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Abstract—We explore the idea of integrating machine
learning (ML) with high performance computing (HPC)-
driven simulations to address challenges in using simu-
lations to teach computational science and engineering
courses. We demonstrate that a ML surrogate, designed
using artificial neural networks, yields predictions in ex-
cellent agreement with explicit simulation, but at far less
time and computing costs. We develop a web application on
nanoHUB that supports both HPC-driven simulation and
the ML surrogate methods to produce simulation outputs.
This tool is used for both in-classroom instruction and for
solving homework problems associated with two courses
covering topics in the broad areas of computational ma-
terials science, modeling and simulation, and engineering
applications of HPC-enabled simulations. The evaluation
of the tool via in-classroom student feedback and surveys
shows that the ML-enhanced tool provides a dynamic and
responsive simulation environment that enhances student
learning. The improvement in the interactivity with the
simulation framework in terms of real-time engagement
and anytime access enables students to develop intuition for
the physical system behavior through rapid visualization of
variations in output quantities with changes in inputs.

Index Terms—Machine Learning, HPC-driven Simula-
tions, Computational Science, Scientific Computing

I. INTRODUCTION

The use of computational simulations is ubiquitous in
investigating phenomena associated with a wide range of
disciplines including materials science and engineering,
bioengineering, chemistry, chemical engineering, and
physics. Simulations have enabled the understanding of
microscopic mechanisms underlying several biological
and material phenomena such as ion transport across
the cell membrane, flow of polymeric liquids, stabi-
lization of colloidal dispersions, and self-assembly of
nanostructures [1]–[5]. Classical molecular dynamics
(MD) simulations are an important class of simulation
approaches that are generalizable to study a broad range
of material and chemical systems [1]. In the MD method,
Newton’s equations of motion for a system of many
particles are solved at each timestep to evolve the particle
positions, velocities, and forces forward in time. In
several applications where the computational complexity
per time step is proportional to the square of the total

number of particles (system size), MD simulations incur
high computational costs. These high costs are typically
mitigated by employing high performance computing
(HPC) resources and utilizing parallel computing tech-
niques such as OpenMP and MPI. Using HPC-enabled
acceleration techniques can dramatically enhance the
performance of MD simulations in many cases.

The parallelized MD simulations enable dynamics
of systems with a large number of particles over a
wide range of input system parameters. In addition
to enabling state-of-the-art research, these simulations
can be employed as innovative educational tools for
teaching materials covered in computational science and
engineering courses. However, despite the employment
of the optimal parallelization model suited for the size
and complexity of the model system, MD simulations
can take a relatively long time to furnish accurate in-
formation, varying from minutes to days depending on
the model system specifics. Primary factors contributing
to this scenario are the time delays resulting from the
combination of waiting time in a queue on a computing
cluster and the actual runtime for the simulation. Given
this prognosis, the use of MD simulations has been
generally limited to “outside-classroom” activities such
as solving homework problems, where the simulation
time requirements are easier to meet.

To use MD simulations during in-classroom sessions,
the associated computational tool needs to be sufficiently
agile to overcome the following educational challenges:

• Provide simulation-based responses to student ques-
tions in real-time.

• Make the process of explaining underlying scientific
concepts seamless by having rapid access to accu-
rate trends in the variation of simulation outputs.

• Do synchronous simulation-based analysis of model
system behavior in real-time with students.

• Provide a dynamic environment for students to
perform in silico experiments during class to learn
the concepts by visualizing the system response
under different input conditions.

Addressing these educational challenges can improve



the classroom teaching of computational science and
engineering concepts, and enhance student learning.
These challenges provide the motivation behind the work
presented in this paper.

