
STATISTICAL THEORY AND RELATED FIELDS
https://doi.org/10.1080/24754269.2020.1846115

New extreme value theory for maxima of maxima

Wenzhi Cao and Zhengjun Zhang

Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA

ABSTRACT
Although advanced statistical models have been proposed to fit complex data better, the
advances of science and technology have generatedmore complex data, e.g., Big Data, in which
existing probability theory and statistical models find their limitations. This work establishes
probability foundations for studying extreme values of data generated from a mixture process
with themixture pattern dependingon the sample length anddata generating sources. In partic-
ular, we show that the limit distribution, termed as the acceleratedmax-stable distribution, of the
maximaofmaximaof sequences of randomvariableswith the abovemixture pattern is a product
of three types of extreme value distributions. As a result, our theoretical results aremore general
than the classical extreme value theory and canbe applicable to research problems related to Big
Data. Examples are provided to give intuitions of the new distribution family. We also establish
mixing conditions for a sequence of random variables to have the limit distributions. The results
for the associated independent sequence and themaxima over arbitrary intervals are also devel-
oped. We use simulations to demonstrate the advantages of our newly established maxima of
maxima extreme value theory.

ARTICLE HISTORY
Received 8 March 2020
Revised 24 October 2020
Accepted 1 November 2020

KEYWORDS
Maximum domain of
attraction; max-stable
distribution;
competing-maximum
domain of attractions;
accelerated max-stable
distribution; accelerated
extreme value distribution

1. Introduction

Rigorous risk analysis helps to make better decisions
and prevent great failures. Extreme value theory has
been a powerful tool in risk analysis and is widely
applied to risk analysis in finance, insurance, health, cli-
mate, and environmental studies. In classical extreme
value theory, the sequence of data is assumed to have
the same marginal distribution, and the limit distri-
bution of the maxima is in one of the extreme value
types if it exists. Galambos (1978), de Haan (1993),
Beirlant et al. (2004), de Haan and Ferreira (2006),
Leadbetter et al. (2012) and Resnick (2013) amongst
many monographs are good literatures introducing the
theoretical results in the classical extreme value the-
ory. Mikosch et al. (1997), Embrechts et al. (1999),
McNeil and Frey (2000), Coles (2001), Finkenstädt
and Rootzén (2004), Castillo et al. (2005), Salvadori
et al. (2007) and Dey and Yan (2016) introduce
many applications of extreme value method to the
areas of science, engineering, nature, finance, insur-
ance and climate. For example, in financial applica-
tions, extreme value theory is one of the tools to cal-
culate the Value-at-Risk (VaR) and Expected Shortfall
(ES) (e.g., Rocco, 2014; Tsay, 2005). Chavez-Demoulin
et al. (2016) offer an extreme value theory (EVT)-based
statistical approach for modelling operational risk and
losses, by taking into account dependence of the param-
eters on covariates and time. Zhang and Smith (2010)
propose the multivariate maxima of moving maxima

(M4) processes and apply the method to model jumps
in returns in multivariate financial time series and
predict the extreme co-movements in price returns.
Daouia et al. (2018) use the extreme expectiles to
measure VaR and marginal expected shortfall. In the
statistical inference of maximum likelihood estima-
tion (MLE), a discussion on the properties of maxi-
mum likelihood estimators of the parameters in gen-
eralised extreme value (GEV) distribution was given
by Smith (1985). In the paper, it is shown that the
classical properties of the MLE hold when the shape
parameter ξ > −1/2, but not when ξ ≤ −1/2. Bücher
and Segers (2017) give a general result on the asymp-
totic normality of the maximum likelihood estimator
for parametric models whose support may depend on
the parameters.

In the age of Big Data, the advances of science
and technology have been changing data generating
processes in a more complex way. As a result, the
data structures and dependence structures accompa-
nied by the collected data can be very different from
the existed assumptions in many commonly usedmod-
els. In the literature, advanced statistical models and
machine learning approaches have been proposed to fit
such complex data or learn the underlying structures
better. For example, the support vector machine, the
deep learning method, and the random forest method
have now been very well recognised and wildly used
in data analysis. In extreme value analysis for more
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complex data, the same marginal distribution assump-
tion and its derived extreme value distributions can be
very restrictive and lack of data fitting power. Although
statistical models, e.g., Heffernan et al. (2007), Naveau
et al. (2011), Tang et al. (2013),Malinowski et al. (2015),
Zhang and Zhu (2016) and Idowu and Zhang (2017),
have been proposed to model extreme values observed
from different data sources with different populations
and max-domains of attraction, their probability foun-
dations have not been established.

The definition of the classical maximum domain of
attraction cannot be applied directly to the extreme val-
ues of data drawn from different populations mixed
together. Note that we are not dealing with mixtures of
distributions that may belong to a maximum domain
of attraction of classical extreme value distribution. In
this study, we are dealing with maxima of maxima in
which themaxima resulted fromeachpopulation has its
limit extreme value distribution and norming and cen-
tering constants and convergence rate. For example, in
many real-world applications, the risks one is exposed
to usually come from different resources, and the risk at
a given time is decided by the dominant one, i.e., not the
added risk of all risks. Let us consider a specific exam-
ple: Suppose a patient suffers two severe diseases. The
risk of that the patient will die over a certain time may
be best described by the maximum, not the sum, of two
risk variables.

This work extends the definition of the maxi-
mum domain of attraction to maxima of maxima of
sequences of random variables in which the mixing
patterns change alongwith the sample size. The acceler-
atedmax-stable distribution (accelerated extreme value
distribution) is expressed as a product of the classical
extreme value distributions for the maxima of max-
ima resulted from different distributions. Some basic
properties and theoretical results are provided. It can
be seen that the classical extreme value distributions are
special cases of our newly established family of acceler-
ated max-stable distributions. The results obtained can
be applied to more complex data, e.g., Big Data. The
new results also establish the probability foundation
of previously proposed statistical models in extreme
time series modeling. Those models include Heffer-
nan et al. (2007) that introduces one scheme where
the maxima are taken over random variables with dif-
ferent distributions, and Zhang and Zhu (2016) that
models intra-daily maxima of high-frequency financial
data.

The structure of this paper is as follows. In Section 2,
(1) we give a brief review of the classical extreme
value theory; (2) we define our maxima of maxima
of sequences of random variables; (3) we use exam-
ples to demonstrate the characteristics of the maxima
of maxima; (4) we establish the convergence of max-
ima of maxima to the accelerated max-stable distri-
butions; (5) we illustrate density functions of the new

family of acceleratedmax-stable distributions and eval-
uate moments and tail equivalence. Simulations are
used to demonstrate the advantages of the accelerated
max-stable distribution family in terms of the estima-
tion accuracy of high quantiles at different levels. We
also apply this new accelerated max-stable distribu-
tion to the high quantiles of the daily maxima of 330
stock returns of S&P500 companies. In Section 3, the
convergence of joint probability for general thresholds
and approximation errors are developed. In Section 4,
theoretical results for weakly dependent sequences are
derived. Section 6 concludes. Additional figures and
technical proofs are included in Section Appendix.

2. Acceleratedmax-stable distribution for

independent sequences

2.1. A brief review of classical univariate extreme

value theory

In classical extreme value theory, the central result is
the Fisher-Tippett theorem which specifies the form of
the limit distribution for centered and normalisedmax-
ima. Let X1,X2, . . . ,Xn be a sequence of independent
and identically distributed (i.i.d.) non-degenerate ran-
domvariables (rvs) with commondistribution function
F and Mn = max(X1, . . . ,Xn) be the sample maxima.
The Fisher-Tippett theorem states that: If for some
norming constants an > 0 and centering constants bn
we have

P
(
an(Mn − bn) ≤ x

) w→ H(x) (1)

for some nondegenerate H, where w→ stands for con-
vergence in distribution, then H belongs to one type
of the following three cumulative distribution functions
(cdf’s):

Fréchet :�α(x) =
{
0, x ≤ 0
exp{−x−α}, x > 0,

α > 0.

Weibull :�α(x) =
{
exp{−(−x)α}, x ≤ 0
1, x > 0,

α > 0.

Gumbel :�(x) = exp{−e−x}, x ∈ R.

(2)

Conversely, every extreme value distribution in (2) can
be a limit in (1), and in particular, when H itself is the
cdf of eachXi, the limit is itself.We say that F belongs to
themaximumdomain of attraction of the extreme value
distribution ofH, and denote as F ∈ MDA(H)when (1)
holds.H is also called the max-stable distribution since
for any n = 2, 3, . . ., there are constants an > 0 and bn
such that Hn(anx + bn) = H(x). Due to this property,
the equivalence of extreme value distribution or max-
stable distribution in practice is mutually implied.
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2.2. Maxima ofmaxima

Suppose that the independent mixed sequence of ran-
dom variables {Xi}ni=1 is composed of k subsequences

{Xj,i}nji=1, j = 1, 2, . . . , k; {Xj,i}nji=1
i.i.d.∼ Fj(x), nj → ∞

as n → ∞ and n = n1 + · · · + nk. Denote Mj,nj =
max(Xj,i, i = 1, . . . , nj) as the maximum of the jth
subsequence, j = 1, 2, . . . , k. Suppose Fj ∈ MDA(Hj),
whereHj is one of the three types of extreme value dis-
tributions, i.e.,Mj,nj has the following limit distribution
with some norming constants aj,nj > 0 and centering
constants bj,nj ,

lim
n→∞ P(aj,nj(Mj,nj − bj,nj) ≤ x) = Hj(x). (3)

Define Mn = max(M1,n1 ,M2,n2 , . . . ,Mk,nk), i.e., Mn is
the maxima of k maxima of Mj,njs. Throughout the
paper, Mn is termed as the maxima of maxima. Ques-
tions can be asked: (1) whether or not (1) holds with
appropriately chosen norming constants an > 0, bn; (2)
if (1) holds, whether or not an > 0, bn are equivalent to
any of aj,nj > 0, bj,nj ; (3) whether or notH(x) is a func-
tion of Hj(x); (4) if all (1)–(3) hold, which one is the
best method to be used in practice. This paper intends
to answer these four questions.

Practical examples related to the above defined pro-
cess can be numerous. For example, (1) the maximum
temperature of the US in a day can be described by the
maximum of maxima of regional maximum tempera-
tures. In each region, the maximum temperature is the
maximum temperature recordings among all weather
stations in the region. Considering the regions’ spatial
and geographical patterns, the regional maxima cer-
tainly follow different extreme value distributions from
one region to another region. TheUS temperaturemax-
ima are the maxima of regional maxima, and should be
modelled by a distribution function that is a function
of the regional extreme value distribution functions. (2)
Considering the daily risk of high-frequency trading in

a stock market, one can partition the data into hourly
data (from 9:00 am to 4:00 pm). Suppose each hourly
maximaMj,nj of negative returns can be approximately
modelled by an extreme value distribution of Hj(x).
It is clear that Mn is better modelled by a function of
Hj(x), j = 1, . . . , 7, i.e., not a single Hj(x). We use the
following simple example with k = 2 to illustrate the
idea.

