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ABSTRACT

Although advanced statistical models have been proposed to fit complex data better, the
advances of science and technology have generated more complex data, e.g., Big Data, in which
existing probability theory and statistical models find their limitations. This work establishes
probability foundations for studying extreme values of data generated from a mixture process
with the mixture pattern depending on the sample length and data generating sources. In partic-
ular, we show that the limit distribution, termed as the accelerated max-stable distribution, of the
maxima of maxima of sequences of random variables with the above mixture pattern is a product
of three types of extreme value distributions. As a result, our theoretical results are more general
than the classical extreme value theory and can be applicable to research problems related to Big
Data. Examples are provided to give intuitions of the new distribution family. We also establish
mixing conditions for a sequence of random variables to have the limit distributions. The results
for the associated independent sequence and the maxima over arbitrary intervals are also devel-
oped. We use simulations to demonstrate the advantages of our newly established maxima of
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1. Introduction

Rigorous risk analysis helps to make better decisions
and prevent great failures. Extreme value theory has
been a powerful tool in risk analysis and is widely
applied to risk analysis in finance, insurance, health, cli-
mate, and environmental studies. In classical extreme
value theory, the sequence of data is assumed to have
the same marginal distribution, and the limit distri-
bution of the maxima is in one of the extreme value
types if it exists. Galambos (1978), de Haan (1993),
Beirlant et al. (2004), de Haan and Ferreira (2006),
Leadbetter et al. (2012) and Resnick (2013) amongst
many monographs are good literatures introducing the
theoretical results in the classical extreme value the-
ory. Mikosch et al. (1997), Embrechts et al. (1999),
McNeil and Frey (2000), Coles (2001), Finkenstadt
and Rootzén (2004), Castillo et al. (2005), Salvadori
et al. (2007) and Dey and Yan (2016) introduce
many applications of extreme value method to the
areas of science, engineering, nature, finance, insur-
ance and climate. For example, in financial applica-
tions, extreme value theory is one of the tools to cal-
culate the Value-at-Risk (VaR) and Expected Shortfall
(ES) (e.g., Rocco, 2014; Tsay, 2005). Chavez-Demoulin
etal. (2016) offer an extreme value theory (EVT)-based
statistical approach for modelling operational risk and
losses, by taking into account dependence of the param-
eters on covariates and time. Zhang and Smith (2010)
propose the multivariate maxima of moving maxima

(M4) processes and apply the method to model jumps
in returns in multivariate financial time series and
predict the extreme co-movements in price returns.
Daouia et al. (2018) use the extreme expectiles to
measure VaR and marginal expected shortfall. In the
statistical inference of maximum likelihood estima-
tion (MLE), a discussion on the properties of maxi-
mum likelihood estimators of the parameters in gen-
eralised extreme value (GEV) distribution was given
by Smith (1985). In the paper, it is shown that the
classical properties of the MLE hold when the shape
parameter £ > —1/2, but not when § < —1/2. Biicher
and Segers (2017) give a general result on the asymp-
totic normality of the maximum likelihood estimator
for parametric models whose support may depend on
the parameters.

In the age of Big Data, the advances of science
and technology have been changing data generating
processes in a more complex way. As a result, the
data structures and dependence structures accompa-
nied by the collected data can be very different from
the existed assumptions in many commonly used mod-
els. In the literature, advanced statistical models and
machine learning approaches have been proposed to fit
such complex data or learn the underlying structures
better. For example, the support vector machine, the
deep learning method, and the random forest method
have now been very well recognised and wildly used
in data analysis. In extreme value analysis for more
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complex data, the same marginal distribution assump-
tion and its derived extreme value distributions can be
very restrictive and lack of data fitting power. Although
statistical models, e.g., Heffernan et al. (2007), Naveau
etal. (2011), Tang et al. (2013), Malinowski et al. (2015),
Zhang and Zhu (2016) and Idowu and Zhang (2017),
have been proposed to model extreme values observed
from different data sources with different populations
and max-domains of attraction, their probability foun-
dations have not been established.

The definition of the classical maximum domain of
attraction cannot be applied directly to the extreme val-
ues of data drawn from different populations mixed
together. Note that we are not dealing with mixtures of
distributions that may belong to a maximum domain
of attraction of classical extreme value distribution. In
this study, we are dealing with maxima of maxima in
which the maxima resulted from each population has its
limit extreme value distribution and norming and cen-
tering constants and convergence rate. For example, in
many real-world applications, the risks one is exposed
to usually come from different resources, and the risk at
agiven time is decided by the dominant one, i.e., not the
added risk of all risks. Let us consider a specific exam-
ple: Suppose a patient suffers two severe diseases. The
risk of that the patient will die over a certain time may
be best described by the maximum, not the sum, of two
risk variables.

This work extends the definition of the maxi-
mum domain of attraction to maxima of maxima of
sequences of random variables in which the mixing
patterns change along with the sample size. The acceler-
ated max-stable distribution (accelerated extreme value
distribution) is expressed as a product of the classical
extreme value distributions for the maxima of max-
ima resulted from different distributions. Some basic
properties and theoretical results are provided. It can
be seen that the classical extreme value distributions are
special cases of our newly established family of acceler-
ated max-stable distributions. The results obtained can
be applied to more complex data, e.g., Big Data. The
new results also establish the probability foundation
of previously proposed statistical models in extreme
time series modeling. Those models include Heffer-
nan et al. (2007) that introduces one scheme where
the maxima are taken over random variables with dif-
ferent distributions, and Zhang and Zhu (2016) that
models intra-daily maxima of high-frequency financial
data.

The structure of this paper is as follows. In Section 2,
(1) we give a brief review of the classical extreme
value theory; (2) we define our maxima of maxima
of sequences of random variables; (3) we use exam-
ples to demonstrate the characteristics of the maxima
of maxima; (4) we establish the convergence of max-
ima of maxima to the accelerated max-stable distri-
butions; (5) we illustrate density functions of the new

family of accelerated max-stable distributions and eval-
uate moments and tail equivalence. Simulations are
used to demonstrate the advantages of the accelerated
max-stable distribution family in terms of the estima-
tion accuracy of high quantiles at different levels. We
also apply this new accelerated max-stable distribu-
tion to the high quantiles of the daily maxima of 330
stock returns of S&P500 companies. In Section 3, the
convergence of joint probability for general thresholds
and approximation errors are developed. In Section 4,
theoretical results for weakly dependent sequences are
derived. Section 6 concludes. Additional figures and
technical proofs are included in Section Appendix.

2. Accelerated max-stable distribution for
independent sequences

2.1. Abriefreview of classical univariate extreme
value theory

In classical extreme value theory, the central result is
the Fisher-Tippett theorem which specifies the form of
the limit distribution for centered and normalised max-
ima. Let X;,X,...,X, be a sequence of independent
and identically distributed (i.i.d.) non-degenerate ran-
dom variables (rvs) with common distribution function
F and M,, = max(Xj, ..., X,) be the sample maxima.
The Fisher-Tippett theorem states that: If for some
norming constants a, > 0 and centering constants by,
we have

P(an(My, — by) < x) = H(x) (1)

for some nondegenerate H, where — stands for con-
vergence in distribution, then H belongs to one type
of the following three cumulative distribution functions
(cdf’s):

0, x<0
Fréchet :®4 (x) = o> 0.
exp{—x"%}, x>0,
—(—x)¥ , <0
Weibull : W, (x) = {exp{ (=07, x= o > 0.
1, x>0,
Gumbel : A(x) = exp{—e*}, xeR.
(2)

Conversely, every extreme value distribution in (2) can
be a limit in (1), and in particular, when H itself is the
cdf of each X, the limit is itself. We say that F belongs to
the maximum domain of attraction of the extreme value
distribution of H, and denote as F € MDA (H) when (1)
holds. H is also called the max-stable distribution since
for any n = 2, 3,.. ., there are constants a, > 0 and b,
such that H"(a,x + b,) = H(x). Due to this property,
the equivalence of extreme value distribution or max-
stable distribution in practice is mutually implied.



2.2. Maxima of maxima

Suppose that the independent mixed sequence of ran-
dom variables {X;}} | is composed of k subsequences
Kbty j=12 .k (X002, X F@), nj— oo
as n— 00 and n=mn; +---+ ng. Denote My, =
max(Xj;, i=1,...,n;) as the maximum of the jth
subsequence, j = 1,2,...,k. Suppose F; € MDA(Hj),
where H; is one of the three types of extreme value dis-
tributions, i.e., Mj,,; has the following limit distribution
with some norming constants a;,,, > 0 and centering
constants bj,,,j,

nhﬁngo P(aj,nj (]\/Ij,nj - bj,nj) <x)= PI](X) (3)
Define M, = max(My,,, Mo p,» . . ., Myy,), i€, My is
the maxima of k maxima of Mj,njs. Throughout the
paper, M, is termed as the maxima of maxima. Ques-
tions can be asked: (1) whether or not (1) holds with
appropriately chosen norming constants a,, > 0, by,; (2)
if (1) holds, whether or not a,, > 0, b,, are equivalent to
any of Gjn; > 0, bj,nj; (3) whether or not H(x) is a func-
tion of Hj(x); (4) if all (1)-(3) hold, which one is the
best method to be used in practice. This paper intends
to answer these four questions.

