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We show quantitative stability results for the geometric “cells” arising in semi-discrete
optimal transport problems. We first show stability of the associated Laguerre cells in
measure, without any connectedness or regularity assumptions on the source measure.
Next we show quantitative invertibility of the map taking dual variables to the measures
of Laguerre cells, under a Poincare-Wirtinger inequality. Combined with a regularity
assumption equivalent to the Ma-Trudinger-Wang conditions of regularity in Monge-
Ampere, this invertibility leads to stability of Laguerre cells in Hausdorff measure and
also stability in the uniform norm of the dual potential functions, all stability results
come with explicit quantitative bounds. Our methods utilize a combination of graph

theory, convex geometry, and Monge-Ampére regularity theory.

1 Introduction
1.1 Semi-discrete optimal transport

Let X ¢ R", n > 2 compact and Y := {yi}?’:1 C R" a fixed finite set, and fix a Borel
measurable cost function ¢ : X x Y — R. If i is an absolutely continuous probability
measure supported in X and v is a discrete probability measure supported on Y, then

the semi-discrete optimal transport problem is to minimize the functional

/ c(x, T(x))du (1.1)
X
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2 M. Bansil and J. Kitagawa

over all Borel measurable mappings T : X — Y such that T,u(E) = w(TY(E)) = v(E)
for any measurable E C Y. This problem has been well-studied in the more general case
when v may not be a discrete measure, and has deep connections to many mathematical
areas, as mentioned throughout [19].

In this paper, we are concerned with quantitative stability of the geometric
structures when minimizing (1.1), under perturbations of the target measure v. It is
known that under some mild conditions, an optimal map T can be constructed via a
u-a.e. partition of the domain X, which is induced by a potential function that maxi-
mizes an associated dual problem. The cells in such a partition are known as Laguerre
cells (see Definition 1.1 below). We will show stability of these cells under perturbations
of v measured in two different ways: an integral notion, and a uniform notion. As
a corollary, we will also obtain stability of the associated dual potential functions
in uniform norm; all of these stability results will come with explicit quantitative
estimates.

For the remainder of the paper, we fix positive integers N and n and a collection
Y := {y;}}'.; C R"™. We also define

N
A:=[AERN|ZAi=1, )\izo},
i=1

and to any vector . € A we associate the discrete measure v, = >, Aiéyi, and we
let 1 = (1,...,1) € RY. Superscripts will be used for coordinates of a vector, and we
use |V = />¥, |Vi| 2 for the Euclidean (¢2) norm of a vector V € RV, while V||, :=
>, |V and |Vl = max,, _u |V!| are respectively the ¢! and ¢* norms. We may
also use ||T| for the operator norm of a linear transformation T, this will be clear from

context. Lastly, £ will denote n dimensional Lebesgue measure.

1.2 Statement of results

We assume the following standard conditions on ¢ throughout:
c(,y;) € C*(X),Yie(1,...,N}, (Reg)
V.e(x,y;) #Vex,y), VxeX, i £k (Twist)

These two conditions are standard in the existence theory for optimal transport, see

[14]. We then make the following definitions:
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Quantitative stability for OT 3

Definition 1.1. If ¢ : X — R U {400} (not identically +oc) and ¢ € RY, their c- and
c*-transforms are a vector ¢¢ € RV and a function ¢ : X — R U {400} respectively,
defined by

(¢°)' 1= sup(=c(x,y) = p(x), ()0 = max (—cCx,y) =Y.

xeX T e,
Forie {1,...,N}, the ith Laguerre cell associated to v is defined by
Lag;(¥) = {x € X | —c(x,y) — ' =y ).
We also define the map G : RY — A by

G(W) == (G'(W),..., G () = (u(Lag,(¥)), ..., nLagy(¥))),
and define for any ¢ > 0,
Ké:={y eRY | G'(¥) >e Vie{l,...,N}}.

When u is absolutely continuous with respect to Lebesgue measure, it is clear
that (Twist) implies Laguerre cells for a fixed  associated to different indices are
disjoint up w-negligible sets. The generalized Brenier’'s theorem [19,Theorem 10.28],
shows that for any vector ¢ € RY the u-a.e. single valued map T, : X — Y defined
by T,(x) =y; whenever x € Lag;(), is a minimizer in (1.1), from the source measure
W to the target measure v = v . Clearly ¥ and y + r1 give the same optimal map for
any real r € R. This mapping can be found from the dual Kantorovich problem: in this
semi-discrete setting, it is known (see [19,Chapter 5]) that the minimum value in (1.1)

with v = v, is equal to
max [—/deu — (WA (0 ¥) e L'(w) x RY, —p(x) — ¥ < c(x,yy), p—ae xe X] :

Then the maximum value is attained by a pair of the form (<", ¢) for some ¢ € RV and
the map T, is the minimizer in (1.1) between p and v,. We will refer to such an ¢ € RY
and the associated ¥ as an optimal dual vector and an optimal dual potential for V.

Our first stability result will be stated in terms of the following perturbation in

measure:

Definition 1.2. If A, B C R" are Borel sets, then their u-symmetric distance will be
denoted by

A, (A,B) ;= u(AAB) = n((A\ B) U (B\ 4)). (1.2)
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4 M. Bansil and J. Kitagawa

Then our first theorem is:

Theorem 1.3. Suppose c satisfies (Reg) and (Twist), and u is absolutely continuous. If

A1,y € A and ¥y, ¥, are optimal dual vectors for v, and v, respectively, then

N
> A, (Lag;(y,), Lag;(y,)) < 4N|%; — Ayl;. (1.3)

i=1

We point out we make no assumptions on u beyond absolute continuity, in
particular no geometric assumptions on the support or regularity conditions on the
density are made, and the bound is independent of any lower bound on the components
of the weight vectors A;.

Our second stability result on Laguerre cells will be measured in the Hausdorff
distance, and will require further conditions on x and c. On ¢, we need the following

condition originally studied by Loeper in [11].

Definition 1.4. We say c satisfies Loeper’s condition if for each i € {1,...,N} there

exists a convex set X; C R" and a C? diffeomorphism exp$(-) : X; - X such that
VteR, 1 <ki<N, {peX;|—clexp(p)y) + clexpi(p),y; <t} is convex. (Qc)

We also say that a set X C X is c-convex with respect to Y if (eXpiC)_l(f() is a convex set

foreveryie{l,...,N}.

(QC) is a geometric manifestation of the Ma-Trudinger-Wang (MTW) condition,
which is central to the study of regularity in the Monge-Ampére type equation coming
from optimal transport. The strong version of the MTW condition was introduced in
[14], and a weak form later in [17], both of which deal with higher order regularity for
optimal maps in the case of optimal maps between absolutely continuous measures.
The results of [11] show that if Y is a finite set sampled from from a continuous space,
X is c-convex with respect to the space Y is sampled from, and c is C* (along with an
analogous convexity condition on the space Y is sampled from), then (QC) is equivalent
to the MTW condition. Additionally, Loeper showed that (QC) (hence MTW) is necessary

for regularity of the optimal transport problem.

Definition 1.5. Suppose c satisfies (Reg) and (Twist), X is a compact set with

Lipschitz boundary, © = pdx for some density p € C°(X), and sptu C X. Then
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Quantitative stability for OT 5

we will say that a positive, finite constant is universal if it has bounds away from
zero and infinity depending only on the following quantities: n, ||pllco(x). H1(5X),

maXie{l,...,N}||C('rYi)||c2(X)r and

€4 = hiD i,je{lI,I.l..i,II\lf},i;éj”VXC(X,Yi) — Ve, ypl.
Cyi= max  [IVycyil
Coxp = max, max {”e"pf”C°r1<(exp§>‘1<X>>' | (exp) ™ ||c°r1(X>} '
Ceona = ie?ll,?.),(N} pe(eg;?))fl(x) cond(D eXpl-C(p)),
Ciet = ie?ll,?,),(N}”det(D epr)||c°'1((epr)‘1(X))’

where cond is the condition number of a linear transformation. These constants are the

same as those from [9,Remark 4.1].

Remark 1.6. If the points {y;,...,yy} are sampled from some continuous domain
Y, and c is a cost function on X x Y satisfying (Reg), (Twist) then all constants in

Definition 1.5, except €., are independent of N.

As for u, in addition to Holder regularity of the density, we will require a

connectedness assumption on the support.

