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We show quantitative stability results for the geometric “cells” arising in semi-discrete

optimal transport problems. We first show stability of the associated Laguerre cells in

measure, without any connectedness or regularity assumptions on the source measure.

Next we show quantitative invertibility of the map taking dual variables to the measures

of Laguerre cells, under a Poincarè-Wirtinger inequality. Combined with a regularity

assumption equivalent to the Ma–Trudinger–Wang conditions of regularity in Monge-

Ampère, this invertibility leads to stability of Laguerre cells in Hausdorff measure and

also stability in the uniform norm of the dual potential functions, all stability results

come with explicit quantitative bounds. Our methods utilize a combination of graph

theory, convex geometry, and Monge-Ampère regularity theory.

1 Introduction

1.1 Semi-discrete optimal transport

Let X ⊂ R
n, n ≥ 2 compact and Y := {yi}N

i=1 ⊂ R
n a fixed finite set, and fix a Borel

measurable cost function c : X × Y → R. If μ is an absolutely continuous probability

measure supported in X and ν is a discrete probability measure supported on Y, then

the semi-discrete optimal transport problem is to minimize the functional∫
X

c(x, T(x))dμ (1.1)
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2 M. Bansil and J. Kitagawa

over all Borel measurable mappings T : X → Y such that T#μ(E) := μ(T−1(E)) = ν(E)

for any measurable E ⊂ Y. This problem has been well-studied in the more general case

when ν may not be a discrete measure, and has deep connections to many mathematical

areas, as mentioned throughout [19].

In this paper, we are concerned with quantitative stability of the geometric

structures when minimizing (1.1), under perturbations of the target measure ν. It is

known that under some mild conditions, an optimal map T can be constructed via a

μ-a.e. partition of the domain X, which is induced by a potential function that maxi-

mizes an associated dual problem. The cells in such a partition are known as Laguerre

cells (see Definition 1.1 below). We will show stability of these cells under perturbations

of ν measured in two different ways: an integral notion, and a uniform notion. As

a corollary, we will also obtain stability of the associated dual potential functions

in uniform norm; all of these stability results will come with explicit quantitative

estimates.

For the remainder of the paper, we fix positive integers N and n and a collection

Y := {yi}N
i=1 ⊂ R

n. We also define

� :=
{

λ ∈ R
N |

N∑
i=1

λi = 1, λi ≥ 0

}
,

and to any vector λ ∈ � we associate the discrete measure νλ := ∑N
i=1 λiδyi

, and we

let 1 = (1, . . . , 1) ∈ R
N . Superscripts will be used for coordinates of a vector, and we

use ‖V‖ :=
√∑N

i=1

∣∣Vi
∣∣ 2 for the Euclidean (�2) norm of a vector V ∈ R

N , while ‖V‖1 :=∑N
i=1

∣∣Vi
∣∣ and ‖V‖∞ := maxi∈{1,...,N}

∣∣Vi
∣∣ are respectively the �1 and �∞ norms. We may

also use ‖T‖ for the operator norm of a linear transformation T, this will be clear from

context. Lastly, L will denote n dimensional Lebesgue measure.

1.2 Statement of results

We assume the following standard conditions on c throughout:

c(·, yi) ∈ C2(X), ∀i ∈ {1, . . . , N}, (Reg)

∇xc(x, yi) �= ∇xc(x, yk), ∀x ∈ X, i �= k. (Twist)

These two conditions are standard in the existence theory for optimal transport, see

[14]. We then make the following definitions:
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Quantitative stability for OT 3

Definition 1.1. If ϕ : X → R ∪ {+∞} (not identically +∞) and ψ ∈ R
N , their c- and

c∗-transforms are a vector ϕc ∈ R
N and a function ψc∗

: X → R ∪ {+∞} respectively,

defined by

(ϕc)i := sup
x∈X

(−c(x, yi) − ϕ(x)), (ψc∗
)(x) := max

i∈{1,...,N}
(−c(x, yi) − ψ i).

For i ∈ {1, . . . , N}, the ith Laguerre cell associated to ψ is defined by

Lagi(ψ) := {x ∈ X | −c(x, yi) − ψ i = ψc∗}.

We also define the map G : RN → � by

G(ψ) := (G1(ψ), . . . , GN(ψ)) = (μ(Lag1(ψ)), . . . , μ(LagN(ψ))),

and define for any ε ≥ 0,

Kε := {ψ ∈ R
N | Gi(ψ) > ε, ∀i ∈ {1, . . . , N}}.

When μ is absolutely continuous with respect to Lebesgue measure, it is clear

that (Twist) implies Laguerre cells for a fixed ψ associated to different indices are

disjoint up μ-negligible sets. The generalized Brenier’s theorem [19,Theorem 10.28],

shows that for any vector ψ ∈ R
N the μ-a.e. single valued map Tψ : X → Y defined

by Tψ(x) = yi whenever x ∈ Lagi(ψ), is a minimizer in (1.1), from the source measure

μ to the target measure ν = νG(ψ). Clearly ψ and ψ + r1 give the same optimal map for

any real r ∈ R. This mapping can be found from the dual Kantorovich problem: in this

semi-discrete setting, it is known (see [19,Chapter 5]) that the minimum value in (1.1)

with ν = νλ is equal to

max
{
−
∫

X
ϕdμ − 〈ψ , λ〉 | (ϕ, ψ) ∈ L1(μ) × R

N , −ϕ(x) − ψ i ≤ c(x, yi), μ − a.e. x ∈ X
}

.

Then the maximum value is attained by a pair of the form (ψc∗
, ψ) for some ψ ∈ R

N and

the map Tψ is the minimizer in (1.1) between μ and νλ. We will refer to such an ψ ∈ R
N

and the associated ψc∗
as an optimal dual vector and an optimal dual potential for νλ.

Our first stability result will be stated in terms of the following perturbation in

measure:

Definition 1.2. If A, B ⊂ R
n are Borel sets, then their μ-symmetric distance will be

denoted by


μ(A, B) := μ(A
B) = μ((A \ B) ∪ (B \ A)). (1.2)
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4 M. Bansil and J. Kitagawa

Then our first theorem is:

Theorem 1.3. Suppose c satisfies (Reg) and (Twist), and μ is absolutely continuous. If

λ1, λ2 ∈ � and ψ1, ψ2 are optimal dual vectors for νλ1
and νλ2

respectively, then

N∑
i=1


μ(Lagi(ψ1), Lagi(ψ2)) ≤ 4N‖λ1 − λ2‖1. (1.3)

We point out we make no assumptions on μ beyond absolute continuity, in

particular no geometric assumptions on the support or regularity conditions on the

density are made, and the bound is independent of any lower bound on the components

of the weight vectors λi.

Our second stability result on Laguerre cells will be measured in the Hausdorff

distance, and will require further conditions on μ and c. On c, we need the following

condition originally studied by Loeper in [11].

Definition 1.4. We say c satisfies Loeper’s condition if for each i ∈ {1, . . . , N} there

exists a convex set Xi ⊂ R
n and a C2 diffeomorphism expc

i (·) : Xi → X such that

∀ t ∈ R, 1 ≤ k, i ≤ N, {p ∈ Xi | −c(expc
i (p), yk) + c(expc

i (p), yi) ≤ t} is convex. (QC)

We also say that a set X̃ ⊂ X is c-convex with respect to Y if (expc
i )

−1(X̃) is a convex set

for every i ∈ {1, . . . , N}.

(QC) is a geometric manifestation of the Ma–Trudinger–Wang (MTW) condition,

which is central to the study of regularity in the Monge-Ampère type equation coming

from optimal transport. The strong version of the MTW condition was introduced in

[14], and a weak form later in [17], both of which deal with higher order regularity for

optimal maps in the case of optimal maps between absolutely continuous measures.

The results of [11] show that if Y is a finite set sampled from from a continuous space,

X is c-convex with respect to the space Y is sampled from, and c is C4 (along with an

analogous convexity condition on the space Y is sampled from), then (QC) is equivalent

to the MTW condition. Additionally, Loeper showed that (QC) (hence MTW) is necessary

for regularity of the optimal transport problem.

Definition 1.5. Suppose c satisfies (Reg) and (Twist), X is a compact set with

Lipschitz boundary, μ = ρdx for some density ρ ∈ C0(X), and sptμ ⊂ X. Then
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Quantitative stability for OT 5

we will say that a positive, finite constant is universal if it has bounds away from

zero and infinity depending only on the following quantities: n, ‖ρ‖C0(X), Hn−1(∂X),

maxi∈{1,...,N}‖c(·, yi)‖C2(X), and

εtw := min
x∈X

min
i,j∈{1,...,N},i�=j

‖∇xc(x, yi) − ∇xc(x, yj)‖,

C∇ := max
x∈X,i∈{1,...,N}

‖∇xc(x, yi)‖

Cexp := max
i∈{1,...,N}

max
{
‖expc

i ‖C0,1((expc
i )−1(X)), ‖(expc

i )
−1‖C0,1(X)

}
,

Ccond := max
i∈{1,...,N}

max
p∈(expc

i )−1(X)
cond(D expc

i (p)),

Cdet := max
i∈{1,...,N}

‖det(D expc
i )‖C0,1((expc

i )−1(X)),

where cond is the condition number of a linear transformation. These constants are the

same as those from [9,Remark 4.1].

Remark 1.6. If the points {y1, . . . , yN} are sampled from some continuous domain

Ỹ, and c is a cost function on X × Ỹ satisfying (Reg), (Twist) then all constants in

Definition 1.5, except εtw are independent of N.

As for μ, in addition to Hölder regularity of the density, we will require a

connectedness assumption on the support.

Definition 1.7. A probability measure μ on X satisfies a (q, 1)-Poincaré-Wirtinger

inequality for some 1 ≤ q ≤ ∞ if there exists a constant Cpw > 0 such that for any

f ∈ C1(X), ∥∥∥∥f −
∫

X
fdμ

∥∥∥∥
Lq(μ)

≤ Cpw‖∇f ‖L1(μ).

For brevity, we will write this as “μ satisfies a (q, 1)-PW inequality”.

We note that since X has Lipschitz boundary, the class C1(X) can be unambigu-

ously defined.

Remark 1.8. This condition is used to obtain invertibility of the derivative of the map

G in nontrivial directions (see the discussion immediately preceding [9,Definition 1.3]),

and a Poincaré-Wirtinger inequality can be viewed as a quantitatively strengthened

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa355/6056388 by guest on 12 M

ay 2021



6 M. Bansil and J. Kitagawa

version of connectivity, which is sufficient for these purposes. It is classical that if

ρ is bounded away from zero on its support, it will satisfy a ( n
n−1 , 1)-PW inequality, and

due to scaling q = n
n−1 is the largest possible value of q when ρ is continuous.