Example 2.1: The sequence {Xi}ni=1 is generated by

Xi = max(Yi,Zi), where {Yi}ni=1
i.i.d.∼ F1(x), {Zi}ni=1

i.i.d.∼
F2(x), and F1(x) and F2(x) are two distribution func-
tions. Assuming Yi and Zi are independent. Then

{Xi}ni=1
i.i.d.∼ F(x) = F1(x)F2(x).

Remark: The form Xi = max(Yi,Zi) is the simplest
case in the general mixture models introduced in
Zhao and Zhang (2018). It is also the simplest case
in the copula structured M4 models studied by Zhang
and Zhu (2016).

For illustrative purpose of Example 2.1, let’s con-

sider two scenarios. Suppose {Y[k]
i }ni=1

i.i.d.∼ N(0, 1) and

{Z[k]
i }ni=1

i.i.d.∼ U[a, b] for k = 1, . . . ,m. Here U[a, b]
represents the uniform distribution on the inter-
val [a, b]. The superscript [k] stands for the kth
sample sequence. In Scenario 1, Figure 1 illustrates
two different simulated sequences of {X[k]

i }ni=1, where
X[k]
i = max(Y[k]

i ,Z[k]
i ), and the maxima of M[k]

n =
max(X[k]

1 , . . . ,X[k]
n ) for n = 100 and a particular k, e.g.,

k = 1. Next, we repeatedly generate m = 10,000 such
sequences {X[k]

i }ni=1, k = 1, . . . ,m. By taking the max-
imaM[k]

n = max(X[k]
1 , . . . ,X[k]

n ), k = 1, . . . ,m, the his-
togram of {M[k]

n }mk=1 is displayed in Figure 2(a) with
a = −2.2 and b = 2.2. In Scenario 2, by replacing the
marginal distribution of Z[k]

i with U[−2.8, 2.8], the

Figure 1. Simulatedmixed sequences from normal and uniform distributions and their maxima (marked with black dots). In (a), the
maximum is from the uniform distribution; in (b), the maximum is from N(0, 1).
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Figure 2. (a) Histogram ofMn from N(0, 1) and U[−2.2, 2.2]. (b) Histogram ofMn from N(0, 1) and U[−2.8, 2.8].

histogram of M[k]
n is shown in Figure 2(b). It is clear

that although {X[k]
i }ni=1 is independent and identically

distributed (i.i.d.), one can see that the distribution of
Mn looks quite different from the three types of extreme
value distributions.

In Example 2.1, the larger values of two paired
underlying subsequences are observedwhile the smaller
values are covered up by larger ones and are never
observed. The sample sizes from the two subsequences
are the same. However, in general mixed sequences the
ratios of sample sizes from two subsequences n1/n2
can be any value between 0 and infinity and can vary
as the total sample size grows. As a result, we can
see many kinds of different patterns different from
Figure 2.

In practice, data generating processes are natu-
rally formed spatially and temporarily from underlying
physical processes of studies. Here we provide two data
generating processes in simulation.

(1) For a given sample size n, we set the numbers
n1 and n2 satisfying n1 + n2 = n and assume
that limn→∞ n1/(n1 + n2) → r, r ∈ (0, 1). Then
we generate the specified n1 and n2 observations
from two populations respectively, stack them in
a sequence, and perform a random permutation
of the combined sequence. In a physical process,
the procedure can be designed as: we mix n1 yel-
low balls and n2 white balls in a bag. Then we draw
balls sequentially. If a yellow ball is drawn, gener-
ate a number from the first population, otherwise
from the second population.

(2) Alternatively, suppose a1,n1 , a2,n2 are norming con-
stants defined in (3) with known population dis-
tributions in simulation, we can set n1 + n2 = n
and let limn→∞ a1,n1/a2,n2 = r, and then solve n1
and n2 to generate the observations as the last
step.

Example 2.2: Using the sampling scheme designed

above. Suppose there are two sequences {X1,i}n1i=1
i.i.d.∼

N(0, 0.9) and {X2,i}n2i=1
i.i.d.∼ U[−2, 2] with n1 = 100 and

n2 = 200. {Xk}300k=1 is mixed with these two sequences.
Let M[j]

n be the maxima of the jth realisation of the
sequence, j = 1, . . . ,m, n = 300. With m = 10,000,
{M[j]

n }mj=1 are calculated and the histogram is shown
in Figure 3(a). The case of n1 = 200 and n2 = 100 is
shown in Figure 3(b).

The histograms in Figure 3 look different from any
of the three types of extreme value distributions dis-
cussed in (2). One feature is that they can be bimodal.
On the other hand, the classical GEV distributions are
all unimodal. Figure 3 shows two specific examples of
choices of n1 and n2. In more general situations, the
ratios of n1 and n2 can be any values in (0,∞). The ratio
n1/n2 may also change as n increases. In Figures 2 and
3, the left parts of the distributions are dominated by
the Weibull type induced by the uniform distribution,
and the right parts resemble the Gumbel type induced
by the normal distribution. The reason is that when we
look at the maxima of {Xi}ni=1, there are two popula-
tions competing with each other. Taking (b) in Figure
3 as an example, the winners from U[−2, 2] form the
steep peak on the left; and the winners from N(0, 0.9)
form the smoother peak on the right.

Figure 4(a) shows the distribution of Mn for the
sequence which is mixed with N(0, 1) and a Fréchet
distribution. In (b), (c) and (d), they show the combina-
tions of one Fréchet distribution and oneWeibull distri-
bution. Notice that in panel (b), the distribution looks
left-skewed and is very similar to aWeibull distribution.
However, with the effect of the Fréchet distribution, it
actually has an infinite right endpoint.

In Figure 5, histograms of Mn are created such that
the independent sequences of random variables {Xi}ni=1
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Figure 3. Histograms of combinations ofMn from N(0, 0.9) and U[−2, 2]. (a) n1 = 100, n2 = 200. (b) n1 = 200, n2 = 100.

Figure 4. Histograms ofMn. (a) N(0, 1) and Fréchet combination. (b)–(d) Some combinations of Fréchet and Weibull.

are generated by comparing the pairs of observations
fromnormal andWeibull distribution. They can be uni-
modal or bimodel, left-skewed or right-skewed. If we
use the GEV family to characterise the distributions of
Mn in these examples, it may not capture the shape of
the distribution properly. For example, if we look at the

left part of the distribution in Figure 5(d), it resembles
a Weibull distribution that has a finite right endpoint.
However, because of the effect of the normal distribu-
tion on the right tail, the shape changes suddenly to be
similar to aGumbel distributionwith infinite right end-
point. If we fit a GEV distribution to Mn, the left part
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Figure 5. Histograms ofMn, with combinations of normal distribution and Weibull distribution.

with more sample data may have a large effect on the
fitted distribution and we may underestimate the long
tail on the right.

2.3. Convergence to the acceleratedmax-stable

distribution

Throughout the paper, xF = sup{x; F(x) < 1} is the
right endpoint of a cdf F and let F(x) = 1 − F(x);

Mn = max(M1,n1 , . . . ,Mk,nk) is restricted to k = 2. For
k>2, relative results can be derived with additional
notations. The following theorem shows that under cer-
tain conditions on the norming constants aj,nj and bj,nj ,
we can choose one set of the norming constants for the
global maximumMn = max(M1,n1 ,M2,n2) to derive its
limit distribution. Theorem 2.1 can be directly derived
from Khintchine’s theorem.
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Theorem 2.1: If M1,n1 andM2,n2 satisfy (3) for j = 1, 2,
the limit distribution ofMn as n → ∞ can be determined
in the following cases:

Case 1. If a1,n1
a2,n2

→ a > 0, a1,n1(b2,n2 − b1,n1) → b <

+∞, for some constants a and b, then

P(a2,n2(Mn − b2,n2) ≤ x) → H1(ax + b)H2(x).
(4)

Case 2. If a1,n1
a2,n2

→ 0, a1,n1(b2,n2 − b1,n1) → +∞ then

P(a2,n2(Mn − b2,n2) ≤ x) → H2(x). (5)

Notice that the limit in Case 1 is the product
of two extreme value distributions, H1(ax + b)H2(x).
Although it is in the product form, sometimes it can still
be reduced to the three classical extreme value distri-
butions. For example, exp{−x−α} exp{−( x2 )

−α} is still
a Fréchet type. However, in some situations, when the
conditions in Case 1 are satisfied, the limit product
form cannot be reduced to any one of the three extreme
value distributions.We next present several examples to
illustrate these possibilities.

Example 2.3 (Fréchet andGumbel): Suppose F1(x) =
�α(x) is a Fréchet distribution function, and F2(x) =
�(x) is the standard Gumbel distribution function.
By choosing a1,n1 = n−1/α

1 , b1,n1 = 0 a2,n2 = 1, b2,n2 =
log n2 we have

P(M2,n2 − log n2 ≤ x) → �(x). (6)

Then when n1/α1 / log n2 → ∞, we have

P(n−1/α
1 Mn ≤ x)

= P(n−1/α
1 M1,n1 ≤ x,M2,n2 − log n2

≤ n1/α1 x − log n2)

→ �α(x).

Example 2.4 (Fréchet and Fréchet): Suppose F1(x) =
�α1(x) and F2(x) = �α2(x) are two Fréchet distribu-
tion functions such that α1 > α2, which means that
the tail of F2(x) is heavier than the tail of F1(x). By
choosing norming constants a1,n1 = n−1/α1

1 , b1,n1 = 0
and a2,n2 = n−1/α2

2 , b2,n2 = 0 we have

P(n−1/αj
j Mj,nj ≤ x) = �αj(x), j = 1, 2, (7)

and

P(n−1/α2
2 Mn ≤ x)

= P

(
n−1/α1
1 M1,n1 ≤ n1/α22

n1/α11

x, n−1/α2
2 M2,n2 ≤ x

)
.

(8)

If n1/α22 /n1/α11 → a > 0, then

P(n−1/α2
2 Mn ≤ x) → �α1(ax)�α2(x). (9)

If n1/α22 /n1/α11 → +∞, then

P(n−1/α2
2 Mn ≤ x) → �α2(x). (10)

In Example 2.4, the sequence is mixed with two
Fréchet distributions with different shape parameters.
The limit distribution of Mn for this mixed sequence
is the product of two Fréchet distributions, which is
different from any of the three types of extreme value
distributions.