Practical examples related to the above defined pro-
cess can be numerous. For example, (1) the maximum
temperature of the US in a day can be described by the
maximum of maxima of regional maximum tempera-
tures. In each region, the maximum temperature is the
maximum temperature recordings among all weather
stations in the region. Considering the regions’ spatial
and geographical patterns, the regional maxima cer-
tainly follow different extreme value distributions from
one region to another region. The US temperature max-
ima are the maxima of regional maxima, and should be
modelled by a distribution function that is a function
of the regional extreme value distribution functions. (2)
Considering the daily risk of high-frequency trading in

group
| normal(0,1)

uniform[-2.5,2.5]

0 25 50 75 100
index

(a)
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a stock market, one can partition the data into hourly
data (from 9:00 am to 4:00 pm). Suppose each hourly
maxima M;,; of negative returns can be approximately
modelled by an extreme value distribution of H;(x).
It is clear that M, is better modelled by a function of
Hj(x), j=1,...,7, ie, not a single H;(x). We use the
following simple example with k = 2 to illustrate the
idea.

Example 2.1: The sequence {X;}? ;| is generated by

X; = max(¥;, Z0), where (Vi "= Fi 0, (), %

F>(x), and F;(x) and F,(x) are two distribution func-

tions. Assuming Y; and Z; are independent. Then
iid.

X, ™ F) = AR ).

Remark: The form X; = max(Y;, Z;) is the simplest
case in the general mixture models introduced in
Zhao and Zhang (2018). It is also the simplest case
in the copula structured M4 models studied by Zhang
and Zhu (2016).

For illustrative purpose of Example 2.1, let’s con-
iid.
sider two scenarios. Suppose {Yi[k]}f’:1 "X N(0,1) and
iid.
{Zl.[k] i " Ula,b] for k=1,...,m. Here Ula,b]
represents the uniform distribution on the inter-
val [a,b]. The superscript [k] stands for the kth
sample sequence. In Scenario 1, Figure 1 illustrates
two different simulated sequences of {X}k]}f’zl, where

X}k] = max(Yi[k],ZI[k]), and the maxima of M,[,k] =
max(X{k], . ,XLk]) for n = 100 and a particular k, e.g.,
k = 1. Next, we repeatedly generate m = 10,000 such
sequences {Xl[k]}?zl, k=1,..., m. By taking the max-
imaMLk] = max(ng], ... ,XLk]), k=1,...,m,thehis-
togram of {M,Ek]},’c”:1 is displayed in Figure 2(a) with
a = —2.2 and b = 2.2. In Scenario 2, by replacing the

marginal distribution of ZIUC] with U[—2.8,2.8], the

group
| normal(0,1)

uniform[-2.5,2.5]

0 25 50 75 100
index

(b)

Figure 1. Simulated mixed sequences from normal and uniform distributions and their maxima (marked with black dots). In (a), the
maximum is from the uniform distribution; in (b), the maximum is from N(0, 1).
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Histogram of M, (N(0,1) and U[-2.2,2.2])

Histogram of M, (N(0,1) and U[-2.8,2.8])

density
(=2

Figure 2. (a) Histogram of M, from N(0, 1) and U[—2.2, 2.2]. (b) Histogram of M,, from N(0, 1) and U[—2.8, 2.8].

histogram of MLk] is shown in Figure 2(b). It is clear
that although {Xi[k]}?:1 is independent and identically
distributed (i.i.d.), one can see that the distribution of
M, looks quite different from the three types of extreme
value distributions.

In Example 2.1, the larger values of two paired
underlying subsequences are observed while the smaller
values are covered up by larger ones and are never
observed. The sample sizes from the two subsequences
are the same. However, in general mixed sequences the
ratios of sample sizes from two subsequences n;/n;
can be any value between 0 and infinity and can vary
as the total sample size grows. As a result, we can
see many kinds of different patterns different from
Figure 2.

In practice, data generating processes are natu-
rally formed spatially and temporarily from underlying
physical processes of studies. Here we provide two data
generating processes in simulation.

(1) For a given sample size n, we set the numbers
ny and ny satisfying n; +n; = n and assume
that lim,— ~ n1/(n; +n2) - r, r € (0,1). Then
we generate the specified #n; and n, observations
from two populations respectively, stack them in
a sequence, and perform a random permutation
of the combined sequence. In a physical process,
the procedure can be designed as: we mix n; yel-
low balls and n, white balls in a bag. Then we draw
balls sequentially. If a yellow ball is drawn, gener-
ate a number from the first population, otherwise
from the second population.

(2) Alternatively, suppose ay p, , 42,4, are norming con-
stants defined in (3) with known population dis-
tributions in simulation, we can set n; +n, = n
and let lim,,_, o a1,4, /a2,n, = 1, and then solve n;
and ny to generate the observations as the last
step.

Example 2.2: Using the sampling scheme designed
iid.
above. Suppose there are two sequences {Xy,i}/., X
iid.
N(0,0.9) and {X,,;}2, "% U[—2,2] withn; = 100and
ny = 200. {Xk}?g)1 is mixed with these two sequences.
Let M,[f] be the maxima of the jth realisation of the
sequence, j=1,...,m, n = 300. With m = 10,000,
{M,[f] }j:I are calculated and the histogram is shown
in Figure 3(a). The case of n; = 200 and n, = 100 is
shown in Figure 3(b).

The histograms in Figure 3 look different from any
of the three types of extreme value distributions dis-
cussed in (2). One feature is that they can be bimodal.
On the other hand, the classical GEV distributions are
all unimodal. Figure 3 shows two specific examples of
choices of n; and n,. In more general situations, the
ratios of nj and n, can be any values in (0, 00). The ratio
n1/n, may also change as n increases. In Figures 2 and
3, the left parts of the distributions are dominated by
the Weibull type induced by the uniform distribution,
and the right parts resemble the Gumbel type induced
by the normal distribution. The reason is that when we
look at the maxima of {X;}?_,, there are two popula-
tions competing with each other. Taking (b) in Figure
3 as an example, the winners from U[—2,2] form the
steep peak on the left; and the winners from N (0, 0.9)
form the smoother peak on the right.

Figure 4(a) shows the distribution of M, for the
sequence which is mixed with N(0,1) and a Fréchet
distribution. In (b), (c) and (d), they show the combina-
tions of one Fréchet distribution and one Weibull distri-
bution. Notice that in panel (b), the distribution looks
left-skewed and is very similar to a Weibull distribution.
However, with the effect of the Fréchet distribution, it
actually has an infinite right endpoint.

In Figure 5, histograms of M, are created such that
the independent sequences of random variables {X;}_;
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Histogram of M,, (N(0,0.9) and U[-2,2])
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Figure 3. Histograms of combinations of My, from N(0, 0.9) and U[—2, 2]. (@) n1 = 100, n; = 200. (b) ny = 200, n; = 100.
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Figure 4. Histograms of M. (a) N(0, 1) and Fréchet combination. (b)—(d) Some combinations of Fréchet and Weibull.

are generated by comparing the pairs of observations
from normal and Weibull distribution. They can be uni-
modal or bimodel, left-skewed or right-skewed. If we
use the GEV family to characterise the distributions of
M, in these examples, it may not capture the shape of
the distribution properly. For example, if we look at the

left part of the distribution in Figure 5(d), it resembles
a Weibull distribution that has a finite right endpoint.
However, because of the effect of the normal distribu-
tion on the right tail, the shape changes suddenly to be
similar to a Gumbel distribution with infinite right end-
point. If we fit a GEV distribution to M, the left part
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Figure 5. Histograms of M,,, with combinations of normal distribution and Weibull distribution.

with more sample data may have a large effect on the
fitted distribution and we may underestimate the long
tail on the right.

2.3. Convergence to the accelerated max-stable
distribution

Throughout the paper, xr = sup{x; F(x) < 1} is the
right endpoint of a cdf F and let F(x) = 1 — F(x);

M, = max(Miy,, ..., My, is restricted to k = 2. For
k> 2, relative results can be derived with additional
notations. The following theorem shows that under cer-
tain conditions on the norming constants a;,,; and bj,»
we can choose one set of the norming constants for the
global maximum M,, = max(My,,, M2,) to derive its
limit distribution. Theorem 2.1 can be directly derived
from Khintchine’s theorem.



Theorem 2.1: If M, ,, and M, ,, satisfy (3) forj = 1, 2,
the limit distribution of M, asn — 00 can be determined
in the following cases:

al,ny
Case 1. If T —a>0, ay, by —biy) = b<

~+00, for some constants a and b, then

P(“Z,nz (M, — bz,nz) < x) = Hi(ax+ b)Hy(x).
(4)

Case 2. If:;—g — 0, a1,n, (b2,n, — b1,n) = +00 then
P(a2,n2 (Mn - b2,n2) =< x) - HZ(x)- (5)

Notice that the limit in Case 1 is the product
of two extreme value distributions, H; (ax + b)H;(x).
Although itis in the product form, sometimes it can still
be reduced to the three classical extreme value distri-
butions. For example, exp{—x~“} exp{—(5)~*} is still
a Fréchet type. However, in some situations, when the
conditions in Case 1 are satisfied, the limit product
form cannot be reduced to any one of the three extreme
value distributions. We next present several examples to
illustrate these possibilities.

Example 2.3 (Fréchet and Gumbel): Suppose F(x) =
®, (x) is a Fréchet distribution function, and F,(x) =
A(x) is the standard Gumbel distribution function.
By choosing a;,,, = nfl/a, bim =0ay,, =1, by,, =
log n, we have

P(My,, —logny < x) = A(x). (6)
Then when ni/a/ log ny — o0, we have

P(n; "M, < x)
= P(nfl/aMl,n1 < x, My, —logn,

< n}/ax — logny)

— Oy (x).