We recently introduced the idea of integrating ma-
chine learning (ML) methods with MD simulations
to develop “ML surrogates” for MD simulations [6],
[7]. We demonstrated that an artificial neural network
(ANN) based regression model, trained on data pro-
duced by completed runs of a given HPC-accelerated
MD simulation, can successfully imitate part or all of
that MD simulation. We also showed that performance
improvements of several orders of magnitude could be
achieved by replacing large-scale HPC simulations with
ML surrogates. The central idea and approach were illus-
trated using MD simulations of ions in nanoconfinement
[4]. The ML surrogate was found to accurately predict
the ionic distributions and produce the outputs with an
inference time of over a factor 10, 000 smaller than the
corresponding MD simulation runtime [7], [8].

Our earlier papers focused on the technical details
of designing ML surrogates for MD simulations and
evaluating the performance metrics associated with the
proposed data-driven approach [7], [8]. In this paper,
we explore the potential of employing these ML sur-
rogates to address the aforementioned educational chal-
lenges and enhance the usability of simulation tools
in education. We develop a nanoHUB web application
with a GUI that supports both ML surrogate and MD
simulation methods to produce simulation outputs. The
nanoHUB tool is used for both in-classroom teaching
and for solving homework problems associated with
two courses offered at Indiana University (IU). The ML
surrogate built into the tool is employed extensively
during the in-classroom instruction to teach concepts
such as self-assembly, ionic behavior near interfaces,
nanoscale material design, modeling and simulation, and
neural networks. The impact of the use of ML-enhanced
tool in student learning is assessed and evaluated by
conducting a survey following other assessment studies
[9], [10]. Based on the educational evaluation of the
tool, we find that the improvement in the interactivity
with the simulation framework in terms of dynamic, real-
time engagement and anytime access enables enhanced
student learning of computational science concepts.

II. RELATED WORK

A. ML for enhancing simulations of material systems

Computational science and engineering is being trans-
formed by the use of ML. In the area of simula-
tions of materials, ML techniques and in particular
deep neural networks based methods have been used
to predict parameters, generate configurations, classify
material properties, and design force fields [11]–[17].

More recently, ML has been used to design surrogate
models that can predict specific outcomes of simulations
by bypassing part or all of the simulation. For example,
the dissociation timescale of compounds was predicted
using an ML surrogate for ab initio MD simulations by
bypassing the time evolution of the particle trajectories
[18]. Deep neural networks trained on HPC-generated
simulation data were used as an efficient surrogate for
molecular simulation to predict adsorption equilibria
as a function of thermodynamic state variables [19].
Convolutional neural network based ML “emulators”
have been developed to predict simulation outputs such
as power spectrum in biogeochemistry [20]. We have
also developed surrogates that can predict the outputs
(ionic density profiles) of MD simulations of ions in
confinement [6], [7], or in another example, compute
forces at each timestep in an MD simulation to bypass
the expensive force calculation step [21]. While these
ML surrogates have enabled remarkable performance im-
provements to facilitate research investigations, their use
for education applications has been relatively unexplored
despite their ability to produce outputs in real-time and
for a continuous range of input parameters. In this paper,
we probe the potential of using ML surrogates for MD
simulations to enhance student learning of topics in the
area of computational science and engineering.

B. Simulation caching

Generally, the approach to provide simulation output
in real-time is to store the previous simulation results in
a cache (simulation caching). For example, nanoHUB
provides caching as a feature in computational tools
created using their Rappture GUI [22]. Cached simu-
lations provide a static environment with pre-selected
parameters defining simulations that can be “looked up”.
This simulation environment offers limited exploration
space, interactivity, and responsiveness to the student. To
encourage and empower students to directly experiment
and explore the model system and associated phenom-
ena, a new approach is needed that delivers an inter-
active, dynamic, and responsive simulation environment
open for wide exploration. We show that ML surrogates
are excellent candidates to fulfill this need.

