i⌧ j

= �(�⌫
j

i
� ci j,r c

r,`w`k�
k
+ c jk,r c

r,`w`i�
k)⌧ i⌧ j

+ w jk�
k

i
⌧ i⌧ j

= ��(⌫
j

i
� c

r,`
ci j,r⌫

`)⌧ i⌧ j
� c

r,`
c jk,r f`�

k⌧ j
+ fk�

k

i
⌧ i

= ��(⌫
j

i
� c

r,`
ci j,r⌫

`)⌧ i⌧ j
� c jk,r h

⇤

s
Y

s

pk
Y

r

p`
f`⌧

j
+ fk�

k

i
⌧ i
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where we sum the indices i, j from 1 to n � 1. It follows from (28) that

D�F(x0, t0) = t0[��(⌫
j

i
� c

r,`
ci j,r⌫

`)⌧ i⌧ j
� c jk,r h

⇤

s
Y

s

pk
Y

r

p`
f`⌧

j
� fk�

k

i
⌧ i

+↵@t�
k

fk]
��
(x0,t0)

. (31)

We compute
�k

i
= h

⇤

`r (Y
r

xi
+ Y

r

ps
usi )Y

`
pk

+ h
⇤

`(Y
`
pk xi

+ Y
`
pk ps

usi ). (32)

To simplify the first term, recall the identity (see (14))

Y
r

xi
+ Y

r

ps
usi = Y

r

ps
wsi .

For the second term in (32), we differentiate the equation ci,`Y
`
pk

= �ik with respect to ps and xi to obtain

Y
`
pk ps

= �c
`, j

c j,rqY
r

pk
Y

q

ps

and
Y
`
pk xi

= �c
`, j

ci j,r Y
r

pk
+ c

`, j
c j,rqY

r

pk
Y

q

ps
csi = �ci j,r Y

`
p j

Y
r

pk
� Y

`
pk ps

csi .

Therefore,
Y
`
pk xi

+ Y
`
pk ps

usi = �ci j,r Y
`
p j

Y
r

pk
+ wsi Y

`
pk ps

.

Substituting these into the expression (32) gives

�k

i
= h

⇤

`r Y
`
pk

Y
r

ps
wsi + h

⇤

`(�ci j,r Y
`
p j

Y
r

pk
+ wsi Y

`
pk ps

).

Therefore,
fk�

k

i
⌧ i

= h
⇤

`r Y
`
pk

Y
r

ps
fkwsi⌧

i
� ci j,r h

⇤

`Y
`
p j

Y
r

pk
fk⌧

i
+ h

⇤

`Y
`
pk ps

fkwsi⌧
i

= h
⇤

`r Y
`
pk

Y
r

ps
fk fs � ci j,r h

⇤

`Y
`
p j

Y
r

pk
fk⌧

i
+ h

⇤

`Y
`
pk ps

fk fs .

Substituting into (31) and observing that the second term in the above expression cancels the term
�c jk,r h

⇤
s
Y

r

p`
Y

s

pk
f`⌧

j in (31), we obtain

D�F(x0, t0) = t0[��(⌫
j

i
� c

r,`
ci j,r⌫

`)⌧ i⌧ j
� (h⇤

`r Y
`
pk

Y
r

ps
+ h

⇤

`Y
`
pk ps

) fk fs +↵�k

t
fk]

��
(x0,t0)

.

Next, we compute
@t�

k
= (h⇤

`r Y
`
pk

Y
r

ps
+ h

⇤

`Y
`
pk ps

)✓s .

Finally, noticing that h
⇤

`r Y
`
pk

Y
r

ps
+ h

⇤

`Y
`
pk ps

= G pk ps
, we obtain the claimed expression (30). ⇤

4. Proof of exponential convergence

With Propositions 3.1 and 3.2 in hand, we may now prove our main result. We note that the proof presented
here is different from the standard proof of exponential convergence via parabolic Harnack inequality
outlined in Section 2D, and explicitly uses special properties of the underlying optimal transport problem.
In particular, we must take into consideration the c- and c

⇤-convexity of both domains � and �⇤, and
judiciously choose special solutions of the linearized problem that will allow us to utilize the expressions
for D�F obtained in Propositions 3.1 and 3.2.