Example 2.5 (Uniform andnormal): Suppose F1(x) is
the function of the uniform distribution U[0, 1], F2(x)
is the distribution function of N(0, 1). By choosing

a1,n1 = n1, b1,n1 = 1, (11)

and

a2,n2 = (2 log n2)1/2,

b2,n2 = (2 log n2)1/2

− 1
2 (2 log n2)

−1/2(log log n2 + log 4π),

we have

P(n1(M1,n1 − 1) ≤ x) → ex (12)

for x<0, and

P(a2,n2(M2,n2 − b2,n2) ≤ x) → �(x). (13)

Then

P(a2,n2(Mn − b2,n2) ≤ x)

= P
(
n1(M1,n1 − 1) ≤ n1

(
x

a2,n2
+ b2,n2 − 1

)
,

a2,n2(M2,n2 − b2,n2) ≤ x
)
.

Since n1( x
a2,n2

+ b2,n2 − 1) → +∞ for any x, we have

P(a2,n2(Mn − b2,n2) ≤ x) → �(x). (14)

Example 2.6 (Weibull and Weibull): Suppose xF <

∞ and K1 > 0,K2 > 0,

F1(x) = 1 − K1(xF − x)α1 , xF − K−1/α1
1 ≤ x ≤ xF ,

(15)

F2(x) = 1 − K2(xF − x)α2 , xF − K−1/α2
2 ≤ x ≤ xF ,

(16)

are two polynomial functions with common finite end-
point xF , α1 > α2. We can choose a1,n1 = (n1K1)

1/α1 ,
b1,n1 = xF , a2,n2 = (n2K2)

1/α2 , b2,n2 = xF , and

P((n1K1)
1/α1(M1,n1 − xF) ≤ x) → �α1(x), (17)
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P((n2K2)
1/α2(M2,n2 − xF) ≤ x) → �α2(x). (18)

If (n2K2)
1/α2

(n1K1)1/α1
→ a > 0, then

P((n1K1)
1/α1(Mn − xF) ≤ x)

= P
(
(n1K1)

1/α1(M1,n1 − xF), (n2K2)
1/α2

(M2,n2 − xF) ≤ (n2K2)
1/α2

(n1K1)1/α1
x
)

→ �α1(x)�α2(ax).

Example 2.7 (Normal and Pareto): Suppose F1(x) is
the standard normal distribution function of N(0, 1),
F2(x) = 1 − Kx−α , α > 0, K>0 is a Pareto distribu-
tion function. Let

a1,n1 = (2 log n1)1/2,

b1,n1 = (2 log n1)1/2

− 1
2 (2 log n1)

−1/2(log log n1 + log 4π),

a2,n2 = (Kn2)−1/α , b2,n2 = 0.

Then

P(a1,n1(M1,n1 − b1,n1) ≤ x, a2,n2(M2,n2 − b2,n2) ≤ x)

→
{

0 x < 0,
exp(−e−x − x−α) x ≥ 0.

Furthermore, if a2,n2b1,n1 → ∞, then

P(a1,n1(Mn − b1,n1) ≤ x) → exp(−e−x).

Example 2.8 (Cauchy and uniform distribution):
F1(x) = 1

2 + 1
π
tan−1 x is the standard Cauchy distri-

bution function, and F2(x) = x, 0 ≤ x ≤ 1, let

a1,n1 = tan
π

n1
∼ π

n1
, b1,n1 = 0,

a2,n2 = n2, b2,n2 = 1.

Then

P
(

π

n1
M1,n1 ≤ x, n2(M2,n2 − 1) ≤ x

)

→
{
0 x < 0,
exp(−x−1) x ≥ 0,

and

P(a1,n1(Mn − b1,n1) ≤ x) →
{

0 x < 0,
exp(−x−1) x ≥ 0.

In Example 2.8, the limit distribution for the nor-
malisedM1,n1 is 0 when x<0, and the limit distribution
for the normalised M2,n2 is 1 when x>0. Thus, the
product is the same as the former one.

In Examples 2.3 and 2.5, we showed that when n
is sufficiently large (goes to infinity), the distribution

of Mn will be dominated by the subsequence whose
marginal distribution has a heavier tail. In Examples 2.4
and 2.6, if the ratio n1/α22 /n1/α11 converges to a con-
stant, then one subsequence is never dominated by
another, and the limit is of the product form that cannot
be reduced to a classical extreme value distribution if
α1 �= α2.

We now introduce the accelerated max-stable dis-
tribution (AMSD) or the accelerated extreme value
distribution (AEVD). We consider the convergence
of the probability related to the normalised max-
ima M1,n1 and M2,n2 of two subsequences separately.
By the relationship Mn = max(M1,n1 ,M2,n2), we can
use the accelerated max-stable distribution to approxi-
mate the distribution ofMn. The classical extreme value
distributions will be special cases in the accelerated
max-stable distribution family.

Definition 2.1: LetH1(x) andH2(x) be twomax-stable
distribution functions, we call H(x) = H1(x)H2(x) the
accelerated max-stable distribution (AMSD/AEVD)
function, which is the product of two max-stable dis-
tribution functions. More generally, we also say that
H(x) belongs to the acceleratedmax-stable distribution
family if it is the product of k max-stable distribution
functions, k ≥ 2.

Remark: If Z follows an accelerated max-stable dis-
tribution H(x), then Z can be expressed as Z =
max(Z1, . . . ,Zk), where each Zi follows a max-stable
distribution. By taking maxima of (Z1, . . . ,Zk), Zi val-
ues are accelerated by other components Zjs to get
observed Z values. On the other hand, we have

H1(x)H2(x) · · ·Hk(x)

≤ H1(x)H2(x) · · ·Hk−1(x)

≤ H1(x)H2(x) · · ·Hk−2(x)

≤ · · · ≤ H1(x)

and

H1(x)H2(x) · · ·Hk(x) ≥ H1(x)H2(x) · · ·Hk−1(x)

≥ H1(x)H2(x) · · ·Hk−2(x)

≥ · · · ≥ H1(x)

where H̄(x) stands for the survival function, i.e.,

H1(x)H2(x) · · ·Hk(x) = 1 − H1(x)H2(x) · · ·Hk(x).

The above inequalities may be regarded as accelerated
survival rates. This observation motivates us to call the
newdistribution as the acceleratedmax-stable (extreme
value) distribution. In the view of risk analysis, the sys-
temic risk ofZ is accelerated from individual risks ofZjs
given a fixed confidence level.
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For the independent sequence of random variables
{Xi}ni=1 with two subsequences {X1,i}n1i=1 and {X2,i}n2i=2
defined as above, suppose (3) is satisfied with j = 1, 2
and norming constants aj,nj > 0, bj,nj , i.e.,

lim
n→∞ P(aj,nj(Mj,nj − bj,n) ≤ x) = Hj(x), j = 1, 2,

(19)
then

P(max(a1,n1(M1,n1 − b1,n1), a2,n2(M2,n2 − b2,n2)) ≤ x)

→ H(x) = H1(x)H2(x). (20)

Definition 2.2: Suppose an independent sequence of
random variables {Xi}ni=1 satisfies (19) and (20).We call
the underlying distribution, Fni, of Xi belongs to the
competing-maximum domain of attractions of H1 and
H2, and denote as Fni ∈ CMDA(H1,H2).

We note that a max-stable distribution may also be
decomposed into a product of two max-stable distri-
butions. As a result, the max-stable distribution family
can be thought as a family that is embedded in the
accelerated max-stable distribution family. This obser-
vation can be seen in Theorem 2.1 that the limits
of P(a2,n2(Mn − b2,n2)) under two different conditions
belong to the accelerated max-stable distribution fam-
ily. In other words, the accelerated max-stable distri-
butions form an expanded family of distributions that
can describe the limiting distribution of the normalised
maxima for more general sequences.

For k = 2 and Fni ∈ CMDA(H1,H2), AMSDs/
AEVDs can have the following six possible combina-
tions:

Case 1. Fj ∈ MDA(�), j = 1, 2,

P(a1,n1(M1,n1 − b1,n1)

≤ x, a2,n2(M2,n2 − b2,n2) ≤ x)

w→ �

(
x − b1
a1

)
�

(
x − b2
a2

)
.

Case 2. F1 ∈ MDA(�α1) and F2 ∈ MDA(�α2),

P(a1,n1(M1,n1 − b1,n1)

≤ x, a2,n2(M2,n2 − b2,n2) ≤ x)

w→ �α1

(
x − b1
a1

)
�α2

(
x − b2
a2

)
.

Case 3. F1 ∈ MDA(�α1) and F2 ∈ MDA(�α2),

P(a1,n1(M1,n1 − b1,n1)

≤ x, a2,n2(M2,n2 − b2,n2) ≤ x)

w→ �α1

(
x − b1
a1

)
�α2

(
x − b2
a2

)
.

Case 4. F1 ∈ MDA(�) and F2 ∈ MDA(�α),

P(a1,n1(M1,n1 − b1,n1)

≤ x, a2,n2(M2,n2 − b2,n2) ≤ x)

w→ �

(
x − b1
a1

)
�α

(
x − b2
a2

)
.

Case 5. F1 ∈ MDA(�) and F2 ∈ MDA(�α),

P(a1,n1(M1,n1 − b1,n1)

≤ x, a2,n2(M2,n2 − b2,n2) ≤ x)

w→ �

(
x − b1
a1

)
�α

(
x − b2
a2

)
.

Case 6. F1 ∈ MDA(�α1) and F2 ∈ MDA(�α2),

P(a1,n1(M1,n1 − b1,n1)

≤ x, a2,n2(M2,n2 − b2,n2) ≤ x)

w→ �α1

(
x − b1
a1

)
�α2

(
x − b2
a2

)
.

It is easy to see that the classical extreme value distri-
butions are special cases of the AMSD family. For any
a>0, b>0 satisfying 1

a + 1
b = 1, we have

�(x) = exp{−e−x} = exp{−e−( xa+ x
b )}

= exp{(−e−x−log a − e−x−log b)}
= �(x + log a)�(x + log b).

�α(x) = exp{−x−α}

= exp

{
−
(

x

a− 1
α

)−α

−
(

x

b− 1
α

)−α
}

= �

(
x

a− 1
α

)
�

(
x

b− 1
α

)
.

�α(x) = exp{−(−x)α}

= exp
{
−
(−x

a
1
α

)α

−
(−x

b
1
α

)α}
= �

(
x

a
1
α

)
�

(
x

b
1
α

)
.

