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ABSTRACT
We discuss an optimal excess-of-loss reinsurance contract in a continuous-
time principal-agent frameworkwhere the surplus of the insurer (agent/he)
is described by a classical Cramér-Lundberg (C-L)model. In addition to rein-
surance, the insurer and the reinsurer (principal/she) are both allowed to
invest their surpluses into a financial market containing one risk-free asset
(e.g. a short-rate account) and one risky asset (e.g. a market index). In this
paper, the insurer and the reinsurer are ambiguity averse and have specific
modeling risk aversion preferences for the insurance claims (this relates to
the jump term in the stochastic models) and the financial market’s risk (this
encompasses the models’ diffusion term). The reinsurer designs a reinsur-
ance contract that maximizes the exponential utility of her terminal wealth
under a worst-case scenario which depends on the retention level of the
insurer. By employing the dynamic programming approach, we derive the
optimal robust reinsurance contract, and the value functions for the rein-
surer and the insurer under this contract. In order to provide amore explicit
reinsurance contract and to facilitate our quantitative analysis, we discuss
the case when the claims follow an exponential distribution; it is then pos-
sible to show explicitly the impact of ambiguity aversion on the optimal
reinsurance.
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1. Introduction

Reinsurance and investments are important measures for insurers and reinsurers to manage their
companies’ risk positions. An insurer can employ reinsurance to control the amount of risk exposure,
and can use risk-free and risky investments to improve his profit levels. A reinsurer generates income
and controls risk by adjusting the premium for reinsurance contracts, and by investing in markets
like the insurer. In this paper we simply assume that the insurer pays a premium to the reinsurer at an
agreed-upon rate for a given level of risk retention, and the reinsurer pays a proportion of the claims
amounts faced by the insurer, where that proportion is the complement of the insurer’s retention
level. Typically, the distribution of premia and claims is agreed to in advance, between the insurer
and reinsurer. The distribution of claims depends on the actual claims amounts. In calculating the risk
premium, i.e. the price of the reinsurance contract, the reinsurer can and should take into account any
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historical knowledge of claims in prior years, as well as any expectations for future losses, depending
on the kind of risks involved. But the reinsurer must also consider the demand of the insurer, since
an arbitrary supply may not be needed. Said differently, unlike typical stochastic models for equity
prices in financial markets, one should not look at the pricing question for reinsurers by assuming
an infinitely liquid reinsurance market. Instead, in financial terms, the reinsurance contract price
should be determined in a highly micro-economic fashion where the inherent risks of the insurance
and financial markets are external forces used to determine a mutually optimal agreement between a
single reinsurer and a single insurer. To do this, assumptions about each of the parties’ risk aversions
are needed. This agent-demand framework is that on which we place our emphasis in this paper. We
discuss the impact of this demand on themutually optimal reinsurance premium.We also investigate
the optimal reinsurance-investment strategy for the insurer, and the optimal investment strategy for
the reinsurer, depending on their levels of ambiguity aversion. This notion of aversion is distinct from
risk aversion: it represents a player’s insecurity regarding their ability to work with a well-specified
and estimated model. It leads to increased robustness in decision making, which we take advantage
of in this paper.

Reinsurance and investment problems for the insurer have attracted many scholars’ attention.
They mostly work on various optimization problems with different objectives from the insurer’s per-
spective. For example, some scholars focus on maximizing the expected utility of insurers’ terminal
wealth, we refer readers to Browne (1995), Bai & Guo (2008), Gu et al. (2012) and so on; some focus
on mean-variance criteria and ruin-probability criteria, such as Bäuerle (2005), Zeng et al. (2010),
Zeng & Li (2011), Li et al. (2012), Luo et al. (2008), Luo (2009), Chen et al. (2010) and Peng &
Wang (2018) for ruin probability criteria. All the aforementioned works assume that the premia for
insurance and reinsurance are constant. Dynamic pricing for insurance is also discussed. Young &
Zariphopoulou (2002) employ dynamic prices for insurance risk by applying the principle of equiv-
alent utility; Emms & Haberman (2005) and Emms et al. (2007) study the optimal premium pricing
policies in a competitive insurance environment by using approximation methods and simulation of
sample paths, with the premium rate charged by the insurer as a control variable; Henriet et al. (2016)
develop a continuous-time general-equilibriummodel to rationalize the dynamics of insurance prices
in a competitive insurance market, where they use the variance principle to calculate the price of
insurance, and employ dynamic safety loading for the insurance prices. These works all focus on
insurance pricing. Even though some of them refer to reinsurance pricing as well, they all take the
perspective of the insurer. This perspective is a legitimate one; for instance, it is documented in a
report by Swiss (2002), where they show that ceding companies react to reinsurance price increases
by buying less coverage and inversely, when reinsurance rates fall, buyers reduce retention, extend
their ceded lines, and increase coverage for their clients.

To the best of our knowledge, little attention, if any, is paid to using the perspective of the rein-
surer in computing the price of reinsurance. In agreement withHenriet et al. (2016) and Swiss (2002),
we consider that the safety loading parameter, i.e. the reinsurance premium, represents the price
of reinsurance. Herein we investigate the reaction by the reinsurer to the demand for reinsurance.
We interpret the latter as the insurer’s reinsurance strategy. This allows us to look at a single pair
of insurer and reinsurer while still capturing the notion of supply and demand. No aggregation is
needed to represent a market; this reflects the fact that the reinsurance market is not a public mar-
ket, but rather one in which client-specific agreements are developed for each contract. The reinsurer
should decrease prices when demand is low, i.e. when the insurer wants to increase their insurance-
risk exposure, and she should raise her prices of providing reinsurance coverage when demand is
high. Similar research has been done by few scholars. Chen & Shen (2018) employ a new continuous-
time framework to analyze optimal reinsurance, in which an insurer and a reinsurer are two players
in a stochastic Stackelberg differential game; Hu et al. (2018a, 2018b) employ a principal-agent model
to study the optimal reinsurance premium from the viewpoint of the reinsurer, where proportional
reinsurance and excess-of-loss reinsurance are discussed. We work in a similar framework, since we
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also consider a principal-agent model, which is essentially a Stackelberg game between the insurer
and the reinsurer.

In this paper, we incorporate ambiguity aversion for both the insurer and the reinsurer. As alluded
to above, the notion of ambiguity was developed as a way of addressing modeling uncertainty. This
was designed originally to face the fact that mean rates of return and other drift parameters in
stochastic models for risky assets are difficult to estimate, and their misspecification has measur-
able impacts on investment strategies. Ambiguity aversion is a way to define the investors’ attitude
toward this uncertainty. The bigger the ambiguity aversion is, the less confident is the investor that
they are working with an appropriate model. As a result, ambiguity forces the investor to make a
different decision compared to the ambiguity-neutral investor. Typically, this means forfeiting some
level of utility in favor of guarding against the risk of following a significantly misguided strategy.
Uppal & Wang (2003) develop a framework which allows investors to consider their level of ambi-
guity. Later, a systematic method in quantitative investment finance for portfolio selection and asset
pricing with model uncertainty or model misspecification is developed. We refer readers to Maen-
hout (2004, 2006): they optimize an inter-temporal consumption problemwith ambiguity, and derive
closed-form expressions for the optimal strategies which are highly robust to drift misspecifications.
Similar investigations on ambiguity is performed for the insurance market, because the same ambi-
guity exists in the expected value of the insurer’s surplus due to uncertainty on how to specify the
claim dynamics. Under a mean-variance criterion, Yi et al. (2015) study the optimal proportional
reinsurance-investment strategy; Zeng et al. (2016) study the equilibrium strategy of a robust optimal
reinsurance-investment problem; using an expected utility criterion, Gu et al. (2017, 2018) investigate
the optimal proportional reinsurance-investment problem with mispricing; Li et al. (2018) consider
the optimal excess-of-loss reinsurance-investment. These papers are all written from the perspective
of the insurer; they discuss optimal reinsurance strategies, but always assume that the reinsurance
premium is constant. Recently, Hu et al. (2018a, 2018b) take the reinsurer’s perspective and study
the optimal reinsurance premium based on insurer demand. Hu et al. (2018a) study the proportional
reinsurance contract with the insurer or the reinsurer being ambiguity-averse; Hu et al. (2018b) dis-
cuss the proportional reinsurance contract and the excess-of-loss reinsurance contract only in the
case where the reinsurer is ambiguity-averse or not. But as we said, for excess-of-loss reinsurance,
Hu et al. (2018b) do not consider that the insurer might be averse to ambiguity. In this sense, one
cannot have confidence that those strategies are robust to all misspecifications in drift parameters.
It should also be noted that Hu et al. (2018a, 2018b) do not allow surplus investments into risky
markets.

Following the research of Hu et al. (2018a, 2018b), but in an effort to guard against the lack of
robustness due to all misspecifications that we can handle, we incorporate ambiguity aversion into the
problem,we focus on the excess-of-loss reinsurance andwe study the optimal reinsurance-investment
strategy for the insurer, the optimal reinsurance premium, and the optimal investment strategy for the
reinsurer. Sequentially, to solve the mathematics behind these questions, first, the insurer defines his
optimization problem and obtains his optimal reinsurance-investment strategy. Based on the insurer’s
optimal reinsurance strategy, the reinsurer computes an optimal reinsurance premium in order to
maximize the expected utility of her terminal wealth. Based on the reality of similar investment pat-
terns in highly liquid publicly-traded equities, we assume that the insurer and the reinsurer invest
their surpluses into the risk-free asset and a same risky asset. To quantify the effect of ambiguity aver-
sion on the insurer’s and the reinsurer’s optimal decisions, we assume that there exists uncertainty in
the intensity of the claim and drift misspecifications in the risky asset. Also, the insurer and the rein-
surer have different ambiguity levels, to signify their possibly distinct aversions to, and/or skills in,
modeling uncertainty. In our conclusions, we find that the insurer will pay little attention to the rein-
surer’s ambiguity aversion level. Inversely, the reinsurer will pay rather close attention to the insurer’s
ambiguity aversion, and to her own aversion, making both levels critical factors in the reinsurer’s
decisions. This in itself is a justification for providing our framework, as an extension of some results
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of Hu et al. (2018b) with important practical implications, in which ambiguity aversion should not
be ignored.

To summarize, compared to the existing literature, the contributions of this paper are twofold.
First, we discuss the excess-of-loss reinsurance in a principal-agent model, where the insurer and the
reinsurer are ambiguity averse in an effort to devise more robust strategies; we consider their optimal
investment strategies where the financial market is composed of a risk-free asset and a risky asset.
Second, we discuss the effect of the insurer’s ambiguity aversion on the reinsurer’s optimal decision,
and the impact of the reinsurer’s ambiguity aversion on the insurer’s optimal reinsurance strategy.
Under this new framework some useful results are uncovered. For example, the insurer need to con-
cern himself more with his own ambiguity aversion, but the reinsurer must pay close attention to the
insurer’s ambiguity aversion, more than to her own.

This paper is structured as follows. In Section 2, we introduce our insurance model and the
financial market, and we form the agent’s problem and the principal’s problem with ambiguity
aversion. Optimal excess-of-loss reinsurance contracts with claims following the exponential dis-
tribution are derived in Section 3. In Section 4, we provide a numerical analysis to show the
impact of ambiguity aversion and other parameters on the reinsurance strategies and premium,
as well as some loss-of-utility calculations in some cases. All technical proofs are relegated to an
Appendix.