Definition 1.7. A probability measure u on X satisfies a (q, 1)-Poincaré-Wirtinger
inequality for some 1 < g < oo if there exists a constant Cow > 0 such that for any
fecx,

< CpW”Vf”Ll(M)-
La(p)

= f

For brevity, we will write this as “u satisfies a (g, 1)-PW inequality”.

We note that since X has Lipschitz boundary, the class C!(X) can be unambigu-
ously defined.

Remark 1.8. This condition is used to obtain invertibility of the derivative of the map
G in nontrivial directions (see the discussion immediately preceding [9,Definition 1.3)),

and a Poincaré-Wirtinger inequality can be viewed as a quantitatively strengthened
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6 M. Bansil and J. Kitagawa

version of connectivity, which is sufficient for these purposes. It is classical that if

n_
n—1’

due to scaling g = ;"5 is the largest possible value of g when p is continuous.

p is bounded away from zero on its support, it will satisfy a ( 1)-PW inequality, and

Recall the following definition of Hausdorff distance.

Definition 1.9. If x € R" and A C R"”, we define
d(x,A) := inf||x — y|.
yeA

Then for two nonempty sets A and B C R", the Hausdorff distance between A and B is
defined by

dy(A,B) := max (sup d(x,B), sup d(X,A)) .
XeA X€EB
Our second goal is to show stability of the Hausdorff distance between cor-
responding optimal Laguerre cells, under perturbations of the masses of the target
measure. A key ingredient is the following theorem, which gives a quantitative Lipschitz
bound on the inverse of the map G, it is here that we critically use the assumption that

g > 1 in the (g, 1)-PW inequality for u.

Theorem 1.10. Suppose that c satisfies (Reg) and (Twist), X has Lipschitz boundary,
u = pdx satisfies a (g, 1)-PW inequality with g > 1, and the map G is differentiable with

continuous derivatives. Then for any ¥, ¥, € RY such that (¢, — ¥, 1) =0,

qN*Cy Cpy IG(Y)) — Gy
4(q — 1) max(min; Gi(y,), min; Gi(,))/q

¥y = ¥all <

The desired stability result follows as a corollary of this theorem. Specifically,
we show nonquantitative stability of the Hausdorff distance of Laguerre cells under a
(1,1)-PW inequality on p, and a local, quantitative estimate of stability under a (g, 1)-
PW inequality when q > 1. We carefully note here, for part (2) below it is possible for
one of more Laguerre cells for one of either y; or v, to have zero measure, as long as

the cells of the other have a strictly positive lower bound.

Corollary 1.11. Suppose that c satisfies (Reg), (Twist), and (QC), X is c-convex with
respect to Y, and 4 = pdx satisfies a (g, 1)-PW inequality with g > 1.

1202 Ae\ | uo 1s8nb Agq 88€9G609/SSERRUIUIWI/SE0 L 0 | /I0P/3|91e-80uBAPE/UIWI/WOo9 dno olwapede//:sdiy Wol) papeojumod



Quantitative stability for OT 7

1. Suppose {A}72; C A converges to some Ay € A as k — 0, ¥ and ¥, are
optimal dual vectors for v;, and v, respectively, such that (¥ — ¥, 1) =0
for all k, and £(Lag;(y,)) > 0 for some i. Then

%ii% dq,(Lag;(¥), Lag;(¥y)) = 0.

2. If g > 1, there exists a constant C; > 0 depending on universal quantities and
q with the following property: if ¢, and v, are optimal dual vectors for the
measures v, and v,, respectively, satisfying (¢, — ¥, 1) = 0, with Lag;(y),
Lag;(y,) # ¥, and

C,N®|[A; — A, | < max(r} ,Ag)(max(miin Al mlln Ab)t/a, (1.4)

then

dy (Lag;(y,), Lag; (W)™ <CoN°|lAy — Ayll,

where C, > 0 depends on universal constants and the quantities g,

max(x!, %), and max(min; A}, min; 15)1/4.

Remark 1.12. The proof of Corollary 1.11 involves a bound on the Lebesgue measure
of the symmetric difference of Laguerre cells, which could in theory be used to prove
the p-symmetric convergence of the Laguerre cells (as the density of u is bounded).
However, we opt to present a completely different proof for Theorem 1.3, as the method
we present here can be applied under less stringent hypotheses. More specifically, in
order to exploit the bound on the Lebesgue measure of symmetric difference of cells
(Lemma 5.5) we would require a (1,1)-PW inequality to obtain convergence, and a
(q, 1)-PW inequality with g > 1 to obtain a quantitative rate of convergence of the
u-symmetric difference, while our proof of Theorem 1.3 does not require any kind of

PW inequality.

Remark 1.13. We mention here, there are some practical reasons to consider the
stability of Laguerre cells in the Hausdorff distance. The semi-discrete optimal trans-
port problem can be viewed as a model for semi-supervised data clustering: the
optimal map assigns to a (continuous) set of data, different clusters with representative
data points given by the Y and the size of each cluster is pre-determined (perhaps

empirically, via statistical considerations). The stability in Hausdorff distance then
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8 M. Bansil and J. Kitagawa

measures the uniform closeness of these clusters with respect to the underlying metric

structure, under perturbations of the cluster size.

Finally, we can obtain a quantitative estimate of the uniform difference of dual

potential functions in terms of the Hausdorff distance of associated Laguerre cells.

Theorem 1.14. Suppose c satisfies (Reg), (Twist), and (QC), X is bounded and c-convex
with respect to Y. If ¥, ¥, € RY are such that (y; — ¥,,1) = 0, there is a universal

constant C > 0 such that

et SV | dy (Lag;(v)), Lagy(1,))?
(max(min; £(Lag;(y,)), min;(£(Lagi()))' "

||W1c - I/fzc ”CO(X) =

1.3 Outline of the paper

In Section 2, we use the theory of directed graphs to prove Theorem 1.3 on the u-
symmetric convergence of Laguerre cells. In Section 3, we establish some preliminary
invertibility properties of the mapping G under our setting. In Section 4, we prove the
quantitative invertibility result Theorem 1.10, this is carried out via some alternative
spectral estimates of the transformation DG, which are of independent interest. In
Section 5, we gather some estimates on the Hausdorff measure of differences of
Laguerre cells, mostly using convex geometry, and then prove Corollary 1.11. Finally,
Section 6 gathers the results needed to prove the estimate Theorem 1.14. In each section,

we progressively add more conditions on ¢, 4, and X, which are detailed there.

1.4 Literature analysis

One can use [19,Corollary 5.23] to see if y; and v, weakly converge to some probability
measures, ¢ satisfies (Reg) and (Twist), and the limit of the sequence {1} is absolutely
continuous, then the sequence of optimal transport maps minimizing (1.1) converge in
measure to the optimal transport map of the limiting problem, however there is no
explicit rate of convergence. Currently there are few results with quantitative rates:
quantitative L? stability of the transport maps (equivalent to H! convergence of dual
potentials) is shown under discretization of the target measure in [2] and for general
perturbations in the 2-Wasserstein metric of the target measure in [12]. These results
do give our convergence result in u-symmetric measure, however the discussion in [2]
and [12] are restricted to quadratic distance squared cost, and have more stringent

conditions on the source measure p than our result. Under conditions that yield regular
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Quantitative stability for OT 9

optimal transport maps, [8] shows if i, is an absolutely continuous curve of probability
measures with respect to the ), optimal transport metric, then the curve of optimal
transport maps is Holder continuous, measured in L?(u). The result in the case p = 2 is
originally due to Ambrosio (also reported in [8]). Finally, [1,Theorem 3.1] is a quantitative
result for optimal transport with geodesic distance squared cost on compact manifolds
(again, in L? difference of transport maps). There seem to be no results with rates for

uniform convergence.

2 u-symmetric convergence of Laguerre cells

For the remainder of the paper, we assume that c satisfies (Reg), (Twist), and u is
absolutely continuous. In this section, we do not assume (QC) or any regularity on the
density of u.