EXPONENTIAL CONVERGENCE OF PARABOLIC OPTIMAL TRANSPORT ON BOUNDED DOMAINS 2199

Proof of Theorem 1.1. Consider the function

2(x, t) = sup
�

✓( · , 0) � ✓(x, t),

which satisfies (18), and is nonnegative by Proposition 2.5. We claim D�F(x0, t0)  0 when v = 2,
which will contradict Hopf’s lemma, thus proving F cannot attain a positive maximum on @�⇥ (0, T ).

Let us first deal with the case of the inner product cost. Since the domain � is convex, we have
h(D⌫)⌧, ⌧ i � 0. Therefore, since � � 0, we obtain using Proposition 3.1

D�F(x0, t0)  t0[�hD
2
h

⇤(ru)r f, r f i +↵hD
2
h

⇤(ru)r✓, r f i]
��
(x0,t0)

. (33)

Next, the convexity of �⇤ implies D
2
h

⇤ is nonnegative, so by substituting for f = log2 in (33), we find

D�F(x0, t0)  t0


�

1
22 hD

2
h

⇤(ru)r✓, r✓i �
↵

2
hD

2
h

⇤(ru)r✓, r✓i

�����
(x0,t0)

 0.

This is the desired contradiction to Hopf’s lemma. For general costs, we use Proposition 3.2, noticing
that c-convexity of � with respect to �⇤, given in (8), implies (⌫

j

i
� c

r,`
ci j,r⌫

`)⌧ i⌧ j � 0, while the
c
⇤-convexity of �⇤ with respect to �, given in (9), implies G pk ps

is a nonnegative matrix.
It follows from Proposition 2.6 that with the choice v =2, the corresponding function F defined in

(19) is sublinear in time, and consequently the Harnack inequality (21) holds for 2. Using this Harnack
inequality, we now prove exponential convergence of ✓( · , t). The argument is similar to [Kim et al. 2012,
Section 7], but differs in an essential manner. For each integer k � 1, consider the function

2k(x, t) := sup
�

✓( · , k � 1) � ✓(x, (k � 1) + t).

The functions 2k are nonnegative by Proposition 2.5 and solve (18). Arguing as above, the corresponding
functions F for v =2k are also sublinear in t (with constants independent of k) and thus the Harnack
inequality (21) holds for 2k . Applying (21) to 2k at t = 1 yields

sup
�

✓( · , k � 1) � inf
�
✓( · , k)  C

�
sup
�

✓( · , k � 1) � sup
�

✓( · , k + 1)
�
. (34)

Now by (17), we know inf� ✓( · , k)  0 for each k. Therefore, defining ✏ := (C � 1)/C < 1, we find

sup
�

✓( · , k + 1)  ✏ sup
�

✓( · , k � 1).

Iterating this inequality gives the exponential decay of the supremum

sup
�

✓( · , t)  sup
�

✓( · , 0)e�� t , where e
��

= ✏. (35)

On the other hand, (34) implies

inf
�
✓( · , k) � �(C � 1) sup

�

✓( · , k � 1) + C sup
�

✓( · , k + 1) � �(C � 1) sup
�

✓( · , k � 1),

where we have used (17) again to throw away the term sup� ✓( · , k + 1). Therefore, by (35), we obtain

inf
�
✓( · , k) � �(C � 1) sup

�

✓( · , 0)e��(k�1). (36)
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This implies the exponential convergence of inf� ✓( · , t), which combined with (35) gives the desired
exponential convergence of ✓( · , t) to zero. ⇤

5. A geometric approach to sublinearity at the boundary

In this section, we present an alternative approach to the computation of D�F(x0, t0) arising in the
boundary sublinearity above. We will accomplish this using geometric language, exploiting the pseudo-
Riemannian framework for optimal transport developed in [Kim and McCann 2010]. All material in this
section is new, to the best knowledge of the authors, and constitutes the first treatment of the boundary
geometry of domains in the context of the Kim–McCann metric.