2. Model setup

In this section, we formulate optimal excess-of-loss reinsurance-investment problems for the insurer
and the reinsurer in a principal-agent frameworkwhere the insurer is the agent and the reinsurer is the
principal. The framework is related to a Stackelberg game, where the reinsurer and the insurer are the
leader and the follower, respectively. We adopt this framework to study the optimal reinsurance con-
tact. Assuming first that the insurer and the reinsurer are both ambiguity averse, it is then immediate
to cover the special cases where only one player is ambiguity averse or neither players are ambigu-
ity averse. Let (�,F , {Ft}0≤t≤T ,P) be a complete probability space satisfying the usual condition,
where T is a finite and positive constant representing the investment-time horizon, and the filtra-
tion Ft stands for the information available until time t. All stochastic processes introduced below
are assumed to be adapted processes in this space, which means that we assume full and immediate
observation for all of them.

Throughout, we use the classical Cramér-Lundberg (C-L) model (see for example Bäuerle 2005)
to describe the insurer’s surplus R(t), i.e.

R(t) = x + (1 + η)λμ∞t −
Nt∑
i=1

Zi,

where x ≥ 0 is the initial surplus; {Nt}0≤t≤T is a homogeneous Poisson process with intensity λ > 0
and

∑Nt
i=1 Zi is a compound Poisson process representing the cumulative amount of claims in time

interval [0, t]. HereZi represents the size of the ith claim andNt represents the number of claims up to
time t. We assume that Z1,Z2, . . . are independent and identically distributed (i.i.d.) positive random
variables with common distribution F : [0,+∞) → [0, 1], and have finite first-order moment μ∞
and second-order moment σ 2∞. Under the expected value principle, (1 + η)λμ∞ is the premium rate
for the insurance, where η > 0 is the relative safety loading of the insurer.

We assume throughout that the insurer has the option to purchase excess-of-loss reinsurance. Let
a(t) ≥ 0 be an excess-of-loss retention level at any time t, and Za(t)

i := min{Zi, a(t)} for i = 1, 2, . . .,
denote the value of the ith claim retained by the insurer if that claim occurs at time t. Then the reserve
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of the cedent becomes

Ra(t)t = x + pa(t)t −
Nt∑
i=1

Za(t)
i ,

in which the net premium rate pa(t) is given by

pa(t) := (1 + η)λμ∞ − (1 + θ(t))λ(μ∞ − E[Za(t)
i ])

= (η − θ(t))λμ∞ + λ(1 + θ(t))E[Za(t)
i ],

where θ(t) denotes the safety loading of the reinsurer at time t. Here, we assume that it always sat-
isfies the condition θ(t) ≥ η for the insurer’s safety loading η, that is, reinsurance is not arbitrarily
inexpensive or reinsurance is non-cheap. This lower bound constraint is needed to ensure that the
reinsurer accepts the insurance business from the insurer. It can be interpreted as a level below which
the reinsurer would be operating at an unacceptable business loss level. Motivated by Emms (2007a,
2007b) and Hu et al. (2018a), we interpret the traditional relative safety loading of reinsurance to rep-
resent the reinsurance price (or premium). As alluded to in the introduction, it is important to note
that in our framework, the reinsurance premium is no longer a constant, and is expected to change
over time instead. Moreover, the reinsurance safety loading θ(t) will be seen as a decision variable
(control) for the reinsurer, as we will see.

For the reinsurance business, the stochastic jump dynamics for the reinsurer’s surplus are given by

dW(t) = (1 + θ(t))λ(μ∞ − E[Za(t)
i ]) dt − d

Nt∑
i=1

(Zi − Za(t)
i ).

In addition to reinsurance, we assume that the insurer and the reinsurer are allowed to invest their
surpluses in a financial market consisting of one risk-free asset (i.e. a short-rate account) and one
risky asset (i.e. a stock).

The price process S0 := {S0(t)}0≤t≤T of the risk-free asset is described by

dS0(t) = rS0(t) dt,

where r> 0 is the risk-free interest rate. The price process S := {S(t)}0≤t≤T of the risky asset is given
by

dS(t)
S(t)

= (r + μ) dt + σ dB(t), (1)

whereμ > 0 is the expected excess return rate of the risky asset andσ > 0 is the instantaneous volatil-
ity. The process {B(t)}0≤t≤T is a standard Brownian motion, which is assumed to be independent of∑Nt

i=1 Zi. Denote byu(t) and û(t) the proportions of thewealth invested in the risky asset of the insurer
and the reinsurer, respectively. The remainders 1 − u(t) and 1 − û(t) are invested into the risk-free
asset. Thus we call π(t) := (a(t), u(t)) and π̂(t) := (θ(t), û(t)) the reinsurance-investment strategy
for the insurer and the reinsurer, respectively, where the excess-of-loss retention level a(t) ≥ 0 and
the reinsurer’s safety loading θ(t) ≥ η.

As mentioned, we assume that the insurer and the reinsurer are ambiguity averse, implying that
they are concerned about the accuracy of statistical estimation, and possible misspecification errors,
in their reference models. In order to describe and incorporate this ambiguity aversion into our
model, we define a set of prior probability measures parameterized byψ and ψ̂ , whereψ := {ψ(t) =
(h(t),φ(t))}0≤t≤T and ψ̂ := {ψ̂(t) = (ĥ(t), φ̂(t))}0≤t≤T . Denote by 
 and 
̂ the spaces of ψ and ψ̂
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satisfying

exp
{∫ T

t

h2(s)
2

ds +
∫ T

t

∫ +∞

0
(φ(s) lnφ(s) − φ(s) + 1)λ dF(z) ds

}
< ∞,

and

exp

{∫ T

t

ĥ2(s)
2

ds +
∫ T

t

∫ +∞

0
(φ̂(s) ln φ̂(s) − φ̂(s) + 1)λ dF(z) ds

}
< ∞,

for any t ∈ [0,T], respectively. As the two inequalities are the same, the two spaces are identical, i.e.

 = 
̂ .

For any ψ = (h,φ) ∈ 
 and ψ̂ = (ĥ, φ̂) ∈ 
̂ , we can define new alternative measures Q and Q̂

equivalent to the reference model P, via their Radon-Nykodym derivatives, as follows:

dQ
dP

= ξ(T),
dQ̂
dP

= ξ̂ (T)

where ξ(t) and ξ̂ (t) satisfy

dξ(t)
ξ(t)

= −h(t) dB(t) +
∫ +∞

0
(φ(t) − 1)Ñ(dt, dz),

dξ̂ (t)
ξ̂ (t)

= −ĥ(t) dB(t) +
∫ +∞

0
(φ̂(t) − 1)Ñ(dt, dz).

Whenever needed, we use Q(ψ) and Q̂(ψ̂) to highlight the dependence of Q and Q̂ on ψ and
ψ̂ . Denote by Eψ [·] = EQ(ψ)[·] and Eψ̂ [·] = EQ̂(ψ̂)[·] the expectations taken under Q and Q̂,
respectively.

Above, Ñ(·, ·) is the compensatedmeasure ofN(·, ·). In fact, we can rewrite the total retained losses
at time t, and its mean value, as

Nt∑
i=1

Za(t)
i =

∫ t

0

∫ +∞

0
min (z, a(t))N(dt, dz), ∀ t ∈ [0,T],

E

[ Nt∑
i=1

Za(t)
i

]
=
∫ t

0

∫ +∞

0
min (z, a(t))ϑ(dt, dz), ∀ t ∈ [0,T],

where ϑ(·, ·) is the compensator of the random measure N(·, ·), so the compensated measure
Ñ(dt, dz) := N(dt, dz) − ϑ(dt, dz) is a martingale, where ϑ(dt, dz) is simply equal to λ dt dF(z).

Based on Girsanov’s Theorem, under the new measures Q and Q̂, the following processes
{BQ(t)}0≤t≤T and {BQ̂(t)}0≤t≤T are two standard Brownian motions and satisfy

dBQ = dB(t) + h(t) dt, dBQ̂ = dB(t) + ĥ(t) dt;

the Poisson random measures under Q and Q̂ differ from N(dt, dz), i.e. that under the reference
measure P only via their respective claim intensities λQ := λφ(t) and λQ̂ := λφ̂(t); the probability
law of Zi remains the same under P,Q and Q̂.

We may now interpret the measures Q and Q̂ as the alternative measures for the insurer and the
reinsurer, respectively. By this we mean that, since these players are ambiguity averse, they are both
wary of the consequences of what would happen if the financial and insurance markets followed
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these alternative measures instead of their original reference measure P. Here, we concentrate on the
following spaces of alternative probability measures:

Q := {Q(ψ) |Q(ψ) ∼ P and ψ ∈ 
}, Q̂ := {Q̂(ψ̂) | Q̂(ψ̂) ∼ P and ψ̂ ∈ 
̂}.
Note that the notational difference betweenQ and Q̂does not imply they aremathematically different;
the different notations forQ and Q̂ just show they are the spaces fromwhich the two different players,
i.e. the insurer and the reinsurer, choose alternative probability measures. Since 
 = 
̂ , indeed, the
two spaces are also the same, i.e.Q = Q̂.

Therefore, under the newmeasureQ(ψ), with the reinsurance-investment strategy π , the surplus
of the insurer can be described by the following equation:

dXπ ,ψ(t) = Xπ ,ψ(t)(r + μu(t)) dt + Xπ ,ψ(t)u(t)σ (dBQ(t) − h(t) dt)

+
[
(η − θ(t))λμ∞ + λ(1 + θ(t))

∫ a(t)

0
F(z) dz

]
dt − d

Nt∑
i=1

Za(t)
i

=
[
(η − θ(t))λμ∞ + λ(1 + θ(t))

∫ a(t)

0
F(z) dz

]
dt −

∫ +∞

0
min{z, a(t)}NQ(dt, dz)

+ Xπ ,ψ(t)(r + μu(t) − u(t)σh(t)) dt + Xπ ,ψ(t)u(t)σ dBQ(t), (2)

in which F(x) := 1 − F(x). Under the new measure Q̂(ψ̂), with the reinsurance-investment strategy
π̂ , the surplus of the reinsurer can be described by the following equation:

dWπ̂ ,ψ̂ (t) = Wπ̂ ,ψ̂ (t)(r + û(t)μ) dt + Wπ̂ ,ψ̂ (t)û(t)σ (dBQ̂(t) − ĥ(t) dt)

+ (1 + θ(t))λ(μ∞ − E[Za(t)
i ]) dt − d

Nt∑
i=1

(Zi − Za(t)
i )

= Wπ̂ ,ψ̂ (t)(r + û(t)μ − û(t)σ ĥ(t)) dt + Wπ̂ ,ψ̂ (t)û(t)σ dBQ̂(t)

+ (1 + θ(t))λ

(
μ∞ −

∫ a(t)

0
F(z) dz

)
dt −

∫ +∞

0
(z − min {z, a(t)})NQ̂(dt, dz), (3)

where NQ(dt, dz) and NQ̂(dt, dz) are Poisson measures under the alternative measures Q and Q̂,
respectively.

In the following, we will introduce the optimal reinsurance-investment problems in the principal-
agent framework. We incorporate two kinds of preferences towards uncertainty into our models:
one is via an ambiguity aversion parameter for the modeling uncertainty, the other is a risk-return
preference via a risk aversion utility function. As is well known, an investor’s risk-return preference is
often described by a utility function U(t). Arrow (1965) suggests to use −U ′′(x)/U ′(x) to represent
the risk aversion function. In this paper, we assume that U is an exponential utility, i.e. constant
absolute risk aversion (CARA) utility, and thus the risk aversion function is a constant, which is often
referred to as a CARA parameter. In fact, the CARA utility plays a vital role in actuarial mathematics
and insurance practice. It is the only utility function under the principle of ‘zero utility’ giving a fair
premium that is independent of an insurer’s level of reserves (see Gerber 1979). Finally, we derive
the optimal reinsurance contracts by maximizing the expected utility of the terminal wealth for the
insurer and the reinsurer.

