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ABSTRACT

This article proposes a novel multivariate time series model named copula-linked univariate D-vines (CuD-
vine), which enables the simultaneous copula-based modeling of both temporal and cross-sectional
dependence for multivariate time series. To construct CuDvine, we first build a semiparametric univari-
ate D-vine time series model (uDvine) based on a D-vine. The uDvine generalizes the existing first-
order copula-based Markov chain models to Markov chains of an arbitrary-order. Building upon uDvine,
we construct CuDvine by linking multiple uDvines via a parametric copula. As a simple and tractable
model, CuDvine provides flexible models for marginal behavior and temporal dependence of time series,
and can also incorporate sophisticated cross-sectional dependence such as time-varying and spatio-
temporal dependence for high-dimensional applications. Robust and computationally efficient proce-
dures, including a sequential model selection method and a two-stage MLE, are proposed for model
estimation and inference, and their statistical properties are investigated. Numerical experiments are
conducted to demonstrate the flexibility of CuDvine, and to examine the performance of the sequential
model selection procedure and the two-stage MLE. Real data applications on the Australian electric-
ity price data demonstrate the superior performance of CuDvine to traditional multivariate time series
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1. Introduction

Modeling dependence for multivariate time series is essential to
statistical applications in various fields. For instance, see Patton
(2012), Brechmann, Czado, and Aas (2012), Nikoloulopoulos,
Joe, and Li (2012), and Zhao (2020) in finance, Smith (2015) and
Smith and Vahey (2016) in economics, and Erhardt, Czado, and
Schepsmeier (2015) in climate monitoring. Roughly speaking,
there are two types of dependence embedded in multivariate
time series. One is the temporal dependence within each com-
ponent univariate time series. The other is the cross-sectional
dependence across all the component univariate time series.
Multivariate time series often presents complicated dependence
structures, such as nonlinear dependence, tail dependence,
as well as asymmetric dependence, which makes dependence
modeling a challenging yet crucial task. A desirable feature of
a multivariate time series model is being able to accommodate
the complex dependence in both temporal and cross-sectional
dimension.

In the literature, copula is one of the most widely used tools
for introducing flexible dependence structures among multi-
variate outcomes. A d-dimensional copula is a multivariate dis-
tribution function on (0, 1)? with uniform margins. By Sklar’s
(1959) theorem, any multivariate distribution F can be separated
into its marginals (Fy, . .., Fy) and a copula C, where the copula
captures all the scale-free dependence of the multivariate distri-
bution. In particular, suppose there is a random vector Y € R?
such that Y follows F, we have F(y) = C(F1(y1),...,Fa(ya)),

where y = (y1,...,y4) is a realization of Y. If all the
marginals of F are absolutely continuous, the copula C is
unique.

Most existing copula-based time series models focus on
the cross-sectional dependence of multivariate time series,
see, for example, the semiparametric copula-based multivariate
dynamic models (SCOMDY) in Chen and Fan (2006a). Under
the SCOMDY framework, standard univariate time series mod-
els, such as ARMA and GARCH (Engle 1982; Bollerslev 1986),
are used to capture the temporal dependence in the condi-
tional mean and variance of each component univariate time
series. A parametric copula is then used to specify the cross-
sectional dependence across the standardized innovations of all
the component univariate time series. See Patton (2006), Brech-
mann, Czado, and Aas (2012), Almeida, Czado, and Manner
(2016), and Oh and Patton (2017) for related models under the
SCOMDY framework. Oh and Patton (2018) further extended
the SCOMDY framework by allowing a high-dimensional time-
varying cross-sectional copula.

Using copulas to model the temporal dependence of uni-
variate time series is not uncommon. Chen and Fan (2006b)
and Domma, Giordano, and Perri (2009) considered copula-
based Markov chains, where copulas and flexible marginal dis-
tributions are used to specify the transitional probability of the
Markov chains. Ibragimov (2009), Chen, Wu, and Yi (2009)
and Beare (2010) studied the probabilistic properties of copula-
based Markov chains. Birr et al. (2017) proposed a copula
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spectral method for studying variation in temporal dependence
structure. See Joe (2014) for a nice presentation of copula-based
Markov chains. However, most of the literature focus on first-
order Markov chains using bivariate copulas, possibly due to
the variety of choices and mathematical tractability in the low
dimensional setting.