III. BACKGROUND

A. Use of HPC-enabled simulations in education

One of us teaches two courses at IU that have been
taken by undergraduate and graduate students with in-
terests in diverse focus areas including nanoscale en-
gineering, bioengineering, computer engineering, chem-
istry, and physics. The courses feature application-based
learning of basic scientific computing concepts and sim-
ulation techniques, including the use of parallel com-
puting methods. Applications are designed employing



the state-of-the-art research in nanomaterials engineering
covering several material systems such as virus-like
particles [3], shape-changing nanocontainers [23], [24],
ion channels [4], and polymeric fluids [5]. HPC-enabled
MD simulations are key parts of these courses. These
simulations serve as important tools for understanding
diverse self-assembly phenomena in nanoscale materials
[2], predicting material behavior in practical applications
[5], and isolating interesting regions of parameter space
for experimental exploration [23].

B. GUI-wrapped simulations on nanoHUB

To facilitate the use of simulations by students in
classrooms and for solving homework problems, the
simulations are deployed as computational tools on
nanoHUB [22]. nanoHUB provides free online access
and a Jupyter-notebook based GUI wrapper for executing
simulation codes. Depending on the input selected by the
users on the GUI, the tools are auto-configured to launch
simulations on virtual machines or on a supercomputing
cluster (managed by Purdue University) such that the
associated simulation wait and run time is minimized.
The use of the tools are free of cost upon creation of
a nanoHUB account, however, users can run only up
to 3 concurrent tool sessions. The authors and other
research group members have published 6 nanoHUB
tools that enable exploration of diverse self-assembly
phenomena in nanomaterials: Ions in nanoconfinement
[25], Nanosphere electrostatics lab [26], Nanoparticle as-
sembly lab [27], Nanoparticle shape lab [28], Polyvalent
nanoparticle binding simulator [29], and Souffle: Virus
capsid assembly lab [30]. These tools provide an inter-
active GUI to students for examining the links between
nanomaterial system parameters and their structural and
dynamical behavior via renderings of simulation output
on the tool canvas. The tools also enable students to
learn the workflows associated with a large scientific
simulation software ecosystem. Three of the six tools
(Ions in nanoconfinement, Nanoparticle assembly lab,
and Nanoparticle shape lab) have been employed in
teaching materials associated with the aforementioned
courses. Some in-classroom lecture videos are available
on nanoHUB as educational resources [31], [32]. We
have plans to utilize other tools in teaching in future
versions of the aforementioned two courses.

C. nanoHUB tool: Ions in nanoconfinement

In general, one can design and integrate ML surrogates
with any of the 6 nanoHUB tools shown above. So far,
we have designed and integrated an ML surrogate with
one of these tools (Ions in nanoconfinement). In this
subsection, we briefly describe this tool to help with the
analysis of the technical and educational evaluation re-
sults discussed in Section V. The nanoHUB tool “Ions in

nanoconfinement” [25] enables users to simulate the self-
assembly of ions in nanoconfinement created by material
surfaces represented as identical planar interfaces. A
primitive model of electrolytes is used to model the ions
[4], [33]. Simulations are performed using standard MD
methods [4], [34]. The inputs associated with the tool
include ion valency, ion size, electrolyte concentration,
and interface separation. The simulation outputs include
the density profiles of ions in confinement. This tool
has been employed every semester since Spring 2018
in illustrating concepts in a graduate course (Simulating
Nanoscale Systems) and an undergraduate course (Intro-
duction to Modeling and Simulation) at IU. In less than
3 years of its deployment, the tool has been used by over
130 users and run over 3400 times [25].

The tool comes with a hybrid OpenMP/MPI acceler-
ation that enables simulations to be completed within
30 minutes for any combination of input parameters
(assuming no waiting time on HPC cluster). In classroom
usage, we observed that the fastest simulations took
about 10 minutes to provide the converged ionic densities
while the slowest ones (generally associated with a
larger number of simulation steps and system sizes)
took as long as 1 hour. Primary factors contributing to
this scenario were the time delays resulting from the
combination of waiting time in a queue on a computing
cluster and the actual runtime of the MD simulation. Not
having rapid access to expected trends in the variation of
ionic densities with input parameters made the process of
explaining concepts and mechanisms unwieldy and time-
consuming. As we demonstrate below, integrating this
tool with a ML surrogate improved its overall usability
as an educational tool.