Recall the following definition of Hausdorff distance.

Definition 1.9. If x ∈ R
n and A ⊂ R

n, we define

d(x, A) := inf
y∈A

‖x − y‖.

Then for two nonempty sets A and B ⊂ R
n, the Hausdorff distance between A and B is

defined by

dH(A, B) := max
(

sup
x∈A

d(x, B), sup
x∈B

d(x, A)

)
.

Our second goal is to show stability of the Hausdorff distance between cor-

responding optimal Laguerre cells, under perturbations of the masses of the target

measure. A key ingredient is the following theorem, which gives a quantitative Lipschitz

bound on the inverse of the map G, it is here that we critically use the assumption that

q > 1 in the (q, 1)-PW inequality for μ.

Theorem 1.10. Suppose that c satisfies (Reg) and (Twist), X has Lipschitz boundary,

μ = ρdx satisfies a (q, 1)-PW inequality with q > 1, and the map G is differentiable with

continuous derivatives. Then for any ψ1, ψ2 ∈ R
N such that 〈ψ1 − ψ2, 1〉 = 0,

‖ψ1 − ψ2‖ ≤ qN4C∇Cpw‖G(ψ1) − G(ψ2)‖
4(q − 1) max(mini Gi(ψ1), mini Gi(ψ2))1/q

.

The desired stability result follows as a corollary of this theorem. Specifically,

we show nonquantitative stability of the Hausdorff distance of Laguerre cells under a

(1, 1)-PW inequality on μ, and a local, quantitative estimate of stability under a (q, 1)-

PW inequality when q > 1. We carefully note here, for part (2) below it is possible for

one of more Laguerre cells for one of either ψ1 or ψ2 to have zero measure, as long as

the cells of the other have a strictly positive lower bound.

Corollary 1.11. Suppose that c satisfies (Reg), (Twist), and (QC), X is c-convex with

respect to Y, and μ = ρdx satisfies a (q, 1)-PW inequality with q ≥ 1.
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Quantitative stability for OT 7

1. Suppose {λk}∞k=1 ⊂ � converges to some λ0 ∈ � as k → 0, ψk and ψ0 are

optimal dual vectors for νλk
and νλ0

respectively, such that 〈ψk − ψ0, 1〉 = 0

for all k, and L(Lagi(ψ0)) > 0 for some i. Then

lim
k→0

dH(Lagi(ψk), Lagi(ψ0)) = 0.

2. If q > 1, there exists a constant C1 > 0 depending on universal quantities and

q with the following property: if ψ1 and ψ2 are optimal dual vectors for the

measures νλ1
and νλ2

respectively, satisfying 〈ψ1 − ψ2, 1〉 = 0, with Lagi(ψ1),

Lagi(ψ2) �= ∅, and

C1N5‖λ1 − λ2‖ < max(λi
1, λi

2)(max(min
i

λi
1, min

i
λi

2))1/q, (1.4)

then

dH(Lagi(ψ1), Lagi(ψ2))n ≤C2N5‖λ1 − λ2‖,

where C2 > 0 depends on universal constants and the quantities q,

max(λi
1, λi

2), and max(mini λi
1, mini λi

2)1/q.

Remark 1.12. The proof of Corollary 1.11 involves a bound on the Lebesgue measure

of the symmetric difference of Laguerre cells, which could in theory be used to prove

the μ-symmetric convergence of the Laguerre cells (as the density of μ is bounded).

However, we opt to present a completely different proof for Theorem 1.3, as the method

we present here can be applied under less stringent hypotheses. More specifically, in

order to exploit the bound on the Lebesgue measure of symmetric difference of cells

(Lemma 5.5) we would require a (1, 1)-PW inequality to obtain convergence, and a

(q, 1)-PW inequality with q > 1 to obtain a quantitative rate of convergence of the

μ-symmetric difference, while our proof of Theorem 1.3 does not require any kind of

PW inequality.

Remark 1.13. We mention here, there are some practical reasons to consider the

stability of Laguerre cells in the Hausdorff distance. The semi-discrete optimal trans-

port problem can be viewed as a model for semi-supervised data clustering: the

optimal map assigns to a (continuous) set of data, different clusters with representative

data points given by the yj, and the size of each cluster is pre-determined (perhaps

empirically, via statistical considerations). The stability in Hausdorff distance then
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8 M. Bansil and J. Kitagawa

measures the uniform closeness of these clusters with respect to the underlying metric

structure, under perturbations of the cluster size.

Finally, we can obtain a quantitative estimate of the uniform difference of dual

potential functions in terms of the Hausdorff distance of associated Laguerre cells.

Theorem 1.14. Suppose c satisfies (Reg), (Twist), and (QC), X is bounded and c-convex

with respect to Y. If ψ1, ψ2 ∈ R
N are such that 〈ψ1 − ψ2, 1〉 = 0, there is a universal

constant C > 0 such that

‖ψc∗
1 − ψc∗

2 ‖C0(X) ≤ CN4
√∑N

i=1 dH(Lagi(ψ1), Lagi(ψ2))2

(max(mini L(Lagi(ψ1)), mini(L(Lagi(ψ2)))))1− 1
n

.

1.3 Outline of the paper

In Section 2, we use the theory of directed graphs to prove Theorem 1.3 on the μ-

symmetric convergence of Laguerre cells. In Section 3, we establish some preliminary

invertibility properties of the mapping G under our setting. In Section 4, we prove the

quantitative invertibility result Theorem 1.10, this is carried out via some alternative

spectral estimates of the transformation DG, which are of independent interest. In

Section 5, we gather some estimates on the Hausdorff measure of differences of

Laguerre cells, mostly using convex geometry, and then prove Corollary 1.11. Finally,

Section 6 gathers the results needed to prove the estimate Theorem 1.14. In each section,

we progressively add more conditions on c, μ, and X, which are detailed there.

1.4 Literature analysis

One can use [19,Corollary 5.23] to see if μk and νk weakly converge to some probability

measures, c satisfies (Reg) and (Twist), and the limit of the sequence {μk} is absolutely

continuous, then the sequence of optimal transport maps minimizing (1.1) converge in

measure to the optimal transport map of the limiting problem, however there is no

explicit rate of convergence. Currently there are few results with quantitative rates:

quantitative L2 stability of the transport maps (equivalent to H1 convergence of dual

potentials) is shown under discretization of the target measure in [2] and for general

perturbations in the 2-Wasserstein metric of the target measure in [12]. These results

do give our convergence result in μ-symmetric measure, however the discussion in [2]

and [12] are restricted to quadratic distance squared cost, and have more stringent

conditions on the source measure μ than our result. Under conditions that yield regular
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Quantitative stability for OT 9

optimal transport maps, [8] shows if μt is an absolutely continuous curve of probability

measures with respect to the Wp optimal transport metric, then the curve of optimal

transport maps is Hölder continuous, measured in L2(μ). The result in the case p = 2 is

originally due to Ambrosio (also reported in [8]). Finally, [1,Theorem 3.1] is a quantitative

result for optimal transport with geodesic distance squared cost on compact manifolds

(again, in L2 difference of transport maps). There seem to be no results with rates for

uniform convergence.

2 μ-symmetric convergence of Laguerre cells

For the remainder of the paper, we assume that c satisfies (Reg), (Twist), and μ is

absolutely continuous. In this section, we do not assume (QC) or any regularity on the

density of μ.

We will actually prove our first stability result Theorem 1.3 for a variant of

the optimal transport problem first dealt by the authors in [4] (The resulting proof

is only slightly more involved than in the classical case, we have opted to prove our

results in this setting for use in a forthcoming work on numerics; a specific case of

the problem also appears in [5] in the context of queue penalization). In addition to

the setting of the semi-discrete optimal transport problem (1.1), we assume there is a

storage fee function F : RN → R. Then the semi-discrete optimal transport with storage

fees is to find a pair (T, λ) with λ = (λ1, . . . , λN) ∈ R
N and T : X → Y measureable

satisfying

T#μ =
N∑

i=1

λiδyi

such that

∫
X

c(x, T(x))dμ + F(λ) = min
λ̃∈RN , T̃#μ=∑N

i=1 λ̃iδyi

∫
X

c(x, T̃(x))dμ + F(λ̃). (2.1)

For this section, we will suppose F1, F2 : RN → R∪{+∞} are two proper convex functions

equal to +∞ outside of �. Under our assumptions on μ and c, by [4,Theorem 2.3 and

Proposition 3.5] there exist pairs (T1, λ1) and (T2, λ2) minimizing (2.1) with storage fee

functions equal to F1 and F2 respectively, along with (see [4,Theorem 4.7]) vectors ψ1,

ψ2 ∈ R
N such that G(ψ1) = λ1, G(ψ2) = λ2.
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10 M. Bansil and J. Kitagawa

Also given any set A, we write δ(x | A) :=
⎧⎨⎩0, x ∈ A,

+∞, x �∈ A,
for the indicator

function of the set A, and for any vector w ∈ R
N with nonnegative entries, we denote

Fw :=∑N
i=1 δ(· | [0, wi]) = δ(· |∏N

i=1[0, wi]).

2.1 The exchange digraph

We now define a weighted directed graph (digraph), D, as follows. The vertex set is

y1, . . . , yN . When i �= j, there is a directed edge from yi to yj if μ(Lagi(ψ1) ∩ Lagj(ψ2)) > 0,

and in this case that edge is assigned weight μ(Lagi(ψ1) ∩ Lagj(ψ2)). We denote the

weight of an edge e by w(e).

Essentially this digraph keeps track of how much mass is shifted from one

Laguerre cell to a different one under a change of the storage fee function. Indeed note

that λi
2 = λi

1 − deg+(yi) + deg−(yi) where

deg+(yi) : =
∑

{e|e is directed out from yi}
w(e),

deg−(yi) : =
∑

{e|e is directed into yi}
w(e),

denote outdegree and indegree respectively.

First we use an argument reminiscent of the c-cyclical monotonicity of optimal

transport plans to prove the following lemma. We comment that the following lemma

does not involve the storage fees F1 and F2, and can be proved entirely in the context of

classical semi-discrete optimal transport theory.

Lemma 2.1. D is acyclic

Proof. Suppose for sake of contradiction there exists a cycle yi1 , e1, yi2 , . . . , yil , el, yil+1

where il+1 = i1 and ej is a directed edge from yij to yij+1
. Let m0 := min1≤j≤l w(ej) > 0,

then for each 1 ≤ j ≤ l there exists a measurable set Aj ⊂ Lagij(ψ1) ∩ Lagij+1
(ψ2) with

μ(Aj) = m0, and we define Al+1 = A1.