We will actually prove our first stability result Theorem 1.3 for a variant of
the optimal transport problem first dealt by the authors in [4] (The resulting proof
is only slightly more involved than in the classical case, we have opted to prove our
results in this setting for use in a forthcoming work on numerics; a specific case of
the problem also appears in [5] in the context of queue penalization). In addition to
the setting of the semi-discrete optimal transport problem (1.1), we assume there is a
storage fee function F : RNV — R. Then the semi-discrete optimal transport with storage
fees is to find a pair (T, 1) with A = (A!,...,AY) ¢ RY and T : X — Y measureable
satisfying

N
i=1

such that

/ cx, T(x)du+F) = _min / cx, T(x))du +FQ). (2.1)
b'¢ ReRN, Typ=3"1 | Aoy, JX

For this section, we will suppose F;, F, : R¥Y — RU{+o0} are two proper convex functions
equal to +oo outside of A. Under our assumptions on u and c, by [4,Theorem 2.3 and
Proposition 3.5] there exist pairs (T}, 4;) and (Ty, A,) minimizing (2.1) with storage fee
functions equal to F; and F, respectively, along with (see [4,Theorem 4.7]) vectors v,
¥, € RN such that G(yr)) = Ay, G(¥y) = A,.
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10 M. Bansil and J. Kitagawa

0, xXeA, L
Also given any set A, we write §(x | A) = for the indicator

+00, x €A,
function of the set A, and for any vector w € RV with nonnegative entries, we denote
Fyi=N 8¢ 10, wi) =8( | [T, [0, w).

2.1 The exchange digraph

We now define a weighted directed graph (digraph), D, as follows. The vertex set is
Vi:---, Yy When i # j, there is a directed edge from y; to y; if p(Lag;(y) NLag;(y,)) > 0,
and in this case that edge is assigned weight u(Lag;(y;) N Lag;j(y,)). We denote the
weight of an edge e by w(e).

Essentially this digraph keeps track of how much mass is shifted from one
Laguerre cell to a different one under a change of the storage fee function. Indeed note
that AL, = Al — deg™(y;) + deg™ (y;) where

deg®(y;) : = > w(e),
{ele is directed out from y;}
deg () : = > wie),

{ele is directed into y;}

denote outdegree and indegree respectively.

First we use an argument reminiscent of the c-cyclical monotonicity of optimal
transport plans to prove the following lemma. We comment that the following lemma
does not involve the storage fees F; and F,, and can be proved entirely in the context of

classical semi-discrete optimal transport theory.
Lemma 2.1. D is acyclic

Proof. Suppose for sake of contradiction there exists a cycle y; , ey, y;,, .. ¥y, €, Yir,
where i;,; = i; and ¢; is a directed edge from vi; toy; - Let mg = min, _;; w(e;) > 0,
then for each 1 < j < [ there exists a measurable set A; C Lagij(wl) N Lagij+1(1p2) with
w(Aj) = my, and we define 4;,, = A;.

Now define the sets {C;}Y_, by

&, = (Lag;, (V) UA; )\A; k=i, 1<j<], 2.2)

Lagy (¥,), kg {iy,... qh
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Quantitative stability for OT 11

and the map T : X — Y defined by T(x) = z;cvzl yk]lék(x). Since Lag;(y;) and Lag;(y;)
are disjoint up to sets of u measure zero for i # j, we must have that the sets A; are
mutually disjoint up to 4 measure zero sets, thus T#,u = Zl,g:l /L(&k)(SYk = Zl,gzl )JZQSYk but
T + T, on a set of positive 4 measure. It is clear that T, is an optimal map minimizing
the classical optimal transport problem 1.1 with target measure v, , which is uniquely

determined w-a.e. by [19,Theorem 10.28]. Thus we have

N N
> / e, y)du(x) > Y / c(x, yi)du(x).
k=17 Ck k=1"T

agy (¥2)

Hence,

N N
0<> / o,y — > / o(x, ) dp ()
k=1"Ck k=171

agy (¥2)
N N
=> / cx, ypdux) — > / c(x, y)du(x)
k=1" Lagk(¥2) k=1 Y Lagk(¥2)
-1
+Z( / cx, v, dp(x) - / c(x,yijﬂ)du(x))
j=1 \74j+1 A4
-1
=Z( | eeayy, dueo - | c(x,yim)du(x)). (2.3)
j=1 \74j+1 Aj

On the other hand, defining the sets {ﬁk}llgzl by

Lagk(lﬂl), k¢{ll,,ll},

and taking the map T(x) = Zl,gzl 71, (x), we can make an analogous calculation, which

yields the opposite inequality as (2.3), giving a contradiction. |

For the next three Lemmas 2.2, 2.3, and 2.5, we shall be concerned about the case

where

N
Fi(0) = D 80 | [a),b'D),

i=1

N
Fy(0) =801 [ [a!, b + 1) + D" s(A! | [a', b)), (2.5)
i=2
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12 M. Bansil and J. Kitagawa

where a! < b’ and Zai <1< Zbi. Recall that (T}, A;), (T, A,) are the minimizers in
(2.1) associated with F;, F, respectively; in particular we must have al < )Ji < bl for all
ief{l,...,N},al <1} <b'+n,anda’ <2, <biforall2 <i<N.

Lemma 2.2. Suppose we take F; and F, as in (2.5) and there exists some vertex y,, of

D with an incoming edge. Then A" = b™.

Proof. Leti; = m. Suppose the incoming edge, which we denote e, goes from y;, to
¥;,- We claim that there is a path P = (y; ,e;,y;,,...,¥;_1,€1.¥;), Where e; is an edge
from Vi, to Vi such that the last vertex y; has no incoming edges.

We construct such a path recursively. Let P; = (y; , €;,Y;,) and suppose that
P. = (v;.€1.Yi, ---.Yi €Y, ) has been constructed. If y; has no incoming edges
then P, is the desired path and we are done. If not y; =~ has an incoming edge,
which we denote e,,. Let y; , be the originating vertex of e, , and let P, =
Vi, €1/ Yigr- -1 Viporr €11 ¥ )

If the above process does not terminate then since we only have finitely many
vertices we must eventually repeat a vertex, i.e., there is r > j so that i; = i,. However
this means that P, contains a cycle, which contradicts Lemma 2.1 above.

Now let my = min(d™ —AT*, w(e,), ..., w(e,_;)). Suppose for sake of contradiction
that A" < b™, then m > 0. Note that

M =1 — deg*(y;) + deg~(y;) < b — w(e,_y) +0 < bl — my. (2.6)

Now just as in the proof of Lemma 2.1 forj € {2,...,1} there exist sets A; so that
A; C I:agij(tpl) N Lagijil(wz), and w(A;) = my. We define A; = A;,; = . Now define the
sets {CyJh_, by

6, — | B VA \ Ay, =G el D), o

Lagy (¥,), k¢liy,... 0

and the map T : X — Y defined by T(x) = legzlyk]lék(x). Just as in the proof of
Lemma 2.2 above, we have T#M = 2113:1 u(f,’k)(SYk and T # T, on a set of positive pu
measure (however, note that we do not have 1£(Cy) = A% for k = i, i)). Since (T, 2,) is the

unique minimizer of (2.1) with storage fee function F, by [4,Corollary 4.5], we must have

N N
> /C (%, y)dpn(x) + Fo((u(Cy), ..., (Cy)) > D / (%, y)du(x) + Fp(hy).
k=1""k k=1

Lagy (¥2)
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Quantitative stability for OT 13
However now note that
)\,Lzl — mo, k = il ’

M(&k) = )\.g‘i‘mo, kZil,

k
A3, else.

By (2.6), we have that ,u(&il) = A;’ +my < bi. Also for k # 1; we have ,u(a’k) < /\]2‘ < bk,
hence Fz((u(a’l), ceey u(éN))) = 0. Thus the above becomes

agy(¥2)

N N
> / c(x, ) dpx) > 3 / c(x, yi)du(x), (2.8)
k=1"Ck k=1"L

and by a calculation identical to the one leading to (2.3), we have

1
0< Z( | et idneo - [ c(x,yiJ.)du(x)).
j=1 Aj Ajr1

On the other hand, define the sets {bk}fgzl by

bkz (Laglj(wl)UA]+l)\A! k:l],_]e{l,,l}, (2.9)

Lagk(wl)l k ¢{ll,,ll}

Note that

Mtmg, k=i
Dy = {31 —my, k=i

A’f, else.

By definition of my we have my < b™ —A" = b1 —)Jf , hence we have M(bil) < bll, Thus as
above, FZ((;L(EI), el ,u(f)N))) = 0 and a similar argument yields the opposite inequality

of (2.8) to obtain a contradiction. [ |

Lemma 2.3. Suppose we take F; and F, as in (2.5). Then fori # 1, ké < )Ji. Furthermore,
if y; has an incoming edge it must have an outgoing edge. Finally, y; has no outgoing

edges.
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14 M. Bansil and J. Kitagawa

Proof. Recall that ), = A} — deg™(y;) + deg™ ().