SinceH1(x) andH2(x) are max-stable distributions, for
any n1 = 2, 3, . . . and n2 = 2, 3, . . ., there are constants
a1,n1 > 0, b1,n1 , a2,n2 > 0, b2,n2 such thatH1(x)H2(x) =
Hn1
1 (a1,n1x + b1,n1)H

n2
2 (a2,n2x + b2,n2).

In Equation (20), we considered the convergence of

P(max(a1,n1(M1,n1 − b1,n1), a2,n2(M2,n2 − b2,n2)) ≤ x),

instead of the traditionalP(an(Mn − bn) ≤ x). Ifn1 and
n2 are sufficiently large, by (19)we haveP(a1,n1(M1,n1 −
b1,n1) ≤ x) ≈ G1(x) andP(a2,n2(M2,n2 − b2,n2) ≤ x) ≈
G2(x), then

P(Mn ≤ x) = P(max(M1,n1 ,M2,n2) ≤ x)

= P(M1,n1 ≤ x)P(M2,n2 ≤ x)
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≈ G1
(
a1,n1(x − b1,n1)

)
G2
(
a2,n2(x − b2,n2)

)
= G∗

1(x)G
∗
2(x) (21)

where G∗
j is of the same type as Gj, j = 1, 2.

To close this section, we remark that (21) is the basis
of applying the newly introduced AMSD/AEVD family
to real data. Based on (21), in practice, we don’t need
to worry about the values of n1, n2, a1,n1 , b1,n1 , a2,n2 ,
b2,n2 , as they are absorbed in G∗

1(x) and G∗
2(x), see also

Coles (2001). In our examples, we have used some fixed
numbers forn1 andn2. They are just for simulation con-
venience. When n tends to infinity, the values of n1 and
n2 will depend on n.

The next section presents density functions and
shapes fromwhich one can see the flexibility of applying
the new distribution to real data modelling.

2.4. Density functions and density plots

The density function of the accelerated max-stable
distribution requires some discussion of the support
region of the cumulative distribution function. We can
express the two terms in the product using the form of
the generalised extreme value distribution,

F(x) = Hξ1;μ1,σ1(x)Hξ2;μ2,σ2(x)

= exp

{
−
[
1 + ξ1

x − μ1

σ1

]−1/ξ1

−
[
1 + ξ2

x − μ2

σ2

]−1/ξ2
}
, (22)

where 1 + ξ1
x−μ1

σ1
> 0 and 1 + ξ2

x−μ2
σ2

> 0. We inclu
de the special case H0;μi,σ2 as the limit of Hξi;μi,σi for
ξi → 0, i = 1, 2. Denote the density function as f (x)
and let

h(x) = exp

{
−
[
1 + ξ1

x − μ1

σ1

]−1/ξ1

−
[
1 + ξ2

x − μ2

σ2

]−1/ξ2
}

×
[
1
σ1

(
1 + ξ1

x − μ1

σ1

)−1/ξ1−1

+ 1
σ2

(
1 + ξ2

x − μ2

σ2

)−1/ξ2−1
]
.

Since ξ1 and ξ2 are symmetric, we only present one of
them. We have the following six cases for the density
functions.

Case 1. ξ1 = 0, ξ2 = 0.

f (x) = exp
{− e−

x−μ1
σ1 − e−

x−μ2
σ2
}

[
1
σ1

e−
x−μ1

σ1 + 1
σ2

e−
x−μ2

σ2

]
, x ∈ R.

Case 2. ξ1 > 0, ξ2 > 0, assuming μ1 − σ1
ξ1

≥ μ2 − σ2
ξ2
,

then

f (x) =
{

h(x) if x > μ1 − σ1
ξ1
,

0 if x ≤ μ1 − σ1
ξ1
.

Case 3. ξ1 < 0, ξ2 < 0, assuming μ1 − σ1
ξ1

≥ μ2 − σ2
ξ2
,

then

f (x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h(x) if x < μ2 − σ2
ξ2
,

exp
{
−
[
1 + ξ1

x−μ1
σ1

]−1/ξ1
}

×
[

1
σ1

(
1 + ξ1

x−μ1
σ1

)−1/ξ1−1
]

if μ2 − σ2
ξ2

≤ x ≤ μ1 − σ1
ξ1
,

0 if x > μ1 − σ1
ξ1
.

Case 4. ξ1 = 0, ξ2 > 0.

f (x)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp
{
−e−

x−μ1
σ1 −

[
1 + ξ2

x−μ2
σ2

]−1/ξ2
}

×
[

1
σ1
e−

x−μ1
σ1 + 1

σ2
(1 + ξ2

x−μ2
σ2

)−1/ξ2−1
]

if x > μ2 − σ2
ξ2
,

0 if x ≤ μ2 − σ2
ξ2
.

Case 5. ξ1 = 0, ξ2 < 0.

f (x)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp
{
−e−

x−μ1
σ1 −

[
1 + ξ2

x−μ2
σ2

]−1/ξ2
}

×
[

1
σ1
e−

x−μ1
σ1 + 1

σ2
(1 + ξ2

x−μ2
σ2

)−1/ξ2−1
]

if x < μ2 − σ2
ξ2
,

exp{−e−
x−μ1

σ1 } × 1
σ1
e−

x−μ1
σ1 if x ≥ μ2 − σ2

ξ2
.

Case 6. ξ1 > 0, ξ2 < 0.If μ1 − σ1
ξ1

≥ μ2 − σ2
ξ2
,

f (x)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp
{
−
[
1 + ξ1

x−μ1
σ1

]−1/ξ1
}

×
[

1
σ1

(
1 + ξ1

x−μ1
σ1

]−1/ξ1−1
)

if x > μ1 − σ1
ξ1
,

0 if x ≤ μ1 − σ1
ξ1
.

If μ1 − σ1
ξ1

< μ2 − σ2
ξ2
,

f (x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp
{
−
[
1 + ξ1

x−μ1
σ1

]−1/ξ1
}

×
[

1
σ1

[
1 + ξ1

x−μ1
σ1

]−1/ξ1−1
]

if x > μ2 − σ2
ξ2
,

h(x) if μ1 − σ1
ξ1

≤ x ≤ μ2 − σ2
ξ2
,

0 if x < μ1 − σ1
ξ1
.

In Figures 6 and 7, four density plots of Weibull-
Gumbel type are shown. In Figure 8, panel (a) is the
density plot of Fréchet-Fréchet type; and panel (b) is the
density plot of Fréchet-Gumbel type. We can observe
that they capture the shapes of the histograms shown in
Figures 4 and 5.
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Figure 6. Density plots of the accelerated max-stable distributions with Weibull-Gumbel combinations. (a) ξ1 = 0,μ1 = 0.5, σ1 =
1, ξ2 = −1,μ2 = −1, σ2 = 1. (b) ξ1 = 0,μ1 = 0.5, σ1 = 1, ξ2 = −1,μ2 = 0.5, σ2 = 1.

Figure 7. Density plots of the accelerated max-stable distributions with Weibull-Gumbel combinations. (a) ξ1 = −1, μ1 = −1,
σ1 = 1, ξ2 = 0,μ2 = 0.5, σ2 = 0.7. (b) ξ1 = −0.5,μ1 = −2, σ1 = 1, ξ2 = 0,μ2 = −1, σ2 = 0.7.

Figure 8. (a) Density plot of the accelerated max-stable distribution with Fréchet-Fréchet combinition. ξ1 = 0.5, μ1 = 0, σ1 = 1,
ξ2 = 0.9, μ2 = 0, σ2 = 1. (b) Density plot of the accelerated max-stable distributions with Fréchet-Gumbel combinition. ξ1 = 0,
μ1 = 0, σ1 = 3, ξ2 = 1,μ2 = −3, σ2 = 0.2.
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Figure 9. (a) Density plot of the acceleratedmax-stable distributionwithWeibull-Fréchet combination. ξ1 = −0.5,μ1 = 0, σ1 = 1,
ξ2 = 0.3,μ2 = −1, σ2 = 0.1. (b) Density plot of the acceleratedmax-stable distribution with Gumbel-Gumbel combinition. ξ1 = 0,
μ1 = 0, σ1 = 3, ξ2 = 0,μ2 = −3, σ2 = 0.3.

In Figure 9(b), it is for ξ1 = ξ2 = 0, i.e., the com-
bination of two Gumbel distributions. In this case, the
density plot is bimodal, which is different from that of
a Gumbel distribution. Suppose that X1,i ∼ N(μ1, σ1)
and X2,j ∼ N(μ2, σ2), 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, then
we have some norming constants a1,n1 > 0, b1,n1 and
a2,n2 > 0, b2,n2 such that

P(a1,n1(M1,n1 − b1,n1) ≤ x, a2,n2(M2,n2 − b2,n2) ≤ x)

→ �

(
x − μ1

σ1

)
�

(
x − μ2

σ2

)
= exp{−e−

x−μ1
σ1 − e−

x−μ2
σ2 }. (23)

Here the limit product form requires that the two
scale parameters σ1 �= σ2. Otherwise, the product
exp{−e−

x−μ1
σ − e−

x−μ2
σ } reduces to the Gumbel type.

2.5. Tail equivalence and the existence of

moments

In this section, we discuss some results of tail-
equivalence, and which moments are finite for certain
AMSDs/AEVDs.

Definition 2.3: Two cdf’s F and H are called tail-
equivalent if they have the same right endpoint, i.e., if
xF = xH , and

lim
x→xF

F(x)/H(x) = c (24)

for some constant 0 < c < ∞.

We have the following facts.

Fact 2.1: It is clear that the product distribution of a
Weibull distribution and another type of extreme value
distribution H(x) is tail equivalent to H(x).

Fact 2.2: Suppose X ∼ �α1�α2 , let μk = E(Xk) be
the kth moment of X, then μk is finite only if k <

min(α1,α2).

Suppose α1 < α2, then �α1 has a heavier tail than
�α2 . Letμ

(1)
k be the kth moment of X ∼ �α1 . We know

thatμ(1)
k < ∞ only if k < α1. This implies that�α1�α2

has the same right-tail heaviness as �α1 .

Fact 2.3: If 0 < α1 < α2, then �α1�α2 and �α1 are
tail-equivalent.

Fact 2.4: Suppose X ∼ �(x)�α(x). Let μk = E(Xk) be
the kth moment of X. Then μk is finite only if k < α.

Fact 2.5: �(x)�α(x) and �α(x) are tail-equivalent.

Fact 2.6: If H1(x) has a heavier tail thanH2(x), then the
accelerated max-stable distribution H1(x)H2(x) is tail-
equivalent to H1(x).