IV. ML SURROGATES FOR SIMULATIONS

We now describe a general approach, introduced in
Refs. [6], [7], that utilizes ML to enable real-time
and anytime engagement with simulations, significantly
enhancing the potential for their use in both research
and education. In this approach, ML surrogate model
is designed using data produced by completed runs of
a given HPC-accelerated simulation, and then deployed
to approximate the complex relationships between the
physical input parameters and the output results of
simulations. The ML surrogate bypasses the explicit
computational evolution of the simulated model compo-
nents, yielding accurate outputs in much less time and
computing costs. Figure 1 shows the overview of this
framework. First, the attributes of the model system are
fed to the framework. These inputs are used to launch
the simulation on the HPC cluster. Simultaneously, these
inputs are fed to the ML-based prediction module. Both
the simulation and ML methods are designed to ex-
tract (infer) the desired output quantities. Error handler



Fig. 1. System overview of the ML surrogate for simulation approach
for generating rapid and accurate predictions of simulation outputs for
use in classroom teaching.

aborts the simulation program and displays appropriate
error messages when a simulation fails due to any pre-
defined criteria. At the end of the simulation run, the
output quantities are saved for future retraining of the
ML model, which occurs after a set number of new
successful simulation runs.

In previous papers, we applied this framework to the
case of MD simulations of ions in nanoconfinement. The
surrogate was trained to learn the relationship between
the output distribution of positive ions and 5 input
parameters characterizing the ionic system: confinement
length h, salt concentration c, positive ion valency zp,
negative ion valency zn, and ion diameter d. The range
of each input parameter were as follows: h ∈ (3.0, 4.0)
nm, c ∈ (0.3, 0.9) M, zp ∈ 1, 2, 3, zn ∈ −1, and
d ∈ (0.5, 0.75) nm. The output quantity was selected
to be the distribution of positive ions confined by two
identical planar interfaces at z = −h/2 and z = h/2.
For simplicity, using the symmetry of the ionic density
around the confinement center z = 0, ML surrogate was
trained to make predictions characterizing the density
of ions in the left half of the confinement (i.e., for
z ∈ (−h/2, 0)). The predictions were made at approx-
imately 150 positions; the associated P ≈ 150 density
values were selected as the output parameters (features).

The dataset for training the ANN-based ML surrogate
was generated by sweeping over a few discrete values
for each of the input and output parameters to create and
run 6,864 MD simulations utilizing HPC resources. On
average, each MD simulation was run for over 5 million
computational steps and took 4200 CPU hours (≈ 36
minutes per simulation). The training dataset creation
took approximately 25 days, including the queue wait
times on the IU BigRed2 supercomputing cluster. The
entire data set was separated into training and testing
sets using a ratio of 0.8:0.2. The ANN architecture with
2 hidden layers was implemented in Python using scikit-
learn, Keras, and TensorFlow ML libraries [35]–[37]
for regression and prediction of P ≈ 150 continuous

(output) variables. The details of the data generation,
preprocessing, ANN feature extraction, and regression
are provided in our earlier papers [7], [8].

The ANN-based surrogate model produced the ionic
distribution in excellent agreement with explicit MD
simulation results [7]. In addition to the high accuracy of
ML inferences, the surrogate yielded output results over
10,000 times faster than the parallel MD simulation. The
typical ML inference time associated with a prediction
of the density profile was ≈ 0.2 seconds (or, almost
instantaneous). In strike contrast, the average runtime
of the parallel MD simulation to produce a similarly
converged output was ≈ 36 minutes.