Definition 2.1: A strategy π = {a(t), u(t)}0≤t≤T is called an admissible reinsurance-investment
strategy if the following conditions are satisfied
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(i) π is predictable with respect to {Ft};
(ii) ∀ t ∈ [0,T], a(t) > 0 and Eψ [

∫ T
0 u2(t)X2(t) dt] < ∞, for any ψ ∈ 
 ;

(iii) ∀ (t, x) ∈ [0,T] × R+ and ψ ∈ 
 , Equation (2) has a unique solution {Xπ ,ψ(t)}0≤t≤T such
that

Eψ
t,x

[
|U(Xπ ,ψ(T))| +

∣∣∣∣
∫ T

t
Gψ(J(s,Xπ ,ψ(s),π ,ψ)) ds

∣∣∣∣
]

< ∞,

where U(·) is the CARA utility function and
∫ T
t Gψ(J(s,Xπ ,ψ(s),π ,ψ)) ds is a penalty term

to be defined in Subsection 2.1.

Denote by 
 the set of all admissible strategies of the insurer. The notion of worst-case measure
defined above, which is a minimization over all models, is expected to have a non-trivial solution
despite the set of models being non-compact under most ordinary metrics on probability measures,
because of the presence of the penalty term. Similarly, we can define the set of admissible strate-
gies 
̂ for the reinsurer, where the admissible reinsurance-investment strategy π̂ = {θ(t), û(t)}0≤t≤T
satisfies θ(t) ≥ η and other regularity and measurability conditions as in Definition 2.1.

2.1. The agent’s problem

The insurer is uncertain about the risk from the claims and the financial market, so he regards the ref-
erence model as a possible misspecification, i.e. the insurer is suspicious about the reference model’s
accuracy. However, he must trust certain features of the reference model, particulary the use of an
aggregate claims process, and of a standard diffusion model for the financial market. He also will not
admit that alternative models can deviate very far from the reference model. As such, he incorporates
the distance between the reference measure P and the measure Q in a penalty term, to avoid having
to consider wildly different scenarios. This is particularly important to ensure that the optimization
problem under this robustness framework is well posed and has an interior solution. Asmentioned in
the abstract, and in agreement with our reference to Maenhout (2004, 2006) on page 4, we employ an
objective function which was introduced and developed in those papers, which achieves an optimiza-
tion under a worst-case scenario in the following sense. Since we want to maximize an exponential
utility, for any fixed strategy, we first search for the worst-case-scenario model among all the models
which are equivalent to the originalmodel, hence the presence of an infimum in the objective function
below. Since the space of all models Q is non-compact (and infinite-dimensional), the minimiza-
tion part of the problem requires a penalization to compactify the problem and provide an interior
solution. As mentioned, this penalization uses the distance between the alternative models and the
original model P, giving less weight to those which are far from P, with tuning parameters which
allow the agent to choose their level of aversion to modeling ambiguity. Once a worst-case model Q
has been identified, the agent optimizes their decisions by maximizing the worst-case utility over all
strategies, hence the supremum as the second step in the optimization. Following Maenhout (2004),
Zeng et al. (2016) and Gu et al. (2017), we build the following optimization problem:

(PI) : J(t, x) = sup
π∈


inf
ψ∈


J(t, x,π ,ψ) (4)

where

J(t, x,π ,ψ) := Eψ
t,x

[
− 1

γ
e−γXπ ,ψ(T) +

∫ T

t

(
1
2h

2(s)

ϕ
π ,ψ
1 (s,Xπ ,ψ(s))

+ λ(φ(s) lnφ(s) − φ(s) + 1)

ϕ
π ,ψ
2 (s,Xπ ,ψ(s))

)
ds

]
.

(5)

Here the second term is the aforementioned penalty term if the measureQ deviates far from the ref-
erence measure P. Following Maenhout (2004), for mathematical convenience and for the economic
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reasons stated in that reference, we assume that ϕπ ,ψ
1 (t, x) and ϕ

π ,ψ
2 (t, x) are non-negative and state-

dependent functions which are inversely proportional to the objective function (i.e. the penalized
utility function):

ϕ
π ,ψ
1 (t, x) = − α1

γ J(t, x,π ,ψ)
, ϕ

π ,ψ
2 (t, x) = − α2

γ J(t, x,π ,ψ)
, (6)

where α1 ≥ 0 and α2 ≥ 0 represent the insurer’s ambiguity aversion levels to the diffusion modeling
risk of the financial market and the jump modeling risk of the aggregate claims process, respectively.
Here the insurer’s preference is modeled by a CARA utility, where γ > 0 is a constant representing
the absolute risk aversion coefficient.

For notational simplicity, we denote by

Gψ(J(s,Xπ ,ψ(s),π ,ψ)) :=
1
2h

2(s)

ϕ
π ,ψ
1 (s,Xπ ,ψ(s))

+ λ(φ(s) lnφ(s) − φ(s) + 1)

ϕ
π ,ψ
2 (s,Xπ ,ψ(s))

= −γ

(
1
2h

2(s)
α1

+ λ(φ(s) lnφ(s) − φ(s) + 1)
α2

)
J(s,Xπ ,ψ(s),π ,ψ),

where the notation Gψ(J(s,Xπ ,ψ(s),π ,ψ)) highlights that the penalty term is recursive in the
(penalized) utility function.

From (2), for ∀ (t, x) ∈ [0,T] × R, ∀ f (t, x) ∈ C1,2([0,T] × R), the infinitesimal generator ofXπ ,ψ

under measureQ is given by

Aπ ,ψ
0 f (t, x) = lim

ε↓0
Eψ
t,x[f (t + ε,Xπ ,ψ(t + ε)) − f (t, x)]

ε

= fx

[
xr + xμu(t) − xσu(t)h(t) + (η − θ(t))λμ∞ + λ(1 + θ(t))

∫ a(t)

0
F(x) dx

]

+ ft(t, x) + 1
2
fxx(t, x)x2u2(t)σ 2 + λφ(t)Eψ [f (t, x − min{Z, a(t)}) − f (t, x)].

To simplify our presentation, we define the following operator:

Aπ ,ψ f (t, x) = Aπ ,ψ
0 f (t, x) − γ

(
h2(s)
2α1

+ λ(φ(s) lnφ(s) − φ(s) + 1)
α2

)
f (t, x). (7)

The recursive structure in the penalized utility function (5) makes it difficult to apply standard theory
to derive the HJB equation directly. To overcome this difficulty, we show that the penalized recursive
utility function (5) can be transformed to an additive utility.

Lemma 2.1: For any π ∈ 
 and ψ ∈ 
 , the objective function (5) is equivalent to

J(t, x,π ,ψ) = Eψ
t,x

[
e−
∫ T
t ρ(ψ(s)) ds

(
− 1

γ
e−γXπ ,ψ(T)

)]
, (8)

where

ρ(ψ(s)) := γ

(
h2(s)
2α1

+ λ(φ(s) lnφ(s) − φ(s) + 1)
α2

)
.

Moreover, the insurer’s optimization problem (PI) is equivalent to

J(t, x) = sup
π∈


inf
ψ∈


{
Eψ
t,x

[
e−
∫ T
t ρ(ψ(s)) ds

(
− 1

γ
e−γXπ ,ψ(T)

)]}
. (9)
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Proof: See Appendix. �

Though we have proved that the objective function (5) is equivalent to (8), we prefer not to for-
mulate the problem by using the equivalent objective function (8) from the very beginning. This is
because the original objective function (5) is more informative and can be decomposed into two parts
of profound economic meaning. The first part shows that the objective is to maximize the expected
exponential utility from the insurer’s terminal wealth; the second part is the penalty term when the
measureQ deviates far from the reference measure P. Indeed, the structure of (5) is adopted by most
literature on robust optimization problems in finance and insurance. One may refer to, for instance,
Maenhout (2004, 2006), Yi et al. (2015), and Zeng et al. (2016).

Therefore, we can follow Theorem 3.4 in Talay & Zheng (2002) and Theorem 3.2 in Mataramvura
& Øksendal (2008) to establish and solve the following HJB equation for the insurer’s optimization
problem (PI)

sup
π∈


inf
ψ∈


{Aπ ,ψ J(t, x)} = 0 (10)

with boundary condition

J(T, x) = − 1
γ
e−γ x. (11)

It will turn out that the reinsurer’s optimal safety loading θ∗ is deterministic. To solve (10), we only
need to focus on the deterministic function θ(t) in the infinitesimal generator, which reduces Problem
(PI) to a standard optimal control problem in the worst-case model and allows us to apply the HJB
equation to solve Problem (PI). Indeed, the derivation of the HJB equation (10) relies on using Itô’s
formula/Dynkin’s formula and localization techniques. For more discussion, one may also refer to
Appendices A and B in Chen & Shen (2018), particularly, Remark B1 therein.

According to the second step of a Stackelberg game, the insurer attempts tomaximize the expected
utility of his terminal wealth given the parameter θ(t), and then derives his optimal reinsurance and
investment strategy.

Proposition 2.2: For the optimization problem (PI), S(t, x) given below is the solution of HJB
equation (10) with boundary condition (11):

S(t, x) = − 1
γ
exp{−γ (x + g(t))},

where

g(t) =
∫ T

t
er(T−s)

[
(η − θ(s))λμ∞ + λ(1 + θ(s))

∫ a∗(s)

0
F(z) dz

]
ds

− λ

α2

∫ T

t
φ∗(s) ds +

(
λ

α2
+ μ2

2(α1 + γ )σ 2

)
(T − t).

Moreover, the maximum point π∗ is given by

π∗ = (a∗(t), u∗(t)) =
(
ln (1 + θ(t)) − lnφ∗(t)

γ er(T−t) ,
μ

xσ 2(α1 + γ ) er(T−t)

)
, (12)

and the worst-case measureQ∗ = Q(ψ∗) is determined by

ψ∗(t) = (h∗(t),φ∗(t)) =
(

α1μ

(α1 + γ )σ
, exp

{
α2 er(T−t)

∫ a∗(t)

0
eγ z e

r(T−t)
F(z) dz

})
. (13)
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Proof: See Appendix. �

The following theorem shows that the solution of HJB equation (10) given in Proposition 2.2 is
indeed the solution of problem (4).

Theorem 2.3: For the optimization problem (PI), if S(t, x) is the solution of HJB equation (10) with
boundary condition (11), the optimal value function J(t, x) = S(t, x), the optimal strategy π∗ and the
worst-case measure ψ∗ are given in Proposition 2.2.

To prove Theorem 2.3, we only need to follow the method in the proof of Theorem 3.1 in
Li et al. (2018). The only difference is that our insurance model is described by C-L model and
their insurance model is described by an approximated diffusion model. Due to the jump term∑Nt

i=1(Zi − Za(t)
i ) is bounded, so it does not create any difficulties when applying the proof method

of Li et al. (2018). Thus, we omitted the proof here.