3. Joint convergence and approximation

errors

3.1. Convergence of joint probability for general

thresholds

It may also be interesting to consider the limits
of P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) for some sequences
u1,n1 and u2,n2 not necessarily of the form x/ai,ni + bi,ni
or even not dependent on x. Here n1 and n2 are the
lengths of the two subsequences, we may write them
specifically as n1(n) and n2(n) since they vary with the
total length n. When choosing uj,nj = x/aj,nj + bj,nj for
j = 1, 2, it becomes the problem we discussed before.
The question is:

Which conditions on F1 and F2 ensure that the limit of
P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) for n → ∞ exists for
appropriate constants u1,n1 and u2,n2 ?
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Some conditions on tails F̄1 and F̄2 are required to
ensure that P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) converges
to a non-trivial limit, i.e., a number in (0, 1).

Theorem 3.1: Suppose {Xi}ni=1 is an independent
sequence of random variables which is mixed with two
subsequences {X1,i}n1i=1 and {X2,i}n2i=1 with underlying dis-
tributions F1(x) and F2(x), n1 → ∞ and n2 → ∞ as
n → ∞. Let 0 ≤ τ < ∞ and {u1,i}n1i=1 and {u2,i}n2i=1 are
two sequences of real numbers such that

n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2))

→ τ as n → ∞. (25)

Then

P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) → e−τ as n → ∞.
(26)

Conversely, if (26) holds for some 0 ≤ τ < ∞, then so
does (25).

Remark: Since 1 − F(uj,nj) is the probability that Xj,i
exceeds level uj,nj , Equation (25) means that the
expected number of exceedences of u1,n1 by {X1,i}n1i=1
and u2,n2 by {X2,i}n2i=1 in total converges to τ . When
the sequence is generated from one distribution F(x),
Theorem 3.1 can be reduced to the classical result by
choosing u1,n1 = u2,n2 = un. That is

n(1 − F(un)) → τ , (27)

if and only if

P(Mn ≤ un) → e−τ (28)

as n → ∞.

The following corollary gives the conditions such
that we can choose one of {u1,i}n1i=1 and {u2,i}n2i=1 to be
applied to Mn, and derive a similar limit of P(Mn ≤
un). The condition involves both the ratio of two tail
probabilities 1−F1(u1,n1 )

1−F2(u2,n2 )
and n1

n2 .

Corollary 3.1: Let 0 ≤ τ1 < ∞, 0 ≤ τ2 < ∞. Suppose
that there exist two sequences u1,n1 and u2,n2 such that

n1(1 − F1(u1,n1)) → τ1,

n2(1 − F2(u2,n2)) → τ2.
(29)

Then

P(M1,n1 ≤ u1,n,M2,n2 ≤ u2,n) → e−τ1−τ2 . (30)

Moreover, if n2(1−F2(u1,n1 ))
n1(1−F1(u1,n1 ))

→ t, where 0 ≤ t < ∞, then

P(Mn ≤ u1,n1) → e−τ1(1+t). (31)

Specifically, if we choose u1,n1 = x
a1,n1

+ b1,n1 , u2,n2
= x

a2,n2
+ b2,n2 , and suppose that

P(a1,n1(M1,n1 − b1,n1) ≤ x) → G1(x), (32)

P(a2,n2(M2,n2 − b2,n2) ≤ x) → G2(x), (33)

then G1 and G2 belong to the GEV distribution family
and the limit in (31) becomes G1(x)G2(x).

The following is an example of mixed sequence and
the limit properties of the maxima of subsequences and
the global maxima.

Example 3.1: Suppose {Xi}ni=1 is a sequence of random
variables combining two subsequences {X1,i}n1i=1 and
{X2,i}n2i=1. Suppose

n1
n → p, where 0 ≤ p ≤ 1, {X1,i}n1i=1

and {X2,i}n2i=1 are i.i.d. from a Pareto distribution
with F1(x) = 1 − Kx−α1 , α1 > 0, K > 0, x > 0 and a
Fréchet distribution with F2(x) = exp(−x−α2), α2 >

0, x > 0, respectively.
Since (1 − F1(tx))/(1 − F1(t)) = x−α1 for each x >

0, so that Type II (Fréchet) limit applies. For u1,n1 =
(Kn1,n1/τ)1/α1 we have 1 − F1(u1,n1) = τ/n1, so that

P

(
M1,n1 ≤

(
Kn1
τ

)1/α1
)

→ e−τ . (34)

Putting τ = x−α1 for x ≥ 0,

P((Kn1)−1/α1M1,n1 ≤ x) → exp(−x−α1). (35)

On the other hand, Fn22 (n1/α22 x) = F2(x), i.e., P(n−1/α2
2

M2,n2 ≤ x) = F2(x).
Then we have for x ≥ 0,

P((Kn1)−1/α1M1,n1

≤ x, n−1/α2
2 M2,n2 ≤ x) → exp(−x−α1 − x−α2). (36)

Since

lim
x→∞

F1(x)
F2(x)

= lim
x→∞

Kx−α1

1 − exp(−x−α2)

= lim
x→∞

Kx−α1

x−α2 + O(x−2α2)

→
⎧⎨⎩

0 α1 > α2,
K α1 = α2,
∞ α1 < α2.

When α1 = α2, the condition
n2(1−F2(u1,n1 ))
n1(1−F1(u1,n1 ))

→ 1−p
pK in

Corollary 3.1 is satisfied, hence

P(Mn ≤ n−1/α1
1 x) → exp

(
−x−α1

(
1 + 1 − p

pk

))
.

(37)
Since n1 ∼ np, we also have

P(Mn ≤ (np)−1/α1x) → exp
(

−x−α1

(
1 + 1 − p

pk

))
.

(38)
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3.2. Approximation error

The convergence results are usually accompanied by
the question of the approximation error. Suppose
n1(1 − F1(u1,n1)) → τ1 and n2(1 − F2(u2,n2)) → τ2,
writing τ1,n1 = n1(1 − F1(u1,n1)) and τ2,n2 = n2(1 −
F2(u2,n2)), then by Theorem 3.1 we have

P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) → e−τ1−τ2 . (39)

The approximation can be decomposed into several
parts. We have(

1 − τ1,n1
n1

)n1
≈ e−τ1,n1 ,

(
1 − τ2,n2

n2

)n2
≈ e−τ2,n2 ,

and

e−τ1,n1 ≈ e−τ1 , e−τ2,n2 ≈ e−τ2 .

We denote


1,n1 =
(
1 − τ1,n1

n1

)n1
− e−τ1,n1 ,


′
1,n1 = e−τ1,n1 − e−τ1 ,


2,n2 =
(
1 − τ2,n2

n2

)n2
− e−τ2,n2 ,


′
2,n2 = e−τ2,n2 − e−τ2 .

Then

P(M1,n1 ≤ u1,n1) − e−τ1 = 
1,n1 + 
′
1,n1 ,

P(M2,n2 ≤ u2,n2) − e−τ2 = 
2,n2 + 
′
2,n2 .

The following result gives the bound for the approxi-
mation error.

Theorem 3.2: Let {Xi}ni=1 be an independent sequence
of random variables mixed with two subsequences
{X1,i}n1i=1 and {X2,i}n2i=1, which satisfies n1(1 − F1(u1,n1))
→ τ1 and n2(1 − F2(u2,n2)) → τ2, 
1,n1 , 
′

1,n1 , 
2,n2 ,

′

2,n2 are defined as above, then

P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) − e−τ1−τ2

≤ 
1,n1 + 
′
1,n1 + 
2,n2 + 
′

2,n2

with

0 ≤ −
j,nj ≤ τj,nje
−τj,nj

2
· 1
nj − 1

≤ 0.3 · 1
nj − 1

, for j = 1, 2,

where the first bound is asymptotically sharp, in the

sense that if τj,nj → τj then 
j,nj ∼ −(
τje

−τj

2 )/nj. Fur-
thermore, for τj − τj,nj ≤ log 2,


′
j,nj = eτj{(τj − τj,nj) + θj(τj − τj,nj)

2},

with 0 < θj < 1.

If τj,nj → τj for uj,nj = x/aj,nj + bj,nj , then (39)
holds. By Lemma A.1, (39) holds also if aj,nj and bj,nj
are replaced by different constants αj,nj and βj,nj , satis-
fying αj,nj/aj,nj → 1 and (βj,nj − bj,nj)/aj,nj → 0. How-
ever, the speed of convergence to zero of 
′

j,nj (thus the
speed of P(Mj,nj ≤ uj,nj) to e−τj) can be very different
for different choices of norming constants.

4. Weakly dependent sequences

In this section, we extend the independent sequences
to weakly dependent sequences. For a sequence of ran-
dom variables {Xi}ni=1 with identical distribution, it is
stationary if {Xj1 , . . . ,Xjn} and {Xj1+m, . . . ,Xjn+m} have
the same joint distribution for any choice of n, j1, . . . , jn,
and m. For the mixed sequence, we will provide some
alternatives so that the desired results still hold. We
assume that the dependence between Xi,k and Xi,j falls
off in some specific way as |k − j| increases.

4.1. Review of someweakly dependent conditions

Someweakly dependent conditions in the literature can
be generalised to the scenarios of mixed sequences.
For m-dependent sequence {Xi}ni=1, Xi and Xj are
independent if |i − j| > m. Another commonly used
condition is the strong mixing condition first intro-
duced by Rosenblatt (1956). A sequence of random
variables {Xi}ni=1 is said to satisfy the strong mix-
ing condition if for some A ∈ F(X1, . . . ,Xp) and B ∈
F(Xp+k+1,Xp+k+2, . . .)

|P(A ∩ B) − P(A)P(B)| < g(k)

for any p and k, where g(k) → 0 as k → ∞;F(·) is the
σ -field generated by the indicated random variables.
The function g(k) does not depend on the sets A and
B, so the strong mixing condition is uniform.

For normal sequences, the correlation between Xk
and Xj may be a better measure of dependence. We can
also use the dependence restriction |Corr(Xk,Xj)| ≤
g(|k − j|), where g(k) → 0 as k → ∞.

Since the event {Mn ≤ u} is the same as {X1 ≤
u,X2 ≤ u, . . . ,Xn ≤ u}. We may restric the events on
this type of event. Following Leadbetter et al. (2012), we
use Fi1,...,in(u) to denote P(Xi1 ≤ u,Xi2 ≤ u, . . . ,Xin ≤
u). The following condition D is a weakened condition
of strong mixing.

The condition D will be said to hold if for any integers
i1 < · · · < ip and j1 < · · · < jp′ for which j1 − ip ≥ l,
and any real u,

|Fi1,...,ip,j1,...,jp′ (u) − Fi1,...,ip(u)Fj1,...,jp′ (u)| ≤ g(l) (40)

where g(l) → 0 as l → ∞.
Under the conditionD, the Extremal Types Theorem

also holds. Since we usually deal with the event {Mn ≤
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un} for some levels {un}, the condition can still be
weakened.The condition D(un) is defined as follows.