Now define the sets {C̃k}N
k=1 by

C̃k =
⎧⎨⎩(Lagij+1

(ψ2) ∪ Aj+1) \ Aj, k = ij+1, 1 ≤ j ≤ l,

Lagk(ψ2), k �∈ {i1, . . . , il},
(2.2)
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Quantitative stability for OT 11

and the map T̃ : X → Y defined by T̃(x) = ∑N
k=1 yk1C̃k

(x). Since Lagi(ψ1) and Lagj(ψ1)

are disjoint up to sets of μ measure zero for i �= j, we must have that the sets Aj are

mutually disjoint up to μ measure zero sets, thus T̃#μ =∑N
k=1 μ(C̃k)δyk

=∑N
k=1 λk

2δyk
but

T̃ �= T2 on a set of positive μ measure. It is clear that T2 is an optimal map minimizing

the classical optimal transport problem 1.1 with target measure νλ2
, which is uniquely

determined μ-a.e. by [19,Theorem 10.28]. Thus we have

N∑
k=1

∫
C̃k

c(x, yk)dμ(x) >

N∑
k=1

∫
Lagk(ψ2)

c(x, yk)dμ(x).

Hence,

0 <

N∑
k=1

∫
C̃k

c(x, yk)dμ(x) −
N∑

k=1

∫
Lagk(ψ2)

c(x, yk)dμ(x)

=
N∑

k=1

∫
Lagk(ψ2)

c(x, yk)dμ(x) −
N∑

k=1

∫
Lagk(ψ2)

c(x, yk)dμ(x)

+
l−1∑
j=1

(∫
Aj+1

c(x, yij+1
)dμ(x) −

∫
Aj

c(x, yij+1
)dμ(x)

)

=
l−1∑
j=1

(∫
Aj+1

c(x, yij+1
)dμ(x) −

∫
Aj

c(x, yij+1
)dμ(x)

)
. (2.3)

On the other hand, defining the sets {D̃k}N
k=1 by

D̃k =
⎧⎨⎩(Lagij+1

(ψ1) ∪ Aj) \ Aj+1, k = ij+1, 1 ≤ j ≤ l,

Lagk(ψ1), k �∈ {i1, . . . , il},
(2.4)

and taking the map T̂(x) =∑N
k=1 yk1D̃k

(x), we can make an analogous calculation, which

yields the opposite inequality as (2.3), giving a contradiction. �

For the next three Lemmas 2.2, 2.3, and 2.5, we shall be concerned about the case

where

F1(λ) =
N∑

i=1

δ(λi | [ai, bi]),

F2(λ) = δ(λ1 | [a1, b1 + η]) +
N∑

i=2

δ(λi | [ai, bi]), (2.5)
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12 M. Bansil and J. Kitagawa

where ai ≤ bi and
∑

ai ≤ 1 ≤ ∑
bi. Recall that (T1, λ1), (T2, λ2) are the minimizers in

(2.1) associated with F1, F2 respectively; in particular we must have ai ≤ λi
1 ≤ bi for all

i ∈ {1, . . . , N}, a1 ≤ λ1
2 ≤ b1 + η, and ai ≤ λi

2 ≤ bi for all 2 ≤ i ≤ N.

Lemma 2.2. Suppose we take F1 and F2 as in (2.5) and there exists some vertex ym of

D with an incoming edge. Then λm
1 = bm.

Proof. Let i1 = m. Suppose the incoming edge, which we denote e1, goes from yi2 to

yi1 . We claim that there is a path P = (yi1 , e1, yi2 , . . . , yl−1, el−1, yil), where ej is an edge

from yij+1
to yij , such that the last vertex yil has no incoming edges.

We construct such a path recursively. Let P1 = (yi1 , e1, yi2) and suppose that

Pr = (yi1 , e1, yi2 , . . . , yir , er, yir+1
) has been constructed. If yir+1

has no incoming edges

then Pr is the desired path and we are done. If not yir+1
has an incoming edge,

which we denote er+1. Let yir+2
be the originating vertex of er+1 and let Pr+1 =

(yi1 , e1, yi2 , . . . , yir+1
, er+1, yir+2

).

If the above process does not terminate then since we only have finitely many

vertices we must eventually repeat a vertex, i.e., there is r > j so that ij = ir. However

this means that Pr contains a cycle, which contradicts Lemma 2.1 above.

Now let m0 = min(bm−λm
1 , w(e1), . . . , w(el−1)). Suppose for sake of contradiction

that λm
1 < bm, then m0 > 0. Note that

λ
il
2 = λ

il
1 − deg+(yil) + deg−(yil) ≤ bil − w(el−1) + 0 ≤ bil − m0. (2.6)

Now just as in the proof of Lemma 2.1 for j ∈ {2, . . . , l} there exist sets Aj so that

Aj ⊂ Lagij(ψ1) ∩ Lagij−1
(ψ2), and μ(Aj) = m0. We define A1 = Al+1 = ∅. Now define the

sets {C̃k}N
k=1 by

C̃k =
⎧⎨⎩(Lagij(ψ2) ∪ Aj) \ Aj+1, k = ij, j ∈ {1, . . . , l},

Lagk(ψ2), k �∈ {i1, . . . , il}.
(2.7)

and the map T̃ : X → Y defined by T̃(x) = ∑N
k=1 yk1C̃k

(x). Just as in the proof of

Lemma 2.2 above, we have T̃#μ = ∑N
k=1 μ(C̃k)δyk

and T̃ �= T2 on a set of positive μ

measure (however, note that we do not have μ(C̃k) = λk
2 for k = i1, il). Since (T2, λ2) is the

unique minimizer of (2.1) with storage fee function F2 by [4,Corollary 4.5], we must have

N∑
k=1

∫
C̃k

c(x, yk)dμ(x) + F2((μ(C̃1), . . . , μ(C̃N))) >

N∑
k=1

∫
Lagk(ψ2)

c(x, yk)dμ(x) + F2(λ2).
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Quantitative stability for OT 13

However now note that

μ(C̃k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ

i1
2 − m0, k = i1,

λ
il
2 + m0, k = il,

λk
2, else.

By (2.6), we have that μ(C̃il) = λ
il
2 + m0 ≤ bil . Also for k �= il we have μ(C̃k) ≤ λk

2 ≤ bk,

hence F2((μ(C̃1), . . . , μ(C̃N))) = 0. Thus the above becomes

N∑
k=1

∫
C̃k

c(x, yk)dμ(x) >

N∑
k=1

∫
Lagk(ψ2)

c(x, yk)dμ(x), (2.8)

and by a calculation identical to the one leading to (2.3), we have

0 <

l∑
j=1

(∫
Aj

c(x, yij)dμ(x) −
∫

Aj+1

c(x, yij)dμ(x)

)
.

On the other hand, define the sets {D̃k}N
k=1 by

D̃k =
⎧⎨⎩(Lagij(ψ1) ∪ Aj+1) \ Aj, k = ij, j ∈ {1, . . . , l},

Lagk(ψ1), k �∈ {i1, . . . , il}.
(2.9)

Note that

μ(D̃k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ

i1
1 + m0, k = i1

λ
il
1 − m0, k = il

λk
1, else.

By definition of m0 we have m0 ≤ bm−λm
1 = bi1 −λ

i1
1 , hence we have μ(D̃i1) ≤ bi1 . Thus as

above, F2((μ(D̃1), . . . , μ(D̃N))) = 0 and a similar argument yields the opposite inequality

of (2.8) to obtain a contradiction. �

Lemma 2.3. Suppose we take F1 and F2 as in (2.5). Then for i �= 1, λi
2 ≤ λi

1. Furthermore,

if yi has an incoming edge it must have an outgoing edge. Finally, y1 has no outgoing

edges.
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14 M. Bansil and J. Kitagawa

Proof. Recall that λi
2 = λi

1 − deg+(yi) + deg−(yi).

Suppose i �= 1. If yi has no incoming edges then deg−(yi) = 0 so λi
2 = λi

1 −
deg+(yi) ≤ λi

1. If yi has at least one incoming edge then λi
1 = bi by Lemma 2.2 above.

Since i �= 1 and F2(λ2) < +∞, we must have λi
2 ≤ bi. In either case λi

2 ≤ λi
1.

Now if yi has an incoming edge then

deg+(yi) = λi
1 − λi

2 + deg−(yi) ≥ deg−(yi) > 0,

so there must be an outgoing edge.

Finally suppose for sake of contradiction that y1 has an outgoing edge. We

recursively construct a path similar to that in the proof of Lemma 2.2. Set i1 = 1, P1 =
(yi1 , e1, yi2) and suppose that Pl = (yi1 , e1, yi2 , . . . , yil , el, yil+1

) has been constructed where

ej is an edge directed from yij to yij+1
. If yil+1

= yi1 then we have constructed a cycle,

which contradicts Lemma 2.1. If yil+1
�= yi1 = y1, then yil+1

has an outgoing edge, which

we denote el+1. Set yil+2
to be the tail of el+1 and let Pl+1 = (yi1 , e1, yi2 , . . . , yl, el+1, yil+2

).

Since we only have finitely many vertices the above process must repeat a vertex, which

will produce a cycle. This contradicts Lemma 2.1 hence y1 cannot have any outgoing

edges. �

Remark 2.4. Recall that in an directed acyclic graph the vertices can be given an

ordering, called a topological ordering, so that every edge goes from a vertex with

smaller index to a vertex with larger index. See [3,Proposition 2.1.3] and the associated

footnote for more details.

Lemma 2.5. Suppose again we take F1 and F2 as in (2.5). Then every edge has outdegree

at most η, in particular every vertex has weight at most η. In this case we have ‖λ1 −
λ2‖1 ≤ 2η and

∑N
i=1 
μ(Lagi(ψ1), Lagi(ψ2)) ≤ 2Nη.

Proof. Let yi1 , . . . , yiN be a topological ordering. By Lemma 2.3 we may assume iN = 1.