2.2. The principal’s problem

In this subsection, as in Subsection 2.1, we incorporate the reinsurer’s ambiguity aversion into her
optimization problem. So she considers a new measure Q̂ as an alternative to the reference measure,
and is penalized if the alternative deviates far from the reference. As mentioned above, the reinsurer
can invest all her wealth into the financialmarket.Moreover, she accepts the insurance business ceded
from the insurer (recall that we assumed a lower bound to the reinsurance loading factor, which jus-
tifies this acceptance). As mentioned, similar to Hu et al. (2018a, 2018b), we regard the reinsurance
premium θ(t) as the reinsurance price at time t. Thus the reinsurance premium θ(t) and the invest-
ment strategy û(t) form the decision variable (control) π̂(t) = (θ(t), û(t)). Based on the Stackelberg
game, the reinsurer will make her final decision under the strategy a∗(t) given by Proposition 2.2.
Again, this is consistent with the assumption that the reinsurer picks up the insurer’s ceded risk.
Under the new measure Q̂ and a reinsurance-investment strategy π̂ , the surplus of the reinsurer is
given by:

dWπ̂ ,ψ̂ (t) = Wπ̂ ,ψ̂ (t)(r + û(t)μ) dt + Wπ̂ ,ψ̂ (t)û(t)σ (dBQ̂(t) − ĥ(t) dt)

+ (1 + θ(t))λ(μ∞ − E[Za∗(t)
i ]) dt − d

Nt∑
i=1

(Zi − Za∗(t)
i )

= Wπ̂ ,ψ̂ (t)(r + û(t)μ − û(t)σ ĥ(t)) dt + Wπ̂ ,ψ̂ (t)û(t)σ dBQ̂(t)

+ (1 + θ(t))λ

(
μ∞ −

∫ a∗(t)

0
F(z) dz

)
dt −

∫ ∞

0
(z − min (z, a∗(t)))NQ̂(dt, dz).

We assume that the reinsurer aims tomaximize the expected exponential utility under the worst-case
scenario, and seeks the optimal strategy π̂ to form the optimal robust reinsurance contract. Thus, we
build the optimization problem:

(PR) : V(t,w) = sup
π̂∈
̂

inf
ψ̂∈
̂

V(t,w, π̂ , ψ̂), (14)

where

V(t,w, π̂ , ψ̂) := Eψ̂
t,w

⎡
⎣− 1

m
e−mWπ̂ ,ψ̂ (T) +

∫ T

t

⎛
⎝ 1

2 ĥ
2(s)

ϕ̂
π̂ ,ψ̂
1 (s,Wπ̂ ,ψ̂ (s))
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+ λ(φ̂(s) ln φ̂(s) − φ̂(s) + 1)

ϕ̂
π̂ ,ψ̂
2 (s,Wπ̂ ,ψ̂ (s))

⎞
⎠ ds

⎤
⎦ . (15)

Here the reinsurer views the second term as a penalty term if the measure Q̂ deviates from the ref-
erence measure P. As described in Subsection 2.1, we also assume that ϕ̂

π̂ ,ψ̂
1 (t,w) and ϕ̂

π̂ ,ψ̂
2 (t,w)

are non-negative and state-dependent functions which are inversely proportional to the objec-
tive/penalized utility function:

ϕ̂
π̂ ,ψ̂
1 (t,w) = − β1

mV(t,w, π̂ , ψ̂)
, ϕ̂

π̂ ,ψ̂
2 (t,w) = − β2

mV(t,w, π̂ , ψ̂)
, (16)

where β1 ≥ 0 and β2 ≥ 0 quantify the reinsurer’s ambiguity levels to financial risk modeling and
claims risk modeling, specifically at the level of drift and jump rate parameters. The larger β1 and
β2 are, the less modeling confidence the reinsurer has. We can also interpret this as saying that they
have lessmodeling information.Whenβ1 = β2 = 0, the reinsurer believes completely in the financial
market and insurance models. Just as for the insurer, the reinsurer has a CARA utility function, and
m> 0 is her absolute risk aversion coefficient.

In the following, we introduce the use of subscripts ij to showwhether the insurer or the reinsurer is
ambiguity-averse: i = 1 (j = 1) indicates that the insurer (the reinsurer) is ambiguity-averse, and i =
2 (j = 2) indicates that the insurer (the reinsurer) is not ambiguity-averse, i.e. is ambiguity-neutral.
For example, a12 represents the excess-of-loss strategy under the reinsurance contract, where the
insurer is ambiguity-averse and the reinsurer is ambiguity-neutral.

Following a similar method used in Subsection 2.1, we can derive the optimal strategy and value
function for the reinsurer when the insurer and the reinsurer are both ambiguity-averse. First, we give
the HJB equation for the optimization problem (PR) with value function V11(t,w). For convenience,
we define a variational operator B with π̂11(t) = (θ11(t), û11(t)) and ψ̂11(t) = (ĥ11(t), φ̂11(t)) :

Bπ̂11,ψ̂11 f (t,w) = ft(t,w) + fw[wr + wμû11(t) − wσ ĥ11(t)û11(t)]

+ fw

[
(1 + θ(t))λ(μ∞ −

∫ a∗(t)

0
F(z) dz)

]
+ 1

2
fwww2σ 2û211(t)

+ λφ̂11(t)Eψ̂11 [f (t,w − (Zi − min(Zi, a∗(t)))) − f (t,w)]

− m

(
ĥ211(t)
2β1

+ λ
(
φ̂11(t) ln φ̂11(t) − φ̂11(t) + 1

)
β2

)
f (t,w). (17)

As in Subsection 2.1, we can transform the optimization problem (PR) to the following equivalent
problem without recursive structure:

V11(t,w) = sup
π̂11∈
̂

inf
ψ̂11∈
̂

{
Eψ̂11
t,w

[
e−
∫ T
t ρ̂(ψ̂11(s)) ds

(
− 1
m

e−mWπ̂ ,ψ̂ (T)

)]}
(18)

where

ρ̂(ψ̂11(s)) := m

(
ĥ211(s)
2β1

+ λ
(
φ̂11(s) ln φ̂11(s) − φ̂11(s) + 1

)
β2

)
.

It can again be shown as Theorem 3.4 in Talay & Zheng (2002) and Theorem 3.2 in Mataramvura &
Øksendal (2008) that the HJB equation for the optimization problem (PR) is

sup
π̂11∈
̂

inf
ψ̂11∈
̂

{Bπ̂11,ψ̂11V11(t,w)} = 0, (19)



SCANDINAVIAN ACTUARIAL JOURNAL 13

with boundary condition

V11(T,w) = − 1
m

e−mw. (20)

From Proposition 2.2, we see that the insurer’s optimal retention level a∗ is deterministic. As dis-
cussed after Equation (11), the optimization problem (PR) also reduces to a standard optimal control
problem in the worst-case model. Indeed, for both the insurer’s and reinsurer’s optimization prob-
lems, it is the special structure of exponential utilities that separates the states from optimal strategies
and guarantees the applicability of HJB equations in these problems.

Proposition2.4: For the optimization problem (PR),when both the insurer and reinsurer are ambiguity
averse to modeling the financial market and the insurance business claims, H(t,w) given below is the
solution of HJB equation (19) with boundary condition (20):

H(t,w) = − 1
m

exp{−m(w + ĝ11(t))},

where

ĝ11(t) =
∫ T

t

[
λ er(T−s)

(
μ∞ −

∫ a∗
11(s)

0
F(z) dz

)
(1 + θ∗

11(s)) − λφ̂∗
11(s)
β2

]
ds

+
(

μ2

2σ 2(β1 + m)
+ λ

β2

)
(T − t),

the maximum point π̂∗ = (θ∗
11(t), û

∗
11(t)) is given by

1 + θ∗
11(t) =

⎧⎪⎪⎨
⎪⎪⎩

φ̂∗
11(t)[F(a∗

11(t)) + mer(T−t) e−ma∗
11(t) e

r(T−t) ∫ +∞
a∗
11(t)

F(z) emz er(T−t)
dz]

F(a∗
11(t)) − (μ∞ − ∫ a∗

11(t)
0 F(z) dz)γ er(T−t)

, t ∈ O,

1 + η, t ∈ O,

û∗
11(t) = μ

wσ 2(β1 + m) er(T−t) ,

and the worst-case measure Q̂∗ = Q̂(ψ̂∗
11) is determined by

ψ̂∗
11(t) = (ĥ∗

11(t), φ̂
∗
11(t)) =

(
β1μ

σ(β1 + m)
, exp

{
β2 er(T−t) e−ma∗

11(t) e
r(T−t)

∫ ∞

a∗
11(t)

F(z) emz er(T−t)
dz

})

where

a∗
11(t) = ln (1 + θ∗

11(t)) − lnφ∗
11(t)

γ er(T−t) ,

O :=
⎧⎨
⎩t
∣∣∣∣ φ̂

∗
11(t)[F(a∗

11(t)) + mer(T−t) e−ma∗
11(t) e

r(T−t) ∫ +∞
a∗
11(t)

F(z) emz er(T−t)
dz]

F(a∗
11(t)) − (μ∞ − ∫ a∗

11(t)
0 F(z) dz)γ er(T−t)

> 1 + η

⎫⎬
⎭

and

O :=
⎧⎨
⎩t
∣∣∣∣ φ̂

∗
11(t)[F(a∗

11(t)) + mer(T−t) e−ma∗
11(t) e

r(T−t) ∫ +∞
a∗
11(t)

F(z) emz er(T−t)
dz]

F(a∗
11(t)) − (μ∞ − ∫ a∗

11(t)
0 F(z) dz)γ er(T−t)

≤ 1 + η

⎫⎬
⎭ .
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Proof: See Appendix. �

The following theorem shows the solution of problem (PR) and gives the reinsurance contract
between the insurer and the reinsurer.

Theorem 2.5: When both the insurer and reinsurer are ambiguity averse to modeling the financial
market and the insurance business claims, if H(t,w) is the solution of HJB equation (19) with boundary
condition (20), then for the optimization problem (PR) the optimal value function V(t,w) = H(t,w)

and the robust optimal reinsurance contract (a∗
11(t), θ

∗
11(t)) are given by Proposition 2.4. Under this

optimal reinsurance contract, the insurer’s value function is

J(t, x) = − 1
γ
exp{−γ (er(T−t)x + g11(t))},

where

g11(t) =
∫ T

t
er(T−s)

[
(η − θ∗

11(s))λμ∞ + λ(1 + θ∗
11(s))

∫ a∗
11(s)

0
F(z) dz

]
ds

− λ

α2

∫ T

t
φ∗
11(s) ds +

(
λ

α2
+ μ2

2(α1 + γ )σ 2

)
(T − t),

and the worst-case scenario for the insurer is ψ∗
11(t) = (h∗

11(t),φ
∗
11(t)), and

h∗
11(t) = α1μ

(α1 + γ )σ
;

φ∗
11(t) = exp

{
α2 er(T−t)

∫ a∗
11(t)

0
eγ z e

r(T−t)
F(z) dz

}
.

On the one hand, the optimal excess-of-loss retention level a∗
11(t) depends on the optimal reinsur-

ance premium θ∗
11(t). The bigger θ∗

11(t) is, the greater a
∗
11(t) is. On the other hand, the reinsurance

premium θ∗
11(t) depends on a∗

11(t), the insurer’s absolute risk aversion γ and the distribution of the
claim. Therefore, the insurer and the reinsurer are expected to negotiate to produce a fair reinsurance
contract. In order to better understand the trade-off between a∗

11(t) and θ∗
11(t), in the next section, we

assume the claim size follows the exponential distribution with parameter λ̂, and we derive explicit
expressions for the reinsurance contract and the value functions.