To extend the copula-based univariate time series model
to higher-order Markov chains, a framework to generate flex-
ible yet tractable multivariate copulas is required. A promis-
ing direction is vine-copula (see Joe 1996; Bedford and Cooke
2002; Aas et al. 2009), which generates multivariate copulas
based on iterative pairwise construction of bivariate copulas. See
Kurowicka and Cooke (2006) and Kurowicka and Joe (2011)
for more details of vine-copula. The D-vine, a specially struc-
tured vine-copula, is of particular interest due to its simplic-
ity and natural interpretation under time series setting. Smith
et al. (2010) and Shi and Yang (2018) employed D-vine to
account for the temporal dependence in longitudinal data, and
Loaiza-Maya, Smith, and Maneesoonthorn (2017) used D-vine
to capture the temporal dependence in stationary heteroscedas-
tic time series. A brief technical review of D-vine is given in
Section 2.1.

Although copulas have been proposed for modeling tempo-
ral and cross-sectional dependence in the aforementioned two
separate strands of studies, there are few multivariate time series
models that use copulas to account for both types of dependence
simultaneously. Some notable exceptions are: Smith (2015)
and Beare and Seo (2015) first stacked the multivariate time
series into a univariate time series and then designed D-vine
based dependence structures for the resulted univariate time
series; Brechmann and Czado (2014) used an R-vine to simul-
taneously model the temporal and cross-sectional dependence.
These approaches demonstrate flexible dependence structures
and show superior performance to the standard multivariate
time series models, such as Vector AR, in various applica-
tions. One potential drawback is that these models are tech-
nically complicated and can be difficult to implement. For
example, all the proposed methods involve a direct copula-
based joint distribution of a high-dimensional vector of length
T x d, which is challenging both analytically and computation-
ally, especially when the cross-sectional dimension d is high.
Another potential disadvantage is that it can be difficult for these
models to impose parsimonious and intuitively interpretable
structures into the cross-sectional dependence, such as time-
varying, and spatial or factor-structured dependence, which
may further hinder their abilities in modeling high-dimensional
time series such as large panel data or spatio-temporal
data.

In this article, we aim to design a simple, intuitive and
flexible multivariate time series model that enables the simul-
taneous copula-based modeling of both temporal and cross-
sectional dependence, and accommodates multivariate time
series modeling in the high-dimensional setting. Specifically,
based on pair copula construction, we first design a semipara-
metric univariate D-vine time series model (uDvine) that gen-
eralizes the existing first-order copula-based Markov chain to
an arbitrary-order Markov chain. We then further propose a
multivariate time series model named copula-linked univariate
D-vines (CuDvine), where a parametric copula is employed

to link multiple uDvines and specify the (conditional) cross-
sectional dependence. Flexible specification of this parametric
copula is designed for modeling complex cross-sectional depen-
dence, such as high-dimensional, time-varying or spatial depen-
dence. Compared to existing copula-based multivariate time
series models, a distinctive advantage of CuDvine is its flexibil-
ity in the specification of both copula-based temporal depen-
dence and copula-based cross-sectional dependence. Because
of this property, CuDvine extends the applicability of vine-
copula based time series models to the important area of high-
dimensional and spatio-temporal time series modeling. See
more detailed comparisons between CuDvine and existing lit-
erature on copula-based multivariate time series modeling in
Section 2.3.2.

The main contributions of this article are 2-fold. In terms of
statistical modeling, thanks to the use of a novel hybrid mod-
eling approach, the proposed CuDvine achieves a nice balance
between model flexibility and (analytical and computational)
tractability. As demonstrated in real data applications, CuDvine
can readily handle complicated marginal behavior and tempo-
ral dependence of time series, as well as model sophisticated
high-dimensional cross-sectional dependence structures such
as time-varying and parsimonious spatio-temporal dependence.
In terms of statistical theory, we give a complete treatment of
model selection and estimation for both uDvine and CuDvine,
where robust and computationally efficient procedures are pro-
posed. Although the idea of using D-vine to capture temporal
dependence is not new, to our best knowledge, we are the
first one to systematically study the probabilistic properties of
D-vine based time series and the statistical properties of its
estimators.

The rest of the article is organized as follows. Section 2
presents uDvine and CuDvine, and investigates their probabilis-
tic properties. In Section 3, a sequential model selection pro-
cedure and a two-stage maximum likelihood estimator (MLE)
are proposed for model inference and estimation. Their statisti-
cal properties are investigated as well. Numerical experiments
are conducted in Section 4 to demonstrate the flexibility of
CuDvine, and to examine the performance of the sequential
model selection procedure and the two-stage MLE. Real data
applications on the Australian electricity price are considered
in Section 5, where significant improvement over traditional
time series models is observed. We conclude the article in
Section 6. The supplementary materials contain additional real
data analysis, the proofs of the theorems, and other technical
materials.