In order to stay in line with established conventions, in this section we will mostly follow the notation
used in [Kim and McCann 2010]. Thus in this section only, we will refer to the source and target domains
as � and � respectively (in particular, � does not denote the closure of a set), which we assume are
subsets of some fixed Riemannian manifolds. Points with a bar above will belong to �, while those
without will belong to �. We also adopt the Einstein summation convention with the caveat that any
indices given by Greek letters will run from 1 to 2n, while lower case Roman indices run between 1 and
n with the convention that an index with a bar above will be that value with n added to it: in other words,
1  �  2n, 1  i  n and ī := i + n.

Additionally, we will switch sign conventions at this point to stay in line with the definitions of [Kim
and McCann 2010]. This means that c will be replaced by �c everywhere, and the optimal transport
problem (1) that is considered will be a minimization instead of a maximization problem.

We also split the tangent and cotangent spaces of �⇥� in the canonical way according to the product
structure, which gives the splitting dc = Dc � Dc of the one form dc on �⇥�, and given any local
coordinate system on �⇥� we will use the notation X to denote the full 2n-dimensional coordinate
variable: thus given a point X = (x, x̄) 2�⇥�, X

i will indicate the i-th coordinate of x with 1  i  n,
and X

ī will indicate the i-th coordinate of x̄ . We will also suppress the time variable in this section, as
everything considered will be for a fixed time t (in fact, the time dependency of the potential u will be
completely irrelevant in the results of this section). Finally, we use the notation

[�]x̄ := �Dc(�, x̄) ⇢ T
⇤

x̄
�, [�]x := �Dc(x, �) ⇢ T

⇤

x
� for any (x, x̄) 2�⇥�.

Equip � with the pullback metric w := (Id ⇥ T )⇤h, where

h :=
1
2

✓
0 �DDc

�DDc 0

◆

is the Kim–McCann (pseudo-Riemannian) metric on �⇥ � defined as in [Kim and McCann 2010,
(2.1)]. By [Kim et al. 2010, Section 3.2], in Euclidean coordinates the coefficients of w at x are exactly
wi j (x) = ui j (x) + ci j (x, T (x)), and w is a Riemannian metric. We will write rw and rh for the Levi-
Civita connections of w and h respectively, 0 for the Christoffel symbols of h, and | · |w for the length of
a vector in w. We will also metrically identify various cotangent spaces naturally with Rn through the
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underlying Riemannian metrics on � or �. The inner products and norms in these underlying metrics
will be denoted by h · , · i and | · | respectively. Our main result of the section is the following.

Theorem 5.1. Let IIw be the second fundamental form of @� defined with respect to the metric w, and

fix a point x0 2 @�. If II@[�]T (x0) , II@[�]x0 are the (Euclidean) second fundamental forms of @[�]T (x0) and

@[�]x0 respectively, then for any ⌧1, ⌧2 2 Tx0 @� we have

2|�(x0)|wIIw
x0

(⌧1, ⌧2) = |DT (x0)�(x0)|II
@[�]T (x0)

�Dc(x0,T (x0))
(⌧̂1, ⌧̂2) + |�(x0)|II

@[�]x0
�Dc(x0,T (x0))

( ˆ̄⌧1, ˆ̄⌧2), (37)
where

⌧̂i := � DDc(x0, T (x0))⌧i 2 T
⇤

T (x0)
�,

ˆ̄⌧i := � DDc(x0, T (x0))DT (x0)⌧i 2 T
⇤

x0
�.