3. Reinsurance contract with claim following the exponential distribution

In order to solve explicitly the optimization problems, we make the simplifying assumption that
the claim Z follows an exponential distribution with parameter λ̂. It turns out that our framework
runs into mathematical difficulties if the claims intensity is low compared to the two players’ risk-
aversion coefficients. To avoid this problem, for the sake of a simpler exposition, we assume that
λ̂ > max{γ erT ,merT}. According to the results given in the last section, we can derive the follow-
ing propositions. For convenience, and as done above, we denote the strategies as aij, uij and ψij for
the insurer and θij, ûij and ψ̂ij for the reinsurer, where the indices i = 1 or j = 1 represent the AAI
(ambiguity-averse insurer) or AAR (ambiguity-averse reinsurer), and i = 2 or j = 2 represent the
ANI (ambiguity-neutral insurer) or ANR (ambiguity-neutral reinsurer).

Proposition 3.1: When the claim follows the exponential distribution with parameter λ̂, and both the
insurer and the reinsurer have ambiguity aversion and risk aversion, the optimal robust reinsurance
contract is given by
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a∗
11(t) =

ln φ̂∗
11(t) + ln λ̂2

(λ̂−γ er(T−t))(λ̂−mer(T−t))
− lnφ∗

11(t)

γ er(T−t) ,

1 + θ∗
11(t) =

⎧⎪⎨
⎪⎩

φ̂∗
11(t)λ̂

2

(λ̂ − γ er(T−t))(λ̂ − mer(T−t))
, 0 ≤ t < t0,

1 + η, t0 ≤ t ≤ T.
(21)

where t0 is a root to the following equation

φ̂∗
11(t0)λ̂

2

(λ̂ − γ er(T−t0))(λ̂ − mer(T−t0))
= 1 + η.

With this reinsurance contract, for the insurer, the worst-case distortion ψ∗
11(t) = (h∗

11(t),φ
∗
11(t)) and

the optimal investment strategy u∗
11(t) are:

h∗
11(t) = α1μ

(α1 + γ )σ

φ∗
11(t) = exp

{
α2 er(T−t)(ea

∗
11(t)(γ er(T−t)−λ̂) − 1)

γ er(T−t) − λ̂

}
(22)

and

u∗
11(t) = μ

xσ 2(α1 + γ ) er(T−t) . (23)

Then the insurer’s corresponding value function J11(t, x) is:

J11(t, x) = − 1
γ
exp{−γ (er(T−t)x + g11(t))},

where

g11(t) =
∫ T

t
er(T−s)

[
(η − θ∗

11(s))λμ∞ + λ(1 + θ∗
11(s))

∫ a∗
11(s)

0
F(z) dz

]
ds − λ

α2

∫ T

t
φ̂∗
11(s) ds

+
(

λ

α2
+ μ2

2(α1 + γ )σ 2

)
(T − t).

With this reinsurance contract, for the reinsurer, the worst-case distortion ψ̂∗
11(t) = (ĥ∗

11(t), φ̂
∗
11(t)) and

the optimal investment strategy û∗
11(t) are:

ĥ∗
11(t) = β1μ

(β1 + m)σ

φ̂∗
11(t) = exp

{
−β2 er(T−t) e−a∗

11(t)λ̂

mer(T−t) − λ̂

}
(24)
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and

û∗
11(t) = μ

wσ 2(β1 + m) er(T−t) . (25)

The reinsurer’s corresponding value function V11(t,w) is:

V11(t,w) = − 1
m

exp{−m(er(T−t)w + ĝ11(t))}

where

ĝ11(t) =
∫ T

t

[
λ er(T−s)

(
μ∞ −

∫ a∗
11(s)

0
F(z) dz

)
(1 + θ∗

11(s)) − λφ̂∗
11(s)
β2

]
ds

+
(

μ2

2σ 2(β1 + m)
+ λ

β2

)
(T − t).

Proposition 3.1 implies that the more ambiguity averse the insurer is (or the reinsurer is), the
more distortions there are. Equation (21) shows that the insurer pays attention not only to his
own ambiguity aversion α2 but also to the reinsurer’s ambiguity aversion β2. Moreover, the rein-
surer’s ambiguity aversion has a positive effect on the insurer’s risk position in his reinsurance
strategy: with the increase of β2, the corresponding distortion φ̂∗

11(t) will increase, which causes
the insurer to pay more for the reinsurance, and as a direct result, the insurer will decrease his
reinsurance.

Proposition 3.2: When the claims follow the exponential distribution with parameter λ̂, the retention
level a∗

11(t) for the insurer increases w.r.t. β2 and decreases w.r.t. α2; the reinsurance premium θ∗
11(t)

increases w.r.t. α2 and β2, i.e.

da∗
11(t)
dα2

< 0;
da∗

11(t)
dβ2

> 0;
dθ∗

11(t)
dα2

> 0;
dθ∗

11(t)
dβ2

> 0.

Remark 3.1: When both parties to the contract are ambiguity averse, Proposition 3.2 shows that
the AAI would like to buy more reinsurance with the increase of his ambiguity level and tends to
decrease his reinsurance with the increase of the reinsurer’s ambiguity level; the AAR would raise the
reinsurance price with the increase of the insurer’s ambiguity aversion or her own. This phenomenon
will be further explained in Subsection 4.1.

Proposition 3.3: When the claims follow the exponential distribution with parameter λ̂, the distortion
ψ∗
11(t) and ψ̂∗

11(t)will increase w.r.t. the ambiguity aversion coefficientsα2 andβ2, i.e. dψ∗
11(t)/dα2 > 0

and dψ̂∗
11(t)/dβ2 > 0.

The proof can be given by differentiating ψ∗
11(t) and ψ̂∗

11(t) w.r.t α2 and β2. Obviously, a∗
11(t)

depends on not only α2 and β2, but also on γ , m and λ̂. In order to understand these parameters’
effects more explicitly, we will present a numerical analysis of these effects on the a∗

11(t) and θ∗
11(t) in

Section 4.

Corollary 3.4: Assume the claims follow the exponential distribution with parameter λ̂, the insurer is
an ANI, i.e. no ambiguity aversion to the financial market and the insurance business, and the reinsurer
is an AAR. Then the robust reinsurance contract is the following: the optimal robust reinsurance contract
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is given by

a∗
21(t) =

ln φ̂∗
21(t) + ln λ̂2

(λ̂−γ er(T−t))(λ̂−mer(T−t))

γ er(T−t) ,

1 + θ∗
21(t) =

⎧⎪⎨
⎪⎩

φ̂∗
21(t)λ̂

2

(λ̂ − γ er(T−t))(λ̂ − mer(T−t))
, 0 ≤ t < t0,

1 + η, t0 ≤ t ≤ T,

where t0 is the root to the following equation

φ̂∗
21(t0)λ̂

2

(λ̂ − γ er(T−t0))(λ̂ − mer(T−t0))
= 1 + η,

and

φ̂∗
21(t) = exp

{
−β2 er(T−t) e−a∗

21(t)λ̂

mer(T−t) − λ̂

}
.

With this reinsurance contract, for the insurer, the optimal investment strategy is

u∗
21(t) = μ

xσ 2γ er(T−t) .

The insurer’s corresponding value function J21(t, x) is:

J21(t, x) = − 1
γ
exp{−γ (er(T−t)x + g21(t))},

where

g21(t) =
∫ T

t
er(T−s)

[
(η − θ∗

21(s))λμ∞ + λ(1 + θ∗
21(s))

∫ a∗
21(s)

0
F(z) dz

]
ds + μ2

2γ σ 2 (T − t)

λ

∫ T

t
er(T−s)

∫ a∗
21(s)

0
eγ ze

r(T−s)
F(z) dz ds.

With this reinsurance contract, for the reinsurer, the worst-case distortion, the optimal strategy, and the
optimal value function have the same form as that in Proposition 3.1:

V21(t,w) = − 1
m

exp{−m(er(T−t)w + ĝ21(t))}

where

ĝ21(t) =
∫ T

t

[
λ er(T−s)

(
μ∞ −

∫ a∗
21(s)

0
F(z) dz

)
(1 + θ∗

21(s)) − λφ̂∗
21(s)
β2

]
ds

+
(

μ2

2σ 2(β1 + m)
+ λ

β2

)
(T − t).

Remark 3.2: Theorem 4 in Hu et al. (2018b) is a special case of Corollary 3.4. If the investment
strategy u(t) ≡ 0 and û(t) ≡ 0, Corollary 3.4 degenerates into Theorem4 inHu et al. (2018b). Indeed,
this reference does not consider the possibility of risky investments.
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Corollary 3.5: When the claims follow the exponential distribution with parameter λ̂, the insurer is an
AAI and the reinsurer is an ANR, then the reinsurance contract is given by the following:

a∗
12(t) =

ln λ̂2

(λ̂−γ er(T−t))(λ̂−mer(T−t))
− lnφ∗

12(t)

γ er(T−t) ,

1 + θ∗
12(t) =

⎧⎪⎨
⎪⎩

λ̂2

(λ̂ − γ er(T−t))(λ̂ − mer(T−t))
, 0 ≤ t < t0,

1 + η, t0 ≤ t ≤ T,

where t0 is the root of the following equation

λ̂2

(λ̂ − γ er(T−t0))(λ̂ − mer(T−t0))
= 1 + η,

and

φ∗
12(t) = exp

{
α2 er(T−t)(ea

∗
12(t)(γ er(T−t)−λ̂) − 1)

γ er(T−t) − λ̂

}
.

With this reinsurance contract, for the insurer, the worst-case distortion ψ∗
12(t) = (h∗

12(t),φ
∗
12(t)) and

the insurer’s optimal investment strategy u∗
12(t) are:

h∗
12(t) = α1μ

(α1 + γ )σ

φ∗
12(t) = exp

{
α2 er(T−t)(ea

∗
12(t)(γ er(T−t)−λ̂) − 1)

γ er(T−t) − λ̂

}

and

u∗
12(t) = μ

xσ 2(α1 + γ ) er(T−t) .

The insurer’s corresponding value function J12(t, x) is:

J12(t, x) = − 1
γ
exp{−γ (er(T−t)x + g12(t))},

where

g12(t) =
∫ T

t
er(T−s)

[
(η − θ∗

12(s))λμ∞ + λ(1 + θ∗
12(s))

∫ a∗
12(s)

0
F(z) dz

]
ds − λ

α2

∫ T

t
φ∗
12(s) ds

+
(

λ

α2
+ μ2

2(α1 + γ )σ 2

)
(T − t).

With this reinsurance contract, for the reinsurer, the optimal investment strategy û∗
12(t) is:

û∗
12(t) = μ

wσ 2mer(T−t) .

The reinsurer’s corresponding value function V12(t,w) is:

V12(t,w) = − 1
m

exp{−m(er(T−t)w + ĝ12(t))}
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where

ĝ12(t) =
∫ T

t

[
λ er(T−s)

(
μ∞ −

∫ a∗
12(s)

0
F(z) dz

)
(1 + θ∗

12(s))

]
ds + μ2

2σ 2m
(T − t)

− λ

∫ T

t
er(T−s) e−ma∗

12(s) e
r(T−s)

∫ ∞

a∗
12(s)

F(z) em er(T−s)z dz ds.