2. The D-Vine Based Time Series Models
2.1. Background

In this section, we give a brief technical review of D-vine, which
serves as the building block of the later proposed uDvine and
CuDvine. According to Aas et al. (2009), the density of a T-
dimensional random vector Y = {Yt}tT= L € RT (here Y denotes
a univariate time series of length T) based on D-vine is given
by the T marginal distributions {Ft(~)}tT:1 of Yand T(T — 1)/2
bivariate copulas {{cs,t}i; % }tT=2 such that
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Figure 1. A five-dimensional D-vine.
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Fi|(s+1):(=1) Wt |¥s+15 . . . » ye—1) are conditional cdf of Y and Y;
given variables (Ys11,..., Y;—1), and can be calculated recur-
sively based on {F;(-)} and {c;;} by the algorithm in Aas et al.
(2009). Here and after, we use the convention that (s + 1) :
(t—1) = @and ysq41,...,—1 = Difs+1 > t— 1.
The parameter of the bivariate copula ¢, is denoted by S, and
B = BTl

An example of D-vine for T = 5 is exhibited in Figure 1.
Thenodesin tree 1 (top) represent the probability integral trans-
formed marginals {F(Y)} L | and the edges in each tree becomes
the nodes in the next tree. From left to right, the sth edge in
tree t — s (t > s) corresponds to the (conditional) bivariate
copula c¢,; that is used in fp(y, B) to specify the conditional
joint distribution of (Y, Y;) given variables (Ysy1,...,Yi—1).
The edges of the entire D-vine indicate the bivariate copulas
{ {cs,t}ﬁ;}}thz that contribute to the pair copula constructions.
The key feature of D-vine is that the edges of each tree only
connect adjacent nodes, which makes it simple to understand
and naturally interpretable for time series. If Y represents a
univariate time series, D-vine provides a valid univariate time
series model.

2.2. Univariate D-Vine Time Series Model (uDvine)

In this section, we introduce the univariate D-vine time series
model (uDvine) and study its probabilistic properties. Through-
out the section, we use Y = {Yt}tT=1 to denote a univariate
time series and we assume the time series is strictly stationary.
Note that the general formula for the density of Y = {Y;}L,
based on D-vine is given by (1), which depends on T marginal
distributions {F,(~)}tT:1 of Y and T(T — 1)/2 bivariate copulas
(s s

)

2.2.1. Model Specification of uDvine

The strict stationarity of {Yt}tT=1 implies that the marginal dis-
tribution F;(-) = F(-) for all ¢ and that all bivariate copulas in
the same tree must be identical, that is, ¢y = ¢y p if t —s =
' — s'. We call this the homogeneity condition. Thus, under the
stationarity assumption, to fully specify the joint distribution of
Y, one needs to specify a marginal distribution F(-) and T — 1
bivariate copulas for tree 1 to tree T — 1, which is unrealistic
when T is large.

A natural solution is to “truncate” D-vine after a certain
level (say tree p) and set all bivariate copulas beyond tree p, that
is, {css,t — s > p}, to be independent copulas,' where p <« T.
We call the univariate D-vine time series model truncated at
tree p the uDvine(p) model. As shown later in Proposition 1,
uDvine(p) is a p-order homogeneous Markov chain. To max-
imize the flexibility of marginal behavior, we do not impose
any parametric assumption on F(-) and only assume it to be
absolutely continuous, which makes uDvine a semiparametric
time series model (see Remark 1 for other choices of marginal
distributions).

The joint distribution of {Yt}tT: | based on uDvine(p) can be
written as

T
o B) =fon [ [fOelyers- -y

t=2

T
=f(y1) Hf()’tb’t—h cee ,ylv(t—p))

=2
T T -1
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where ¢, is the bivariate copula in tree t — s with parameter
Bst> Fsj(s+1):(t—1) and Fys+1):(—1) are the conditional cdfs of Y
and Y; given (Ysy1,- - -, Yi—1). By the homogeneity condition,
we have Fe+ie-1) = Fyi+nw-1 and Fyene-n =

'See Brechmann, Czado, and Aas (2012) and Brechmann and Czado (2014)
for a similar idea on truncating R-vine.
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Fyis+1):r—1) for all (s,¢,5',¢") such that ¢ —s' = t —s. We
denote B = {B,;} as the collection of all parameters for the p
bivariate copulas and denote F;_1 = o (Y¢—1, Y¢—2,...).