The overall success rates and rapid inference times
associated with predictions made by ML surrogates
enable a dynamic and responsive simulation environment
for exploration by students in classroom settings. The
following capabilities associated with these surrogates
are of particular significance in education use:

• Enabling students to verify their learning of features
associated with the simulation outputs

• Generating accurate predictions in real-time for
unsimulated state points

• Providing a dynamic environment for students to
rapidly explore the input-output relationships

• Enabling anytime and anywhere access to simula-
tion results

In the next section, we describe the results associated
with the use of simulation tools integrated with ML
surrogates in teaching materials associated with compu-
tational science and engineering courses.

V. RESULTS

A. Technical evaluation

We first discuss the technical results showing the
comparison between the predictions made by the ML
surrogate and the outputs of MD simulations. Figure
2 (a) - (d) shows the ionic density profiles predicted
by the ML surrogate for a set of 4 systems ran-
domly selected from the entire testing dataset. These
systems are: system I (3, 1,−1, 0.45, 0.7), system II
(3.6, 1,−1, 0.9, 0.714), system III (3.7, 3,−1, 0.45, 0.5),
and system IV (3.3, 2,−1, 0.3, 0.553), where the paren-
theses list the 5 aforementioned input parameters charac-
terizing the ionic system: confinement length h, positive
ion valency zp, negative ion valency zn, salt concen-
tration c, and ion diameter d. As the figure indicates,
for each system, the ML-predicted density profile is
in excellent agreement with the result extracted using
MD simulation (ground truth). In addition to the high
accuracy, we note that the ML inferences are made in a
much shorter time of ≈ 0.2 seconds compared to MD
simulations (≈ 36 minutes on average).



Fig. 2. Ionic density profiles for systems I (a), II (b), III (c), and IV (d) predicted by the ML surrogate (red circles) and extracted with MD
simulation (green circles with errorbars). See main text for system definitions. For each system, the ML-predicted density profile is in excellent
agreement with the simulation result.

Motivated by the good agreement between ionic den-
sities generated via ML surrogate and MD simulations
as well as the remarkable performance enhancement
resulting from the use of ML surrogates, we integrated
the ML surrogate with the nanoHUB tool “Ions in
nanoconfinement”. The ML-enhanced tool was deployed
on nanoHUB in October 2019. Figure 3 shows the
Jupyter python notebook based GUI of the deployed
tool. Users are provided with the choice to click “Run”
and “Predict using ML” buttons simultaneously or sep-
arately depending on the desired information. “Predict
using ML” activates the ML surrogate which predicts
half of the density profile instantaneously; the result
is available in the “Prediction Graph” tab as well as
in the “Positive Ion Density” tab. Users can enable
ML surrogate any time by clicking the “Predict using
ML” button to access the ML-predicted ionic density
profile. Clicking the “Run” button instructs the execution
engine to either submit a job on an HPC cluster (if the
“HPC mode” button is checked) or run the simulation
on a VM. When the simulation is over, the execution
engine passes the generated data to be plotted on the

“Positive Ion Density” and “Negative Ion Density” tabs.
For illustration purposes, Figure 3 also shows the final
density plot obtained using the integrated MD and ML
method for the input parameters h = 3.0 nm, zp = 1,
zn = −1, c = 0.5 M, and d = 0.714 nm. The ML
prediction is shown as an overlay in the “Positive Ion
Density” tab along with the result of the MD simulation.

B. Educational evaluation

An accurate and rapid assessment of ionic distribu-
tions in confinement by the ML surrogate enables in-
classroom instruction of several important concepts such
as interfacial effects, self-assembly in nanoscale systems,
and the intimate connection between solution conditions
and the material assembly behavior. For example, by
using the ML surrogate, students can instantaneously
record changes in the ionic structure as the salt concen-
tration c is tuned. Figure 4 shows a selected subset of
ionic density profiles predicted by the ML surrogate for
different c = 0.3, 0.5, 0.7, 0.9 M. Other input parameters
are fixed to h = 3.0 nm, zp = 1, zn = −1, and
d = 0.5 nm. By performing in silico experiments in
rapid succession using the ML surrogate, students can