The condition D(un) will be said to hold if for any
integers

1 ≤ i1 < · · · < ip < j1 < · · · < jp′ ≤ n (41)

for which j1 − ip ≥ l, we have

|Fi1,...,ip,j1,...,jp′ (un) − Fi1,...,ip(un)Fj1,...,jp′ (un)| ≤ αn,l
(42)

where αn,ln → 0 as n → ∞ for some sequence ln =
o(n).

The conditionD(un) guarantees that lim inf P(Mn ≤
un) ≥ e−τ . We still need a further assumption to have
the opposite inequality for the upper limit. Here we
present theD′(un) condition used inWatson (1954) and
Loynes (1965). This condition bounds the probabil-
ity of more than one exceedance among X1, . . . ,X[n/k],
therefore no multiple points in the point process of
exceedances.

The condition D′(un) will be said to hold for the
sequence of random variables {Xi}ni=1, if

lim sup
n→∞

n
[n/k]∑
j=2

P{X1 > un,Xj > un} → 0 (43)

as k → ∞, (where [ ] denotes the interger part).
If both conditions D(un) and D′(un) are satisfied,

we have P(Mn ≤ un) → e−τ is equivalent to n(1 −
F(un)) → τasn → ∞ for 0 ≤ τ < ∞.

4.2. Weakly dependentmixed sequences

To generalise the results from non-mixed sequences to
mixed sequences, we need to modify the conditions of
D(un) andD′(un).We useun to denote the vector of lev-
els (u1,n1 , u2,n2)when the sequence {Xi}ni=1 is composed
of two subsequences {X1,i}n1i=1 and {X2,i}n2i=2, n1 + n2 =
n. We further assume that n1

n → p as n → ∞, 0 ≤ p ≤
1, so that n2

n → 1 − p.
Before introducing the more general D(un) con-

dition, we introduce some new notations. Let u(i)
n =

u1,n1I(Xi ∈ {X1,i}n1i=1) + u2,n2I(Xi ∈ {X2,i}n2i=1). Here
I(A) = 1 indicates that the event A is true, other-
wise I(A) = 0. The notation u(i)

n represents the thresh-
old for Xi, which depends on the subsequence that
Xi belongs to. For example, if X1 = X1,1 and X2 =
X2,1, then P(X1 ≤ u(1)

n ,X2 ≤ u(2)
n ) represents P(X1,1 ≤

u1,n1 ,X2,1 ≤ u2,n2). After introducing this notation, we
can state the condition D(un) as follows.

The condition D(un) will be said to hold for the
mixed sequence of random variables {Xi}ni=1 with two
subsequences {X1,i}n1i=1 and {X2,i}n2i=1 if for any integers

1 ≤ i1 < · · · < ip < j1 < · · · < jp′ ≤ n (44)

for which j1 − ip ≥ l, we have

|P(Xi1 ≤ u(i1)
n , . . . ,Xip

≤ u(ip)
n ,Xj1 ≤ u(j1)

n , . . . ,Xjp′ ≤ u
(jp′ )
n )

− P(Xi1 ≤ u(i1)
n , . . . ,Xip ≤ u(ip)

n )

P(Xj1 ≤ u(j1)
n , . . . ,Xjp′ ≤ u

(jp′ )
n )| < αn,l

where αn,ln → 0 as n → ∞ for some sequence ln =
o(n).

Similarly, we can also extend the condition D′(un)
for mixed sequences, which is denoted as D′(un).

The condition D′(un) will be said to hold for the
mixed sequence of random variables {Xi}ni=1 and levels
un = (u1,n1 , u2,n2) if

lim sup
n→∞

k
∑

1≤i<j≤[n/k]

P(Xi > u(i)
n ,Xj > u(j)

n ) → 0

as k → ∞ (45)

where u(i)
n = u1,n1I(Xi ∈ {X1,i}n1i=1) + u2,n2I(Xi ∈

{X2,i}n2i=2), and [ ] denotes the integer part.
Equation (45) means that lim supn→∞

∑
1≤i<j≤[n/k]

P(Xi > u(i)
n ,Xj > u(j)

n ) = o(1/k). It can be observed
that if D(un) holds for the mixed sequence {Xi}ni=1,
then D(uj,nj) also holds for the subsequence {Xj,i}nji=1,
for j = 1, 2. The same conclusion is also true for the
condition D′(un).

After introducing the conditions D(un) and D′(un),
we have the extended results for mixed sequences.
We assume that the two subsequences {X1,i}n1i=1 and
{X2,i}n2i=2 are independent with each other. Also, for any
interval In with ln members, there are an members from
{X1,i}n1i=1 and bn members from {X2,i}n2i=2. We assume
that the proportion of each subsequence an

ln → p and
bn
ln → 1 − p, where 0 ≤ p ≤ 1.

Theorem 4.1: Let {Xi}ni=1 be a weakly dependent mixed
sequence of random variables with two subsequences
{X1,i}n1i=1 and {X2,i}n2i=1, with sample size proportions
n1
n → p and n2

n → 1 − p as n → ∞, 0 ≤ p ≤ 1. Sup-
pose that D(un) and D′(un) hold for {Xi}ni=1, then for
0 ≤ τ < ∞,

P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) → e−τ (46)

if and only if

n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2)) → τ . (47)

Based on Theorem 4.1, we have the following
corollary.

Corollary 4.1: The same conclusions hold with τ = ∞
(i.e., P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) → 0 if and only
if n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2)) → ∞) if the
requirements that D(un), D′(un) hold are replaced by the
condition that, for arbitrarily large τ(< ∞), there exists
a vector of levels vn = (v1,n1 , v2,n2) such that v1,n1 >
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u1,n1 , v2,n2 > u2,n2 , which satisfy n1(1 − F1(v1,n1)) +
n2(1 − F2(v2,n2)) → τ with D(vn) and D′(vn) hold.

Theorem 4.1 tells us the property of the joint prob-
ability P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) given the tail
properties of F1 and F2. n1(1 − F1(u1,n1)) + n2(1 −
F2(u2,n2)) is the mean exceedances of the two thresh-
olds by the corresponding subsequences in total.
Theorem 4.1 is the generalisation of Theorem 3.1 under
the condition that themixed sequence is weakly depen-
dent within each subsequence.

4.3. Associated independent sequences

The ‘independent sequence associatedwith {Xi}ni=1’ can
be used to study the maxima of dependent sequence.
It was first introduced by Loynes (1965). For a weakly
dependent sequence of random variables {Xi}ni=1, the
notation {X̂i}ni=1 is used to be the independent sequence
with the same marginal distribution as {Xi}ni=1, and
write M̂n = max(X̂1, . . . , X̂n). When {Xi}ni=1 is mixed
with two subsequences {X1,i}n1i=1 and {X2,i}n2i=1 with dif-
ferent marginal distributions, we still have the associ-
ated independent subsequences {X̂1,i}n1i=1 and {X̂2,i}n1i=1,
and we write M̂i,ni = max(X̂i,1, . . . , X̂i,ni), for i = 1, 2.

The following Theorem 4.2 tells us that, under the
weakly dependent conditions, P(M1,n1 ≤ u1,n1 ,M2,n2
≤ u2,n2) and P(M̂1,n1 ≤ u1,n1 , M̂2,n2 ≤ u2,n2) have the
same limit if it exists. By Theorem 4.3, we can
choose the same norming constant as the independent
sequence to derive the same limit of P(a1,n1(M1,n1 −
b1,n1) ≤ x, a2,n2(M2,n2 − b2,n2) ≤ x) and P(a1,n1(M̂1,n1
− b1,n1) ≤ x, a2,n2(M̂2,n2 − b2,n2) ≤ x).

Theorem 4.2: Let {Xi}ni=1 be a mixed sequence of
random variables with two subsequences {X1,i}n1i=1 and
{X2,i}n2i=1, independent with each other. Suppose D(un)
and D′(un) hold for a vector of levels un = (u1,n1 , u2,n2).
Then P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) → θ > 0 if and
only if P(M̂1,n1 ≤ u1,n1 , M̂2,n2 ≤ u2,n2) → θ . The same
holds with θ = 0 if the condition D(un) and D′(un)
are replaced by the requirement that for arbitrarily large
τ < ∞ there exists vn = (v1,n1 , v2,n2) such that v1,n1 >

u1,n1 , v2,n2 > u2,n2 , which satisfy n1(1 − F1(v1,n1)) +
n2(1 − F2(v2,n2)) → τ with D(vn) and D′(vn) hold.

Theorem 4.3: Suppose that D(un) and D′(un) hold for
the mixed sequence of random variables {Xi}ni=1, with
u1,n1 = x/a1,n1 + b1,n1 , u2,n2 = x/a2,n2 + b2,n2 for each
real x. Then

P(a1,n1(M1,n1 − b1,n1)

≤ x, a2,n2(M2,n2 − b2,n2) ≤ x) → G(x) (48)

if and only if

P(a1,n1(M̂1,n1 − b1,n1)

≤ x, a2,n2(M̂2,n2 − b2,n2) ≤ x) → G(x) (49)

for some non-degenerate continuous distribution func-
tion G(x).

With the results in this section, for weakly depen-
dent sequenceswith conditionsD(un) andD′(un) being
satisfied, we can treat them as independent sequences
when studying the limit distribution of the maxima.
In the next section, some numerical experiments and
estimation results are presented.

5. Numerical experiments

5.1. Simulation

We study the accuracy of the accelerated max-stable
distributions in estimating the high quantiles of the
simulated data. They are compared to the results using
the classical GEV distribution alone. To simulate the
data, we first generate two sequences from two differ-
ent GEV distributions with parameters ξ1,μ1, σ1 and
ξ2,μ2, σ2, denoting them as {Xi}ni=1 and {Yi}ni=1, here
n = 2000. We pair them and find their maxima, Zi =
max(Xi,Yi), then fit the accelerated max-stable distri-
bution andGEV distribution separately to the sequence
{Zi}ni=1 usingmaximum likelihoodmethod. Using each
fitted distribution, we generate a new sequence {Z∗

i }ni=1
and calculate the proportion of {Z∗

i }ni=1 that exceeds the
90th, 95th and 99th percentiles of the original sequence
{Zi}ni=1. The simulation scenarios cover all the possible
combinations of three types of extreme value distri-
butions. For each combination scenario, the process is
repeated 100 times and the standard deviations of the
estimated proportions are shown in the parentheses.
The results are in Table 1.