Remark 3.3: According to Corollaries 3.5 and 3.4, we know that θ∗
12(t) is different from θ∗

21(t). Even
though they are both time-dependent functions and depend on the absolute risk aversion γ and m,
θ∗
12(t) is independent of the ambiguity aversion of the insurer while θ∗

21(t) is a function of the ambi-
guity aversion of the reinsurer. Can we conclude that the reinsurance premium depends only on the
ambiguity of the reinsurer but not on the ambiguity of the insurer? The answer is No. Proposition 3.1
reveals that the reinsurance premium depends on ambiguity aversion levels of both the insurer and
the reinsurer. Consequently, it is critical for the two parties of the contract tomake clear if the opposite
side is ambiguity averse. After all, the insurer’s retention level is always a function of the ambiguity
aversion levels for the insurer and the reinsurer.

If the insurer’s and the reinsurer’s ambiguity aversion coefficients equal 0, this means that they
believe the reference model, or they are ambiguity-neutral. So the robust excess-of-loss reinsurance
contract will reduce to the standard excess–of-loss reinsurance contract.

Corollary 3.6: When the claims follow the exponential distribution with parameter λ̂, and both the
insurer and the reinsurer are ambiguity-neutral, the reinsurance contract is given by

a∗
22(t) =

ln λ̂2

(λ̂−γ er(T−t))(λ̂−mer(T−t))

γ er(T−t) ,

1 + θ∗
22(t) =

⎧⎪⎨
⎪⎩

λ̂2

(λ̂ − γ er(T−t))(λ̂ − mer(T−t))
, 0 ≤ t < t0,

1 + η, t0 ≤ t ≤ T,

where t0 is the root of the following equation

λ̂2

(λ̂ − γ er(T−t0))(λ̂ − mer(T−t0))
= 1 + η.

With this reinsurance contract, for the insurer, the optimal investment strategy u∗
22(t) is:

u∗
22(t) = μ

xσ 2γ er(T−t) .

The insurer’s corresponding value function J22(t, x) is:

J22(t, x) = − 1
γ
exp{−γ (er(T−t)x + g22(t))},
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where

g22(t) =
∫ T

t
er(T−s)

[
(η − θ∗

22(s))λμ∞ + λ(1 + θ∗
22(s))

∫ a∗
22(s)

0
F(z) dz

]
ds + μ2

2γ σ 2 (T − t)

− λ

∫ T

t
er(T−s)

∫ a∗
22(s)

0
eγ z e

r(T−s)
F(z) dz ds.

With this reinsurance contract, for the reinsurer, the optimal investment strategy û∗
22(t) is:

û∗
22(t) = μ

wσ 2mer(T−t) .

The reinsurer’s corresponding value function V22(t,w) is:

V22(t,w) = − 1
m

exp{−m(er(T−t)w + ĝ22(t))}

where

ĝ22(t) =
∫ T

t

[
λ er(T−s)

(
μ∞ −

∫ a∗
22(s)

0
F(z) dz

)
(1 + θ∗

22(s))

]
ds + μ2

2σ 2m
(T − t)

− λ

∫ T

t
er(T−s) e−ma∗

22(s) e
r(T−s)

∫ ∞

a∗
22(s)

F(z) em er(T−s)z dz ds.

Remark 3.4: As we can see, the reinsurance contract does not depend on the financial volatility and
return parameters, while the investment strategies u(t) and û(t) only depend on these parameters and
the risk-aversion parameters. This shows that the reinsurance strategy is independent of the financial
market, and the investment strategy is independent of the insurance model.

4. Numerical analysis

In this section, we focus on the effect of the insurer and reinsurer’s ambiguity aversion levels on the
reinsurance strategies and the reinsurance price. Using exponential utility, we analyze the actions
which the insurer or the reinsurer would take depending on their aversion or neutrality to ambigu-
ity. We use the acronyms AAR, AAI, ANR, and ANI, for the ambiguity averse or neutral reinsurer or
insurer.We find that in some cases the ambiguity aversion parameters have no significant influence on
the utility functions, but in some cases they have an active impact on the value functions. Finally, we
analyze utility loss functions, i.e. the proportion of utility that is given up as a consequence of adopting
a robust strategy; we focus particularly on how these loss functions are impacted by the frame-
work’s important parameters, especially those measuring ambiguity preference. Throughout this
section, unless otherwise stated, the basic parameters are given by r = 0.03, γ = 0.5,m = 0.4,T =
4, λ = 1,μ = 0.15, σ = 0.35, η = 0.15,β1 = 4,β2 = 4,α1 = 4,α2 = 4, x = 1. Moreover, we assume
that the claim size Zi follows the exponential distribution with parameter λ̂ = 6 (an average of one
claim every twomonths, corresponding to the idea of an insurer with a small number of large clients),
and therefore the claim size density function is f (z) = 6 e−6z .

4.1. Impact of ambiguity on the insurer’s excess-of-loss reinsurance strategies, and on the
reinsurance premiums

From the discussion in Section 3, we know that the excess-of-loss reinsurance strategies aij and the
prices or premiums for reinsurance θij only depend on the ambiguity aversion of the insurer and
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Figure 1. Impact ofα2 andβ2 on the excess-of loss reinsurance strategies of the insurer at time t = 2. Note: in the figure a21 is red.

the reinsurer for the negative claims, i.e. α2 and β2. First, for the impact of α2 and β2 on the rein-
surance strategies, Figure 1(a) shows that the retention levels a11 and a12 will decrease quickly with
an increase in the ambiguity-aversion level α2 in the beginning, but this sensitivity is weaker when
α2 is greater than 2. In other words, as one would expect intuitively, when the insurer feels more
uncertain about the negative claims, he would prefer to depend more on reinsurance; certainly, an
AAI depends more heavily on reinsurance than an ANI. He decreases heavily his retention level
with the initial increase of α2, but increases smoothly his retention level with the increase of the
reinsurer’s ambiguity aversion β2, particularly for larger values of β2, resulting in more expensive
reinsurance. These effects are illustrated in Figure 1(b). Comparing Figure 1(a,b), we notice that α2
takes a more important role than β2 in the reinsurance strategies, because the reinsurance strategies
slowly increase with β2 and a21 is always greater than a11. In all cases, the reinsurance strategies are
sensitive to parameter α2, i.e. the insurer pays close attention to his own ambiguity to claims-risk
modeling.

Similarly to the analysis of the reinsurance strategy, we study the impact of ambiguity aversion
parametersα2 andβ2 on the price of reinsurance. Intuitively, the reinsurermay be tempted to increase
the value of the reinsurance price θ if her own ambiguity level increases, to make up that added
uncertainty. However, the ANR would not do so for θ∗

12 = θ∗
22. Even in the case of AAR and ANI,

the AAR’s price increase is negligible as her ambiguity level β2 rises. We only find notable sensitiv-
ities of reinsurance prices θ on ambiguity levels in the case that both parties are ambiguity averse.
As Figure 2 shows, the price of the reinsurance will rise with the increase of α2 and β2. Also, the
reinsurance prices rise with β2 when the insurer is neutral on claims modeling ambiguity. In other
cases, the reinsurance price is nearly insensitive to β2 and α2. In Section 3 we saw that θ12 = θ22.
We get the result that if the reinsurer is ambiguity-neutral (ANR), she will have no concern over
whether the insurer is ANI, the reinsurance price tends to be a function of time t only. Similarly,
if the reinsurer is an AAR, and the insurer is an ANR, the reinsurer will tend to ignore her own
ambiguity in making decision when her ambiguity aversion level is not too big. The situation changes
completely when both players are ambiguity averse. In particular, the reinsurer would pay close atten-
tion to the insurer’s ambiguity, i.e. she would increases the price of reinsurance when α2 and β2
increase.

Summarizing the discussion above, we conclude that the ambiguity levels for the claims are key
factors in decision-making, which should be taken into account carefully in designing a contractwhen
both parties are ambiguity averse.



22 A. GU ET AL.

Figure 2. Impact of α2 and β2 on the reinsurance price of reinsurer at time t = 2.

4.2. Impact of ambiguity on the value functions

We have already determined above that financial market model’s parameters do not affect the rein-
surance strategy and the price of reinsurance, but they have an active effect on both the insurer’s and
the reinsurer’s utility functions because the opportunity for risky investments is a main measure that
they would use to improve profits from their reserves. Accordingly, in this subsection, the impact
of ambiguity aversion α1,α2 and β2 will be discussed. From Figure 3, we find that all forms of the
insurer’s utility function decrease with respect to time t, α1,α2 and β2, except J12 and J21 which are
largely insensitive to the claims-risk modeling preference parameters α2 and β2. In other words, the
insurer’s utility function will not be sensitive to ambiguity levels about claims modeling when one
part of the reinsurance contract is ambiguity-averse, and the other part is ambiguity-neutral.

As mentioned in the above Subsection 4.1, not only does the insurer pay close attention to his
own ambiguity, but the reinsurer is also very sensitive to her client’s ambiguity. This has important
practical applications when writing reinsurance contracts, since it suggests that a discussion between
both parties is critically needed, so that the reinsurer can understand the insurer’s confidence level
about his own risk modeling.

Let us be qualitatively specific. On the one hand, α1 and α2 have a negative effect on the insurer’s
utility function. The reason is that the increase of α1 and α2 will force the insurer to decrease his
financial investment and his reinsurance level, and those would have positive effects on his utility
function, as can be seen in Figure 6 of Gu et al. (2017). On the other hand, α2 has a positive effect
on the reinsurer’s utility function, and the reinsurer’s optimal value function is more sensitive to α2.
This fact is quite clearly illustrated in Figure 4(a). Somewhat surprisingly, V12 is most sensitive to α2
in all cases. This tells us that the reinsurer must pay very close attention to the insurer’s ambiguity
level, or face a significant loss in her utility function. We will have more to say about these kinds of
losses in the next subsection. We notice that V11 increases slightly with β2, even though it is not very
sensitive to this parameter. In other words, the reinsurer can attempt to raise her utility by increasing
her ambiguity aversion level, but this is not a very effective means of increasing profits. This can be
viewed as reassuring, since, in the asymmetric framework of a principal-agent contract negotiation,
for the principal to increase arbitrarily her ambiguity level for the sole purpose of squeezing out more
profit, could be seen as an inefficient way of hiding information from the agent. In any case, the most
effective measure for the reinsurer to have a good handle on her value function, and to make sure it is
as high as possible, is to estimate the insurer’s ambiguity level and adopt the corresponding optimal
reinsurance price.
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Figure 3. Impact of α1,α2 and β2 on the insurer’s utility functions.

Summarizing the above analysis: when the insurer is an ANI, it is not necessary for the reinsurer to
consider ambiguity when she makes her decisions; but when the insurer is an AAI, the reinsurer has
to understand both her own ambiguity aversion level and the insurer’s in order to follow an optimal
strategy; and in this case, understanding the insurer’s ambiguity aversion level is quantitatively very
significant.
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Figure 4. Impact of α2 and β2 on the reinsurer’s utility functions.

4.3. Utility loss functions

Firstly, we discuss the utility loss functions for the insurer and the reinsurer, which are caused by
adopting a robust strategy to deal with ambiguity aversion, in comparison to the (overly optimistic)
situation in which the estimated models are assumed to be correctly specified. We strive to present
the positive and negative effects of ambiguity aversion on both parties in the reinsurance contract.