Fig. 3. GUI of the ML-enhanced “Ions in nanoconfinement” nanoHUB tool [25]. The GUI shows the density profile predicted by the ML
surrogate for half of the position values (green line) and the result extracted via MD simulation (red markers) for an example ionic system.

readily visualize the response of the ionic system under
changes in c. For example, students learn that increasing
salt concentration leads to the accumulation of ions near
the interface (higher peaks in the ionic density) or to the
emergence of more modulations in the density profile.
Both these observations inferred by the ML surrogate
follow the expected behavior in these systems as reported
and elucidated in previous work [4].

As noted before, one of the authors regularly teaches
two courses at IU: 1) Simulating nanoscale systems (Fall
semester; course for graduate students and advanced
undergraduate students) and 2) Introduction to modeling
and simulation (Spring semester; undergraduate course).

The students in these courses learn computational model
development, simulation techniques such as molecular
dynamics, data analysis and visualization, computational
materials science concepts such as self-assembly and
interfacial phenomena, parallel computing methods, and
engineering applications of simulations. The learning is
facilitated by having students perform HPC-based simu-
lations that enable the extraction of structure-property
relationships in materials at the nanoscale. Students
also become familiar with important practical aspects
of research in scientific computing such as scalability,
time discretization, convergence, model resolution, and
simulation accuracy. The key learning objectives of these
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courses are:
1) Students will understand and develop computa-

tional models of real materials.
2) Students will understand materials science con-

cepts and the effects of altering environmental
conditions on structure-property relationships.

3) Students will develop simulation methods and
solve engineering problems by analyzing compu-
tational data.

4) Students will learn the use of parallel computing
and data-driven methods in computational science.

5) Students will learn the use of web-based computa-
tional tools and understand the scientific software
ecosystem.

nanoHUB computational tools are key parts of these
courses as they help facilitate the use of simulations by
students via a user-friendly, web application requiring
no software installation to run the simulations. The ML
surrogate was integrated into the nanoHUB tool “Ions
in nanoconfinement” and the enhanced tool was pilot
tested in Course 1 in Fall 2019. Six students majoring
in different fields, including nanoengineering, computer
engineering, and chemistry took the course. The tool
was also used in Course 2 by 15 students in Spring
2020. Students used the tool during in-classroom lectures
as well as to solve homework problems. The tool was
actively employed by the instructor in the classroom
to help students develop an intuitive understanding of
the ionic system behavior via rapid experimentation and
visualization of changes in ionic structure.

Below we enumerate a subset of the learning outcomes
of these courses in order to provide the context for the
results of the tool evaluation discussed in the remainder
of this section. When students complete the aforemen-
tioned two courses they should be able to:

1) Develop scale-appropriate and computationally-

efficient models of real / experimental systems.
2) Develop an in-depth understanding of computa-

tional materials science concepts such as self-
assembly and structure-property relationships.

3) Develop simulation methods and apply them to
solve engineering problems.

4) Use parallel computing methods to enhance com-
putational simulations of nanoscale materials.

5) Use web-based computational tools and under-
stand the associated scientific workflow.

To assess the impact of the use of the ML-enhanced
tool and associated simulations on student learning, a
tool evaluation survey was conducted at the end of
the Fall 2019 semester, where six students provided
feedback on their experience with the tool. The survey
questions were constructed following similar educational
evaluation studies [9], [10], [38]–[43], and comprised of
both rating-based and text-response-based questions.