Consider the function

f (k) =
k∑

j=1

deg+(yij) − deg−(yij) =
k∑

j=1

λ
ij
1 − λ

ij
2

for k ≤ N − 1.
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Quantitative stability for OT 15

By Lemma 2.3 f is increasing. Let Ek be the collection of edges directed from one

of the vertices yi1 , . . . , yik and into one of the vertices yik+1
, . . . , yiN . Then we have

f (k) =
∑
e∈Ek

w(e);

as we have imposed a topological ordering, there is no edge directed from one of the

vertices yik+1
, . . . , yiN to one of the vertices yi1 , . . . , yik . In particular f (k) ≥ deg+(yik),

thus f (N − 1) ≥ deg+(yik) for all k ≤ N − 1. Note that EN−1 is the collection of all edges

directed to yiN = y1. Hence

deg+(yik) ≤ f (N − 1) =
∑

e∈EN−1

w(e) = deg−(y1).

If y1 has no incoming edges then this gives us deg+(yik) = 0. Otherwise by Lemma 2.2

deg−(y1) = λ1
2 − λ1

1 + deg+(y1) = λ1
2 − b1,

where deg+(y1) = 0 by Lemma 2.3. Since F2(λ2) < +∞, we must have λ1
2 ≤ b1 + η hence

each vertex has outdegree at most η.

Next by Lemma 2.3, λi
2 ≤ λi

1 for i �= 1, since λ1, λ2 ∈ � this implies λ1
2 ≥ λ1

1. Hence

‖λ1 − λ2‖1 =
N∑

i=1

∣∣∣λi
2 − λi

1

∣∣∣
= λ1

2 − λ1
1 +

N∑
i=2

(λi
1 − λi

2)

= λ1
2 − λ1

1 + (1 − λ1
1) − (1 − λ1

2)

= 2(λ1
2 − λ1

1) = 2(deg−(y1) − deg+(y1))

≤ 2η,

where we have used
∑N

i=1 λi
1 =∑N

i=1 λi
2 = 1.

Next we have

μ(Lagi(ψ1) \ Lagi(ψ2)) = μ(Lagi(ψ1) ∩ (Lagi(ψ2))c)

= μ(Lagi(ψ1) ∩
N⋃

j �=i

Lagj(ψ2)) =
N∑

j �=i

μ(Lagi(ψ1) ∩ Lagj(ψ2)) = deg+(yi) ≤ η
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16 M. Bansil and J. Kitagawa

and so
∑N

i=1 μ(Lagi(ψ1) \ Lagi(ψ2)) ≤ Nη. A similar argument gives

N∑
i=1

μ(Lagi(ψ2) \ Lagi(ψ1)) =
N∑

i=1

deg−(yi) =
N∑

i=1

deg+(yi) ≤ Nη,

where the final equality comes from

N∑
i=1

deg−(yi) =
N∑

i=1

(deg+(yi) + λi
2 − λi

1) =
N∑

i=1

deg+(yi),

finishing the proof. �

By repeated applications of the Lemma above, we can analyze the digraph D

when F1 and F2 are characteristic functions of two different hyperrectangles.

Theorem 2.6. Suppose we have

F1(λ) =
N∑

i=1

δ(λi | [ai
1, bi

1]),

F2(λ) =
N∑

i=1

δ(λi | [ai
2, bi

2]).

Then ‖λ1 − λ2‖1 ≤ 2(‖a1 − a2‖1 + ‖b1 − b2‖1) and
∑N

i=1 
μ(Lagi(ψ1), Lagi(ψ2)) ≤ 2N(‖a1 −
a2‖1 + ‖b1 − b2‖1).

Proof. The estimate can be seen by applying Lemma 2.5 and perturbing the initial

rectangle defined by a1 and b2, one coordinate at a time. If a1 = a2 then this follows

from induction on the number of equal terms in b1, b2, repeatedly applying Lemma 2.5,

and the triangle inequality. The case a1 �= a2 is handled with a symmetric argument and

the triangle inequality. �

Remark 2.7. The first estimate from Theorem 2.6 above is sharp, and the second is

almost sharp (up to replacing the constant 2N by 2N−2). Let X = [0, N] and μ be Lebesgue

measure restricted to X and normalized to unit mass, and take the cost function
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Quantitative stability for OT 17

c(x, y) = −xy. Fix any N > 1 and let yi = i− 1
2 ∈ R for i ∈ {1, . . . , N}. We take the functions

F1(λ) : =
N∑

i=1

δ

(
λi |

[
0,

1

N

])
= δ

(
λ |
[
0,

1

N

]N
)

,

F2(λ) : =
N−1∑
i=1

δ

(
λi |

[
0,

1

N

])
+ δ

(
λN |

[
0,

2

N

])
= δ

(
λ |
[
0,

1

N

]N−1

×
[
0,

2

N

])
,

then note that in the notation of Theorem 2.6,

‖a1 − a2‖1 + ‖b1 − b2‖1 = 1

N
.

The optimal transport problem with storage fee F1 is actually a classical optimal

transport problem, and it is not difficult to see that if the pair (ψ1, λ1) yields a

minimizer, then the associated Laguerre cells are given by Lagi(ψ1) = [i − 1, i] for

i ∈ {1, . . . , N} with λ1 = ( 1
N , . . . , 1

N ). On the other hand, we claim that for the problem

with storage fee F2, an optimal pair (ψ2, λ2) is given by

λ2 : =
(

0,
1

N
, . . . ,

1

N
,

2

N

)
,

ψ i
2 : =

⎧⎨⎩0, i = 1,

(i−1)(i−2)
2 , i ∈ {2, . . . , N},

Lagi(ψ2) : =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0}, i = 1,

[i − 2, i − 1], i ∈ 2, . . . , N − 1

[N − 2, N], i = N.

Indeed, note we may replace F2 by F2 + δ(· | �) without changing the optimizer. Then for

any λ ∈ ([0, 1
N ]N−1 × [0, 2

N ]) ∩ �, we find

F2(λ2) + 〈λ − λ2, ψ2〉 =
N−1∑
i=2

(
λi − 1

N

)
ψ i

2 +
(

λN − 2

N

)
ψN

2 ≤ 0 = F2(λ)

while if λ ∈ R
N \ (([0, 1

N ]N−1 × [0, 2
N ]) ∩ �) we have F2(λ) = +∞, hence ψ2 ∈ ∂F2(λ2). By

[4,Theorem 4.7], this shows the optimality of (ψ2, λ2). Now we can calculate,

‖λ1 − λ2‖1 = 2

N
= 2(‖a1 − a2‖1 + ‖b1 − b2‖1)
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18 M. Bansil and J. Kitagawa

while

N∑
i=1


μ(Lagi(ψ1), Lagi(ψ2)) = 1

N
+ 2

N
(N − 2) + 1

N
= (2N − 2)(‖a1 − a2‖1 + ‖b1 − b2‖1).

A simple product construction can be used to easily adapt this example to R
n for n > 1.

We now show a version of Theorem 1.3, which applies to the more general setting

of optimal transport with storage fees, and our main theorem will follow immediately.

Corollary 2.8. Suppose that F1, F2 : RN → R ∪ {+∞} are two proper convex functions

equal to +∞ outside of �. Then

N∑
i=1


μ(Lagi(ψ1), Lagi(ψ2)) ≤ 4N‖λ1 − λ2‖1.

Proof. Define

F̃1(λ) =
N∑

i=1

δ(λi | [ai
1, bi

1]),

F̃2(λ) =
N∑

i=1

δ(λi | [ai
2, bi

2]),

where ai
1 = bi

1 = λi
1 and ai

2 = bi
2 = λi

2. We see that if (T̃1, λ̃1), (T̃2, λ̃2) are minimizers for

(2.1) with storage fee functions F̃1 and F̃2, then up to sets of μ measure zero T̃−1
1 ({yi}) =

Lagi(ψ1) and T̃−1
2 ({yi}) = Lagi(ψ2) for each i ∈ {1, . . . , N}. Hence the result follows from

applying Theorem 2.6 to F̃1, F̃2. �

Proof of Theorem 1.3. By taking F1, F2 to be the indicator functions for two points in

�, the above corollary immediately yields the theorem. �

3 Injectivity of G

In this section we prove non-quantitative invertibility of G as preparation for the

quantitative invertibility result Theorem 1.10. Starting in this section, in addition to

all previous assumptions, we add that μ = ρdx where ρ ∈ C0(X) and μ satisfies a

(1, 1)-PW inequality, and also assume X is a compact set with Lipschitz boundary,
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Quantitative stability for OT 19

such that sptμ ⊂ X. We mention that the results of this section do not require the

assumption (QC).

Remark 3.1. We remark here that the ultimate goal, Proposition 3.5 follows if the set

{ρ > 0} is connected, by [11,Proposition 4.1]. On the other hand, if μ satisfies a (1, 1)-PW

inequality, it is easy to see that sptρ is connected (if sptρ is disconnected, taking f in

Definition 1.7 equal to two different constants on two connected components will cause

the inequality to fail). However, we were unable to prove the desired injectivity under

this weaker connectedness, while it is also not clear if a (1, 1)-PW inequality implies

the stronger connectedness of {ρ > 0}. Thus we have opted to prove the claims in this

section under the assumption of a (1, 1)-PW inequality.

Definition 3.2. If ϕ : X → R ∪ {+∞} (not identically +∞), its pseudo c-transform is a

vector ϕc† ∈ R
N , defined by

(ϕc†
)i := sup

x∈sptμ
(−c(x, yi) − ϕ(x)).

Also let �c = {ψ ∈ R
n : ψ = ψc∗c†}.

Lemma 3.3. Suppose ψ1, ψ2 ∈ R
N are such that λ := G(ψ1) = G(ψ2), and suppose that

λi > 0 for some index i. If x ∈ int(X) ∩ Lagi(ψ1) and ρ(x) > 0 then x ∈ Lagi(ψ2).

Proof. Suppose by contradiction, for such an x we have x �∈ Lagi(ψ2). As the zero set

of a continuous function Lagi(ψ2) is closed, hence there is a neighborhood of x in X, say

U, so that U ∩ Lagi(ψ2) = ∅. Next since ρ(x) > 0, by continuity of ρ there is an open

neighborhood of x, say V ⊂ U so that ρ > 0 on V.

Note that Lagi(ψ1) =⋂N
j=1 Hij(ψ1), where

Hij(ψ) := {x ∈ X | −c(x, yi) − ψ i ≤ −c(x, yj) − ψ j}.

Since μ(Lagi(ψ1)) = λi > 0 and ρ is continuous, each Hij(ψ1) has nonempty interior,

hence by (Twist) combined with the implicit function theorem and the Lipschitzness

of ∂X, we can see that each set Hij(ψ1) has Lipschitz boundary. Since Lagi(ψ1) has

nonempty interior, we see that it also has Lipschitz boundary.