First, we define the utility loss functions for the insurer

Lij = 1 − J22
Jij

, i, j = 1, 2,

where Jij is the value function of the insurer under the reinsurance-investment strategy, in which the
reinsurance strategy is determined by the reinsurance contract with the insurer in the state i and the
reinsurer in the state j. Recall that i or j = 1 indicates that the insurer or the reinsurer is ambiguity
averse (is an AAI or AAR), while i or j = 2 indicates corresponding neutrality towards ambiguity
(ANI or ANR). Since J22 is the utility assuming that the estimated models are correct, thus Lij rep-
resents the proportion of loss one must accept for following a strategy that is robust towards the
ambiguity scenario (i, j). Similarly, using the value function Vij, we define the utility loss functions
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Figure 5. Impact of time t,α2 and β2 on the insurer’s utility loss functions.

for the reinsurer

RLij = 1 − V22

Vij
.

Figure 5(a) withαi = βi = 4, i = 1, 2 shows that the utility loss functions for the insurer will decrease
with time t. Figure 5(b,c) illustrates that the utility loss changes withα2 andβ2. Surprisingly, the utility
loss L21 = 0, which means that J21 = J22, and the ANI will not see any difference in utility whether
the reinsurer is an AAR or ANR; he only needs to focus on his ambiguity-aversion. This is an aspect
of the contract asymmetry in a principal-agent framework. However, when the insurer is an AAI,
Figure 5 tells us that L11 > L12 > L21 = 0, which shows that ambiguity aversion always causes the
insurer to get less utility no matter whether the reinsurer is ambiguity averse or not; on the other
hand, the reinsurer’s ambiguity aversion has a positive effect on the utility loss (as we hinted earlier),
but the impact is small: the difference between L11 and L12 is not large and disappears as time closing
to maturity T. All these points towards saying that the reinsurer’s ambiguity has hardly any effect on
the insurer’s strategy and utility; the insurer only needs to concern himself about his own ambiguity.

Figure 6 illustrates thatRL21 > RL11 > 0 > RL12.We notice thatRL12 < 0. This is consistent with
our intuition. The insurer would like to buy more reinsurance to transfer his risk to the reinsurer
when he is averse to ambiguity, and as a result, the reinsurer will pick up more business, causing her
utility function to improve. From Figure 6(b), the utility loss RL11 keeps close to RL21 when time t
is close to maturity T. This means that an ambiguity-averse reinsurer would pay little attention to
the insurer’s ambiguity, but an ambiguity-neutral reinsurer would like to do more business with the
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Figure 6. Impact of time t,α2 and β2 on the reinsurer’s utility loss functions.

ambiguity-averse insurer. All these figures show that the levels of utility losses are all moderate. Thus,
broadly speaking, ambiguity for the insurer or the reinsurer will cause some utility loss but the loss is
not substantial. Moreover, if we assume that the ambiguity aversion stays unchanged with time t, the
reinsurer’s ambiguity will cause very little or no concern to either party, while the insurer should care
about his own ambiguity.

From the discussion above, we know that the utilities of the insurer or the reinsurer see little dif-
ference between the cases with ambiguity or no ambiguity. This is an excellent point in favor of using
robust optimal strategies. It is reasonable for both the insurer and the reinsurer to follow strategies,
since they do not need to worry much at all about their utility losses.

But there is a secondway of seeing how important it is to follow a strategy that is robust tomodeling
ambiguity: what happens if one is overly confident in one’s model, and one follows the strategy it
dictates, not a robust strategy, but the model turns out to be wrong. To address this question, we
define the notion of real utility loss function for the AAR (ambiguity averse reinsurer), and the reason
causing this real loss is that she uses a strategy which is non-robust with respect to her own ambiguity
and the insurer’s. We can assume that the insurer is ambiguity neutral (ANI) or ambiguity averse
(AAI). Thus in both cases, the reinsurer believes that (a∗

22(t), θ
∗
22(t), û

∗
22(t)) is her optimal strategy,

but the optimal strategy is a robust one, either with subscript (1, 1) or (2, 1). With the (2, 2) strategy,
we can easily calculate the value functions V11 and V21 corresponding to what the insurer will do in
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Figure 7. Impact of time t,β1 and β2 on the utility loss functions of the reinsurer with suboptimal strategy.

our principal-agent framework. In fact, we have

V11 = V21 = − 1
m

exp{−m(er(T−t)w + g(t))}

where

g(t) =
∫ T

t

[
λ er(T−s)(μ∞ −

∫ a∗
22(s)

0
F(z) dz)(1 + θ∗

22(s)) − λφ
∗
(s)

β2

]
ds

+
[

μ2

2σ 2

(
1
m

− β1

m2

)
+ λ

β2

]
(T − t)

and φ
∗
(t) = exp{−β2 er(T−t) e−a∗

22(t)λ̂/mer(T−t)−λ̂}.
Now we define the utility loss function for the reinsurer LR11 = 1 − V11/V11 and LR21 = 1 −

V21/V21. Again, these are the proportions of utility loss that the reinsurer will experience for fol-
lowing the non-robust optimal strategy, when in fact she is ambiguity-averse, whether she deals with
anAAI or anANI. In Figure 7, as we can observe, the utility loss will decrease with time t and increase
with β1 and β2. It is especially striking to see that ignoring β2, i.e. for an AAR to follow the strategy
of an ANR mistakenly, causes a heavy utility loss, about 80%, even when the value of β2 is small.
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Comparing Figures 6 and 7, we can conclude that the reinsurer’s ambiguity aversion will not cause
much loss in utility function, but ignoring ambiguity for the AAR will cause heavy utility loss. Also,
if the reinsurer is ANR, and she adopts the suboptimal strategy (a∗

22(t), θ
∗
22(t), û

∗
22(t)) as her optimal

strategy when dealing with an ambiguity averse client (AAI), her value function V12 will equal V22.
Because of this, by ignoring the insurer’s ambiguity aversion, the ANR will lose the chance to gain
more utility, as one can see in the curve labeled as RL12 in Figure 6.

In conclusion, in order to avoid utility loss, the reinsurer should pay close attention to the ambi-
guity of both parties to the contract, and design her optimal robust strategy as corresponding to the
appropriate ambiguity levels.

5. Conclusion

In this paper, we discuss an optimal excess-of-loss reinsurance contract in a continuous-time
principal-agent framework where the surplus of the insurer is described by a C-L model. Here, two
parties of the contract are ambiguity averse and have specific modeling risk aversion preferences
for the insurance claims and the financial market’s risk. In addition to reinsurance, they put their
surpluses into the financial market containing one risk-free asset and one risky asset. The reinsurer
designs a reinsurance contract that maximizes the exponential utility of her terminal wealth under a
worst-case scenario which depends on the retention level of the insurer. By employing the dynamic
programming approach, we derive the optimal robust reinsurance contract, and the value functions
for the reinsurer and the insurer under this contract. At last, we discuss the case when the claims fol-
low an exponential distribution and find some interesting results. In the robust framework, ignoring
the ambiguity aversion of the insurer and the reinsurer will not cause much utility loss, but ignor-
ing ambiguity for the AAR will cause heavy utility loss if she mistakes the suboptimal strategy as the
optimal strategy.

One limitation of the current paper is focusing on the ambiguity on the claim intensity. Keeping
the ambiguity to the claim intensity only allows us to work with the robust optimization method
proposed in Maenhout (2004, 2006). If we also consider the ambiguity on the claim size, this would
lead to different expectations with each different probability law and make our study mathematically
more difficult. In order not to mask the efficiency of the method and the new robust game theory
framework presented in the paper, we leave this interesting topic of claim size ambiguity as our future
research direction, for which additional mathematical methodology (see, e.g. Jin et al. 2017) would
be required.
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Appendix
Proof of Lemma 2.1: Consider any π ∈ 
 and ψ ∈ 
 . Condition (iii) in Definition 2.1 implies the following integra-
bility result

Eψ

[∣∣∣∣− 1
γ
e−γXπ ,ψ (T) +

∫ T

0
Gψ(J(s,Xπ ,ψ(s),π ,ψ)) ds

∣∣∣∣
]

< ∞,
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So, the following process

M(t) := J(t,Xπ ,ψ(t),π ,ψ) +
∫ t

0
Gψ(J(s,Xπ ,ψ(s),π ,ψ)) ds

= Eψ
t

[
− 1

γ
e−γXπ ,ψ (T) +

∫ T

0
Gψ(J(s,Xπ ,ψ(s),π ,ψ)) ds

]

is aQ-martingale. By the product rule, we have

d
[
e−
∫ t
0 ρ(ψ(s)) dsJ(t,Xπ ,ψ(t),π ,ψ)

] = −e−
∫ t
0 ρ(ψ(s)) dsJ(t,Xπ ,ψ(t),π ,ψ)ρ(ψ(t)) dt

+ e−
∫ t
0 ρ(ψ(s)) ds[dM(t) − Gψ(J(t,Xπ ,ψ(t),π ,ψ)) dt

]
= e−

∫ t
0 ρ(ψ(s)) ds dM(t). (A1)

Moreover, for any ψ ∈ 
 , we know

ρ(ψ(s)) = γ

(
h2(s)
2α1

+ λ(φ(s) lnφ(s) − φ(s) + 1)
α2

)
≥ 0.

Hence, associated with any π ∈ 
 and ψ ∈ 
 , the process
∫ t
0 e−

∫ s
0 ρ(ψ(v))dvdM(v) is also aQ-martingale. Integrating

from t to T in Equation (A1) and taking conditional expectations on both sides, we obtain

Eψ
t

[
e−
∫ T
0 ρ(ψ(s)) dsJ(T,Xπ ,ψ(T),π ,ψ)

]
− e−

∫ t
0 ρ(ψ(s)) dsJ(t,Xπ ,ψ(t),π ,ψ) = 0.

Then, the penalized recursive utility is equivalent to an additive utility

J(t,Xπ ,ψ(t),π ,ψ) = Eψ
t

[
e−
∫ T
t ρ(ψ(s)) dsJ(T,Xπ ,ψ(T),π ,ψ)

]
= Eψ

t

[
e−
∫ T
t ρ(ψ(s)) ds

(
− 1

γ
e−γXπ ,ψ (T)

)]
.

Therefore, the original insurer’s optimization problemcan be transformed to a robust control problemwithout recursive
utility as follows:

J(t, x) = sup
π∈


inf
ψ∈


{
Eψ
t,x

[
e−
∫ T
t ρ(ψ(s)) ds

(
− 1

γ
e−γXπ ,ψ (T)

)]}
,

where ρ(ψ(s)) is considered as a discount rate. �

Proof of Proposition 2.2: We assume that S(t, x) is the solution of theHJB equation (10). Since we do not handlemodel
uncertainty on the claim size random variable Zi, its probability law remains the same under P and Q. Therefore, in
the HJB equation (10) the expectation involving Zi underQ can be replaced by that under P, that is,

Eψ [S(t, x − min(Zi, a(t))) − S(t, x)] = E[S(t, x − min(Zi, a(t))) − S(t, x)], ∀ ψ ∈ 
 ,

where Eψ [·] = EQ[·] denotes the expectation underQ, and E[·] represents the expectation taken under the reference
probability measure P. In the following, we always use the expectation taken under P.

According to the first-order condition for h(t) and φ(t) in HJB equation (10), we have

Sx(−x)σu(t) − γ S
2α1

2h(t) = 0

and

λE[S(t, x − min(Zi, a(t))) − S(t, x)] − γ Sλ
α2

lnφ(t) = 0.