FromTable 1, for the 90th percentile, we can observe
that accelerated max-stable distributions perform bet-
ter than the GEV alone, and the exceeding proportion
is closer to the theoretical value 0.1. The same is true
for the 95th percentiles. For both of these two per-
centiles, the proportions are larger than the theoretical
value 0.1 and 0.05 in general, with the GEV distribu-
tion deviating more. This observation implies that both
estimations overestimate the true values. For the 99th
percentiles, we observe that the differences are not large
overall. With a few cases (2nd and 3rd), the accelerated
max-stable distribution outperforms the GEV distribu-
tion. Also, the proportions for accelerated max-stable
distributions are all larger than 0.01 and those for GEV
distributions are mostly smaller than 0.01. This phe-
nomenon implies that the accelerated max-stable dis-
tributionmay overestimate the 99th percentiles. On the
other hand, the GEV distribution may underestimate
the 99th percentiles.

5.2. Real data

In this section, we apply both AMSD/AEVD and GEV
fitting to stock data. The data contains the daily closing
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Table 1. The proportions of the simulated data based on the fitted accelerated max-stable distributions and GEV distributions that
exceeds the 90th, 95th and 99th percentiles of the original data Zi .

90th 95th 99th

ξ1 μ1 σ1 ξ2 μ2 σ2 AEVD GEV AEVD GEV AEVD GEV

1 0.1 0 1 −0.1 0 1 0.1002 0.1071 0.0502 0.0540 0.0104 0.0094
(0.005) (0.006) (0.004) (0.004) (0.002) (0.002)

2 0.1 0 1 −0.2 2 1 0.0988 0.1191 0.0496 0.0688 0.0102 0.0140
(0.005) (0.006) (0.004) (0.006) (0.002) (0.003)

3 0 0 1 −0.2 2 1 0.1022 0.1094 0.0516 0.0555 0.0097 0.0088
(0.009) (0.008) (0.007) (0.006) (0.003) (0.003)

4 0 0 1 −0.1 0 1 0.1008 0.1039 0.0507 0.0525 0.0102 0.0096
(0.007) (0.008) (0.006) (0.006) (0.003) (0.003)

5 -0.1 0 1 −0.2 0 1 0.1007 0.1052 0.0502 0.0534 0.0103 0.0100
(0.007) (0.008) (0.005) (0.006) (0.003) (0.003)

6 -0.3 2 1 −0.15 0 1 0.1010 0.1024 0.0506 0.0514 0.0104 0.0098
(0.008) (0.008) (0.006) (0.006) (0.002) (0.003)

7 0 10 1 0.1 0 1 0.0997 0.1029 0.0505 0.0519 0.0104 0.0096
(0.007) (0.008) (0.006) (0.006) (0.002) (0.003)

8 0 30 1 0.05 0 1 0.0996 0.1033 0.0497 0.0520 0.0104 0.0098
(0.008) (0.008) (0.005) (0.006) (0.002) (0.003)

9 0.1 30 1 0.15 0 1 0.1002 0.1030 0.0507 0.0520 0.0106 0.0099
(0.007) (0.008) (0.005) (0.006) (0.003) (0.003)

10 0.05 20 1 0.08 0 1 0.0995 0.1025 0.0497 0.0517 0.0104 0.0098
(0.007) (0.008) (0.006) (0.006) (0.003) (0.003)

11 0 5 1 0 0 1 0.0996 0.1031 0.0502 0.0518 0.0104 0.0098
(0.007) (0.008) (0.005) (0.006) (0.003) (0.003)

12 0 2 1 0.2 0 1 0.1021 0.1077 0.0506 0.0548 0.0107 0.0095
(0.007) (0.009) (0.005) (0.007) (0.003) (0.003)

Notes: {Zi}ni=1 is generated by taking the paired maxima of simulated sequences {Xi}ni=1 and {Yi}ni=1 from two different GEV distributions. The standard devi-
ations of the 100 repetitions are shown in the parentheses. The numbers in bold font are the ones that are closer to the theoretical values, i.e., 0.1, 0.05, and
0.01.

prices of 330 S&P500 companies. Based on the closing
prices, we calculate the daily negative log returns using
the formula ri = − log( pi

pi−1
). Here pi represents the

stock’s closing price of one company on day i. For each
day i, we obtain the 330 negative log returns and cal-
culate the maximal value of them, denoting it as mi.
The time range is from 3 January 2000 to 30 Decem-
ber 2016, which contain 4277 trading days in the data.
The histogram showing the distribution of {mi}4277i=1 is
in Figure 10.

Figure 10. The histogram of the daily maxima of negative log
returns of 330 stocks in the S&P500 companies list.

Table 2. The proportions of the simulated samples generated
fromthefitteddistributions that exceed the90th, 95th, and99th
sample percentiles of the maximal daily negative log returns.

90th 95th 99th

AMSD GEV AMSD GEV AMSD GEV

Proportion 0.0961 0.0954 0.0475 0.0521 0.0115 0.0140

Note: The numbers in bold font are the ones that are closer to the theoretical
values, i.e., 0.1, 0.05, and 0.01, respectively.

We find the 90th, 95th and 99th sample percentiles
of {mi}4277i=1 , which are 0.1545, 0.2 and 0.3229, respec-
tively. Here the daily maximal negative log returns have
some time dependency. However, for the purpose of
demonstration,we treat themas independent andfit the
AMSD/AEVD and the GEV distribution to {mi}4277i=1 .
Based on the fitted distributions, we generate random
samples with the same size and find the proportions
of the samples that exceed the three percentiles. The
proportions are shown in Table 2.

Table 2 clearly reveals that the AMSD/AEVD per-
forms better than the GEV alone. The modelling per-
formancemay be further improved if time series depen-
dence is implemented in the model fitting, e.g., the
AcF model proposed by Zhao et al. (2018) and Mao
and Zhang (2018). We will leave this task as a future
project.

6. Conclusions

This paper extends the classical extreme value theory to
maxima ofmaxima of time series withmixture patterns
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depending on the sample size. It has been shown that
the classical extreme value distributions are special
cases of the accelerated max-stable (extreme value) dis-
tributions (AMSDs/AEVDs). Some basic probabilistic
properties are presented in the paper. These properties
can be used as the probability foundation of recently
proposed statistical models for extreme observations.
The AMSDs may shed the light of extreme value stud-
ies and inferences. Many of existing theories in classical
extreme value literature can be renovated in a much
more general setting. Many real applications, e.g., risk
analysis and portfolio management, systemic risk, etc.
can be reanalysed and better results can be expected.
Under the newly introduced framework, many new
statistical models can be introduced and explored.
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Appendix

A.1 Proofs of Theorems and Propositions

A.1.1 Proof of Theorem 2.1
For Equation (4),

P(a2,n2(Mn − b2,n2) ≤ x)

= P(max(a2,n2(M1,n1 − b2,n2),

a2,n2(M2,n2 − b2,n2)) ≤ x)

= P(a2,n2(M1,n1 − b2,n2)

≤ x, a2,n2(M2,n2 − b2,n2)) ≤ x)

= P
(
a1,n1(M1,n1 − b1,n1)

≤ a1,n1

(
x

a2,n2
+ b2,n2 − b1,n1

)
,

a2,n2(M2,n2 − b2,n2)) ≤ x
)

→ H1(ax + b)H2(x).

For Equation (5),

P(a2,n2(Mn − b2,n2) ≤ x)

= P
(
a1,n1(M1,n1 − b1,n1)

≤ a1,n1

(
x

a2,n2
+ b2,n2 − b1,n1

)
,

a2,n2(M2,n2 − b2,n2) ≤ x
)

→ H2(x).

A.1.2 Proof of Fact 2.2
The density of �α1�α2 is

f (x) =
{

e−x−α1−x−α2
(α1x−α1−1 + α2x−α2−1) x ≥ 0,

0 x < 0.
(A1)

Thus

μk =
∫ ∞

0
xkf (x) d(x)

=
∫ ∞

0
xke−x−α1−x−α2

(α1x−α1−1 + α2x−α2−1) dx. (A2)

Dividing the integral into two parts, we get

μk =
∫ 1

0
xkf (x) dx +

∫ ∞

1
xkf (x) dx. (A3)

First, let us consider
∫ 1
0 xkf (x) dx. Since limx→0 xkf (x) = 0

and xkf (x) is continuous on [0, 1], it is bounded on [0, 1]. This
implies that ∫ 1

0
xkf (x) dx < ∞. (A4)

Next, let us consider
∫∞
1 xkf (x) dx. We have∫ ∞

1
xkf (x) dx

=
∫ ∞

1
e−x−α1−x−α2

(α1xk−α1−1 + α2xk−α2−1) dx.

Notice that
lim
x→∞ e−x−α1−x−α2 = 1. (A5)

Therefore
∫∞
1 e−x−α1−x−α2

(α1xk−α1−1 + α2xk−α2−1) dx <

∞ only if k < α1 and k < α2, i.e., k < min(α1,α2).

A.1.3 Proof of Fact 2.3
We need to consider limx→∞ 1−e−x−α1 e−x−α2

1−e−x−α1 .
Since x−α1 → 0 and x−α2 → 0 as x → ∞, we have the

Taylor expansions

e−x−α1 = 1 − x−α1 + o(x−α1),

e−x−α1−x−α2 = 1 − (x−α1 + x−α2) + o(x−α1 + x−α2).

Therefore

lim
x→∞

1 − e−x−α1 e−x−α2

1 − e−x−α1

= lim
x→∞

(x−α1 + x−α2) + o(x−α1 + x−α2)

x−α1 + o(x−α1)

= lim
x→∞(1 + xα1−α2) = 1. (A6)

This proves that �α1�α2 and �α1 are tail-equivalent.

A.1.4 Proof of Fact 2.4
The density of �(x)�α(x) is

f (x) =
{

e−e−x−x−α
(e−x + αx−α−1) x ≥ 0,

0 x < 0.
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Thus

μk =
∫ ∞

0
xkf (x) d(x)

=
∫ ∞

0
xke−e−x−x−α

(e−x + αx−α−1) dx. (A7)

Dividing the above equation into two parts, we get

μk =
∫ 1

0
xkf (x) dx +

∫ ∞

1
xkf (x) dx. (A8)

For the first part, since limx→0 xkf (x) = 0 and xkf (x) is
continuous on [0, 1], it is bounded on [0, 1]. Thus

∫ 1
0 xk

f (x) < ∞.
For the second part,∫ ∞

1
xkf (x) =

∫ ∞

1
e−e−x−x−α

(e−xxk + αxk−α−1) dx. (A9)

Since

lim
x→∞ e−e−x−x−α = 1, and

∫ ∞

1
e−xxk dx < ∞ for∀k,

(A10)
we have

∫∞
1 e−e−x−x−α

(e−xxk + αxk−α−1) dx < ∞ if and
only if k < α.