In particular, this means V ∩ int(Lagi(ψ1)) �= ∅. Since ρ > 0 on V ∩ int(Lagi(ψ1)),

which is open and non-empty, we have μ(V ∩ int(Lagi(ψ1))) > 0 while V ∩ int(Lagi(ψ1)) ⊂
Lagi(ψ1) \ Lagi(ψ2). However this contradicts [19,Remark 10.29], as we must have

Tψ1
= Tψ2

μ-a.e.. �
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20 M. Bansil and J. Kitagawa

Lemma 3.4. Suppose μ = ρdx, where μ satisfies a (1, 1)-PW inequality, and ψ1, ψ2 ∈
�c. Then ψ1 − ψ2 ∈ span(1) if and only if G(ψ1) = G(ψ2).

Proof. It is obvious from Definition 1.1 that ψ1 − ψ2 ∈ span(1) implies G(ψ1) = G(ψ2),

so we only show the opposite implication.

Suppose λ := G(ψ1) = G(ψ2) and let ϕ1 := ψc∗
1 , ϕ2 := ψc∗

2 . Also, write

T := Tψ1
= Tψ2

(up to μ-a.e.), which is the Monge solution to problem (1.1) pushing

μ forward to the discrete measure νλ. Finally, without loss of generality we may assume

that λ1 > 0 and (by subtracting a multiple of 1) ψ1
1 = ψ1

2 , and define S := {i ∈ {1, . . . , N} |
ψ i

1 = ψ i
2 and λi > 0}.
If we define the set

A :=
⋃
i∈S

Lagi(ψ1),

then μ(A) ≥ λ1 > 0, and since it is a finite union of Laguerre cells, arguing as in the proof

of Lemma 3.3 we see A has Lipschitz boundary. If μ(A) < 1, since μ satisfies a (1, 1)-

PW inequality, by [9,Lemma 5.3] we can conclude that
∫
∂A∩int(X)

ρdHn−1(x) > 0. Then by

[9,(5.3)], we see there exist i ∈ S, j �∈ S and a point x ∈ Lagi(ψ1) ∩ Lagj(ψ1) ∩ ∂A ∩ int(X),

where ρ(x) > 0. Then x ∈ Lagi(ψ1)∩Lagj(ψ1) ⊂ Lagi(ψ1) so by Lemma 3.3 above we must

also have x ∈ Lagi(ψ2). Then we can calculate

ϕ1(x) + ψ i
1 = −c(x, yi) = ϕ2(x) + ψ i

2 �⇒ ϕ1(x) = ϕ2(x). (3.1)

Arguing as in the proof of Lemma 3.3 above, since x ∈ Lagi(ψ1) ∩ int(X) and ρ(x) > 0,

we see that λj = μ(Lagj(ψ1)) > 0. Since x ∈ Lagi(ψ1) ∩ Lagj(ψ1) ⊂ Lagj(ψ1), we can apply

Lemma 3.3 again to see x ∈ Lagj(ψ2). Hence

ϕ1(x) + ψ
j
1 = −c(x, yj) = ϕ2(x) + ψ

j
2 �⇒ ψ

j
1 = ψ

j
2,

but this would imply j ∈ S, a contradiction.

Now since μ(A) = 1, the set A ∩ ρ−1((0, ∞)) must be dense in ρ−1((0, ∞)). Then

we can make the same calculation leading to (3.1) above to find that ϕ1 = ϕ2 on this

dense set. Since ϕ1 and ϕ2 are c∗-transforms of vectors they are continuous on R
n, thus

they must actually be equal everywhere on ρ−1((0, ∞)), hence on its closure sptμ.

With the above, we then see that

ψ1 = ϕc†

1 = ϕc†

2 = ψ2

as desired.
�

We are finally ready to prove the desired invertibility result.
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Quantitative stability for OT 21

Proposition 3.5. Suppose μ = ρdx satisfies a (1, 1)-PW inequality. Then G : K0/1 → �

is a homeomorphism.

Proof. First let f (ψ) = ψc∗c† −ψ . Note that directly from Definition 3.2, for an arbitrary

x ∈ X we have
∣∣∣ψc∗

1 (x) − ψc∗
2 (x)

∣∣∣ ≤ ‖ψ1 − ψ2‖∞. A similar calculation then yields

‖ψc∗c†

1 − ψc∗c†

2 ‖∞ ≤ sup
x∈sptμ

∣∣∣ψc∗
1 (x) − ψc∗

2 (x)

∣∣∣ ≤ ‖ψ1 − ψ2‖∞,

hence by the triangle inequality, f is continuous, in particular �c = f −1({0}) is closed.

Now for any ψ ∈ K0 it is clear there for each index i must exist a point xi ∈
sptμ ∩ Lagi(ψ), while just as in the proof of [4,Proposition 4.1] we see that ψ = ψc∗c.

Then for any x ∈ X, we would have

−c(xi, yi) − ψc∗
(xi) = ψ i = (ψc∗c)i ≥ −c(x, yi) − ψc∗

(x),

hence for such a ψ we have

ψ = ψc∗c = ψc∗c†
,

in particular, K0 ⊂ �c, thus K0 ⊂ �c. Then by Lemma 3.4, G(ψ1) = G(ψ2) if and only if

ψ1 − ψ2 ∈ span(1) for ψ1, ψ2 ∈ K0, and we obtain that the induced map (which we also

call G) G : K0/1 → � is well-defined and injective.

Next note that K0/1 is closed and bounded and hence compact. Hence, � =
G(K0) ⊂ G(K0/1) = G(K0/1). Finally, since G is a continuous bijection with compact

domain it follows by [7,Theorem 2.6.7] that G is a homeomorphism. �

4 Quantitative Invertibility of G

In this section we will add the assumption that G is differentiable everywhere with

continuous derivatives. This assumption is satisfied under the condition (QC), but we

note that we do not need the explicit geometric consequences of (QC) here, only the

differentiability of G for the results of this section.

4.1 Alternative spectral estimates on DG

We now obtain an estimate away from zero on the first nonzero eigenvalue of the

mapping DG over the set Kε of a different nature than that of [9,Theorem 5.1]. The

estimate there is of order ε3 under the assumption of a (1, 1)-PW inequality, however

we will show an estimate, which is of order N−4ε
1
q under the assumption of a (q, 1)-PW
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22 M. Bansil and J. Kitagawa

inequality. As can be seen, in the case of q = 1 we have traded two factors of ε for factors

of N−2, this modification allows us to obtain quantitative estimates on the inverse of G,

but as the parameter ε → 0. To obtain a finite bound, we will be forced to use this new

spectral estimate, along with taking q > 1 in the Poincaré–Wirtinger inequality.

We start by showing the alternate estimate coming from assuming a (q, 1)-PW

inequality on μ, versus a (1, 1)-PW inequality. We first recall some useful notation and

definitions from [9].

Definition 4.1. We will write int(X) to denote the interior of the set X. Given an

absolutely continuous measure μ = ρdx and a set A ⊂ X with Lipschitz boundary,

we will write

|∂A| ρ :=
∫

∂A∩int(X)

ρdHn−1(x), |A|ρ := μ(A).

Lemma 4.2. Suppose that μ = ρdx satisfies a (q, 1)-PW inequality where q ≥ 1. Then

inf
A⊂X

|∂A| ρ

min(|A| ρ , |X \ A| ρ)1/q ≥ 1

2
1
q Cpw

,

where the infimum is over A ⊂ int(X) whose boundary is Lipschitz with finite Hn−1-

measure, and min(|A| ρ , |X \ A| ρ) > 0.

Proof. Let A ⊂ int(X) be a Lipschitz domain as in the statement above, recall that we

must have q ≤ n
n−1 ≤ 2. Since we have a (q, 1)-PW inequality instead of a (1, 1) inequality,

by following the same method as [9,Lemma 5.3] we obtain the inequality

Cpw |∂A| ρ ≥ ‖1A −
∫

X
1Adμ‖Lq(μ)

=
(∫

A

∣∣∣1 − |A| ρ

∣∣∣ qdμ +
∫

X\A

∣∣∣|A| ρ

∣∣∣ qdμ

) 1
q

=
(
|A| ρ |X \ A| q

ρ + |A| q
ρ |X \ A| ρ

) 1
q

= |A|
1
q
ρ |X \ A|

1
q
ρ (|X \ A| q−1

ρ + |A| q−1
ρ )

1
q

≥ |A|
1
q
ρ |X \ A|

1
q
ρ

≥ 2− 1
q min(|A| ρ , |X \ A| ρ)1/q,

hence taking an infimum gives the claim. �
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Quantitative stability for OT 23

Recall DG is negative semidefinite on Kε by [9,Theorem 5.1]. We work toward the

following estimate.

Theorem 4.3. Fix ε > 0 and assume μ = ρdx satisfies a (q, 1)-PW inequality where

q ≥ 1, then the second eigenvalue of DG on Kε is bounded above by − 23− 1
q ε1/q

C∇N4Cpw
< 0.

By [9,(B1)], it can be seen that for almost every ψ we have

DiG
j(ψ) = DjG

i(ψ) =
∫

Lagi(ψ)∩Lagj(ψ)

ρ(x)

‖∇xc(x, yi) − ∇xc(x, yj)‖
dHn−1(x). (4.1)

We now fix ε > 0 and some ψ ∈ Kε such that (4.1) holds, and let W be the (undirected)

weighted graph constructed in [9,Section 5.3]: the vertices of W consist of the collection

Y, and for i �= j connect yi and yj by an edge of weight wij, defined by

wij := DiG
j(ψ).

Proposition 4.4. If μ = ρdx satisfies a (q, 1)-PW inequality where q ≥ 1 and ψ is such

that (4.1) holds, then W is connected by edges of weight at least 2
1− 1

q

C∇N2Cpw
ε1/q, that is: the

weighted graph consisting of all vertices of W and only those edges of weight greater

than or equal to 2
1− 1

q

C∇N2Cpw
ε1/q is connected.

Proof. Suppose by contradiction that the proposition is false. This implies that

removing all edges with weight strictly less than 2
1− 1

q

C∇N2Cpw
ε1/q yields a disconnected

graph. In other words, we can write W = W1 ∪ W2 where W1, W2 �= ∅ and are disjoint,

such that every edge connecting a vertex in W1 to a vertex in W2 has weight strictly less

than 2
1− 1

q

C∇N2Cpw
ε1/q. Letting A := ∪yi∈W1

Lagi(ψ) we see that

|∂A| ρ ≤ 2C∇
∑

{(i,j)|yi∈W1, yj∈W2}
wij <

22− 1
q

N2Cpw
ε1/q

∣∣W1

∣∣ ∣∣W2

∣∣ ≤ 22− 1
q

N2Cpw
ε1/q N2

4
= 1

2
1
q Cpw

ε1/q.