Proof. Fix any point x0 2 @�. Note by Lemma 2.4 that �(x0) is an (outward) normal to @� at x0 with
respect to the metric w. Then since Id ⇥ T is an embedding of � into �⇥�, if rh is the Levi-Civita
connection of h, we have (using that ⌧2 is tangent to @� in the second line)

IIw
x0

(⌧1, ⌧2) = w

✓
r

w
⌧1

�

|�|w
, ⌧2

◆
= |�|

�1
w w(rw

⌧1
�, ⌧2) + D⌧1(|�|

�1
w )w(�, ⌧2)

= |�|
�1
w w(rw

⌧1
�, ⌧2) = �|�|

�1
w w(�, rw

⌧1
⌧2)

= �|�|
�1
w h

�
(�� DT (x0)�), rh

(⌧1�DT (x0)⌧1)
(⌧2 � DT (x0)⌧2)

�

= �|�|
�1
w (�� DT (x0)�)[[rh

(⌧1�DT (x0)⌧1)
(⌧2 � DT (x0)⌧2)], (38)

where [ is the operation of lowering the indices of a tangent vector to �⇥� by the metric h. Next
consider the mapping 8(x, x̄) := �Dc(x0, x̄) � (�Dc(x, T (x0))). By the bitwist condition (6), 8 is a
diffeomorphism on �⇥�; hence 8�1 gives a global coordinate chart on the set. We will use hats to
denote quantities related to h written in the coordinates given by 8�1, while quantities without hats will
be in Euclidean coordinates. A quick calculation yields that

@8�

@X�
(x0, T (x0)) = 2h�� (x0, T (x0)). (39)

We will now calculate the Christoffel symbols b0��� in the coordinates given by 8�1. By [Kim and
McCann 2010, Lemma 4.1] the Christoffel symbols of h in Euclidean coordinates are identically zero
unless all three of the indices are simultaneously between 1 and n, or between n + 1 and 2n. Thus the
standard transformation law shows that in the coordinates given by 8�1, the only Christoffel symbols
that can be nonzero are those where either the upper index is not barred and both lower indices are, or
the upper index is barred and both lower indices are not. Since � is c-convex with respect to �, there
is an n-dimensional cone K (x0) of directions that point inward to [�]T (x0) from the boundary point
�Dc(x0, T (x0)). By [Kim and McCann 2010, Lemma 4.4], for any such direction v in this cone K (x0),
any segment of the form s 7!8�1(sv��Dc(x0, T (x0))) is a geodesic for h for small s >0. Thus plugging
such a segment into the geodesic equations in 8�1 coordinates yields for any fixed ī , at (x0, T (x0)),

0 = b0 ī

j k
v jvk .



2202 FARHAN ABEDIN AND JUN KITAGAWA

Suppose {vl}
n

l=1 is a linearly independent collection of vectors in K (x0); then for any 1  l1 6= l2  n we
have

0 = b0 ī

j k
(v

j

l1
+ v

j

l2
)(vk

l1
+ vk

l2
) = b0 ī

j k
v

j

l1
vk

l1
+b0 ī

j k
v

j

l2
vk

l2
+b0 ī

j k
v

j

l1
vk

l2
+b0 ī

j k
v

j

l2
vk

l1
= 2b0 ī

j k
v

j

l1
vk

l2
,

which implies all Christoffel symbols of the form b0 ī

j k
are also zero. A similar argument reversing the

roles of � and � yields that all Christoffel symbols of h are zero in the 8�1 coordinates at the point
(x0, T (x0)).

Now using (39), we see that the coordinates of the 1-form (� � DT (x0)�)[ in 8�1 are equal to the
Euclidean coordinates of the tangent vector 1

2(�� DT (x0)�). Also we can calculate, for i = 1 or 2,

(
V

⌧i � DT (x0)⌧i )
j
=
@8 j

@Xk̄
(x0, T (x0))(⌧i � DT (x0)⌧i )

k̄
= �c

jk̄
(DT (x0)⌧i )

k
= ˆ̄⌧

j

i
,

(
V

⌧i � DT (x0)⌧i )
j̄
=
@8 j̄

@Xk
(x0, T (x0))(⌧i � DT (x0)⌧i )

k
= �c

k j̄
⌧ k

i
= ⌧̂

j

i
,

where we have identified T
⇤
x0
� and T

⇤

T (x0)
�with Rn to write the vectors ⌧̂i and ˆ̄⌧i defined in the statement of

the theorem in Euclidean coordinates. Combining this fact with (39), we can write (38) in the coordinates
given by 8�1 as