Example 2.4 (Fréchet and Fréchet): Suppose F;(x) =
Dy, () and Fy(x) = Pg, (x) are two Fréchet distribu-
tion functions such that «; > @, which means that
the tail of F>(x) is heavier than the tail of F;(x). By

. . —1/a
choosing norming constants a; ,, = ny / Y bin =0
—1/a
and ay,, = n, /% by, = 0 we have

P(nl_l/aj

' Mj,nj <x)= qD(xj(x)’ j=12, (7)

and

P(n, /M, < x)

nl/otz
—1/o 2
= < =
P M = S

-1
x, 1, /azMz)nz < x) .
1

(8)

STATISTICAL THEORY AND RELATED FIELDS . 7

Ifn;/‘)‘z/n}/o‘1 — a > 0, then
P, /M, < x) > By, (ax)®e,(x).  (9)
If n)/*? /n/*" — oo, then
—1/0{2
P(n, My < x) = Dy, (x). (10)

In Example 2.4, the sequence is mixed with two
Fréchet distributions with different shape parameters.
The limit distribution of M,, for this mixed sequence
is the product of two Fréchet distributions, which is
different from any of the three types of extreme value
distributions.

Example 2.5 (Uniform and normal): Suppose F; (x) is

the function of the uniform distribution U[0, 1], F,(x)

is the distribution function of N(0, 1). By choosing
al,nl = ni, bl,nl = ]-) (11)

and

arm, = (2logny)'/?,
ban, = (2log nz)l/2
— %(2 log ny) "1/ (loglog ny + log 47),
we have
Pm(Myy, — 1) <x) > € (12)

for x <0, and

P(az,nz (Mz,nz - bz,nz) S x) - A(x) (13)
Then

P(“Z,nz (M, — b2,n2) <x)

X

= P (nl(Ml,nl - 1) S ni ( + bz,nz - 1) >

a2,n2

aZ,nz (MZ,nz - b2,n2) =< x) .

Since ny (==

oy + by, — 1) = o0 for any x, we have

P(az,nz (Mn - b2,n2) =< x) - A(x) (14)

Example 2.6 (Weibull and Weibull): Suppose xp <
ooand K; > 0,K; > 0,

Fi(x) =1— K (xp — 0%, xp—K; /™ <x <xp,

(15)

F(x) =1—Ky(ap — 0%, xp—K; 7 < x < xp,
(16)

are two polynomial functions with common finite end-

point x, a1 > a3. We can choose a;,,, = (anl)l/"‘l,
1

bin, = XE> an, = (12K2)Y*2, by, = xp, and

P((mK)V (M, — xp) < %) — Wy, (x),  (17)
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P((m2K2) /2 (M, — xp) < %) — W, (x).  (18)

Ja
% — a > 0, then
P((n K)/*' (M}, — xp) < x)

=P ((VllKl)l/m (M, — xp), (12Kp) Y2

(n2Ky)!/*2
(M, — xp) < Wx

— Wy, () Wy, (ax).
Example 2.7 (Normal and Pareto): Suppose F(x) is
the standard normal distribution function of N(0, 1),

F(x) =1—Kx™% o >0, K>0 is a Pareto distribu-
tion function. Let

ayn, = (2logn)'/?,
by, = (2logny)'/?
- %(2 log nl)*l/z(loglog ny + log4rm),
ayn, = (Knp) ™%, by, =0.
Then
P(ayn (Myny — bing) < % 20, (Mo, — bay) < X)

0 x <0,
exp(—e ¥ —x7%) x>0.

Furthermore, if a3 ,,b1,,, — 00, then
P(ain (My — brny) < x) — exp(—e ™).

Example 2.8 (Cauchy and uniform distribution):
Fi(x) = % + %‘[an_1 x is the standard Cauchy distri-
bution function, and F(x) = x,0 < x < 1, let

T T
aln = tan — ~ —, bl,m = 0)
ni ni
a2,ﬂ2 = np, bz,nz =1
Then
T
p <_M1,n1 <xmMzy, —1) < x)
ni
0 x <0,
g 1
exp(—x"") x>0,
and

0 x <0,
P(al,nl (M, — bl,nl) <x)— { eXp(—xil) x> 0.

In Example 2.8, the limit distribution for the nor-
malised M ,,, is 0 when x < 0, and the limit distribution
for the normalised M ,, is 1 when x> 0. Thus, the
product is the same as the former one.

In Examples 2.3 and 2.5, we showed that when »
is sufficiently large (goes to infinity), the distribution

of M, will be dominated by the subsequence whose
marginal distribution has a heavier tail. In Examples 2.4
and 2.6, if the ratio n;/ “ /n}/ *! converges to a con-
stant, then one subsequence is never dominated by
another, and the limit is of the product form that cannot
be reduced to a classical extreme value distribution if
(03} ;ﬁ o).

We now introduce the accelerated max-stable dis-
tribution (AMSD) or the accelerated extreme value
distribution (AEVD). We consider the convergence
of the probability related to the normalised max-
ima M;,, and M,,, of two subsequences separately.
By the relationship M, = max(M,,, Maz,,), We can
use the accelerated max-stable distribution to approxi-
mate the distribution of M,,. The classical extreme value
distributions will be special cases in the accelerated
max-stable distribution family.

Definition 2.1: Let H; (x) and H,(x) be two max-stable
distribution functions, we call H(x) = H;(x)H;(x) the
accelerated max-stable distribution (AMSD/AEVD)
function, which is the product of two max-stable dis-
tribution functions. More generally, we also say that
H (x) belongs to the accelerated max-stable distribution
family if it is the product of k max-stable distribution
functions, k > 2.

Remark: If Z follows an accelerated max-stable dis-
tribution H(x), then Z can be expressed as Z =
max(Zy,...,Z;), where each Z; follows a max-stable
distribution. By taking maxima of (Zy, ..., Zy), Z; val-
ues are accelerated by other components Z;s to get
observed Z values. On the other hand, we have

Hy(x)Ha(x) - - - Hi(x)

< Hi(x)Hz(x) - - - H—1(x)
< Hi(0)H(x) - - - Hk—2(%)
<---<Hi(%

and

Hy(x)Hz(x) - - - Hi(x) = H1(x)Hz(x) - - - Hg—1(x)

> Hi(0)Hy(x) - - - Hi—2(x)

> .. = Hi(0)

where H(x) stands for the survival function, i.e.,

Hi(x)Hy(x) - - - Hi(x) = 1 = Hi(x)Hz (%) - - - Hi(%).

The above inequalities may be regarded as accelerated
survival rates. This observation motivates us to call the
new distribution as the accelerated max-stable (extreme
value) distribution. In the view of risk analysis, the sys-
temic risk of Z is accelerated from individual risks of Z;s
given a fixed confidence level.



For the independent sequence of random variables
{X;}2_, with two subsequences {Xi,;}:}; and {X;};2,
defined as above, suppose (3) is satisfied with j = 1, 2
and norming constants Ajn; > 0, bj,,,j, ie.,

nll{go P(aj,nj(Mj,nj - bj,n) <x)= I_Ij(x)> j=L2
(19)
then
P(max(al,nl (Ml,m - bl,m); az,nz (Mz,nz - bz,ﬂz)) S x)
— H(x) = Hi(x)Hz(x). (20)

Definition 2.2: Suppose an independent sequence of
random variables {X;}}" , satisfies (19) and (20). We call
the underlying distribution, Fy;, of X; belongs to the
competing-maximum domain of attractions of H; and
H,, and denote as F,; € CMDA(Hy, Hy).

We note that a max-stable distribution may also be
decomposed into a product of two max-stable distri-
butions. As a result, the max-stable distribution family
can be thought as a family that is embedded in the
accelerated max-stable distribution family. This obser-
vation can be seen in Theorem 2.1 that the limits
of P(ay,n, (M, — by,,)) under two different conditions
belong to the accelerated max-stable distribution fam-
ily. In other words, the accelerated max-stable distri-
butions form an expanded family of distributions that
can describe the limiting distribution of the normalised
maxima for more general sequences.

For k=2 and F,; € CMDA(H,,H,), AMSDs/
AEVDs can have the following six possible combina-
tions:

Case 1. Fj € MDA(A),j=1,2,

- bl,?’ll)

S X, a2,n2 (MZ,HZ - b2,n2) S -x)
XA <x_b1> A (x_ bz).
al ap
Fi € MDA(®,) and F, € MDA(®y,),

- bl,nl)

bon,) < %)
—b —-b
L <x 1>c1>0(2 (x 2).
a ap
Fi € MDA(W,,) and F, € MDA(V,,),

- bl,nl)

b2,n2) S X)

—b —b
L <x 1>\pa2 <x 2).
al ap
Fi € MDA(A) and F, € MDA(®,),

- bl,nl)

P(al,nl (Ml,Vll

Case 2.

P(al,nl (Ml,m

< x, az.n, (MZ,nz -

Case 3.

P(al,nl (Ml,m

S X, az,i’lz (Mz,i’lz -

Case 4.

P(al,l’ll (Ml,n1
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<X, a,n, (MZ,nz - bZ,nz) =< x)

lv)A(x_bl)CDa(x_bz).
aj ap

Case 5. F; € MDA(A) and F, € MDA(W,),

P(al,nl (Ml,n1 - bl,l’ll)

b2,n2) =< x)

(20w, (222).
a) a

Case 6. F) € MDA(®y,) and F, € MDA (W),

< X, 02,0, (Mpp, —

P(al,nl (Ml,t’ll - bl,nl)

b2,n2) =< x)

w X — bl X — bz
— Dy, o Ve, . .