First, a set of 10 questions tabulated in Table I asked
the students to rate the simulation tool in terms of
different features such as user-friendliness, clarity, utility,
consistency etc. Participant ratings as a percentage for
the 10 questions listed in Table I are shown in the form
of a bar graph in Figure 5. The rating scale was from
1 to 5, where higher scores represent higher ratings.
We received a total of 60 rating responses for these
10 questions (every question was answered by all the
6 students). Based on the responses received for all 10
questions, the mean response rating was 4.26 with a
variance of 0.39, indicating that on average the students
evaluated the simulation tool close to the highest rating
of 5.0. More specifically, in terms of user-friendliness,
convenience, GUI layout, and consistency, students rated
the tool at 4 or higher. We also asked the students
how many times they used the nanoHUB tool in the
classroom during the lecture sessions. 16.7% of the
students responded that they have used it more than 20
times, while 50% said they used the tool between 10
and 20 times (Figure 6). This variation in the tool usage
indicates that the ML surrogate was used for diverse
purposes ranging from verifying the expected results of
the simulation to recording the evolution of the output
quantities by tuning the input parameters.

Next, we asked a series of text-response-based ques-
tions. We discuss a few of these questions below. Stu-
dents were asked what aspects of the online simulation
tool were useful and valuable to them. The students
highlighted that the simulation tool helped them in-
crease the conceptual and practical understanding of the
nanoscale simulations due to the user-friendly interface,
ML-enabled instantaneous predictions, and availability
of multidimensional input choices. For example, here is
an excerpt from a student response: “ML provided the
quick answer when that was needed. Easier to use for



TABLE I
RATING-BASED QUESTIONS USED IN THE SURVEY

ID Question

Q1 Were the use of simulations in the class valuable in
learning concepts?

Q2 Were the learning objectives regarding the use of the
nanoHUB tool clear?

Q3 Rate the tool in terms of user-friendliness.

Q4 Rate the tool in terms of convenience (in terms of how
fast the results were inferred by ML).

Q5 Rate the tool in terms of accuracy (as compared with
MD results).

Q6 Rate the tool in terms of use for in-class conceptual
understanding.

Q7 Rate the tool in terms of use for homework problem
solving.

Q8 Rate the tool in terms of GUI layout.

Q9 Rate the tool in terms of quality.

Q10 Rate the tool in terms of consistency.

Fig. 5. Participant ratings (as a percentage) for the questions (Table
I) used in the survey for evaluating the ML-enhanced tool.

single simulation than accessing supercomputer.”
Students were asked to compare simulation-driven

classroom teaching experience with a non-simulation-
driven classroom teaching experience. 83% of the stu-
dents enjoyed simulation-driven teaching of computa-
tional science concepts stating that “simulations aid to
understanding the concept taught in the class more
clearly” and “it allows students to be the researchers
and experimenters in the sense of using these tools
to generate our results for our assignments”. The rest
(17%) still preferred the simulation-driven classroom
teaching experience but stated that they felt there were
occasions with extra downtime in the classroom because
of waiting for cluster resources to run the simulations,
and they suggested that “the cluster waiting time needs

Fig. 6. A pie chart showing how many times students used the ML-
enhanced simulation tool in the classroom. Nearly 16% of the students
used the tool over 20 times.

to be filled with useful content”.
Students were also asked to isolate what aspects of

the nanoHUB online tool were most useful to them.
80% of the responses indicated that the students like
the ML prediction feature. Here is an excerpt from a
student response: “the predicted machine learning aspect
was beneficial because it was very accurate with the
simulated results, so if need be one do not have to wait
for the simulation to finish computing to know what the
results would have been”. The survey responses also
indicated that the students enjoy the freedom to probe
the system behavior by tuning several model parameters,
and they find the output graphs helpful.

Finally, students were asked to provide suggestions
to improve the ML-enhanced simulation tool. 66.6%
of the students provided feedback to improve the tool,
while 33.4% said that they do not have any suggestions
to improve the tool. Some suggestions were: “allow-
ing users to download the ML prediction graph” and
“providing 3D snapshots of the simulation”. The tool
has been updated based on these useful suggestions
and the latest version provides options to download
the ML prediction result and visualize the snapshots of
ions in confinement. Some suggestions such as “graph
updates do not always happen when changing values
and toggling ML, especially after full simulation was
run” have not yet been implemented. These are related
to the GUI rendering issues which we plan to resolve in
the future working with the nanoHUB team.