Suppose i # 1. If y; has no incoming edges then deg™ (y;) = 0 so ké = )Ji —
deg*(yy < kﬁ. If y; has at least one incoming edge then A} = b! by Lemma 2.2 above.
Since i # 1 and F,(A,) < +00, we must have )\"2 < bl In either case )Lé < )‘i1'

Now if y; has an incoming edge then
deg™(y;) = A} — A, +deg ™ (y;) > deg™(y;) > 0,

so there must be an outgoing edge.

Finally suppose for sake of contradiction that y; has an outgoing edge. We
recursively construct a path similar to that in the proof of Lemma 2.2. Seti; =1, P, =
(vi,.€1,7;,) and suppose that P, = (y; ,e1,¥;,,---. ¥y, €,¥;,,) has been constructed where
e; is an edge directed from vi; to yi;, - If Yoo =Y then we have constructed a cycle,
which contradicts Lemma 2.1. If Vi, #Yi, =7Y1 then Vi has an outgoing edge, which
we denote e; ;. Set y; , to be the tail of ;| and let P, = (y;. e, ¥, .- Vi €111, Vi, ,)-
Since we only have finitely many vertices the above process must repeat a vertex, which
will produce a cycle. This contradicts Lemma 2.1 hence y; cannot have any outgoing

edges. |

Remark 2.4. Recall that in an directed acyclic graph the vertices can be given an
ordering, called a topological ordering, so that every edge goes from a vertex with
smaller index to a vertex with larger index. See [3,Proposition 2.1.3] and the associated

footnote for more details.

Lemma 2.5. Suppose again we take F; and F, as in (2.5). Then every edge has outdegree
at most 7, in particular every vertex has weight at most ». In this case we have ||A; —
olly < 2nand XL A, (Lag;(y), Lag;(¥,)) < 2Nn.

Proof. Lety;,...,y;, be atopological ordering. By Lemma 2.3 we may assume iy = 1.

Consider the function

fo =2 deg*(y;) — deg™(v;) = > 4] — 33

j=1 j=1

fork <N —1.
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Quantitative stability for OT 15

By Lemma 2.3 f is increasing. Let E; be the collection of edges directed from one

of the vertices Yiyr--1 Vi and into one of the vertices Vigoyre Vi Then we have
fy = we);
ecEy

as we have imposed a topological ordering, there is no edge directed from one of the
vertices y;, ,...,¥;, to one of the vertices y; ,...,y;. In particular f(k) > deg*(y;,),
thus f(N —1) > deg+(yik) for all Kk < N — 1. Note that Ej,_, is the collection of all edges

directed to y; = y,. Hence

degt(y;,) <fW—1)= > w(e)=deg (y).

ecEyn_1

If y, has no incoming edges then this gives us deg+(yik) = 0. Otherwise by Lemma 2.2
deg™ (y;) = A3 — A1 +degt(yy) = A3 — b,

where deg® (y;) = 0 by Lemma 2.3. Since F,(k,) < +oo, we must have A3 < b! + 7 hence
each vertex has outdegree at most 7.

Next by Lemma 2.3, A, < A} fori # 1, since Ay, A, € A this implies 1} > A1. Hence

N
Ay = Aally = Z klz _)‘ll

i=1

N
=Ap— AL+ D (A —2h)
=2

=M -M+ra-rh-a-i1)
=2(Ay — A7) = 2(deg” (y;) — degt(yy))

<2n,

where we have used >V, 2l =3V 3l =1.

Next we have
n(Lag;(y) \ Lag;(¥,)) = u(Lag;(y;) N (Lag;(¥,))°)

N N
= pu(Lag;(yy) N | J Lagj(y,)) = Z u(Lag;(¥) N Lag;(¥,)) = deg™ (y;) <1
J#i J#
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16 M. Bansil and J. Kitagawa

and so Z?’:l w(Lag;(¥;) \ Lag;(1/,)) < Nn. A similar argument gives

N N N
> n(Lag;(¥,) \ Lag;(¥,)) = > deg™(y;) = > deg™(y;) < N,

i=1 i=1 i=1
where the final equality comes from

N N N
> deg (y) = > _(degh(yy) + 15 — D) = > deg’(yy),

i=1 i=1 i=1
finishing the proof. |

By repeated applications of the Lemma above, we can analyze the digraph D

when F; and F, are characteristic functions of two different hyperrectangles.

Theorem 2.6. Suppose we have

N
Fy() = > 8( | [a},bi)),

i=1

N
Fy(0) = D> 8(\' | lah, bh)).

i=1

Then 1Ay —Aqlly < 2(la; —asqll; + ||b1 _b2||1) and zy:l AM(Lagi(‘/f1)rLagi(W2)) <2N(lla; —
a,|l; + ||b1 - b2||1)-

Proof. The estimate can be seen by applying Lemma 2.5 and perturbing the initial
rectangle defined by a, and b,, one coordinate at a time. If a; = a, then this follows
from induction on the number of equal terms in b,, b,, repeatedly applying Lemma 2.5,
and the triangle inequality. The case a; # a, is handled with a symmetric argument and

the triangle inequality. |

Remark 2.7. The first estimate from Theorem 2.6 above is sharp, and the second is
almost sharp (up to replacing the constant 2N by 2N—2). Let X = [0, N] and ¢ be Lebesgue

measure restricted to X and normalized to unit mass, and take the cost function
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Quantitative stability for OT 17

c(x,y) = —xy.Fixany N > 1 and let y; = i—% e Rforie{l,...,N}. We take the functions
N . 1 17V
ro= 301 oa]) o 3])
N-1 N-1
: 1 2 1 2
Fo()) : = )\,l Pt )\.N r = A r T [ ’
=3 (1o ) +s (1[0 ) 5('[%] X[OND

then note that in the notation of Theorem 2.6,

a, —a b, —b = —.
lla, 2l + 1167 — bally N
The optimal transport problem with storage fee F; is actually a classical optimal
transport problem, and it is not difficult to see that if the pair (Y, 1,) yields a
minimizer, then the associated Laguerre cells are given by Lag;(y;) = [i — 1,i] for
ie{l,...,N} with A, = (%1\%) On the other hand, we claim that for the problem

with storage fee F,, an optimal pair (y,, A,) is given by

1 1 2
amo=(0=,...,= =),
N N'N

yi 0, i=1,
2= , .
D02 jef2,...,N),
{0}, i=1,
Lag,(yp) :=1[i—-2,i—1], i€2,...,N—1

IN-2,N], i=N.

Indeed, note we may replace F, by F, + (- | A) without changing the optimizer. Then for
any A € ([0, #IN-1 x [0, 2]) N A, we find

N-1

1y . 2
Fy(hg) + (A= hp i) = D ()\l—ﬁ) wé‘*(}‘N—ﬁ) ¥y <0=F()

i=2

while if » € RY \ (([0, Z1¥"! x [0, 2]) N A) we have F,(1) = 400, hence ¥, € 3F,(%,). By

[4,Theorem 4.7], this shows the optimality of (y,, A,). Now we can calculate,

2
Ay —Aqlly = I_V =2(lla; — ayll; + ||b1 _b2||1)
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18 M. Bansil and J. Kitagawa

while
il 1 2 1
ZA,L(Lagi(I/fl),Lagi(%)) =5 N(N -2)+ N (2N = 2)(la; — azlly + 16y = bylly)-
i=1

A simple product construction can be used to easily adapt this example to R” for n > 1.

We now show a version of Theorem 1.3, which applies to the more general setting

of optimal transport with storage fees, and our main theorem will follow immediately.

Corollary 2.8. Suppose that F;, F, : RY — R U {+o0} are two proper convex functions
equal to +o0o outside of A. Then

N
z A, (Lag;(yy), Lag;(¥3)) < 4N |12} — Aall;.

i=1

Proof. Define

N
F () =800 la},bi)),

i=1

N
Fy(0) =D 8(\' | lab, bh)),

i=1

where al = bl = Al and @} = b}, = A,. We see that if (T}, ,), (T, 1) are minimizers for
(2.1) with storage fee functions Fl and FZ, then up to sets of © measure zero T;l({yi}) =
Lag;(y;) and TEI({yi}) = Lag;(y,) for each i € {1,...,N}. Hence the result follows from
applying Theorem 2.6 to 13'1,13'2. ]

Proof of Theorem 1.3. By taking F;, F, to be the indicator functions for two points in

A, the above corollary immediately yields the theorem. |

3 Injectivity of G

In this section we prove non-quantitative invertibility of G as preparation for the
quantitative invertibility result Theorem 1.10. Starting in this section, in addition to
all previous assumptions, we add that © = pdx where p € C%°X) and u satisfies a

(1,1)-PW inequality, and also assume X is a compact set with Lipschitz boundary,
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Quantitative stability for OT 19

such that spty C X. We mention that the results of this section do not require the

assumption (QC).