It is easy to see that the classical extreme value distri-
butions are special cases of the AMSD family. For any
a> 0, b> 0 satisfying ;11 + %

< X, a0, My, —

= 1, we have

A(x) = exp{—e ¥} = exp{—e_(ﬁ+%)}

— exp{(_efxfloga _ efxflog b)}

= A(x +loga)A(x + logb).
e (%) = exp{—x)

‘”‘P{‘(;) (
(7))

x °f<
ol GG}

() ()

Since H; (x) and H,(x) are max-stable distributions, for
anyn; = 2,3,...and ny = 2,3,.. ., there are constants
a1, > 0,b14,, a2, > 0, by, such that Hy (x)Ha(x) =
H?l (al,nlx + bl,nl)ng (QZ,nzx + b2,n2)-

In Equation (20), we considered the convergence of

N

Yy (x)

P(max(al,nl (Ml,f’ll - bl,nl)) az,n, (MZ,nz - bz,nz)) =< x))

instead of the traditional P(a, (M, — b,) < x).Ifn; and
n, are sufficiently large, by (19) we have P(ay,,, (M1,,, —

bin) < x) ~ G1(x) and P(az,n, (M2, — bay,) < x) &
G, (x), then
P(M, <x) = P(maX(Ml,anlnz) <x)

= P(Ml,m S x)P(MZ,nz S X)
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~ Gy (al,nl (x— bl,nl))GZ(QZ,nz(x - b2,n2))
= Gi (0G5 (%) 21)

where G¥ is of the same type as G, j = 1, 2.

To close this section, we remark that (21) is the basis
of applying the newly introduced AMSD/AEVD family
to real data. Based on (21), in practice, we don’t need
to worry about the values of n1, na, a1.4,, bi,n,> 2,0,
b2y, as they are absorbed in G (x) and G} (x), see also
Coles (2001). In our examples, we have used some fixed
numbers for #1 and n,. They are just for simulation con-
venience. When # tends to infinity, the values of n; and
n, will depend on n.

The next section presents density functions and
shapes from which one can see the flexibility of applying
the new distribution to real data modelling.

2.4. Density functions and density plots

The density function of the accelerated max-stable
distribution requires some discussion of the support
region of the cumulative distribution function. We can
express the two terms in the product using the form of
the generalised extreme value distribution,

F(x) = He 0 (x)Héz;uzﬂz (x)

—1/&
x —
:exp{—[l—i—& Ml]

o1

_ —1/&
_[1+st ”“2} } (22)

02

where 1 + &; x;i“ > 0and 14 &% > 0. We inclu
de the special case Hoy;0, as the limit of Hg,,, 0, for
& — 0,i = 1,2. Denote the density function as f(x)

and let

x— —1/&
o1

—1/&
x —
e
02
1 x— —1/&—-1
% |:_ (1 s Ml)
o1 o1

1 x — —1/&-1
+— <1 +& ”2> .
02 02

Since &; and &, are symmetric, we only present one of
them. We have the following six cases for the density
functions.

h(x) = exp {— [1 +&

Casel. £ =06 =0.

= xX—pip

fx)=exp{—¢ 1 —e |

1 _xm 1 _xm
—e 9 +—e 2 |, xelR.
o1 02

Case2. & > 0,& > 0,assuming p; — % > 2 — g—j)
then

h(x) ifx>pu — g—ll,

f(x):{o (2]

o1
if x < up 7
Case 3. & < 0,& < 0,assuming p; — % > Uy — %’
then
f
h(x) ifx<,u27?,
_ —1/& :
exp{7[1+§1%] }
_ —1/&—-1 . - -
><|:(711(1+51%) :| ifp— g <x=<pm—g,

0 ifx>p.1—§‘

Case4. £, =0,& > 0.

fx)
exp {—27% — [1 + 52%]71/52 }

_xm IR
= X|:;lle T+ LA+ eEyTR 1:| if x> py — 2,

0 ifxfuz—%j.
Case5. £ =0,& <.

e
exp {fe* i+ szx;;z]fvfz}

_XM _ _ _
= e [Fe T s B ps ]

ifx<u27%,

X—p _x=m

exp{—e_Tl} x %e a1 x>~ 8.
Case6. & > 0,& < 0.If ug — g—ll > M2 — %,

fx
exp {— [1 + & %]_1/51

— —1/61-1
= 1 X— .
XI:T” (1+%’17611] ) 1fx>u1—fg,

0 ifxsu.lf‘;fl‘.
o o
fpur— 5 <pm2— g,
f)
_ —1/&
exp{—[l—&-él*’cgfl]
_ -1/&6-1 .
X[é[l"‘&xui‘l] i| 1fx>u2—%j;
P o1 o
h(x) ifpu—g <x=<p—g,
0 ifx<p.1—%l‘.

In Figures 6 and 7, four density plots of Weibull-
Gumbel type are shown. In Figure 8, panel (a) is the
density plot of Fréchet-Fréchet type; and panel (b) is the
density plot of Fréchet-Gumbel type. We can observe
that they capture the shapes of the histograms shown in
Figures 4 and 5.
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£1=0,u1=05,01=1,&=-1,1,=-1,02=1 €1=0,11=0.5,061=1,&=-1,142=0.5,6,=1

05-
0.75-
0.4-
>03 >050-
G k7
c f
a a
0.2-
0.25-
0.1-
0.0- 0.00-
-25 0.0 25 50 75 0 4 8
X X

Figure 6. Density plots of the accelerated max-stable distributions with Weibull-Gumbel combinations. (a) & = 0, w1 = 0.5, 01 =
1L,&=—1Tu=-10=10)&=0u =050 =1,&=—1,u; =050, = 1.

§1:—1,H1:—1,G1:1,i2:0, }12:0.5,(52:0.7 &1:—0.5, u1:—2, 01:1,é2:0,u2:—1,02:0.7

0.6-
0.5-
0.4-
0.4-
203- 2
[72] (72}
o o
[a] [a]
0.2-
0.2-
0.1-
0.0- 0.0-
2 0 2 4 6 2 0 2 4 6
X
(a) (b)
Figure 7. Density plots of the accelerated max-stable distributions with Weibull-Gumbel combinations. (a) & = —1, u1 = —1,
01 =186=0u=050,=07.(b)& =—-05u; =—-2,01=1,86&=0,u =—1,0,=07.
€1=0.5,11=0,01=1,6=0.9,1,=0,0,=1 &1=0,11=0,01=3,&=1,1,=-3,06,=0.2
0.15-
0.2- 0.10-
2 2
K s
c c
[ [
[a)] [a]
0.1- 0.05-
0.0- 0.00- —‘
5 10 5 0 5 10 15
X

(a) (b)

Figure 8. (a) Density plot of the accelerated max-stable distribution with Fréchet-Fréchet combinition. & = 0.5, u1 = 0,071 =1,
& = 0.9, up; =0, 05 = 1. (b) Density plot of the accelerated max-stable distributions with Fréchet-Gumbel combinition. &, = 0,

w1 =001=386E=1u=-30,=02
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£1=-0.5,11=0,61=1,6=0.3, 1,=-1,6,=0.1

é‘]:o,}h20,01:3,&230,]42:*3,62:0.3

0.125-
04-
0.100 -
0.3-
> > 0.075-
2 2
[ o [
602 0 0.050-
0.1- 0.025-
0.0- 0.000 -
2 - 0 1 2 -5 0 5 10 15 20
X X
(a) (b)
Figure 9. (a) Density plot of the accelerated max-stable distribution with Weibull-Fréchet combination. & = —0.5, u1 = 0,071 =1,

& = 0.3, uy = —1,07 = 0.1.(b) Density plot of the accelerated max-stable distribution with Gumbel-Gumbel combinition. &1 = 0,

n1 =000 =35 =0,uy=-3,0,=03.

In Figure 9(b), it is for & = & =0, ie., the com-
bination of two Gumbel distributions. In this case, the
density plot is bimodal, which is different from that of
a Gumbel distribution. Suppose that X; ; ~ N(u1,01)
andXz,j ~N(uz,02),1 <i<m and 1 §j < ny, then
we have some norming constants a;,, > 0,b;,, and
azn, > 0,by,, such that

P(al,nl (Ml,m - bl,nl) S X, az,nz (Mz,nz - bz,nz) S x)

_)A<X—M1>A<x—uz>
o1 (o))

=exp{—e 1 —e 2} (23)

Here the limit product form requires that the two
scale parameters o] # 0. Otherwise, the product

_x—p )
exp{—e” o —e o }reducestothe Gumbel type.

2.5. Tail equivalence and the existence of
moments

In this section, we discuss some results of tail-
equivalence, and which moments are finite for certain
AMSDs/AEVDs.

Definition 2.3: Two cdf's F and H are called tail-
equivalent if they have the same right endpoint, i.e., if
Xp = xy, and

lim F(x)/H(x) =c (24)
X—>XF
for some constant 0 < ¢ < oo.
We have the following facts.

Fact 2.1: It is clear that the product distribution of a
Weibull distribution and another type of extreme value
distribution H(x) is tail equivalent to H(x).

Fact 2.2: Suppose X ~ @y Py, let pr = EX*) be
the kth moment of X, then uy is finite only if k <
mil’l(Oll,Olz).

Suppose o] < a3, then @, has a heavier tail than
Dy, . Let /L,il) be the kth moment of X ~ &,,. We know
that ,u,(cl) < ooonlyifk < «y.Thisimplies that &, ®q,

has the same right-tail heaviness as @, .

Fact 2.3: If 0 < a1 < ay, then ®g by, and g, are
tail-equivalent.

Fact 2.4: Suppose X ~ A(x)Dy(x). Let g = E(X*) be
the kth moment of X. Then [y is finite only if k < «.

Fact 2.5: A(x) Dy (x) and Oy (x) are tail-equivalent.

Fact2.6: IfH;(x) has a heavier tail than H,(x), then the
accelerated max-stable distribution Hy(x)Hy(x) is tail-
equivalent to Hi (x).