A.1.5 Proof of Fact 2.5
We need to consider limx→∞ 1−e−e−x

e−x−α

1−e−x−α .
Since limx→∞ e−x → 0 and limx→∞ x−α → 0, we have

the Taylor expansions

e−e−x−x−α = 1 − e−x − x−α + o(e−x + x−α),

e−x−α = 1 − x−α + o(x−α).

Thus

lim
x→∞

1 − e−e−x e−x−α

1 − e−x−α = lim
x→∞

e−x + x−α + o(e−x + x−α)

x−α + o(x−α)

= 1. (A11)

This implies that �(x)�α(x) and �α(x) are tail-equivalent.

A.1.6 Proof of Theorem 3.1
If (25) holds, we must have

1 − F1(u1,n1) → 0,

1 − F2(u2,n2) → 0.

Then

n1 log(1 − (1 − F1(u1,n1))) + n2 log(1 − (1 − F2(u2,n2)))

= −n1(1 − F1(u1,n1))(1 + o(1))

− n2(1 − F2(u2,n2))(1 + o(1))

→ −τ (A12)

which is equivalent to

P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2)

= (1 − (1 − F1(u1,n1)))
n1(1 − (1 − F2(u2,n2)))

n2

= exp
{
n1 log(1 − (1 − F1(u1,n1)))

+ n2 log(1 − (1 − F2(u2,n2)))
}

→ e−τ .

Conversely, if (26) holds, which is equivalent to

n1 log(1 − (1 − F1(u1,n1)))

+ n2 log(1 − (1 − F2(u2,n2))) → −τ , (A13)

we must have 1 − F1(u1,n1) → 0 and 1 − F2(u2,n2) → 0.
Otherwise, suppose 1 − F1(u1,n1) �→ 0, then there is a
sequence of indexes m1,m2, . . . and ε > 0 such that 1 −
F1(u1,mk) > ε for ∀k. This means that

n1 log(1 − (1 − F1(u1,mi))) + n2 log(1 − (1 − F2(u2,n−mi)))

< n1 log(1 − (1 − F1(u1,mi)))

< n1 log(1 − ε) → −∞,

which is contradictory to (A13). We have

n1[(1 − F1(u1,n1)) + o(1 − F1(u1,n1))]

+ n2[(1 − F2(u2,n2)) + o(1 − F2(u2,n2))] → τ (A14)

and Equation (25) holds.

A.1.7 Proof of Corollary 3.1
Since

n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2)) → τ1 + τ2, (A15)

(30) is a direct result of Theorem 3.1.
If n2(1−F2(u1,n1 ))

n1(1−F1(u1,n1 ))
→ t, then n2(1 − F2(u1,n1)) → tτ1,

where 0 ≤ tτ1 < ∞. Therefore,

P(Mn ≤ u1,n1) = P(M1,n1 ≤ u1,n1)P(M2,n2 ≤ u1,n1)

→ e−τ1(1+t).

A.1.8 Proof of Theorem 3.2
Since P(Mi,ni ≤ ui,ni) = (1 − τi,ni/ni)ni and 0 ≤ τi,ni =
n1(1 − Fi(ui,ni)) ≤ n, the result follows from Lemma A.2.

A.1.9 Proof of Theorem 4.1
For fixed k, write n′ = [n/k], suppose that there are n′

1 mem-
bers from F1 and n′

2 members from F2 among {X1, . . . ,Xn′ },
n′ = n′

1 + n′
2. If (47) holds, by assumption we have n′

1 ∼
pn′ ∼ n1

k and n′
2 ∼ (1 − p)n′ ∼ n2

k , thus

n′
1(1 − F1(u1,n1)) + n′

2(1 − F2(u2,n2)) → τ

k
. (A16)

Since

P({M1,n′
1

≤ u1,n1 ,M2,n′
2

≤ u2,n2})
= 1 − P({M1,n′

1
> u1,n1} ∪ {M2,n′

2
> u2,n2})

= 1 − P

⎛⎝⎛⎝ n′
1⋃

i=1
{X1,i > u1,n1}

⎞⎠ ∪
⎛⎝ n′

2⋃
j=1

{X2,j > u2,n2}}
⎞⎠⎞⎠ ,

we have

1 − n′
1(1 − F1(u1,n1)) − n′

2(1 − F2(u2,n2))

≤ P(M1,n′
1

≤ u1,n1 ,M2,n′
2

≤ u2,n2)

≤ 1 − n′
1(1 − F1(u1,n1)) − n′

2(1 − F2(u2,n2)) + Sn,
(A17)

where Sn =∑1≤i<j≤n′ P(Xi > u(i)
n ,Xj > u(j)

n ).
Condition D′(un) implies that lim supn→∞ Sn = o( 1k ) as

k → ∞. By (A16) and (A17), we have

1 − τ

k
≤ lim inf

n→∞ P(M1,n′
1

≤ u1,n1 ,M2,n′
2

≤ u2,n2)

≤ lim sup
n→∞

P(M1,n′
1

≤ u1,n1 ,M2,n′
2

≤ u2,n2)

≤ 1 − τ

k
+ o

(
1
k

)
.
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SinceD(un) impliesD(u1,n1) andD(u2,n2), Lemma A.3 holds
for each subsequence. We have(

1 − τ

k

)k ≤ lim inf
n→∞ P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2)

≤ lim sup
n→∞

P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2)

≤
(
1 − τ

k
+ o

(
1
k

))k
.

Letting k → ∞, we have limn→∞ P(M1,n1 ≤ u1,n1 ,M2,n2 ≤
u2,n2) → e−τ .

Conversely, if (46) holds,

1 − P(M1,n′
1

≤ u1,n1 ,M2,n′
2

≤ u2,n2)

≤ n′
1(1 − F1(u1,n1)) + n′

2(1 − F2(u2,n2))

≤ 1 − P(M1,n′
1

≤ u1,n1 ,M2,n′
2

≤ u2,n2) + Sn. (A18)

Since P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) → e−τ , we have
P(M1,n′

1
≤ u1,n1 ,M2,n′

2
≤ u2,n2) → e−τ/k. By letting n → ∞

in (A18),

1 − e−τ/k

≤ 1
k
lim inf
n→∞ n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2))

≤ 1
k
lim sup
n→∞

n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2))

≤ 1 − e−τ/k + o
(
1
k

)
from which (multiplying k on all sides and let k → ∞) we
have n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2)) → τ .

A.1.10 Proof of Corollary 4.1
Suppose n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2)) → ∞, by
u1,n1 < v1,n1 and u2,n2 < v2,n2 , we have

P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2)

≤ P(M1,n1 ≤ v1,n1 ,M2,n2 ≤ v2,n2).

By Theorem 4.1, P(M1,n1 ≤ v1,n1 ,M2,n2 ≤ v2,n2) → e−τ .
Then

lim sup
n→∞

P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) ≤ e−τ .

By letting τ → ∞, we have

lim
n→∞P(M1,n1 ≤ u1,n1 ,M2,n2 ≤ u2,n2) = 0.

Conversely, we still have

n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2))

≥ n1(1 − F1(v1,n1) + n2(1 − F2(v2,n2)) → τ .

Since the above inequality holds for arbitrary large τ > 0, we
must have n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2)) → ∞.

A.1.11 Proof of Theorem 4.2
For θ > 0, the condition P(M̂1,n1 ≤ u1,n1 , M̂2,n2 ≤ u2,n2) →
θ may be rewritten asP(M̂1,n1 ≤ u1,n1 , M̂2,n2 ≤ u2,n2) → e−τ

with τ = − log θ , this holds if and only if n1(1 − F1(u1,n1)) +
n2(1 − F2(u2,n2)) → τ . The same is true for P(M1,n1 ≤

u1,n1 ,M2,n2 ≤ u2,n2) by condition D(un) and D′(un). When
θ = 0, the result follows from Corollary 4.1.

A.1.12 Proof of Theorem 4.3
If G(x) > 0, the equivalence follows from Theorem 4.2, with
θ = G(x).

If G(x) = 0, the continuity of G shows that, if 0 < τ <

∞,there exists x0 such thatG(x0) = e−τ .D(vi,ni) andD′(vi,ni)
hold for v1,n1 = x0/a1,n1 + b1,n1 , v2,n2 = x0/a2,n2 + b2,n2 and
P(M1,n1 ≤ v1,n1 ,M2,n2 ≤ v2,n2) → e−τ or P(M̂1,n1 ≤ v1,n1 ,
M̂2,n2 ≤ v2,n2) → e−τ depending on the assumption made,
so that n1(1 − F1(v1,n1)) + n2(1 − F2(v2,n2)) → τ . If (49)
holds, then we have n1(1 − F1(u1,n1)) + n2(1 − F2(u2,n2))
→ ∞, thus u1,n1 < v1,n1 and u2,n2 < v2,n2 (since one of
the inequalities must hold and also implies another). By
Theorem 4.2, (48) holds. The converse direction can be
proved similarly.

A.2 Lemmas

Lemma A.1 (Khintchine, Theorem 1.2.3 in Leadbetter
et al. (2012)): Let {Fn} be a sequence of cdf’s and H a non-
degenerate cdf Let an > 0 and bn be constants such that

Fn(anx + bn)
w→ H(x). (A19)

Then for some nondegenerate cdf H∗ and constantsαn > 0, βn,

Fn(αnx + βn)
w→ H∗(x) (A20)

if and only if

a−1
n αn → aanda−1

n (βn − bn) → b (A21)

for some a> 0 and b, and then

H∗(x) = H(ax + b). (A22)

Lemma A.2 (Lemma 2.4.1 in Leadbetter et al. (2012)): (1)
If 0 ≤ x ≤ n then

0 ≤ e−x −
(
1 − x

n

)n ≤ x2e−x

2
· 1
n − 1

≤ 2e−2 · 1
n − 1

≤ 0.3 · 1
n − 1

for n = 1, 2, . . . ,

(A23)

and further

e−x −
(
1 − x

n

)n
= x2e−x

2
1
n

(
1 + O

(
1
n

))
as n → ∞, (A24)

uniformly for x in bounded intervals.
(1) If x − y ≤ log 2 then

e−y − e−x = e−x{(x − y) + θ(x − y)2}, (A25)

with 0 < θ < 1.

Lemma A.3 (Lemma 3.3.2 in Leadbetter et al. (2012)): If
D(un) holds, for a fixed integer k, we have

P(Mn ≤ un) − Pk(M[n/k] ≤ un) → 0 as n → ∞. (A26)