Remark 3.1. We remark here that the ultimate goal, Proposition 3.5 follows if the set
{p > 0} is connected, by [11,Proposition 4.1]. On the other hand, if u satisfies a (1,1)-PW
inequality, it is easy to see that sptp is connected (if sptp is disconnected, taking f in
Definition 1.7 equal to two different constants on two connected components will cause
the inequality to fail). However, we were unable to prove the desired injectivity under
this weaker connectedness, while it is also not clear if a (1,1)-PW inequality implies
the stronger connectedness of {p > 0}. Thus we have opted to prove the claims in this

section under the assumption of a (1, 1)-PW inequality.

Definition 3.2. If ¢ : X — R U {400} (not identically +00), its pseudo c-transform is a
vector ¢° € RV, defined by
c"')i .

= sup (—c(x,y;) — ¢(x)).
xesptu

(¢
Alsolet W, = {y € R" : ¢ = y°¢},

Lemma 3.3. Suppose v, ¥, € RY are such that 1 := G(y;) = G(¥,), and suppose that
Al > 0 for some index i. If x € int(X) N Lag;(y;) and p(x) > 0 then x € Lag;(y,).

Proof. Suppose by contradiction, for such an x we have x ¢ Lag;(¥,). As the zero set
of a continuous function Lag;(y,) is closed, hence there is a neighborhood of x in X, say
U, so that U N Lag;(y,) = ¥. Next since p(x) > 0, by continuity of p there is an open
neighborhood of x, say V € U so that p > 0Oon V.

Note that Lag;(y,) = Nj_, H;;(¥/,), where

Hy(y) = {x e X | —c(x,y;) — ¥' < —c(x,y) — ¥/}.

Since u(Lag;(¥,)) = A! > 0 and p is continuous, each Hj;(¥;) has nonempty interior,
hence by (Twist) combined with the implicit function theorem and the Lipschitzness
of dX, we can see that each set H;j(y,) has Lipschitz boundary. Since Lag;(¥;) has
nonempty interior, we see that it also has Lipschitz boundary.

In particular, this means ¥V Nint(Lag;(y;)) # 9. Since p > 0 on ¥V Nint(Lag;(y;)),
which is open and non-empty, we have u(VNint(Lag;(v/,))) > 0 while VNint(Lag;(y;)) C
Lag;(y;) \ Lag;(y,). However this contradicts [19,Remark 10.29], as we must have
Tw1 = Tw2 Hu-a.e.. |
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20 M. Bansil and J. Kitagawa

Lemma 3.4. Suppose u = pdx, where p satisfies a (1,1)-PW inequality, and ¢, ¢, €
V.. Then ¢, — ¢, € span(l) if and only if G(y;) = G(¥,).

Proof. It is obvious from Definition 1.1 that y/; — ¥, € span(l) implies G(y;) = G(¥,),
so we only show the opposite implication.

Suppose A = G(¥;) = G(¥,) and let ¢; = 1//f*, @y = wg*. Also, write
T:=T, =T, (up to u-a.e.), which is the Monge solution to problem (1.1) pushing
u forward to the discrete measure v, . Finally, without loss of generality we may assume
that A! > 0 and (by subtracting a multiple of 1) y{ = ¥], and define S :={i € {1,...,N} |
¢l =yl and A" > 0}.

If we define the set

A= Lag;(yy),

ieS
then u(A) > A! > 0, and since it is a finite union of Laguerre cells, arguing as in the proof
of Lemma 3.3 we see A has Lipschitz boundary. If ©(A) < 1, since u satisfies a (1,1)-
PW inequality, by [9,Lemma 5.3] we can conclude that faAmm(X) pdH" 1(x) > 0. Then by
[9,(56.3)], we see there existi € S, j ¢ S and a point x € Lag;(y;) N Lag;(y) N9AN int(X),
where p(x) > 0. Then x € Lag;(y) NLag;(y,) C Lag;(y) so by Lemma 3.3 above we must

also have x € Lag;(y,). Then we can calculate

P10+ ¥l = —cx,y) = 0,0 + VL = ¢;(x) = 9, (%). (3.1)

Arguing as in the proof of Lemma 3.3 above, since x € Lag;(y/;) Nint(X) and p(x) > 0,
we see that M/ = n(Lag;(yy)) > 0. Since x € Lag;(y/;) N Lag;(y) C Lag;j(y;), we can apply

Lemma 3.3 again to see x € Lag;(y,). Hence

01X + U] = —cx,y) = 0,0 + v, = v =),

but this would imply j € S, a contradiction.

Now since u(A) = 1, the set AN p~1((0,o0)) must be dense in p~1((0, o0)). Then
we can make the same calculation leading to (3.1) above to find that ¢; = ¢, on this
dense set. Since ¢; and ¢, are c*-transforms of vectors they are continuous on R", thus
they must actually be equal everywhere on p~!((0, 00)), hence on its closure spty.

With the above, we then see that

Yy 290? =</>§' =Yy
as desired.

We are finally ready to prove the desired invertibility result.
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Quantitative stability for OT 21

Proposition 3.5. Suppose u = pdx satisfies a (1, 1)-PW inequality. Then G : K°/1 — A

is a homeomorphism.

Proof. Firstletf(y) = I/fc*c+ —1. Note that directly from Definition 3.2, for an arbitrary

x € X we have 1//1C* (x) — wzc* (X)‘ < ¥y — ¥l A similar calculation then yields

Y (X)) — ¢S )| < 1Yy — Yl o

* T * AT
Y7 =3 © g = sup
xesptu
hence by the triangle inequality, f is continuous, in particular ¥, = f~1({0}) is closed.
Now for any ¢ € KU it is clear there for each index i must exist a point x; €
sptu N Lag;(y), while just as in the proof of [4,Proposition 4.1] we see that ¥ = ¢ C.

Then for any x € X, we would have
—c(x;, 7)) — ¥ (x) =¥ = (W) > —c(x,y) — ¥ (%),
hence for such a ¥ we have
W — Ipc*c — 1//c*c+

in particular, K° C V¥, thus KO ¢ W . Then by Lemma 3.4, G(y;) = G(y,) if and only if
¥, — ¥, € span(l) for ¢, ¥, € K9, and we obtain that the induced map (which we also
call G) G : K9/1 — A is well-defined and injective.

Next note that K9/1 is closed and bounded and hence compact. Hence, A =
m C G(@/l) = G(@/l). Finally, since G is a continuous bijection with compact

domain it follows by [7,Theorem 2.6.7] that G is a homeomorphism. |

4 Quantitative Invertibility of G

In this section we will add the assumption that G is differentiable everywhere with
continuous derivatives. This assumption is satisfied under the condition (QC), but we
note that we do not need the explicit geometric consequences of (QC) here, only the

differentiability of G for the results of this section.

4.1 Alternative spectral estimates on DG

We now obtain an estimate away from zero on the first nonzero eigenvalue of the
mapping DG over the set K¢ of a different nature than that of [9,Theorem 5.1]. The
estimate there is of order 3 under the assumption of a (1,1)-PW inequality, however

1 .
we will show an estimate, which is of order N~*¢¢ under the assumption of a (g, 1)-PW
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22 M. Bansil and J. Kitagawa

inequality. As can be seen, in the case of ¢ = 1 we have traded two factors of € for factors
of N=2, this modification allows us to obtain quantitative estimates on the inverse of G,
but as the parameter ¢ — 0. To obtain a finite bound, we will be forced to use this new
spectral estimate, along with taking g > 1 in the Poincaré-Wirtinger inequality.

We start by showing the alternate estimate coming from assuming a (g, 1)-PW
inequality on u, versus a (1, 1)-PW inequality. We first recall some useful notation and

definitions from [9].