3. Joint convergence and approximation
errors

3.1. Convergence of joint probability for general
thresholds

It may also be interesting to consider the limits
of P(M1,y, < U1,n,, My, < Us,,) for some sequences
u1,n, and uy ,, not necessarily of the form x/a; ,, + bjp,
or even not dependent on x. Here #n; and n; are the
lengths of the two subsequences, we may write them
specifically as n; (n) and n(n) since they vary with the
total length n. When choosing wn, = x/ajn; + bj,n; for
j =1, 2, it becomes the problem we discussed before.
The question is:

Which conditions on F; and F, ensure that the limit of
P(My,n, < U1, Moy, < Uzy,) for n — oo exists for

appropriate constants u ,, and uz,nz?



Some conditions on tails F; and F, are required to
ensure that P(My,, < Uy, Mz, < Us,,) converges
to a non-trivial limit, i.e., a number in (0, 1).

Theorem 3.1: Suppose {X;}i_, is an independent
sequence of random variables which is mixed with two
subsequences { X1} 1, and {Xa,i}2, with underlying dis-
tributions F1(x) and F,(x), ny — o0 and ny — 00 as
n— o00. Let0 < t < 0o and {u1,};; and {u;};2, are

two sequences of real numbers such that

n1(1 — Fi(ui,n)) + na(1 — Fy(uz,n,))

— T asn— oo. (25)

Then
P(Myp, < urp,Mop, <uzu,)—> e ° asn— oo.
(26)

Conversely, if (26) holds for some 0 < T < 00, then so
does (25).

Remark: Since 1 — F(uj)) is the probability that Xj;
exceeds level Ujn;> Equation (25) means that the
expected number of exceedences of uy,, by {Xi,}i%,
and uy,, by {XZ,i}?il in total converges to t. When
the sequence is generated from one distribution F(x),
Theorem 3.1 can be reduced to the classical result by
choosing 41, = s, = uy. Thatis

n(1 — F(uy)) — T, (27)
if and only if
P(My < up) > e " (28)
asn — oo.
The following corollary gives the conditions such
that we can choose one of {u ;)3 and {uz;};2; to be

applied to M,,, and derive a similar limit of P(M,, <

u,). The condition involves both the ratio of two tail
1—F1(“1,n1) ny
1=Fz(uzn,) ny”

probabilities

Corollary 3.1: Let0 < 11 < 00, 0 < 175 < 00. Suppose
that there exist two sequences U1, and uy ,, such that

n1(1 — Fi(uy,n)) — 70
(29)
ny(1 — Fy(uz,n,)) — T2
Then
P(Ml,m S ul,naMZ,nz S uz,ﬂ) - e_TI_TZI (30)

o (1=F(u1,ny))

Moreover, zfm — t, where0 < t < o0, then

P(My, < upy) — e na+D, (31)

x
a1,m

Specifically, if we choose u;,,, =

X
a2,ny

+ bl,nl > u2,ﬂ2

+ by,n,, and suppose that

P(al,nl (Ml,m - bl,nl) = X) - Gl(x)> (32)
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p(aZ,nz (MZ,nz - bz,nz) =< x) — GZ(x)a (33)

then G; and G; belong to the GEV distribution family
and the limit in (31) becomes Gy (x) G (x).

The following is an example of mixed sequence and
the limit properties of the maxima of subsequences and
the global maxima.

Example 3.1: Suppose {X;}iL is a sequence of random
variables combining two subsequences {Xi;};., and
{X2,i}i2,. Suppose - — p, where 0 < p < I, {Xy;}i;
and {Xp;}i2, are iid. from a Pareto distribution
with Fi(xX) =1 —-Kx ™, 073 >0, K>0,x>0anda
Fréchet distribution with F,(x) = exp(—x~%2), oy >
0, x > 0, respectively.

Since (1 — F;(tx))/(1 — F1(¢)) = x~ for each x >
0, so that Type II (Fréchet) limit applies. For u; ,, =
(Knl,nl/t)l/"‘1 we have 1 — Fy(u1,,,) = t/ny, so that

Kn 1/
p (Ml,m < (—1) ) —e ", (34)
T

Putting 7 = x~“! forx > 0,
P((Knl)_l/‘)”Ml,n1 <x) — exp(—x ). (35)

On the other hand, F)? (né/azx) = F(x), ie., P(nz_l/a2
My, < x) = Fa(x).
Then we have for x > 0,

P((Kny) ™Y My,

<x, nz_l/mMz,n2 <x) = exp(—x % — x~9). (36)

Since
Fi(x) Kx—%

= = im —-
x—>00 F,(x) x—o00 ] — exp(_x—az)

Kx™%
x—00 x~% 4 O(x—202)

0 o] > oy,

— K o] = o,

0 o] < o).

_ o m(1=Fa(uing)) 1-p .
When o1 = «, the condition ) — g in

Corollary 3.1 is satisfied, hence

_ 1—
P(M, < n, l/O”x) — exp (—x"” (1 + —p>> )

Since n; ~ np, we also have

P(My < (np)~"/*1%) — exp (—x“’” (1 + _p)> '
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3.2. Approximation error

The convergence results are usually accompanied by
the question of the approximation error. Suppose
n1(1 — Fi(uiy,)) — 71 and ny(1 — Fa(uz0,)) — T2,
writing 71, = n1(1 — F1(u1,,,)) and 73, = na(1 —
F>(uy,,)), then by Theorem 3.1 we have

P(Ml,m S ul,nlxMZ,nz S uz,nz) - e_Tl_TZ' (39)

The approximation can be decomposed into several
parts. We have

n 12
Tln _ T2,n _
1— =4 A e Thn 1 — =12 A e Tm
ni ny

and
e*fl,nl ~ effl, e*TZ,nZ ~ e*fZ.
We denote
n
Tln _
Al,nl = <1 - _1) —€ fl,nl’
ni
’ —T —T
l,nl —e Lny e l’
na
2,0 _
Az,nz =(1- — —€ TZ,nz’
"y
Ay, =e P —e
Then
_r ’
P(Ml,m =< ul,nl) —e = Al,nl + A1’n1>
—T /
P(MZ,ﬂz = u2,n2) —e = AZ,ﬂz + AZ,nz'

The following result gives the bound for the approxi-
mation error.

Theorem 3.2: Let {X;};_, be an independent sequence
of random variables mixed with two subsequences
(X142, and {Xo,i}:2,, which satisfies ny (1 — Fi(u1,4,))
— 11 and ny(1 — Fa(ugny)) — T2 Avny, A s Aoy

A, are defined as above, then

2,ny
P(Ml,nl S ul)m’MZ,nz S ”2,n2) — e_rl_TZ
S Ay + A+ Ay, + A
with
—Tin;
Tin;€ ] 1
0<—Ajy < L M
2 nj—1
1 .
<03 , forj=1,2,
nj — 1

where the first bound is asymptotically sharp, in the
. e
sense that zfrj,,,j — Tj then Ajn ~ —( '=—)/nj. Fur-

thermore, for Tj — Tj,; < log2,

Aj{,nj = eri{(‘cj — Tj,nj) + 9]‘(‘[]' — Tj,nj)z},

with0 < 6; < 1.

If T, = Tj for Ujn; = X/ajn; + bj,nj, then (39)
holds. By Lemma A.1, (39) holds also if Ajn; and bj,nj
are replaced by different constants oj,,; and Bj;, satis-
tying ®jn; /aj,nj — land (ﬂj,nj — bj,nj) /aj,nj — 0. How-
ever, the speed of convergence to zero of A]/-)nj (thus the
speed of P(Mjn; < ujn;) to e~ Y) can be very different
for different choices of norming constants.

4, Weakly dependent sequences

In this section, we extend the independent sequences
to weakly dependent sequences. For a sequence of ran-
dom variables {X;}}! ; with identical distribution, it is
stationary if {Xj,, ..., Xj,} and {Xj 4m, . . ., Xj,+m} have
the same joint distribution for any choice of n, 1, . . ., jn,
and m. For the mixed sequence, we will provide some
alternatives so that the desired results still hold. We
assume that the dependence between X and X;; falls
off in some specific way as |k — j| increases.

4.1. Review of some weakly dependent conditions

Some weakly dependent conditions in the literature can
be generalised to the scenarios of mixed sequences.
For m-dependent sequence {X;}i_,, X; and X; are
independent if |i — j| > m. Another commonly used
condition is the strong mixing condition first intro-
duced by Rosenblatt (1956). A sequence of random
variables {X;}7, is said to satisfy the strong mix-
ing condition if for some A € F(Xy,...,X,) and B €
‘7:(Xp+k+1’Xp+k+2) e )

|P(ANB) — P(A)P(B)| < g(k)

for any p and k, where g(k) — 0as k — oo; F(-) is the
o-field generated by the indicated random variables.
The function g(k) does not depend on the sets A and
B, so the strong mixing condition is uniform.

For normal sequences, the correlation between X
and X; may be a better measure of dependence. We can
also use the dependence restriction |Corr(Xg, Xj)| <
g(lk — j|), where g(k) — 0 as k — oo.

Since the event {M, < u} is the same as {X; <
u,Xo < u,...,X, < u}. We may restric the events on
this type of event. Following Leadbetter et al. (2012), we
use Fj;, i (u) to denote P(X;; < u,X;, <u,...,X; <
u). The following condition D is a weakened condition
of strong mixing.

The condition D will be said to hold if for any integers
ip<---<ipandj; <--- <jp for which j; — i, > [,
and any real u,

Eiy,..oipsjtreeiyy ) = Fi, iy W Fjy i, ()] < g(D) (40)

where g(I) - 0as ] — oo.
Under the condition D, the Extremal Types Theorem
also holds. Since we usually deal with the event {M,, <



u,} for some levels {u,}, the condition can still be
weakened.The condition D(u;,) is defined as follows.