The ML surrogate helped the instructor of these
courses in pursuing many of the aforementioned learning
objectives by resolving the 4 key educational challenges
outlined in Section I. The remarkable agility of the



surrogate in yielding the predictions enabled the in-
structor to respond to student questions in real-time
via live demonstration using the ML surrogate. The
instructor was also able to perform the analysis of the
model system behavior synchronously with students. By
performing in silico experiments in rapid succession
using the ML surrogate and visualizing the results on
the tool canvas in real-time helped the instructor to
illustrate mechanisms underlying the response of the
model system to changes in control parameters. Hav-
ing rapid access to accurate trends in the variation of
simulation output with input parameters significantly
eased the process of explaining difficult materials science
concepts such as self-assembly. Further, the use of the
ML-enhanced tool helped in illustrating several practical
aspects of scientific computing including the tradeoffs
between simulation accuracy, scalability, and efficiency.

VI. DISCUSSION AND CONCLUSION

In this paper, we explored the potential of using
ML surrogates for HPC-enabled simulations to address
several educational challenges in teaching computational
science and engineering courses. The ML surrogate
yields predictions in excellent agreement with simula-
tion, but at far less time and computing costs, delivering
a dynamic and responsive simulation environment for
rapid exploration by students in classroom settings. We
developed a web application on nanoHUB that supported
both HPC-enabled simulation and the ML surrogate
methods to produce simulation outputs.

The nanoHUB tool was used for both in-classroom in-
struction and for solving homework problems associated
with two courses covering topics on computational mate-
rials science, modeling and simulation, and engineering
applications of HPC-enabled simulations. The educa-
tional utility of the tool was evaluated using a survey that
was answered enthusiastically by the students. Overall,
the learning outcomes, survey results, and the feedback
from students in the classroom indicate that the ML
surrogate helped resolve key educational challenges and
enabled the realization of many learning objectives of the
courses. Survey responses showed that the ML-enhanced
tool is well-accepted among students and scored very
high marks on convenience, user-friendliness, and con-
sistency. Students also provided constructive feedback
to improve the tool further in order to ensure its future
success. The improvement in the interactivity with the
simulation framework in terms of real-time engagement
and anytime access enhanced the student learning of
computational science concepts.

Results from this investigation are encouraging and
we expect the ML surrogate approach to be broadly
applicable. We plan to explore the development of ML
surrogates to predict outputs of other simulations in-

cluding those of shape-changing nanoparticles [23], [28],
[32] and different types of Monte Carlo simulations [1],
[44], [45]. Another line of future work is to explore ways
to reduce the training costs of the ML surrogates and
probe their potential in predicting outputs outside the
pre-defined range of training datasets. We realize that our
initial survey involved a small number of students; we
plan to conduct more surveys in the future and continue
the evaluation of the educational utility of the tools.

We note that the integration of the ML surrogate in
a computational tool hosted on nanoHUB exposes this
approach to a much broader community of students,
educators, and researchers. nanoHUB is the largest on-
line resource for educational materials in nanotechnology
[22], hosting over 500 web applications for launching
simulations and serving over 1 million users worldwide.

Finally, we want to emphasize that the use of ML
surrogates is not intended to avoid or exclude HPC use
in education. Instead, our vision is for ML surrogates to
complement and supplement HPC-enabled simulations
for education applications. Note also that the ML surro-
gate was designed using completed runs of HPC-enabled
simulations. Without HPC, the time to generate the
datasets to train the ML surrogate becomes prohibitively
large [7], [8]. The use of ML surrogates contributes a
novel way of teaching HPC topics by helping students
develop intuition or “feel” for the physical system be-
havior through rapid exploration and visualization of
variations in output quantities with changes in inputs,
before they use HPC to solve specific problems.
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