Definition 4.1. We will write int(X) to denote the interior of the set X. Given an
absolutely continuous measure u© = pdx and a set A C X with Lipschitz boundary,

we will write

|8A|,,:=/ pdH 1 (x), 1Al = 1(A).
9ANINnt(X)

Lemma 4.2. Suppose that u = pdx satisfies a (g, 1)-PW inequality where g > 1. Then

inf o4, >
Acxmin(A] ,, X\ A] )12 = 5L,

pw

’

where the infimum is over A C int(X) whose boundary is Lipschitz with finite " 1-

measure, and min(|A| ,, |X \ A ,) > 0.

Proof. Let A C int(X) be a Lipschitz domain as in the statement above, recall that we
must have g < .27 < 2. Since we have a (g, 1)-PW inequality instead of a (1, 1) inequality,

by following the same method as [9,Lemma 5.3] we obtain the inequality

Cou 1041, > 1, — /X 1,1l

_ (A(1 —|A|p’qd,u+/X\A‘|A|p)qdu);

1
= (141, 1X\Alf +14181X 0\ 4],

q i q-1 q-1,%
=Al, IX\Al,(IX\Alp, ~ +|Al, )4
1

1 1
> Al IX\ Al

1
> 2 amin(A| ,, X\ Al )4,

hence taking an infimum gives the claim. |
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Quantitative stability for OT 23

Recall DG is negative semidefinite on K¢ by [9,Theorem 5.1]. We work toward the

following estimate.

Theorem 4.3. Fix ¢ > 0 and assume u = pdx satisfies a (g, 1)-PW inequality where

3-1 1/
2% a q
g > 1, then the second eigenvalue of DG on K€ is bounded above by —Te < 0.
CyN*Cyy,
By [9,(B1)], it can be seen that for almost every y we have
; ; X
D,G'(y) = D;G'(y) = / o) dH" ! (x). (4.1)
Lag;(y)nLag;(y) | VxC(X, ¥y) — ViC(X, 7))l

We now fix € > 0 and some ¥ € K¢ such that (4.1) holds, and let W be the (undirected)
weighted graph constructed in [9,Section 5.3]: the vertices of W consist of the collection

Y, and for i # j connect y; and y; by an edge of weight w;, defined by

l] !

wyj i= DG (V).

Proposition 4.4. If u = pdx satisfies a (g, 1)-PW inequality where q > 1 and ¢ is such
-3

Cv NZC

weighted graph con81st1ng of all vertices of W and only those edges of weight greater

that (4.1) holds, then W is connected by edges of weight at least €!/4, that is: the

than or equal to €!/4 is connected.

NZC
Proof. Suppose by contradiction that the proposition is false. This implies that
21-7
CyNZChy
graph. In other words, we can write W = W; U W, where W;, W, # ¢ and are disjoint,

removing all edges with weight strictly less than €!/4 yields a disconnected

such that every edge connecting a vertex in W, to a vertex in W, has weight strictly less

1
than —22—e!/9. Letting A := Uy, iy, Lag; (1) we see that
pw i
2-1 21 9
27 4 27 a N 1
|0A| , < 2C E Wi < —El/q|W HW | S—El/q—= vy
P \% ij N2C 1 2 N2C 2 1
{@DyieWs, yjeWs} pw pw 2qcpw

On the other hand since both W, and W, are nonempty we have |A| o X\ Al , > €. Hence

194] , el/a 1
min(|4] ,, X \ Al ,)1/4 zéc g 2qc

which contradicts Lemma 4.2. [ |
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24 M. Bansil and J. Kitagawa

Recall that given a weighted graph W, the weighted graph Laplacian is the N x N

matrix with entries

—W::

o i#

If W is the graph we have defined above and L its weighted graph Laplacian, then by
[9,Theorem 1.3] we can see that L = —DG(v/).

Proof of Theorem 4.3. First suppose y satisfies (4.1) and let W be the graph formed

1-1 -
by dividing all of the edge weights in W by gv qucl/q. If L and L are the weighted graph
W
~ ~ 2
Laplacians of the graphs W and W respectively, clearly L = ClleﬁL.
27 4¢el/q

Now construct the graph W from W by the following procedure: if an edge
connecting y; and y; has weight w;; < 1, we remove the edge, and if w;; > 1, we set
the weight of the edge equal to 1. By Proposition 4.4, we see that W is a connected
graph whose edge weights are all 1 over N vertices, and in particular it has diameter
diam(ﬁ/) = sup Zij w;; <N, here the supremum is taken over all pairs of vertices in w
and collections of edges forming a path between those two vertices, and the sum runs
over all edges in such a collection. Let us write L for the graph Laplacian of W and use Ag
to denote the second eigenvalue of a positive semidefinite matrix. Then, using [6,Lemma
3.2] to obtain the first inequality below and then [13,Theorem 4.2] to obtain the second

to final inequality, we find that

c 1=gcla
Ao(=D =AL) = ——A, (L
2( ¥)) 2(L) CVNZpr 2(L)
ol"aela . 2lTacla 4 23 gel/a
Z oo A(l) = 5 C = > 3 .
CyN*Cpyy CyN*Cpy, Ndiam(W) — CyN*Cpy,
Since (4.1) holds for almost every v, continuity of DG finishes the proof. |

4.2 Quantitative invertibility of G

Proof of Theorem 1.10. If min; G'(y;) = min; G'(y,) = O there is nothing to prove, so
assume min; Gi(tpl) > 0.

By Proposition 3.5, the restriction of G to Ko N {¢ | (Y — ¥, 1) = 0} is invertible,
let H denote this inverse; by Theorem 4.3 since g > 1 we see that

CyN4C
IDHW|| < —— 2% _
4(min; At)1/4
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We calculate, using Minkowski's integral inequality to obtain the first inequality,

N 1 ) 2\ 2
191 — Vol = (Z ( /0 (VHI(tG() + (1 — GW)), Gy — G<wz>>dt) )

i=1
1 N ) 2
< /0 (Z <VH‘<tG(w1)+<1_t)c<w2)),c<w1>—c<w2)>2) dt
i=1

1
= 1G(WYy) — G’(lﬁz)ll/0 IDH(tG(ry) + (1 — ©)G(¥,)) [ dt

. c CyN*Cpyy gt

< —

< (“\01) (¢2)||/ 4(1‘1’111’1 (tGl(lh) +(1— t)Gl(wz)))l/q
CyN*Cpyy

= IIG(%) - G(lﬁz)”/ 4(tm1n Gz(wl))l/qd

_ N*CyCowq |G(¥y) — Gy
~ 4(g—1) min; Gi(y,)1/4

’

here it is crucial that g > 1 to obtain the final line. If min; Gi(wl) = 0 we may switch the
roles of ¢, and v,, which yields the claimed bound. |

5 Stability in Hausdorff distance

We will now work towards proving Corollary 1.11, our quantitative stability of Laguerre
cells measured in the Hausdorff distance. In Theorem 5.6 below, we obtain quantitative
control of the Hausdorff distance between different Laguerre cells in terms of the
dual vectors. However, we would like to obtain the bound in terms of data that is
readily available, i.e., the masses of the respective target measures, and our quantitative
invertibility result Theorem 1.10 will allow us to write the bound in these terms.
Starting in this section, we also assume X is c-convex with respect to Y (so in particular,
X has Lipschitz boundary) and c satisfies (QC). In contrast to the previous section,
we will need the full geometric power of (QC). We also write #* for the k-dimensional

Hausdorff measure.

Remark 5.1. The goal of this section will be Theorem 5.6, which effectively shows
the map (RY, [|-]|.) > ¥ — Lag;(¥) e ({convex, compact sets}, d4 ) is locally %-Hélder.
This estimate is likely not sharp in the Holder exponent, and for the canonical case

c(x,y) = —(x,y), the map can be shown to be locally Lipschitz. We present a quick proof
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26 M. Bansil and J. Kitagawa

here, which depends on the explicit form of the Laguerre cells for this special choice of
the cost function, based on an idea suggested by the anonymous referee. As the proof is
specific to the inner product cost, it is not clear how to obtain this improvement in the
more general case of cost satisfying (QC).