The condition D(uy,) will be said to hold if for any
integers

I<ip<- - <ip<ji<-<jy<nm (41)

for which j; — iy > I, we have

Fitcipsjtseenpy Un) = Fiy, iy Un) Ejy, iy ()| <
(42)
where oy, — 0 as n — oo for some sequence l, =
o(n).

The condition D(u,) guarantees thatlim inf P(M,, <
uy) > e~ . We still need a further assumption to have
the opposite inequality for the upper limit. Here we
present the D' (u,,) condition used in Watson (1954) and
Loynes (1965). This condition bounds the probabil-
ity of more than one exceedance among X, . . ., X{,/k)
therefore no multiple points in the point process of
exceedances.

The condition D' (u,) will be said to hold for the
sequence of random variables {X;}7 ,, if

[n/k]
lim sup n E P{X1 > up, Xj > upy} — 0 (43)
n—o0 ]:2

as k — oo, (where [ ] denotes the interger part).

If both conditions D(u,) and D'(u,) are satisfied,
we have P(M,, < u,) — e~ " is equivalent to n(1 —
F(u,)) — tasn — oo for0 < t < o0.

4.2. Weakly dependent mixed sequences

To generalise the results from non-mixed sequences to
mixed sequences, we need to modify the conditions of
D(u,) and D' (u,,). We use u,, to denote the vector of lev-
els (u1,,, uz,n,) when the sequence {X;}} | is composed
of two subsequences {Xi}i; and {Xy;}:2,, n1 + ny =
n. We further assume that "—nl — pasn— 00,0 <p <
1, so that 22 — 1 — p.

Before introducing the more general D(u,) con-
dition, we introduce some new notations. Let ug,i) =
urm I(X; € (X1l ) + uam, [(X; € {Xp}2)).  Here
I(A) =1 indicates that the event A is true, other-
wise I(A) = 0. The notation u,(f) represents the thresh-
old for X;, which depends on the subsequence that
X; belongs to. For example, if X; = X;; and X, =
X5,1, then P(X] < ug,l),Xz < uﬁz)) represents P(X;; <
Ulny > X2,1 < Upy,). After introducing this notation, we
can state the condition D(u,,) as follows.

The condition D(u,) will be said to hold for the
mixed sequence of random variables {X;}}! ; with two
subsequences {X,;}1-., and {X5;}:2, if for any integers

l<ip<--<ip<ji<--<jy=<mnm (44)

for which j; — i, > I, we have

P, < uV,.., X,

STATISTICAL THEORY AND RELATED FIELDS . 15

Gy

(ip)
? >o~~>ij/§un )

= Uy

i)
Xj, < u

— PG, < u, X, < w)

. (]/)
P(le S ul(’ljl))- . -))(jp/ S unp )l < al’l,l

where «,;, — 0 as n — oo for some sequence I, =
o(n).

Similarly, we can also extend the condition D'(uy,)
for mixed sequences, which is denoted as D' (uy,).

The condition D' (u,) will be said to hold for the
mixed sequence of random variables {X;}} ; and levels
uy,; = (U1, Uany) if

lim sup k Z

P(X; > uﬁ,i),)(fj > u,(j)) —0

00 1<i<j<[n/k]
ask — oo (45)
where u = uLn I(X; € (X1i}L ) 4+ upm, (X €

{Xz,i}?i ,), and [ ] denotes the integer part.
Equation (45) means that imsup,,_, . > <jj<{n/k

PX; > ug),Xj > ug)) = o(1/k). It can be observed
that if D(u,,) holds for the mixed sequence {X;}} |,
then D(ujn;) also holds for the subsequence {Xj,,-}?i 1
for j = 1, 2. The same conclusion is also true for the
condition D' (u,,).

After introducing the conditions D(u,) and D' (u,,),
we have the extended results for mixed sequences.
We assume that the two subsequences {Xi;};; and
{X,,i}12, are independent with each other. Also, for any
interval I, with [, members, there are a,, members from
{lei}?zll and b, members from {Xz,,-}?iz. We assume
that the proportion of each subsequence ‘;7” — p and
%" — 1 —p,where0 <p <1.
Theorem 4.1: Let {X;}!_ | be a weakly dependent mixed
sequence of random variables with two subsequences
(X142, and {Xp,):2,, with sample size proportions
A —pand 22— 1—pasn— o0, 0<p <1 Sup-
pose that D(uy,) and D' (u,) hold for {X;}_,, then for
0<71<o00,

if and only if

ni(1 = Fr(uyn)) + na(1 — Fa(upn)) — 1. (47)

P(Ml,nl =< ul,nl’MZ,nz = uz,nz) - e—f (46)

Based on Theorem 4.1, we have the following
corollary.

Corollary 4.1: The same conclusions hold with T = oo
(i.e, P(M1y, < Ui, Mop, < tzyu,) — 0 if and only
if n(1 = F1(uyn) + na(1 — Fa(ug,n,)) — 00) if the
requirements that D(u,), D' (u,) hold are replaced by the
condition that, for arbitrarily large T (< 00), there exists

a vector of levels v, = (Vin,, Von,) SUch that vy, >
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Uiy> Vo, > Uopy, which satisfy ni(1 — Fi(viy,,)) +
n2(1 — F2(va,n,)) — T with D(v,) and D' (vy,) hold.

Theorem 4.1 tells us the property of the joint prob-
ability P(My,, < t1,n,, M, < tha,) given the tail
properties of F; and Fa. ni(1 — Fy(u1,n,)) + n2(1 —
F>(uy,4,)) is the mean exceedances of the two thresh-
olds by the corresponding subsequences in total.
Theorem 4.1 is the generalisation of Theorem 3.1 under
the condition that the mixed sequence is weakly depen-
dent within each subsequence.

4.3. Associated independent sequences

The ‘independent sequence associated with {X;}_,’ can
be used to study the maxima of dependent sequence.
It was first introduced by Loynes (1965). For a weakly
dependent sequence of random variables {X;}!_,, the
notation {X; }_, is used to be the independent sequence
with the same marginal distribution as {X;}}!,, and
write M, = max(X,, . .., X,). When {Xi}iL, is mixed
with two subsequences {Xl,,-}?;1 and {Xz,,-}?il with dif-
ferent marginal distributions, we still have the associ-
ated 1ndependent subsequences {X1 ,} 0, and {Xz it
and we write M; = max(X,l,.. X ), fori=1,2.

The following Theorem 4.2 tells us that, under the
weakly dependent conditions, P(M1 o < Utn> Mo,
< uyy,) and P(M1 m < ulnl,Mz ny < Upy,) have the
same limit if it exists. By Theorem 4.3, we can
choose the same norming constant as the independent
sequence to derive the same limit of P(ay,,, (M1, —
bl,nl) =X, a2, (Mz,’ﬂZ - b2,n2) < x) and P(al,nl (Ml,nl
- bl,nl) < X, Ay, My, — bZ,nz) <x).

Theorem 4.2: Let {X;}! , be a mixed sequence of
random variables with two subsequences {X1;}., and
{X2,i}12,, independent with each other. Suppose D(uy,)
and D' (uy,) hold for a vector of levels w, = (U1, Uz, )-

Then P(Mln1 < M1n1>M2n2 < Uypu,) = 0 >0 if and
only sz(M1 n < U nl,Man < uyyu,) — 0. The same
holds with 6 = 0 if the condition D(u,) and D'(u,)
are replaced by the requirement that for arbitrarily large
T < 00 there exists Vv, = (Vi,n,, Vo,n,) Sch that vy, >
Ulnys Vo, > U, Which satisfy ni(1 — F1(vi,,)) +
n2(1 — F2(va,n,)) — T with D(v,) and D' (vy,) hold.

Theorem 4.3: Suppose that D(u,) and D' (u,,) hold for
the mixed sequence of random variables {X;}i_,, with
Ul = x/al,nl + bl,nla Uy = x/a2,n2 + bz,nz fOT each
real x. Then

P(al,nl (Ml,n1 - bl,nl)

<X a2,n2 (MZ,nz - b2,n2) =< .X') - G(x) (48)
if and only if

P(al,l’ll (Ml,nl - bl,nl)

< X8, (Mo, — boy) < %) > G(x)  (49)

for some non-degenerate continuous distribution func-
tion G(x).

With the results in this section, for weakly depen-
dent sequences with conditions D(u,,) and D' (u,,) being
satisfied, we can treat them as independent sequences
when studying the limit distribution of the maxima.
In the next section, some numerical experiments and
estimation results are presented.

5. Numerical experiments
5.1. Simulation

We study the accuracy of the accelerated max-stable
distributions in estimating the high quantiles of the
simulated data. They are compared to the results using
the classical GEV distribution alone. To simulate the
data, we first generate two sequences from two differ-
ent GEV distributions with parameters &;, 41,01 and
&, 42, 02, denoting them as {X;}'_, and {Y;}7_,, here
n = 2000. We pair them and find their maxima, Z; =
max(X;, Y;), then fit the accelerated max-stable distri-
bution and GEV distribution separately to the sequence
{Z;}, using maximum likelihood method. Using each
fitted distribution, we generate a new sequence {Z}}}_
and calculate the proportion of {Z}}?_, that exceeds the
90th, 95th and 99th percentiles of the original sequence
{Zi},. The simulation scenarios cover all the possible
combinations of three types of extreme value distri-
butions. For each combination scenario, the process is
repeated 100 times and the standard deviations of the
estimated proportions are shown in the parentheses.
The results are in Table 1.