By some simple algebra, we obtain

h∗(t) = −α1xσu(t)
γ S

Sx (A2)

and

φ∗(t) = exp
{

α2

γ S
E[S(t, x − min(Zi, a(t))) − S(t, x)]

}
. (A3)
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Then the optimal distortion ψ∗(t) = (h∗(t),φ∗(t)) determines the worst-case measure Q∗. Inserting ψ∗(t) into the
above HJB equation, we obtain

sup
π∈


{
St + Sx(xr + xμu(t)) + (η − θ(t))λμ∞ + λ(1 + θ)

∫ a(t)

0
F(z) dz

+1
2
Sxxx2σ 2u2(t) + γ λS

α2
(φ∗ − 1) + S2xx2σ 2u2(t)α1

2γ S

}
= 0. (A4)

We try the following ansatz for the value function

S(t, x) = − 1
γ
exp{−γ (er(T−t)x + g(t))}

where g(t) satisfies the condition g(T) = 0.
Based on the equation above, we know that

E[S(t, x − min(Zi, a(t))) − S(t, x)] = S(t, x)γ er(T−t)
∫ a(t)

0
eγ z e

r(T−t)
F(z) dz.

Therefore, according to (A4) and the first-order condition for u(t), we derive that

Sxxμ + Sxxx2σ 2u(t) + α1x2σ 2S2x
γ S

u(t) = 0.

So, the optimal investment strategy for the insurer reads

u∗(t) = − xμSx
x2σ 2(Sxx + α1S2x

γ S )
= μ

xσ 2(α1 + γ ) er(T−t) . (A5)

According to the first-order condition for a(t), the following is satisfied

Sxλ(1 + θ(t))F(a(t)) + γ Sλ
α2

dφ∗(t)
da(t)

= 0.

Recalling dφ∗(t)/da(t) = φ∗(t)α2 er(T−t) eγ a(t) er(T−t)F(a(t)), we know that a(t) satisfies the equation

(φ∗ eγ a(t) e
r(T−t) − 1 − θ(t))F(a(t)) = 0.

Due to 0 ≤ F(z) < 1 for claim size z, we have F(a(t)) 
= 0. Thus,

1 + θ(t) = φ∗(t) eγ er(T−t)a(t). (A6)

According to Equation (A3), we know φ∗(t) eγ er(T−t)a(t) ≤ 1 if a(t) ≤ 0, this will contradict with the fact that
φ∗(t) eγ er(T−t)a(t) = 1 + θ(t) > 1 where θ(t) ≥ η > 0. Therefore, we derive the optimal reinsurance strategy

a∗(t) = ln (1 + θ(t)) − lnφ∗(t)
γ er(T−t) > 0.

Putting u∗(t) and a∗(t) into Equation (A4), we have

St + Sx(xr + (η − θ(t))λμ∞ + λ(1 + θ(t))
∫ a∗(t)

0
F(z) dz + γ Sλ

α2
(φ∗ − 1) − γμ2S

2(α1 + γ )σ 2 = 0.

Plugging St and Sx into the above equation, we derive

g′(t) + er(T−t)

[
(η − θ(t))λμ∞ + λ(1 + θ(t))

∫ a∗(t)

0
F(z) dz

]
− λ

α2
(φ∗(t) − 1) + μ2

2(α1 + γ )σ 2 = 0,

with boundary condition g(T) = 0. Thus,

g(t) =
∫ T

t
er(T−s)

[
(η − θ(s))λμ∞ + λ(1 + θ(s))

∫ a∗(s)

0
F(z) dz

]
ds − λ

α2

∫ T

t
φ∗(s) ds

+
(

λ

α2
+ μ2

2(α1 + γ )σ 2

)
(T − t). �
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Proof of Proposition 2.4: Assume that H(t,w) is the solution of HJB equation (19). According to the first-order
condition ĥ11(t) and φ̂11(t) in equation (19), we have the following equations:

−Hwwσ û11(t) − mH
β1

ĥ11(t) = 0,

and

λE[H(t,w − (Zi − min(Zi, a(t)))) − H(t,w)] − mH
β2

λ ln φ̂11(t) = 0.

Solving the equations above, we attain the optimal distortion ψ̂∗
11(t) = (ĥ∗

11(t), φ̂
∗
11(t)) :

ĥ∗
11(t) = −β1wσ û11(t)

m
Hw

H
,

and

φ̂∗
11(t) = exp

{
β2

mH
E[H(t,w − (Zi − min(Zi, a∗(t)))) − H(t,w)]

}
.

Inserting ψ̂∗
11(t) into Equation (19), we have

Ht + Hw(wr + wμû11(t)) + Hw

[
(1 + θ(t))λ

(
μ∞ −

∫ a∗(t)

0
F(z) dz

)]
+ 1

2
Hwww2û211(t)σ

2 + β1w2σ 2û211(t)H
2
w

2mH

+ mλ

β2
H(φ̂∗

11(t) − 1) = 0. (A7)

By differentiating (A7) with respect to û11(t), we have

Hwwμ + Hwww2σ 2û11(t) + β1w2σ 2û11(t)H2
w

mH
= 0.

Thus, the optimal investment strategy is given by

û∗
11(t) = − wμHw

w2σ 2(Hww + β1H2
w

mH )
.

By differentiating (A7) with respect to θ(t), note that φ̂∗
11(t) and a∗(t) are functions of θ(t), we have

Hwλ

(
μ∞ −

∫ a∗(t)

0
F(z) dz

)
+ Hw(1 + θ(t))λ(−1)F(a∗(t))

da∗(t)
dθ(t)

+ mλ

β2
H
dφ̂∗

11(t)
da∗(t)

da∗(t)
dθ(t)

= 0.

According to the expressions of a∗(t) and φ̂∗
11(t),

da∗(t)
dθ(t)

= 1
γ er(T−t)(1 + θ(t))

and
dφ̂∗

11(t)
da∗(t)

= φ̂∗
11(t)β2

mH
d

da∗(t)
E[H(t,w − (Zi − min(Zi, a∗(t)))) − H(t,w)].

As a result, the optimal reinsurance premium θ∗(t) := θ∗
11(t) is determined by the following equation:

λ

(
μ∞ −

∫ a∗(t)

0
F(z) dz

)
Hw +

[
λφ̂∗

11(t)
d

da∗(t)
E[H(t,w − (Zi − min(Zi, a∗(t)))) − H(t,w)]

−λ(1 + θ(t))F(a∗(t))Hw

]
1

γ er(T−t)(1 + θ(t))
= 0.

As a direct result, the corresponding reinsurance strategy for the insurer satisfies

a∗
11(t) = a∗(θ∗

11(t)) = ln (1 + θ∗
11(t)) − lnφ∗

11(t)
γ er(T−t) .

Just as we solved optimization (PI), we propose an ansatz for the value function of the optimization problem (PR) :

H(t,w) = − 1
m

exp
{− m(er(T−t)w + ĝ11(t))

}
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with ĝ11(T) = 0. Therefore, we know that

E[H(t,w − (Zi − min(Zi, a∗
11(t)))) − H(t,w)] = E[H(t,w)(exp{mer(T−t)(Zi − min(a∗

11(t)))} − 1)]

= H(t,w)E[exp{mer(T−t)(Zi − min(a∗
11(t),Zi))} − 1]

= H(t,w)

[
F(a∗

11(t)) +
∫ +∞

a∗
11(t)

exp{m(z − a∗
11(t)) e

r(T−t)} dF(z) − 1

]

= H(t,w)

[
F(a∗

11(t)) − 1 + exp{mer(T−t)(z − a∗
11(t))F(z)|+∞

a∗
11(t)

}

−
∫ +∞

a∗
11(t)

F(z)mer(T−t) exp{m(z − a∗
11(t))e

r(T−t)}dz
]

= Hmer(T−t) e−ma∗
11(t) e

r(T−t)
∫ +∞

a∗
11(t)

F(z) em er(T−t)z dz,

and the worst-case scenario and the optimal strategy are given by

ĥ∗
11(t) = −β1wσ û∗

11(t)Hw

mH
= β1μ

σ(β1 + m)

φ̂∗
11(t) = exp

{
β2 er(T−t) e−ma∗

11(t) e
r(T−t)

∫ +∞

a∗
11(t)

F(z) emz er(T−t)
dz

}

û∗
11(t) = − wμ

w2σ 2
Hw

Hww + β1H2
w

mH

= μ

wσ 2 er(T−t)(β1 + m)
.

Note

d
da∗

11(t)
E
[
H
(
t,w − (Zi − min(a∗

11(t),Zi))
)− H(t,w)

]

= Hmer(T−t)

[
−mer(T−t) e−ma∗

11(t) e
r(T−t)

∫ +∞

a∗
11(t)

F(z) emz er(T−t)
dz − F(a∗

11(t))

]
.

Thus, θ∗
11(t) satisfies the following equation:(

μ∞ −
∫ a∗

11(t)

0
F(z) dz

)
Hw +

[
−m2φ̂∗

11(t)H e2r(T−t) e−ma∗
11(t) e

r(T−t)
∫ +∞

a∗
11(t)

F(z) emz er(T−t)
dz

−mHφ̂∗
11(t) e

r(T−t)F(a∗
11(t)) − (1 + θ11(t))F(a∗

11(t))Hw

]
1

γ er(T−t)(1 + θ11(t))
= 0.

Inserting the expression of Hw, we have

1 + θ∗
11(t) =

φ̂∗
11(t)[−F(a∗

11(t)) − mer(T−t) e−ma∗
11(t) e

r(T−t) ∫ +∞
a∗
11(t)

F(z) emz er(T−t)
dz]

(μ∞ − ∫ a∗
11(t)

0 F(z) dz)γ er(T−t) − F(a∗
11(t))

. (A8)

Note that 1 + θ∗
11 ≥ 1 + η. So, when 1 + θ∗

11 < 1 + η, we let 1 + θ∗
11 = 1 + η. Therefore, the robust optimal reinsur-

ance contract is determined by

a∗
11(t) = ln (1 + θ∗

11(t)) − lnφ∗
11(t)

γ er(T−t) ,

1 + θ∗
11(t) =

⎧⎪⎪⎨
⎪⎪⎩

φ̂∗
11(t)[F(a∗

11(t)) + mer(T−t) e−ma∗
11(t) e

r(T−t) ∫ +∞
a∗
11(t)

F(z) emz er(T−t) dz]

F(a∗
11(t)) − (μ∞ − ∫ a∗

11(t)
0 F(z) dz)γ er(T−t)

, t ∈ O,

1 + η, t ∈ O.
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Inserting a∗
11(t), θ

∗
11(t), φ̂

∗
11(t) and u∗

11(t) into the HJB equation yields,

Ht + Hw

[
wr + (1 + θ11(t))λ

(
μ∞ −

∫ a∗
11(t)

0
F(z) dz

)]+ mλH
β2

(φ̂∗
11(t) − 1) − mHμ2

2σ(β1 + m)
= 0.

Plugging Hw,Ht into the above equation, we have

ĝ′
11(t) + er(T−t)(1 + θ∗

11(t))λ

(
μ∞ −

∫ a∗
11(t)

0
F(z) dz

)
+ μ2

2σ 2(β1 + m)
− λ(φ̂∗

11(t) − 1)
β2

= 0. (A9)

Combining with the boundary condition ĝ11(T) = 0, we derive

ĝ11(t) =
∫ T

t

[
er(T−s)(1 + θ∗

11(s))λ

(
μ∞ −

∫ a∗
11(s)

0
F(z) dz

)
− λφ̂∗

11(s)
β2

]
ds +

(
μ2

2σ 2(β1 + m)
+ λ

β2

)
(T − t).

(A10)
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