On the other hand since both W1 and W2 are nonempty we have |A| ρ , |X \ A| ρ ≥ ε. Hence

|∂A| ρ

min(|A| ρ , |X \ A| ρ)1/q <
ε1/q

2
1
q Cpwε1/q

= 1

2
1
q Cpw

,

which contradicts Lemma 4.2. �
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24 M. Bansil and J. Kitagawa

Recall that given a weighted graph W, the weighted graph Laplacian is the N×N

matrix with entries

Lij :=
⎧⎨⎩−wij, i �= j,∑

k∈{1,...,N}\{i} wik, i = j.

If W is the graph we have defined above and L its weighted graph Laplacian, then by

[9,Theorem 1.3] we can see that L = −DG(ψ).

Proof of Theorem 4.3. First suppose ψ satisfies (4.1) and let W̃ be the graph formed

by dividing all of the edge weights in W by 2
1− 1

q ε1/q

C∇N2Cpw
. If L and L̃ are the weighted graph

Laplacians of the graphs W and W̃ respectively, clearly L̃ = C∇N2Cpw

2
1− 1

q ε1/q
L.

Now construct the graph Ŵ from W̃ by the following procedure: if an edge

connecting yi and yj has weight wij < 1, we remove the edge, and if wij ≥ 1, we set

the weight of the edge equal to 1. By Proposition 4.4, we see that Ŵ is a connected

graph whose edge weights are all 1 over N vertices, and in particular it has diameter

diam(Ŵ) = sup
∑

ij wi,j ≤ N, here the supremum is taken over all pairs of vertices in Ŵ

and collections of edges forming a path between those two vertices, and the sum runs

over all edges in such a collection. Let us write L̂ for the graph Laplacian of Ŵ and use λ2

to denote the second eigenvalue of a positive semidefinite matrix. Then, using [6,Lemma

3.2] to obtain the first inequality below and then [13,Theorem 4.2] to obtain the second

to final inequality, we find that

λ2(−DG(ψ)) = λ2(L) = 21− 1
q ε1/q

C∇N2Cpw
λ2(L̃)

≥ 21− 1
q ε1/q

C∇N2Cpw
λ2(̂L) ≥ 21− 1

q ε1/q

C∇N2Cpw
· 4

Ndiam(Ŵ)
≥ 23− 1

q ε1/q

C∇N4Cpw
.

Since (4.1) holds for almost every ψ , continuity of DG finishes the proof. �

4.2 Quantitative invertibility of G

Proof of Theorem 1.10. If mini Gi(ψ1) = mini Gi(ψ2) = 0 there is nothing to prove, so

assume mini Gi(ψ1) > 0.

By Proposition 3.5, the restriction of G to K0 ∩ {ψ | 〈ψ − ψ1, 1〉 = 0} is invertible,

let H denote this inverse; by Theorem 4.3 since q ≥ 1 we see that

‖DH(λ)‖ ≤ C∇N4Cpw

4(mini λi)1/q
.
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Quantitative stability for OT 25

We calculate, using Minkowski’s integral inequality to obtain the first inequality,

‖ψ1 − ψ2‖ =
(

N∑
i=1

(∫ 1

0
〈∇Hi(tG(ψ1) + (1 − t)G(ψ2)), G(ψ1) − G(ψ2)〉dt

)2) 1
2

≤
∫ 1

0

(
N∑

i=1

〈∇Hi(tG(ψ1) + (1 − t)G(ψ2)), G(ψ1) − G(ψ2)〉2

) 1
2

dt

≤ ‖G(ψ1) − G(ψ2)‖
∫ 1

0
‖DH(tG(ψ1) + (1 − t)G(ψ2))‖dt

≤ ‖G(ψ1) − G(ψ2)‖
∫ 1

0

C∇N4Cpw

4(mini(tG
i(ψ1) + (1 − t)Gi(ψ2)))1/q

dt

≤ ‖G(ψ1) − G(ψ2)‖
∫ 1

0

C∇N4Cpw

4(t mini Gi(ψ1))1/q
dt

= N4C∇Cpwq

4(q − 1)

‖G(ψ1) − G(ψ2)‖
mini Gi(ψ1)1/q

,

here it is crucial that q > 1 to obtain the final line. If mini Gi(ψ1) = 0 we may switch the

roles of ψ1 and ψ2, which yields the claimed bound. �

5 Stability in Hausdorff distance

We will now work towards proving Corollary 1.11, our quantitative stability of Laguerre

cells measured in the Hausdorff distance. In Theorem 5.6 below, we obtain quantitative

control of the Hausdorff distance between different Laguerre cells in terms of the

dual vectors. However, we would like to obtain the bound in terms of data that is

readily available, i.e., the masses of the respective target measures, and our quantitative

invertibility result Theorem 1.10 will allow us to write the bound in these terms.

Starting in this section, we also assume X is c-convex with respect to Y (so in particular,

X has Lipschitz boundary) and c satisfies (QC). In contrast to the previous section,

we will need the full geometric power of (QC). We also write Hk for the k-dimensional

Hausdorff measure.

Remark 5.1. The goal of this section will be Theorem 5.6, which effectively shows

the map (RN , ‖·‖∞) � ψ �→ Lagi(ψ) ∈ ({convex, compact sets}, dH) is locally 1
n -Hölder.

This estimate is likely not sharp in the Hölder exponent, and for the canonical case

c(x, y) = −〈x, y〉, the map can be shown to be locally Lipschitz. We present a quick proof
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26 M. Bansil and J. Kitagawa

here, which depends on the explicit form of the Laguerre cells for this special choice of

the cost function, based on an idea suggested by the anonymous referee. As the proof is

specific to the inner product cost, it is not clear how to obtain this improvement in the

more general case of cost satisfying (QC).

Indeed, let R > 0 sufficiently large so that sptμ ⊂ BR(0) ⊂ R
n and c(x, y) =

−〈x, y〉 and assume ψ1, ψ2 ∈ R
N are such that Lagi(ψ1) ∩ Lagi(ψ2) has nonempty interior

for some i. Recall that for any set S, its support function is defined for any v ∈ R
n by

hS(v) := sup
x∈S

〈v, x〉.

It is known that (see [16,Section 1.7]) for two convex sets S1 and S2, hS1+S2
= hS1

+ hS2

(where S1 + S2 is the Minkowski sum), and hS1∩S2
is the closure of the function

v �→ inf{hS1
(v1) + hS2

(v2) | v1 + v2 = v},

while,

dH(S1, S2) = sup
Sn−1

∣∣hS1
− hS2

∣∣ . (5.1)

Now let x0 be in the interior of Lagi(ψ1) ∩ Lagi(ψ2), then we can write

Lagi(ψ1) + {−x0} =
⋂
j �=i

{〈·, yi − yj〉 ≤ ψ̃
j
1} ∩ BR(x0),

where each ψ̃
j
1 := ψ i

1 − ψ
j
1 − 〈x0, yi − yj〉 > 0 with a uniform lower bound δ > 0. Moreover,

this bound can be estimated using the maximal radius of a ball centered at x0 remaining

in Lagi(ψ1)∩Lagi(ψ2); by using Lemma 5.3 and the calculation leading to (5.5), one finds

δ stays uniformly away from zero if ‖ψ1 −ψ2‖∞ is sufficiently small. A similar statement

holds for Lagi(ψ2) + {−x0}. We can then calculate, for any v ∈ S
n−1,

hLagi(ψ1)+{−x0}(v) = inf

⎧⎨⎩∑
j �=i

tjψ̃
j
1 + |u| R − 〈u, x0〉 | tj ≥ 0, u ∈ R

n, u +
∑
j �=i

tj(yi − yj) = v

⎫⎬⎭ .

By taking all tj = 0 and u = v, we see hLagi(ψ1)−x0
(v) ≤ R − 〈v, x0〉 ≤ 2R, while since

x0 ∈ BR(0), for any choices of tj ≥ 0,

hLagi(ψ1)+{−x0}(v) ≥ δ
∑
j �=i

tj.
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This shows that in the infimum in the expression for hLagi(ψ1)+{−x0}(v), the tj can be

taken to satisfy the further restriction
∑

j �=i tj ≤ 2R
δ

, and the same statement holds for

hLagi(ψ2)+{−x0}(v). Now suppose {sj} and u0 achieve the infimum in hLagi(ψ2)+{−x0}(v), then

we obtain

hLagi(ψ1)(v) − hLagi(ψ2)(v) = hLagi(ψ1)(v)+{−x0}(v) − hLagi(ψ2)+{−x0}(v)

≤
∑
j �=i

sjψ̃
j
1 + ∣∣u0

∣∣R − 〈u0, x0〉 −
⎛⎝∑

j �=i

sjψ̃
j
2 + ∣∣u0

∣∣R − 〈u0, x0〉
⎞⎠

=
∑
j �=i

sj(ψ
i
1 − ψ i

2 − ψ
j
1 + ψ

j
2) ≤ 4R

δ
‖ψ1 − ψ2‖∞.

A symmetric calculation reversing the roles of ψ1 and ψ2, and then taking a supremum

over v ∈ S
n−1 combined with (5.1) shows the claimed local Lipschitz bound.

Definition 5.2. We denote ωj = π j/2

�(
j
2 +1)

for the volume of the unit ball in R
j.

We start with a simple lemma in convex geometry.

Lemma 5.3. If A is a bounded convex set with L(A) > 0 then A contains a ball of

radius R2
AL(A) where

R2
A := 2n−1

ωn(n + 2)ndiam(A)n−1 .

Proof. Let S be a simplex in A with volume at least 1
(n+2)n L(A) as given by the main

theorem of [10]. Since S is convex and is contained in a ball of radius diam(A)
2 , we have

Hn−1(∂S) ≤ nωn

(
diam(A)

2

)n−1
(see [16,p. 211]). Then it is standard that S contains a ball

of radius r, where

r = n vol(S)

Hn−1(∂S)
≥ 2n−1L(A)

ωn(n + 2)n diam(A)n−1 ,

see for example the last formula in the proof of [18,Corollary 3] and the discussion

following it. �

In the next proposition, we estimate the term supx∈B d(x, A) from the definition

of Hausdorff distance by the Lebesgue measure of the difference of the two sets, when
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28 M. Bansil and J. Kitagawa

Fig. 1.

they are convex. We opt to take a different approach from the proof of Theorem 1.3:

ultimately we will control the Lebesgue measure of the symmetric difference of Laguerre

cells directly by the dual variables ψ , then attempt to quantitatively invert the map G,

allowing us to invoke the first estimate in Theorem 1.3.