From Table 1, for the 90th percentile, we can observe
that accelerated max-stable distributions perform bet-
ter than the GEV alone, and the exceeding proportion
is closer to the theoretical value 0.1. The same is true
for the 95th percentiles. For both of these two per-
centiles, the proportions are larger than the theoretical
value 0.1 and 0.05 in general, with the GEV distribu-
tion deviating more. This observation implies that both
estimations overestimate the true values. For the 99th
percentiles, we observe that the differences are not large
overall. With a few cases (2nd and 3rd), the accelerated
max-stable distribution outperforms the GEV distribu-
tion. Also, the proportions for accelerated max-stable
distributions are all larger than 0.01 and those for GEV
distributions are mostly smaller than 0.01. This phe-
nomenon implies that the accelerated max-stable dis-
tribution may overestimate the 99th percentiles. On the
other hand, the GEV distribution may underestimate
the 99th percentiles.

5.2. Real data

In this section, we apply both AMSD/AEVD and GEV
fitting to stock data. The data contains the daily closing
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Table 1. The proportions of the simulated data based on the fitted accelerated max-stable distributions and GEV distributions that
exceeds the 90th, 95th and 99th percentiles of the original data Z;.

90th 95th 99th

& w o1 & o o AEVD GEV AEVD GEV AEVD GEV

1 0.1 0 1 —0.1 0 1 0.1002 0.1071 0.0502 0.0540 0.0104 0.0094
(0.005) (0.006) (0.004) (0.004) (0.002) (0.002)

2 0.1 0 1 02 2 1 0.0988 0.1191 0.0496 0.0688 0.0102 0.0140
(0.005) (0.006) (0.004) (0.006) (0.002) (0.003)

3 0 0 1 —02 2 1 0.1022 0.1094 0.0516 0.0555 0.0097 0.0088
(0.009) (0.008) (0.007) (0.006) (0.003) (0.003)

4 0 0 1 —0.1 0 1 0.1008 0.1039 0.0507 0.0525 0.0102 0.0096
(0.007) (0.008) (0.006) (0.006) (0.003) (0.003)

5 0.1 0 1 —02 0 1 0.1007 0.1052 0.0502 0.0534 0.0103 0.0100
(0.007) (0.008) (0.005) (0.006) (0.003) (0.003)

6 03 2 1 —0.15 0 1 0.1010 0.1024 0.0506 0.0514 0.0104 0.0098
(0.008) (0.008) (0.006) (0.006) (0.002) (0.003)

7 0 10 1 0.1 0 1 0.0997 0.1029 0.0505 0.0519 0.0104 0.0096
(0.007) (0.008) (0.006) (0.006) (0.002) (0.003)

8 0 30 1 0.05 0 1 0.0996 0.1033 0.0497 0.0520 0.0104 0.0098
(0.008) (0.008) (0.005) (0.006) (0.002) (0.003)

9 0.1 30 1 0.15 0 1 0.1002 0.1030 0.0507 0.0520 0.0106 0.0099
(0.007) (0.008) (0.005) (0.006) (0.003) (0.003)

10 0.05 20 1 0.08 0 1 0.0995 0.1025 0.0497 0.0517 0.0104 0.0098
(0.007) (0.008) (0.006) (0.006) (0.003) (0.003)

11 0 5 1 0 0 1 0.0996 0.1031 0.0502 0.0518 0.0104 0.0098
(0.007) (0.008) (0.005) (0.006) (0.003) (0.003)

12 0 2 1 02 0 1 0.1021 0.1077 0.0506 0.0548 0.0107 0.0095
(0.007) (0.009) (0.005) (0.007) (0.003) (0.003)

Notes: {Z;}]_, is generated by taking the paired maxima of simulated sequences {X;}7_; and {V;}__, from two different GEV distributions. The standard devi-
ations of the 100 repetitions are shown in the parentheses. The numbers in bold font are the ones that are closer to the theoretical values, i.e., 0.1,0.05, and
0.01.

prices of 330 S&P500 companies. Based on the closing  Table 2. The proportions of the simulated samples generated

prices, we calculate the daily negative log returns using from the fitted distributions that exceed the 90th, 95th, and 99th
the formula r; = — log( )i ). Here p; represents the sample percentiles of the maximal daily negative log returns.
P pi-1”" !

stock’s closing price of one company on day i. For each 90th 95th 99th

day i, we obtain the 330 negative log returns and cal- AMSD  GEV  AMSD  GEV  AMSD  GEV

culate the maximal value of them, denoting it as m;.  proportion 00961 00954 00475 00521 00115 0.0140
The time range is from 3 JanuarY 2000 to 30 Decem- Note: The numbers in bold font are the ones that are closer to the theoretical
ber 2016, which contain 4277 trading days in the data. values, i.e. 0.1,0.05, and 0.01, respectively.

The histogram showing the distribution of {m;}#*}’ is

in Figure 10.
We find the 90th, 95th and 99th sample percentiles

of {m,-}?i?, which are 0.1545, 0.2 and 0.3229, respec-
tively. Here the daily maximal negative log returns have
some time dependency. However, for the purpose of
demonstration, we treat them as independent and fit the
AMSD/AEVD and the GEV distribution to {m;}%*}’.
Based on the fitted distributions, we generate random
samples with the same size and find the proportions
of the samples that exceed the three percentiles. The
proportions are shown in Table 2.

Table 2 clearly reveals that the AMSD/AEVD per-
forms better than the GEV alone. The modelling per-
formance may be further improved if time series depen-
dence is implemented in the model fitting, e.g., the
AcF model proposed by Zhao et al. (2018) and Mao
and Zhang (2018). We will leave this task as a future
project.

Histogram of maxima of
daily negative log returns

100 150 200 250

Frequency

50
|

0
|

[ T T T |
0.0 0.2 0.4 0.6 0.8

maxima of daily negative log returns 6. Conclusions

Figure 10. The histogram of the daily maxima of negative log ~ This paper extends the classical extreme value theory to
returns of 330 stocks in the S&P500 companies list. maxima of maxima of time series with mixture patterns
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depending on the sample size. It has been shown that
the classical extreme value distributions are special
cases of the accelerated max-stable (extreme value) dis-
tributions (AMSDs/AEVDs). Some basic probabilistic
properties are presented in the paper. These properties
can be used as the probability foundation of recently
proposed statistical models for extreme observations.
The AMSDs may shed the light of extreme value stud-
ies and inferences. Many of existing theories in classical
extreme value literature can be renovated in a much
more general setting. Many real applications, e.g., risk
analysis and portfolio management, systemic risk, etc.
can be reanalysed and better results can be expected.
Under the newly introduced framework, many new
statistical models can be introduced and explored.
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Appendix
A.1 Proofs of Theorems and Propositions
A.1.1  Proof of Theorem 2.1
For Equation (4),
P(ag,n,(My — bany) < x)
= P(max(az,n, (M1,n, — bony)s
a2, My — bopy)) < %)
= P(azn, M1,n, — bany)
< %, 2, (Mo, — bany)) < %)

=P (al,nl (Ml,nl - bl;”l)

X
= i (u +bon, — bl,m) >
2,1

azn, (MZ,nz - bZ,nz)) =< x)

— Hj(ax + b)H(x).

For Equation (5),

P(azn,(Mn — b)) < %)
=P (al)nl (Ml,n1 - bl,nl)
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X
= aim <a +ban, — bl,nl) >
2,1

az.n, (M2,n2 - bZ,nz) < x)

— Hy(x).

A.1.2 ProofofFact2.2
The density of &y, P, is

—x" —x" 2 —a;—1 —az—1
(e x™ ™7 G apx™™7) x>0,
flx) = { ‘
0 x < 0.
(A1)
Thus

e = /0 ) dx)

o0
= / e T (x0T L2 dx. (A2)
0
Dividing the integral into two parts, we get

1 00
1 = / Kf () dx + / Ff(x) dx. (A3)
0 1
First, let us consider fol x°f (x) dx. Since lim,_ o xf(x) = 0
and xkf (x) is continuous on [0, 1], it is bounded on [0, 1]. This
implies that

1
/ xkf(x) dx < oo. (A4)
0
Next, let us consider ] loo xk ‘f (x) dx. We have
o0
/ xkf (x) dx
1
[e9) » B
— / e 1—x~9% (alxk—ozl—l + azxk—az—l) dx.
1
Notice that
lim e " =1 (A5)
X—> 00
Therefore loo eX =X (g ko=l gkl dy <

ocoonlyifk < o) and k < a3, i.e,, k < min(org, ).

A.1.3 ProofofFact2.3

. . —x 1 e*x702
We need to consider limy_; 5o

—ay

1—e
1—e™*
Since x™* — 0 and x™% — 0 as x — oo, we have the

Taylor expansions

—ay

e =1—x"" 4 o(xM),

_x U —x2

=1— (" +x7%) +o(x™" +x7*).
Therefore

1 — e g™
lim

X— 00 x~

1—e™
(X7 4+ x792) 4+ o(x™ Y + x7%2)
m

X~% 4 o(x71)

=1l

X—>00

= lim (1 +x%79) = 1. (A6)
X—> 00

This proves that @, @, and P, are tail-equivalent.

A.1.4 ProofofFact2.4
The density of A (x) Py (x) is

—e ¥ —x"

f(X)={g

‘e 4+ax @) x>0,

x < 0.
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Thus

Ik = /O xFf(x) d(x)

o0 k x
=/ xe™® T
0

Dividing the above equation into two parts, we get

e ax N dx. (A7)

1 (o]
i = /0 () dx + / Hde  (A8)
1

For the first part, since limy_, xkf(x) =0 and xkf(x) is
1 k
x

continuous on [0,1], it is bounded on [0,1]. Thus f,

f(x) < oo.

For the second part,

/00 xkf(x) = /OO e T ek 4 Py dx. (A9)
1 1

Since

o0
lim e ¢ ™ =1, and / e*xFdx < 0o forVk,
1

X—> 00
(A10)
we have floo e~¢ Y (e *xk 4+ axk~®1) dx < 0o if and
onlyifk < a.