Indeed, let R > O sufficiently large so that sptu C Bgr(0) C R" and c(x,y) =
—(x,y) and assume v/, ¥, € RY are such that Lag;(y;) N Lag;(y,) has nonempty interior
for some i. Recall that for any set S, its support function is defined for any v € R" by

hg(v) := sup(v, x).
XeS

It is known that (see [16,Section 1.7]) for two convex sets S; and S,, hg s, = hg, + hg,

(where S; + S, is the Minkowski sum), and hg, g, is the closure of the function

v > inflhg (vy) + hg,(vy) | vy + v, =V},

while,

dy(S),S,) = sup |hg, — hg,|. (5.1)
Sn—l
Now let x, be in the interior of Lag;(y;) N Lag;(y/,), then we can write

Lag;(¥,) + (—Xo} = [t vi — ¥j) < ¥]) N Br(xy),
J#i

where each 1ij = 1//1 Wl (X0, ¥;—Y¥;) >0 with a uniform lower bound § > 0. Moreover,
this bound can be estimated using the maximal radius of a ball centered at x; remaining
in Lag;(y;) NLag;(¥,); by using Lemma 5.3 and the calculation leading to (5.5), one finds
8 stays uniformly away from zero if |[y; — |l is sufficiently small. A similar statement

holds for Lag;(,) + {—xX,}. We can then calculate, for any v € S*7 !,

hLagi<w1)+{on}(V) = inf Z tJ-xZ{ +|ulR — (u,xy) | t= O,ueR”u+ Z tj(yl- - yj) =v
J#i J#i

By taking all = 0 and u = v, we see hLagi(wl)—Xo(V) < R — (v,xy) < 2R, while since

X, € Br(0), for any choices of t > 0,

hLagi(%)Jr{on}(V) >4 Z tj.
J#
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This shows that in the infimum in the expression for hp,g (,)1(—x,)(V), the t; can be
taken to satisfy the further restriction Zj;éi t; < %, and the same statement holds for
P ag;(y2)+{—xo} (V)- Now suppose {s;} and u, achieve the infimum in hyag. ()1 (—xo) (V), then

we obtain

Prag, ) (V) = Pragya) (V) = Prag, ) @)+ (-x0) (V) = PLag; o) +{—x0) (V)

SZsjﬂ+|uo|R (ug, Xo) — stjz+|u0|R (ug, Xo)

JA J#L
. . . ; 4R
=2 S0 — ¥ — v +9p) < —- IV — Yol
J#L

A symmetric calculation reversing the roles of v; and v, and then taking a supremum

over v € S"~! combined with (5.1) shows the claimed local Lipschitz bound.

2il2

T(+1)

Definition 5.2. We denote w; = for the volume of the unit ball in R/.

We start with a simple lemma in convex geometry.

Lemma 5.3. If A is a bounded convex set with £(4) > 0 then A contains a ball of
radius R% £(A) where

2n—1
Ry = .
4" o, (n 4+ 2)tdiam(4)"!

Proof. Let S be a simplex in A with volume at least —7£(A) as given by the main

diam(A4)
2

(n+2)"
theorem of [10]. Since S is convex and is contained in a ball of radius

. n—1
HP1(5S) < nw, (%) (see [16,p. 211]). Then it is standard that S contains a ball

of radius r, where

, we have

_ nvol(S) - 2n-1L(A)
T H10S) T w,(n + 2)" diam(A)" 1

see for example the last formula in the proof of [18,Corollary 3] and the discussion

following it. |

In the next proposition, we estimate the term sup, .z d(x, A) from the definition

of Hausdorff distance by the Lebesgue measure of the difference of the two sets, when
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Fig. 1.

they are convex. We opt to take a different approach from the proof of Theorem 1.3:
ultimately we will control the Lebesgue measure of the symmetric difference of Laguerre
cells directly by the dual variables v, then attempt to quantitatively invert the map G,

allowing us to invoke the first estimate in Theorem 1.3.

Proposition 5.4. Let A C B be bounded convex sets. Then

n—1
Wy, (SUPyp d(x, A)" B 2R% L(A)?
L(B\A) > 20y (arccos(l —diam(B)2 ) .

Proof. If £L(A) = 0 the claim is clear, thus assume £(A) > 0. Let D, = 2Ri£(A) be the
diameter of the ball contained in A from Lemma 5.3.

Let x € B\ A be arbitrary. We shall first consider the case where n = 2.

First P, Q are points chosen on the boundary of the disk contained in A so that
R, = R, where R, and R, are the lengths of the segments xP and xQ (such P, Q exist by
a continuity argument, see Figure 1). Set r := d(x,A). Next let S be the shaded circular
sector, i.e., S := B,.(x) N A(P, Q, x), where A(P, Q, x) is the triangle with vertices P, Q, x.
Let 0 be the measure of the angle /PxQ and set R := R; = R,.

1202 Ae\ | uo 1s8nb Agq 88€9G609/SSERRUIUIWI/SE0 L 0 | /I0P/3|91e-80uBAPE/UIWI/WOo9 dno olwapede//:sdiy Wol) papeojumod



Quantitative stability for OT 29

Note that S € B\ A. Then by the law of cosines

2R? — 2R? cos§ = R} + R — 2R, R, cos = D}

Dj D}
— cosf=1——"5<1— ——5—.
2R2 ~ 2 diam(B)2

Thus we estimate the area of S as

0 r? 2 1 2
nrt— > — arccos(1l — ,—A) = —d(X,A)2 arccos(l — ,—A).
2r — 2 2 diam(B)?2 2 2 diam(B)?2

Since x € B was arbitrary we obtain
1 2
L(B\A) > 3 ilelg d(x,A)? arccos(1 — m)
as desired.

Now in higher dimensions the construction above yields a spherical sector
instead of the circular sector, S. By slicing with planes through x and the center of
the ball and applying the argument used when n = 2 we see that this spherical sector
has angle 6 in all directions. Hence we calculate that the volume of our spherical sector

is estimated as

6 \"! w, 1" Di el
n . > _n 1 A
@nT (2;1) = (2mpn—1 | reeos 2diam(B)2

 wpd(x, A" D% ol
= ————(arccos{1— ———— .
(2m)n-1 2diam(B)?

Hence we have

n Dz n—1
LB\A) > ©nSUPyep d(X, 4) arccos|{1 - ——4
(2m)n-1 2diam(B)2

as desired. |

The following lemma is a simple use of the coarea formula to control the
Lebesgue measure of the difference of Laguerre cells corresponding to different dual
variables v, and ¢, in terms of the difference |y, — ¥l ., similar to the proof of

[9,Proposition 4.8]. For any index i € {1,...,N} and a set E C R", we will use the notation

[E]; := (exp§) ' (E).
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Lemma 5.5. Let y;, ¥, € R™. Then for some universal C, > 0,

L(Lag;(y¥,) \ Lag;(¥3)) < CANIY; — ¥yl -

Proof. Suppose x € Lag;(¥;) \ Lag;(¥,), then there is a k # i so that c(x,y;) + W§ <
cx,y;) + Wé while c(x, y;) + wf <cx,y;) + ¢{°, combining these yields

vk — vl < cx,yy) — cx, ) < vE -yl

Hence writing f; (x) = c(x,y;) — c(x,y3),

Lag;(yy) \ Lag;(¥p) < | Jf " — vi, vF - viD. (5.2)
ki

We proceed to bound E(fk_l([@lféc — wé, w{ — w{‘])) using the coarea formula. We

have

b 1
-1 (a.b] =/ dc =/ / SR wat
Ui~ dla. B fe dab) ®= Jo Jrrqo VR *

b—a
< Hn—l —1 t ,
< (éfﬁ% (fk ( })))

€tw

where we recall €,,, is from Definition 1.5.

Next we bound sup;, 5 HLF (t). Let AF = {x € X | fi.(x) < t}. We claim
thatfk_l({t}) C BAf. Clearlyfk_l({t}) - A’t‘. Suppose by contradiction there is x € fk_l({t})ﬂ
intA’;. Then x has an open neighborhood U so that for every y € U, fi,(y) < t = f;(x). In
particular, f; (x) is a local maximum and so Vf} (x) = 0, contradicting (Twist).

By (QC), [A¥]; is convex and contained in [X];, Hence H" !([94F]) =
H"_I(B[Alf]i) < H"1@IX)) = H"1([9X],) (again see [16,p. 211]). Then we have

HL () < HPLIAR) < R M1 (9X), and combining with above

L (a, b)) < b-a ( sup H" (i ({8)) b - a).