�
1
2
|�|

�1
w

✓
ˆ̄⌧

j

1

nX

i=1

� i (@x̂ j
ˆ̄⌧ i

2) + ⌧̂ l

1

nX

k=1

(DT (x0)�)k(@x̂ l ⌧̂ k

2 )

◆
. (40)

Now we can see that the function h
⇤(Y (x0, · )) is a defining function for the set [�]x0 ; hence identifying

T
⇤
x0
� with Rn and differentiating yields that rph

⇤(Y (x0, p)) is in the outward normal direction for
p 2 @[�]x0 . In particular, the unit outward normal vector to @[�]x0 at �Dc(x0, T (x0)) has coordinates
given by � i/|�|. A similar calculation involving h(X (T (x0), · )) yields that the coordinates of the unit
outward normal vector to @[�]T (x0) at �Dc(x0, T (x0)) are given by (DT (x0)�)k/|DT (x0)�|. Addition-
ally, since each ⌧i is tangent to @�, we see that ⌧̂i and ˆ̄⌧i are respectively tangent to @[�]x0 and @[�]T (x0).
Thus we calculate

II
@[�]x0
�Dc(x0,T (x0))

( ˆ̄⌧1, ˆ̄⌧2) =

⌧
rˆ̄⌧1

�

|�|
, ˆ̄⌧2

�
= |�|

�1
hr ˆ̄⌧1

�, ˆ̄⌧2i + D ˆ̄⌧1

✓
1

|�|

◆
h�, ˆ̄⌧2i

= |�|
�1

hr ˆ̄⌧1
�, ˆ̄⌧2i = |�|

�1(D ˆ̄⌧1
h�, ˆ̄⌧2i � h�, rˆ̄⌧1

ˆ̄⌧2i) = �|�|
�1

h�, rˆ̄⌧1
ˆ̄⌧2i

= �|�|
�1 ˆ̄⌧

j

1

nX

i=1

� i (@x̂ j
ˆ̄⌧ i

2)

and likewise

II
@[�]T (x0)

�Dc(x0,T (x0))
(⌧̂1, ⌧̂2) =

⌧
r⌧̂1

DT (x0)�

|DT (x0)�|
, ⌧̂2

�
= �|DT (x0)�|

�1
hDT (x0)�, r⌧̂1 ⌧̂2i

= �|DT (x0)�|
�1⌧̂ l

1

nX

k=1

(DT (x0)�)k(@x̂ l ⌧̂ k

2 ).

Comparing this with (40) completes the proof of the theorem. ⇤
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The relevance of the above theorem to our current exponential convergence result is as follows. In
terms of the metric w, we see that the �-directional derivative of the first term in the function F defined
by (19) is given by (at x0)

D�(w(rw
f, rw

f )) = 2w(rw
� r

w
f, rw

f ) = Hess f (�, rw
f )

= Hess f (rw
f, �) = 2w(rw

rw f
r

w
f, �) = �2w(rw

rw f
�, rw

f )

= �2|�|wIIw(rw
f, rw

f ).

Here we repeatedly used that rw
f is tangent to @� (due to the boundary condition D�v = 0 and since

f = log v), while � is normal in the metric w, and we have used (38) in the last line. Under the c- and
c
⇤-convexity conditions (8) and (9), the two terms on the right-hand side of (37) are nonnegative; hence,

by Theorem 5.1, D�w(rw
f, rw

f ) is nonpositive. Thus in order to obtain a contradiction with the Hopf
lemma as in Section 4, all that remains is to evaluate the last term �↵D�(@t f ). Obtaining a sign on this
term depends on the specific choice of the function v, as in Section 4.
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