A.1.5 ProofofFact2.5
We need to consider lim,_, o

_e—X
1—e¢ "¢

1—e "
Since limy_ o0 e — 0 and limy_, oo x™% — 0, we have
the Taylor expansions

X

o

—X __ 0

e T =1—-et—x"+o(eF+xY),

e =1 — x4 o(x7Y).

Thus
 l—e e e Y +o(eF+x7Y)
lim ——— = lim
=00 1—eX© X—00 X%+ o(x™%)
=1 (A11)

This implies that A (x) Py (x) and P, (x) are tail-equivalent.
A.1.6 Proofof Theorem 3.1
If (25) holds, we must have
1 — Fi(un) = 0,
1 — Fy(up,n,) — 0.
Then
nylog(l — (1 — Fi(u1,n))) + m2log(1 — (1 — F2(uz,n,)))
= —n1(1 = Fi(u,n,))(1 + 0(1))
— (1 = F2(uz,m)) (1 + 0(1))
— —T (A12)
which is equivalent to
P(Myny, < 1,y Moy, < tian,)
= (1= (1= Fun)N" (1 = (1 = F(u2,0,))"™
= exp {n1 log(1 — (1 — F1(u1,n,)))
+ nylog(1 — (1 — Fa(uz.ny))) |
— e ",
Conversely, if (26) holds, which is equivalent to
nilog(1 — (1 — Fi(ui,n)))

+malog(l — (1 — Fa(uzn,))) = —7, (A13)

we must have 1 — Fi(u1,,,) — 0 and 1 — Fa(u2,,,) — O.
Otherwise, suppose 1 — Fj(uyn,) 7 0, then there is a
sequence of indexes mj, my,... and € > 0 such that 1 —
F1(u1,m,) > € for Vk. This means that

nylog(1 — (1 — Fi(u1,m;))) + n2log(1 — (1 = Fa(uz,n—m;)))
< mlog(1 — (1 — Fi(u,m)))
< nplog(l —€) — —o0,
which is contradictory to (A13). We have
m (1 — Fi(ui,n)) + o(1 — Fi(u1,n))]

+ ma[(1 = Fa(uz,n,)) + o(1 — Fa(uzn,))] — T (Al4)
and Equation (25) holds.
A.1.7 Proofof Corollary 3.1
Since
n1(1 — F1(u1,n,)) + n2(1 — F(uzp,)) — 11 + 12, (Al5)

(30) is a direct result of Theorem 3.1.

(1=F>(u1,ny))

If 72?(17}:?(:)”1)) then ny(1 — Fa(u1y,)) — tt1,
where 0 < tt; < o0o. Therefore,

PWM, < ul,nl) = P(Ml,nl < ul,m)P(MZ,nz =< ul,nl)

— 1,

s e*‘rl (141) .

A.1.8 Proofof Theorem 3.2
Since P(Miu; < ttipn,) = (1 — Tipp,;/n)™ and 0 <7, =
n1(1 — Fi(ui,n;)) < n, the result follows from Lemma A.2.

A.1.9 Proofof Theorem 4.1
For fixed k, write n’ = [n/k], suppose that there are n} mem-
bers from F; and #, members from F, among {X1, ..., Xy},
n' = n} + n,. If (47) holds, by assumption we have n] ~
pn' ~ Jtand ny ~ (1 — p)n’ ~ 72, thus

T
T

1 (1 = Fi(uin)) + ny(1 — Fa(uz,)) — (Al6)

Since
P({Ml)nll =< ul,nlrMZ,n/z < uZJ’lz})
=1- P({Ml,n/l > ul,l’ll} ) {Mz)n’z > uz,nz})

! 7
m n

Ui > wm) | U [ UKz > w2md} | |

i=1 j=1

=1-P

we have
1 —ny(1 — Fy(u1n)) — n5(1 — Fy(uia,ny))
< P(Ml,n’l =< ul,nlyMz,n’z < u2,n2)

<1-n(1 = Fi(u,m)) — ny(1 = F2(uz,n,)) + Sy,
(A17)

where S, = Zl§i<j§n’ PX; > ufj),Xj > ug)).
Condition D' (u,) implies that limsup,,_, ., S» = o(%) as
k — 00.By (A16) and (A17), we have

T
1— — <liminf P(M;,, < M, <
k= n>oo ( Ly = Ul,ny» 2,10 = u2>ﬂ2)

<limsup P(My,; < t1p;, My, < tz,)
n—oo 1 2

<1 ‘L’+ 1
——+ol-).
- k k



Since D(uy,) implies D(u,,,) and D(u2,,,), Lemma A.3 holds
for each subsequence. We have

k
(1= %) < liminf POy, < st Mo, < t2)
k n— 00

< limsup P(My,5, < t1,n,>Man, < tzn,)
n—o0

< (1 T n 1 k
——4ol- .
- k k
Letting k — oo, we have lim,_, oo P(M1,, < 1,0, Ma,n, <
Uppy) —> € C.
Conversely, if (46) holds,

11— P(Ml,n’1 = “LHDMZ,n’Z = u2,n2)

< (1 = Fi(uin,)) + ny(1 — Fy(u2,0,))
<1-— P(Ml,nr1 < “Lm»Mz,n; <uyp,)+Sn.  (Al8)
Since  P(My,n, < th1,n)> Moy, < Uzn,) — €5, we have

P(My < thrn, My, < tiz ) = e~ /k. By letting n — 00
in (A18),

1— e—r/k

1
< % lim inf n1(1 — F1(u1,n,)) + n2(1 — F2(u2,n,))
n— 00

IA

1
% lim sup n1(1 — F1(uy,n,)) + n2(1 — Fa(u2,,))

n—0o0

1
1— —t/k —
e +o<k>

from which (multiplying k on all sides and let k — oc0) we
have ny (1 — Fy(u1,n))) + na(1 — Fa(upn,)) — 7.

IA

A.1.10 Proof of Corollary 4.1
Suppose  n1(1 — Fi(u1,,)) + n2(1 — F2(ua,,)) — 00, by
Ul < Vg and uy,, < va,,, we have

P(Ml,m < ul,n1>M2,n2 =< u2,n2)
< P(Mipn, < Vi Moy, < Vo).

By Theorem 4.1, P(Myyu, < Vin,>Mon, < Vou,) = € .
Then

. -7
lim sup P(Ml,m =< ul,anZ,nz < uZ,nz) <e .

n—o00 -
By letting  — 00, we have
lim P(My,n, < 1, Mo, < tion,) = 0.
n—o0

Conversely, we still have

n1(1 — Fi(uyn)) + na(1 — Fa(uz,n,))
> (1 — Fi(vin) +12(1 — F2(van,)) — 7.

Since the above inequality holds for arbitrary large t > 0, we
must have 11 (1 — Fi(41,n,)) + n2(1 — F2(tt2,,)) = 00.

A.1.11 Proof of Theorem 4.2

For 6 > 0, the conditiorll.\P(J)\'\/Il,,,1 < lxll}\nl;MZ,nz < upm) >
0 may be rewritten as P(M},n, < U1, Moy, < Uzn,) —> € °
with T = —log#, thisholdsifand onlyifn; (1 — Fy (u1,s,)) +
ny(1 — F2(ua,,)) — 7. The same is true for P(M;,, <
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Ui > Man, < ti,,) by condition D(u,) and D'(u,). When
0 = 0, the result follows from Corollary 4.1.

A.1.12  Proof of Theorem 4.3
If G(x) > 0, the equivalence follows from Theorem 4.2, with
0 = G(x).

If G(x) = 0, the continuity of G shows that, if 0 < 7 <
oo, there exists xg such that G(xp) = e~ 7. D(viy,) and D' (vi )
hold for vi,,, = xo/a1,n, + b1,ny> Vom, = xo0/azm, + ba,u, and
1’)\(M1,n1 < Vi, Map, < Vap,) —> e ¢ or P(Miy < Vi,
My, < va,) — e depending on the assumption made,
so that n(1 — Fi(v1,n))) + n2(1 — F2(v,,)) — 7. If (49)
holds, then we have n;(1 — Fy(u1,,,)) + n2(1 — F2(u2,,))
— 00, thus uy, < i, and uyy,, < vy, (since one of
the inequalities must hold and also implies another). By
Theorem 4.2, (48) holds. The converse direction can be
proved similarly.

A.2 Lemmas

Lemma A.1 (Khintchine, Theorem 1.2.3 in Leadbetter
et al. (2012)): Let {F,} be a sequence of cdf’s and H a non-
degenerate cdf Let a, > 0 and b, be constants such that

Fy(anx + by) — H(x). (A19)

Then for some nondegenerate cdf Hy and constants o, > 0, By,

En(@nx + Bn) = Ha(%) (A20)
if and only if
a;lan — aanda;l(ﬂn —b,)—> b (A21)
for some a > 0 and b, and then
H,.(x) = H(ax + b). (A22)

Lemma A.2 (Lemma 2.4.1 in Leadbetter et al. (2012)): (1)
If0 < x < nthen

0<e* (1 x)"<xze*" 1
e [ —_— .
n/ — 2 n—1
< 2¢72 ;
n—1
< 0.3 forn=1,2,...,
n—
(A23)

and further

x\"
e (1-2)
n

x*e* 1 1
= —|(14+0|- asn — 00, (A24)
2 n n
uniformly for x in bounded intervals.
(1) Ifx—y <log2 then
eV —e = Mx—y) +0(x—p?,  (A25)

with0 <6 < 1.

Lemma A.3 (Lemma 3.3.2 in Leadbetter et al. (2012)): If
D(uy,) holds, for a fixed integer k, we have

P(My < uy) — Pk(M[n/k] <uy,) —> 0 asn— oo. (A26)