€tw tela,bl

) Corp H'1(3X)
S e —

tw
Since W{‘ — w{ - (Wé‘ — Wé) < 2|[¥r; — Y5l by combining the above with (5.2) we have

2C INH1(8X)

exp

L(Lag;(y,) \ Lag;(¥,)) < > LG "Ww§ — i, vf —yi) <

c V1 — Y2l
k#i tw

as desired. [ ]
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Finally, we apply the bound in Proposition 5.4 to the images of Laguerre cells
under the coordinates induced by the maps (expf)‘1(~), which are convex by (QC).
Combining with Lemma 5.5 above allows us to control the Hausdorff distance between

Laguerre cells by the difference of the dual variables defining the cells.

Theorem 5.6. Suppose that

max(L(Lag;(y;)), L(Lag;(¥5)))

(5.3)
2C,N

Y1 = V2l <

where C, is the constant from Lemma 5.5. Then for some universal constants C; > 0
and C, > 0,

CiN||¥; — ¥alloe .
(arccos(1 — C, max(L(Lag;(¥,)), E(Lagi(l/fz)))z))n_1

dq,(Lag;(¥,), Lag;(y)" <

Proof. By (QC), we see that [Lag;(¥)], is a convex set for any i.
Applying Proposition 5.4 with A = [Lag;(y,)], N [Lag;(y,)]; and B = [Lag;(¥,)],

we obtain

L([Lag;(y]; \ [Lag;(¥»)],)

Coy— n—1
N wn(supxeLagin)(d((ei)lfpi) L(x), A))™" arcoos(1— — 2R% L(A)?
(27 )" diam([Lag;(y)],)?
wn(squeLagi(l/fl)(d((eXplq)il (x), [Lagi(wz)]i)))" ZRiﬁ(A)Z ol
> Py arccos| 1 — — 2
(27) diam([Lag;(y)],)

as [Lag;(¥p)]; \ ([Lag;(¥y)]; N [Lag;(¥y)],) = [Lag;(¥p]; \ [Lag;(¥y)];. Similarly, we
also see

L([Lag;(¥y)]; \ [Lag;(¥1)],)

o n n—1
> @y, (SUPycrag, (y,) (A((€XDF) '), [Lagi(wl)]i))) arccosf 1 — — 2RLLA)
(zn)n—l dlam([Lagi(l/fz)]i)z
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and so

max(L([Lag;(¥,)]; \ [Lag;(¥1)],), L([Lag;(¥)]; \ [Lag;(¥)],)
n—1
. . n 2 2
N a)ndH([Lagl(lﬁl)]ni,_ELagl(lﬂg)]i) min [ [ arccos(1 - 2R%L(A)
(27) j=12 diam ([ Lag;(v;)] )?

i

) . (5.4)

Suppose L(Lag;(y;)) > L(Lag;(y¥)) (the other case can be handled with a
symmetric argument). Then using Lemma 5.5 and the assumption (5.3) on [|¥; — ¥l
for bothj =1 or 2,

2R2 L(A)? 22n-1r(4)2

diam([Lag;(¥)])?  wi(n + 2)?"diam(4)?"~2diam([Lag;(y,)];)?
- zzn_l(ﬁ([Lagi(Wl)]i) — L([Lag;(yI; \ [Lagi(lﬁz)]i))z
- wZ(n + 2)?"diam(X)?"

22n=1 £ ([Lag;(¥))];)?
~ 402 (n + 2)2"diam(X)%"

2271 C3 max(L(Lag;(y)), L(Lag; ()
402 (n + 2)2ndiam(X)?" ’

v

Combining the above estimate with Lemma 5.5 and (5.4),

CN|ly¥1 —¥2llco > max(L([Lag; (¥2)]; \ [Lag;(¥1)];), L(Lag;(¥1)]; \ [Lag;(¥2)])

_ @ndy(Lag;(y1)l;, [Lag; (Y2)l)"
- (zﬂ)n—l

Since the map (epr)‘1(~) is bi-Lipschitz with universal Lipschitz constants,

there is some universal C > 0 such that

Cdy, (Lag;(y,), Lag;(¥,))" < dy([Lag;(¥))],, [Lag;(¥,)].)"
finishing the proof. |

With these preliminary results in hand, are finally ready to prove Corollary 1.11.

Proof of Corollary 1.11. To obtain statement (1), since ||A; — Agll = 0 as k — oo, by

Proposition 3.5 we must have y, — . Combining this with Theorem 5.6 gives (1).

-1
(arccos(l —Cymax(L(Lag;(¥1)), L(Lagi(l/fz)))z)n .
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To show claim (2), assume g > 1. Combining (1.4) and Theorem 1.10 for the choice

aCaCyCpwlollco

of C; = sq- we have

qzv‘*(,‘vcpwn,\1 — Aol

V1 = Valleo = 1Y — Y2l <

4(q — 1) max(min; A}, min; A5)1/4

__max(j, k) _ max(u(lag(¥y)) nlag(y,) _ max(L(Lag;(y)), L(Lag;(Vy))
ZCAN”P”(:O(X) ZCAN”PHCO(X) B 2C\N .

Hence we can apply Theorem 5.6 and Theorem 1.10 to obtain
CiNY, — Vsl
(arccos(1 — C, max(L(Lag;(¥)), ,C(Lagi(l//z)))z))n_1
qCiN°CyCpyling — Ayl
4(q — 1) max(min; A}, min; 25)1/4 (arccos(1 — C, max(L(Lag;(¥,)), E(Lagi(wz)))z))n_1

dq (Lag;(y,), Lag;(y,))" <

IA

qCN°CyChyliny — Ayl

IA

, . , . n—1"'
4(q — 1) max(min; A}, min; 11)1/2 (arccos(l ~ Cyllpligh , max(il, MZ)Z))

where we have used that t — is a decreasing function and E(Lagi(wj)) >

1
arccos(1—t)

-1 4i
6 Quantitative uniform convergence of dual potentials

In this final section, we prove Theorem 1.14, showing that the uniform difference of dual
potentials can be controlled by the Hausdorff distance between Laguerre cells. In this
section, we assume all of the conditions of the previous section, except that u satisfies
a (q,1)-PW inequality. We comment that if ¢ is assumed to satisfy a (g, 1)-PW inequality
with g > 1, we may applying the quantitative invertibility result Theorem 1.10 to obtain
the bound on the uniform difference in terms of the difference of the masses of the
target measures.

We start with a basic lemma.

Lemma 6.1. If A,B C X are bounded convex sets then L(AAB) < ZdH(A,B)H”*I(BX).

Proof. Denote by A, the closed ¢ neighborhood of A. Then using the first displayed
equation on p. 221 in [15,II1.13.3] combined with the fact that if A ¢ B with A convex,
then #"1(3A) < H""1(8B), we obtain

L(A,) < L(A) +eH"1(DA,).

Then noting that B C Ay, (4 5 and vice versa, we obtain the claim. |
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Proposition 6.2. Suppose ¥, ¥, € RY with (Y1 — ¥y, 1) = 0 and Lag;(y,), Lag;(y,) # 9
for eachi e {1,...,N}. Then

NACy CppnH 1 (0X)/ S, dyy (Lag;(¥), Lag; (¥))2

. (6.1)
2(max(min, £(Lag;(¥,)), min; (L(Lag;(¥,)) '~ LX)

¥ — Yol <

Proof. Define i := ﬁ/ﬁ‘ . Note that since X is connected i satisfies an (;%,1)-PW

X
inequality. Next define A; = fi(Lag(y;)) for i = 1, 2. We see that for any i,

3 — 2| = |a(Lag,(¥y) — (Lag; ()]
1
= _ﬁ(X) |£(Lagi(1ﬂ1) \Lagi(wz)) - £(Lagi(¢2) \Lagi(WI)”
1
= 7og [£Tagi (W) \ Lag;(v2))| + [L(Lag;(Vy) \ Lag;(¥))|
X)
L(Lag; ALag: oHm-1(5x
= ( agz(l/fl) agl(l/fz)) < ( )dH(Lagi(I/fl),Lagi(wz)),

LX) - LX)

where we have used Lemma 6.1 to obtain the last inequality above. Hence

2H" 1 (0X) | —
1y = 2ol < === | D" dy(Lag; (), Lag;(¥))2.
L(X) =
Then we can apply Theorem 1.10 using & in place of u to obtain (6.1) as desired. |

Proof of Theorem 1.14. For any ¥, ¥, € RY, by definition of c*-transform we
have ||1//IC* — wg* leoy < ¥ — ¥2lle < ¥y — ¥oll. Thus the theorem follows from

Proposition 6.2 above. |
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