Proposition 5.4. Let A ⊂ B be bounded convex sets. Then

L(B \ A) ≥ ωn(supx∈B d(x, A))n

(2π)n−1

(
arccos(1 − 2R2

AL(A)2

diam(B)2 )

)n−1

.

Proof. If L(A) = 0 the claim is clear, thus assume L(A) > 0. Let DA = 2R2
AL(A) be the

diameter of the ball contained in A from Lemma 5.3.

Let x ∈ B \ A be arbitrary. We shall first consider the case where n = 2.

First P, Q are points chosen on the boundary of the disk contained in A so that

R1 = R2 where R1 and R2 are the lengths of the segments xP and xQ (such P, Q exist by

a continuity argument, see Figure 1). Set r := d(x, A). Next let S be the shaded circular

sector, i.e., S := Br(x) ∩ 
(P, Q, x), where 
(P, Q, x) is the triangle with vertices P, Q, x.

Let θ be the measure of the angle � PxQ and set R := R1 = R2.
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Quantitative stability for OT 29

Note that S ⊂ B \ A. Then by the law of cosines

2R2 − 2R2 cos θ = R2
1 + R2

2 − 2R1R2 cos θ = D2
A

�⇒ cos θ = 1 − D2
A

2R2 ≤ 1 − D2
A

2 diam(B)2 .

Thus we estimate the area of S as

πr2 θ

2π
≥ r2

2
arccos(1 − D2

A

2 diam(B)2 ) = 1

2
d(x, A)2 arccos(1 − D2

A

2 diam(B)2 ).

Since x ∈ B was arbitrary we obtain

L(B \ A) ≥ 1

2
sup
x∈B

d(x, A)2 arccos(1 − D2
A

2 diam(B)2 )

as desired.

Now in higher dimensions the construction above yields a spherical sector

instead of the circular sector, S. By slicing with planes through x and the center of

the ball and applying the argument used when n = 2 we see that this spherical sector

has angle θ in all directions. Hence we calculate that the volume of our spherical sector

is estimated as

ωnrn
(

θ

2π

)n−1

≥ ωnrn

(2π)n−1

(
arccos

(
1 − D2

A

2diam(B)2

))n−1

= ωnd(x, A)n

(2π)n−1

(
arccos

(
1 − D2

A

2diam(B)2

))n−1

.

Hence we have

L(B \ A) ≥ ωnsupx∈B d(x, A)n

(2π)n−1

(
arccos

(
1 − D2

A

2diam(B)2

))n−1

as desired. �

The following lemma is a simple use of the coarea formula to control the

Lebesgue measure of the difference of Laguerre cells corresponding to different dual

variables ψ1 and ψ2 in terms of the difference ‖ψ1 − ψ2‖∞, similar to the proof of

[9,Proposition 4.8]. For any index i ∈ {1, . . . , N} and a set E ⊂ R
n, we will use the notation

[E]i := (expc
i )

−1(E).
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30 M. Bansil and J. Kitagawa

Lemma 5.5. Let ψ1, ψ2 ∈ R
n. Then for some universal C
 > 0,

L(Lagi(ψ1) \ Lagi(ψ2)) ≤ C
N‖ψ1 − ψ2‖∞.

Proof. Suppose x ∈ Lagi(ψ1) \ Lagi(ψ2), then there is a k �= i so that c(x, yk) + ψk
2 <

c(x, yi) + ψ i
2 while c(x, yi) + ψ i

1 ≤ c(x, yk) + ψk
1 , combining these yields

ψk
2 − ψ i

2 < c(x, yi) − c(x, yk) ≤ ψk
1 − ψ i

1.

Hence writing fk(x) = c(x, yi) − c(x, yk),

Lagi(ψ1) \ Lagi(ψ2) ⊂
⋃
k �=i

f −1
k ([ψk

2 − ψ i
2, ψk

1 − ψ i
1]). (5.2)

We proceed to bound L(f −1
k ([ψk

2 − ψ i
2, ψ i

1 − ψk
1 ])) using the coarea formula. We

have

L(f −1
k ([a, b])) =

∫
f −1
k ([a,b])

dL(x) =
∫ b

a

∫
f −1({t})

1

‖∇fk(x)‖dHn−1(x)dt

≤ b − a

εtw

(
sup

t∈[a,b]
Hn−1

(
f −1
k ({t})

))
,

where we recall εtw is from Definition 1.5.

Next we bound supt∈(a,b) Hn−1(f −1
k ({t})). Let Ak

t := {x ∈ X | fk(x) ≤ t}. We claim

that f −1
k ({t}) ⊂ ∂Ak

t . Clearly f −1
k ({t}) ⊂ Ak

t . Suppose by contradiction there is x ∈ f −1
k ({t})∩

intAk
t . Then x has an open neighborhood U so that for every y ∈ U, fk(y) ≤ t = fk(x). In

particular, fk(x) is a local maximum and so ∇fk(x) = 0, contradicting (Twist).

By (QC), [Ak
t ]i is convex and contained in [X]i. Hence Hn−1([∂Ak

t ]i) =
Hn−1(∂[Ak

t ]i) ≤ Hn−1(∂[X]i) = Hn−1([∂X]i) (again see [16,p. 211]). Then we have

Hn−1(f −1
k ({t})) ≤ Hn−1(∂[Ak

t ]i) ≤ Cn−1
exp Hn−1(∂X), and combining with above

L(f −1
k ([a, b])) ≤ b − a

εtw

(
sup

t∈[a,b]
Hn−1(f −1

k ({t}))
)

≤ Cn−1
exp Hn−1(∂X)

εtw
(b − a).

Since ψk
1 − ψ i

1 − (ψk
2 − ψ i

2) ≤ 2‖ψ1 − ψ2‖∞, by combining the above with (5.2) we have

L(Lagi(ψ1) \ Lagi(ψ2)) ≤
∑
k �=i

L(f −1
k ([ψk

2 − ψ i
2, ψk

1 − ψ i
1])) ≤ 2Cn−1

exp NHn−1(∂X)

εtw
‖ψ1 − ψ2‖∞

as desired. �
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Finally, we apply the bound in Proposition 5.4 to the images of Laguerre cells

under the coordinates induced by the maps (expc
i )

−1(·), which are convex by (QC).

Combining with Lemma 5.5 above allows us to control the Hausdorff distance between

Laguerre cells by the difference of the dual variables defining the cells.

Theorem 5.6. Suppose that

‖ψ1 − ψ2‖∞ <
max(L(Lagi(ψ1)),L(Lagi(ψ2)))

2C
N
, (5.3)

where C
 is the constant from Lemma 5.5. Then for some universal constants C1 > 0

and C2 > 0,

dH(Lagi(ψ1), Lagi(ψ2))n ≤ C1N‖ψ1 − ψ2‖∞(
arccos(1 − C2 max(L(Lagi(ψ1)),L(Lagi(ψ2)))2)

)n−1 .

Proof. By (QC), we see that
[
Lagi(ψ)

]
i is a convex set for any i.

Applying Proposition 5.4 with A = [
Lagi(ψ1)

]
i ∩ [Lagi(ψ2)

]
i and B = [

Lagi(ψ1)
]
i

we obtain

L(
[
Lagi(ψ1)

]
i \ [Lagi(ψ2)

]
i)

≥ ωn(supx∈Lagi(ψ1)(d((expc
i )

−1(x), A)))n

(2π)n−1

(
arccos

(
1 − 2R2

AL(A)2

diam(
[
Lagi(ψ1)

]
i)

2

))n−1

≥ ωn(supx∈Lagi(ψ1)(d((expc
i )

−1(x),
[
Lagi(ψ2)

]
i)))

n

(2π)n−1

(
arccos

(
1 − 2R2

AL(A)2

diam(
[
Lagi(ψ1)

]
i)

2

))n−1

as
[
Lagi(ψ1)

]
i \ (

[
Lagi(ψ1)

]
i ∩ [

Lagi(ψ2)
]
i) = [

Lagi(ψ1)
]
i \ [Lagi(ψ2)

]
i. Similarly, we

also see

L(
[
Lagi(ψ2)

]
i \ [Lagi(ψ1)

]
i)

≥ ωn(supx∈Lagi(ψ2)(d((expc
i )

−1(x),
[
Lagi(ψ1)

]
i)))

n

(2π)n−1

(
arccos

(
1 − 2R2

AL(A)2

diam(
[
Lagi(ψ2)

]
i)

2

))n−1
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and so

max(L(
[
Lagi(ψ2)

]
i \ [Lagi(ψ1)

]
i),L(

[
Lagi(ψ1)

]
i \ [Lagi(ψ2)

]
i))

≥ ωndH(
[
Lagi(ψ1)

]
i,
[
Lagi(ψ2)

]
i)

n

(2π)n−1 min
j=1,2

⎛⎜⎝
⎛⎜⎝arccos(1 − 2R2

AL(A)2

diam(
[
Lagi(ψj)

]
i
)2

)

⎞⎟⎠
n−1⎞⎟⎠ . (5.4)

Suppose L(Lagi(ψ1)) ≥ L(Lagi(ψ2)) (the other case can be handled with a

symmetric argument). Then using Lemma 5.5 and the assumption (5.3) on ‖ψ1 − ψ2‖∞,

for both j = 1 or 2,

2R2
AL(A)2

diam([Lagi(ψj)]i)
2 = 22n−1L(A)2

ω2
n(n + 2)2ndiam(A)2n−2diam([Lagi(ψj)]i)

2

≥ 22n−1(L(
[
Lagi(ψ1)

]
i) − L([Lagi(ψ1)]i \ [Lagi(ψ2)]i))

2

ω2
n(n + 2)2ndiam(X)2n

≥ 22n−1L([Lagi(ψ1)]i)
2

4ω2
n(n + 2)2ndiam(X)2n

≥ 22n−1C2n
exp max(L(Lagi(ψ1)),L(Lagi(ψ2)))2

4ω2
n(n + 2)2ndiam(X)2n . (5.5)

Combining the above estimate with Lemma 5.5 and (5.4),

CN‖ψ1−ψ2‖∞ ≥max(L([Lagi(ψ2)]i \ [Lagi(ψ1)]i),L([Lagi(ψ1)]i \ [Lagi(ψ2)]i))

≥ ωndH([Lagi(ψ1)]i, [Lagi(ψ2)]i)
n

(2π)n−1

(
arccos(1−C2 max(L(Lagi(ψ1)),L(Lagi(ψ2)))2

)n−1
.

Since the map (expc
i )

−1(·) is bi-Lipschitz with universal Lipschitz constants,

there is some universal C > 0 such that

CdH(Lagi(ψ1), Lagi(ψ2))n ≤ dH(
[
Lagi(ψ1)

]
i,
[
Lagi(ψ2)

]
i)

n,

finishing the proof. �

With these preliminary results in hand, are finally ready to prove Corollary 1.11.

Proof of Corollary 1.11. To obtain statement (1), since ‖λk − λ0‖ → 0 as k → ∞, by

Proposition 3.5 we must have ψk → ψ . Combining this with Theorem 5.6 gives (1).
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To show claim (2), assume q > 1. Combining (1.4) and Theorem 1.10 for the choice

of C1 = qC
C∇Cpw‖ρ‖C0(X)

2(q−1)
we have

‖ψ1 − ψ2‖∞ ≤ ‖ψ1 − ψ2‖ ≤ qN4C∇Cpw‖λ1 − λ2‖
4(q − 1) max(mini λi

1, mini λi
2)1/q

<
max(λi

1, λi
2)

2C
N‖ρ‖C0(X)

= max(μ(Lagi(ψ1)), μ(Lagi(ψ2)))

2C
N‖ρ‖C0(X)

≤ max(L(Lagi(ψ1)),L(Lagi(ψ2)))

2C
N
.

Hence we can apply Theorem 5.6 and Theorem 1.10 to obtain

dH(Lagi(ψ1), Lagi(ψ2))n ≤ C1N‖ψ1 − ψ2‖∞(
arccos(1 − C2 max(L(Lagi(ψ1)),L(Lagi(ψ2)))2)

)n−1

≤ qC1N5C∇Cpw‖λ1 − λ2‖
4(q − 1) max(mini λi

1, mini λi
2)1/q

(
arccos(1 − C2 max(L(Lagi(ψ1)),L(Lagi(ψ2)))2)

)n−1

≤ qC1N5C∇Cpw‖λ1 − λ2‖
4(q − 1) max(mini λi

1, mini λi
2)1/q

(
arccos(1 − C2‖ρ‖−2

C0(X)
max(λi

1, λi
2)2)

)n−1 ,

where we have used that t �→ 1
arccos(1−t) is a decreasing function and L(Lagi(ψj)) ≥

‖ρ‖−1
C0(X)

λi
j. �

6 Quantitative uniform convergence of dual potentials

In this final section, we prove Theorem 1.14, showing that the uniform difference of dual

potentials can be controlled by the Hausdorff distance between Laguerre cells. In this

section, we assume all of the conditions of the previous section, except that μ satisfies

a (q, 1)-PW inequality. We comment that if μ is assumed to satisfy a (q, 1)-PW inequality

with q > 1, we may applying the quantitative invertibility result Theorem 1.10 to obtain

the bound on the uniform difference in terms of the difference of the masses of the

target measures.

We start with a basic lemma.

Lemma 6.1. If A, B ⊂ X are bounded convex sets then L(A
B) ≤ 2dH(A, B)Hn−1(∂X).

Proof. Denote by Aε the closed ε neighborhood of A. Then using the first displayed

equation on p. 221 in [15,III.13.3] combined with the fact that if A ⊂ B with A convex,

then Hn−1(∂A) ≤ Hn−1(∂B), we obtain

L(Aε) ≤ L(A) + εHn−1(∂Aε).

Then noting that B ⊂ AdH(A,B) and vice versa, we obtain the claim. �
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Proposition 6.2. Suppose ψ1, ψ2 ∈ R
N with 〈ψ1 − ψ2, 1〉 = 0 and Lagi(ψ1), Lagi(ψ2) �= ∅

for each i ∈ {1, . . . , N}. Then

‖ψ1 − ψ2‖ ≤ N4C∇CpwnHn−1(∂X)

√∑N
i=1 dH(Lagi(ψ1), Lagi(ψ2))2

2(max(mini L(Lagi(ψ1)), mini(L(Lagi(ψ2)))))1− 1
n L(X)

1
n

. (6.1)

Proof. Define μ̃ := 1
L(X)

L
∣∣∣∣
X

. Note that since X is connected μ̃ satisfies an ( n
n−1 , 1)-PW

inequality. Next define λi = μ̃(Lag(ψi)) for i = 1, 2. We see that for any i,

∣∣∣λi
1 − λi

2

∣∣∣ = ∣∣μ̃(Lagi(ψ1)) − μ̃(Lagi(ψ2))
∣∣

= 1

L(X)

∣∣L(Lagi(ψ1) \ Lagi(ψ2)) − L(Lagi(ψ2) \ Lagi(ψ1))
∣∣

≤ 1

L(X)

∣∣L(Lagi(ψ1) \ Lagi(ψ2))
∣∣+ ∣∣L(Lagi(ψ2) \ Lagi(ψ1))

∣∣
= L(Lagi(ψ1)
Lagi(ψ2))

L(X)
≤ 2Hn−1(∂X)

L(X)
dH(Lagi(ψ1), Lagi(ψ2)),

where we have used Lemma 6.1 to obtain the last inequality above. Hence

‖λ1 − λ2‖ ≤ 2Hn−1(∂X)

L(X)

√√√√ N∑
i=1

dH(Lagi(ψ1), Lagi(ψ2))2.

Then we can apply Theorem 1.10 using μ̃ in place of μ to obtain (6.1) as desired. �

Proof of Theorem 1.14. For any ψ1, ψ2 ∈ R
N , by definition of c∗-transform we

have ‖ψc∗
1 − ψc∗

2 ‖C0(X) ≤ ‖ψ1 − ψ2‖∞ ≤ ‖ψ1 − ψ2‖. Thus the theorem follows from

Proposition 6.2 above. �

Funding

JK’s research was supported in part by National Science Foundation grants DMS-1700094 and

DMS-2000128.

Acknowledgments

The authors would like to thank Filippo Santambrogio for pointing out the relationship between

the convergence in Hausdorff distance of Laguerre cells, and the uniform convergence of the dual

potential functions.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa355/6056388 by guest on 12 M

ay 2021



Quantitative stability for OT 35

The authors would also like to thank the anonymous referee for a thorough and careful reading

of the paper, which has lead to great improvements in the presentation. In particular, they would

like to thank the referee for pointing out the bound in Theorem 5.6 can be significantly improved

for the case of inner product cost, which is now added in Remark 5.1.

References

[1] Ambrosio, L., F. Glaudo, and D. Trevisan. “On the optimal map in the 2-dimensional random

matching problem.” Discrete & Continuous Dynamical Systems 39, no. 12 (2019): 7291–308.

[2] Berman, R. J. Convergence rates for discretized Monge-Ampère equations and quantitative

stability of Optimal Transport. arXiv e-prints, page arXiv:1803.00785, Mar 2018.

[3] Bang-Jensen, J. and G. Gutin. “Digraphs.” Springer Monographs in Mathematics, second ed.

London: Springer-Verlag London, Ltd, 2009 Theory, algorithms and applications.

[4] Bansil, M. and J. Kitagawa. An optimal transport problem with storage fees. arXiv e-prints,

page arXiv:1905.01249, May 2019.

[5] Crippa, G., C. Jimenez, and A. Pratelli. “Optimum and equilibrium in a transport problem

with queue penalization effect.” Advances in Calculus of Variations 2, no. 3 (2009): 207–46.

[6] Fiedler, M. “A property of eigenvectors of nonnegative symmetric matrices and its applica-

tion to graph theory.” Czechoslovak Mathematical Journal 25, no. 100 (1975): 619–33. 4

[7] Gamelin, T. W. and R. E. Greene. Introduction to topology, second ed. Mineola, NY: Dover

Publications, Inc, 1999.

[8] Gigli, N. “On Hölder continuity-in-time of the optimal transport map towards measures

along a curve.” Proceedings of the Edinburgh Mathematical Society 54, no. 2 (2011):

401–9.

[9] Kitagawa, J., Q. Mérigot, and B. Thibert. “Convergence of a Newton algorithm for semi-

discrete optimal transport.” Journal of the European Mathematical Society 21, no. 9 (2019):

2603–51.

[10] Lassak, M. “Approximation of convex bodies by inscribed simplices of maximum volume.”

Beitráge zur Algebra und Geometrie 52, no. 2 (2011): 389–94.

[11] Loeper, G. “On the regularity of solutions of optimal transportation problems.” Acta

Mathematica 202, no. 2 (2009): 241–83.

[12] Mérigot, Q., A. Delalande, and F. Chazal. Quantitative stability of optimal transport

maps and linearization of the 2-Wasserstein space. arXiv e-prints, page arXiv:1910.05954,

Oct 2019.

[13] Mohar, B. “Eigenvalues, diameter, and mean distance in graphs.” Graphs and Combinatorics

7, no. 1 (Mar 1991): 53–64.

[14] Ma, X.-N., N. S. Trudinger, and X.-J. Wang. “Regularity of potential functions of the optimal

transportation problem.” Archive for Rational Mechanics and Analysis 177, no. 2 (2005):

151–83.

[15] Santaló, L. A. “Integral geometry and geometric probability.” Cambridge Mathematical

Library, second ed. Cambridge: Cambridge University Press, 2004 With a foreword by

Mark Kac.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa355/6056388 by guest on 12 M

ay 2021



36 M. Bansil and J. Kitagawa

[16] Schneider, R. Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclopedia of

Mathematics and its Applications. Cambridge: Cambridge University Press, 1993.

[17] Trudinger, N. S. and X.-J. Wang. “On the second boundary value problem for Monge-Ampère

type equations and optimal transportation.” Annali della Scuola Normale Superiore di

Pisa(5) 8, no. 1 (2009): 143–74.

[18] Vaughan, H. E. and H. Gabai. “Hyperspheres associated with an n-simplex.” Amer. Math.

Monthly 74 (1967): 384–92.

[19] Villani, C. Optimal transport: Old and new, volume 338 of Grundlehren der Mathematis-

chen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-

Verlag, 2009.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa355/6056388 by guest on 12 M

ay 2021


	Quantitative Stability in the Geometry of Semi-discrete Optimal Transport
	1 Introduction
	1.1 Semi-discrete optimal transport
	1.2 Statement of results
	1.3 Outline of the paper
	1.4 Literature analysis

	2 u -symmetric convergence of Laguerre cells
	2.1 The exchange digraph

	3 Injectivity of G
	4 Quantitative Invertibility of G
	4.1 Alternative spectral estimates on DG
	4.2 Quantitative invertibility of G

	5 Stability in Hausdorff distance
	6 Quantitative uniform convergence of dual potentials