For the purposes of estimation and prediction, the con-
ditional distribution of uDvine is needed and can be easily
derived from the joint distribution. By the Markovian property
of uDvine(p), it can be shown that, for t > p, the conditional
pdf of Y; takes the form

FOFe—1) = fQelye—1,yt—2,- s ye—p)
-1

=f(y) - l_[ Cs,t (Fs| (s 1): (0= 1) s [Ysa15 7 -

s=t—p

> Yi—1)s

Fiis+1):=1) Wt Ys15 -+ 5 ¥1=1)5 Bst)

which can be shown to be a function of f(y;), {F (yt,k)}izo and
B. For simplicity of notation, we denote

W(EQ), F(ye—1)s- -+ s F(yr—p); B)

t—1

= 1_[ Co,t (Fs (s 1):(t=1) s Vs 15 - 5 ye—1)s
s=t—p
Fiis+1):=1) Wt 1Ys15 -+ 5 Ye=1)5 Bst) (2)
where w(ul,uz,...,up+1;ﬂ) can be derived®> based
on the algorithm in Aas et al. (2009). Together,
we have  f(yelyr—1,yt-25- -5 Yt—p) = fO)

W(E W), F(e-1)s ..., F(yi—p); B).

Similarly, it can be shown that, for ¢ > p, the conditional cdf
of Y; given F;_; is a function of {F (yt,k)}izo and . To simplify
notation, we denote

F(yel Fi—1) = Fyelye—15 - - > Yi—p) (3)
=g(Fy) F(yt-1)s ..., F(yt—p); B),

where g(uy,...,upy1; B) can also be derived? based on the
algorithm in Aas et al. (2009).

Unlike many “conditional” univariate time series models,
such as ARMA and GARCH, uDvine directly specifies the joint
distribution of the univariate time series, instead of specifying
the conditional distribution of Y; given F;_;. Most univariate
time series models that are based on the conditional approach
specify the temporal dependence via first- and second-order
moments, which can be restrictive. On the contrary, uDvine
does not impose constraints on either the marginal behavior of
Y; or the temporal dependence due to the use of the semipara-
metric D-vine. Depending on the choices of bivariate copulas in
each tree, uDvine can generate nonlinear, asymmetric, and tail
dependence. The flexibility of uDvine is demonstrated through
numerical experiments in Section 4.1 and through real data
applications in Section 5.

The uDvine(p) is a general model that nests many com-
monly used time series models as special cases. All the first-
order copula-based Markov chains, for example, Chen and Fan
(2006b), are essentially a uDvine(1). In fact, all the stationary
first-order Markov chains in R, for example, AR(1) models
and ARCH(1) models in Engle (1982), are special cases of

2See Section §2 of the supplementary materials for the derived formulas for
a uDvine(2).

uDvine(1). Another important special case of uDvine(p) is a sta-
tionary AR(p) process with Gaussian innovations. Loaiza-Maya,
Smith, and Maneesoonthorn (2017) showed numerically that
certain D-vine based time series model can generate volatility
clustering effects as in GARCH model, Example 3 in Section §1
of the supplementary materials gives an analytical explanation
of such phenomenon.

Remark 1. One advantage of copula-based modeling, and thus
uDvine, is that it allows flexible specification of marginal dis-
tributions. In this article, we use nonparametric marginal dis-
tributions to achieve maximum flexibility. To handle heavy-
tailed time series in certain financial/economics applications, an
alternative strategy is to employ a generalized Pareto distribu-
tion (GPD) based semiparametric marginal distribution, see, for
example, McNeil and Frey (2000) for more details.

2.2.2. Stationarity and Ergodicity of uDvine

Note that under the homogeneity condition, the univariate time
series {Y;} generated by uDvine(p) is strictly stationary. In this
section, we study the probabilistic properties of uDvine and
show that under certain conditions, {Y;} is ergodic. To our best
knowledge, this is the first formal result on ergodicity of D-vine
based time series, which extends the result of first-order copula-
based Markov chains in Chen and Fan (2006b).

Proposition 1. Under the homogeneity condition, the univariate
time series {Y;} generated by uDvine(p) is a p-order homoge-
neous Markov chain.

Proposition 1 is in line with the Markov properties of D-vine
studied in Smith (2015) and Beare and Seo (2015). By Proposi-
tion 1, if we define X; = (F(Yy), F(Y;-1),..., F(Yi—p11)), the
new process {X;} is a first-order homogeneous Markov chain
with state space (0, 1)?. Since the marginal distribution F(-) of
uDvine is absolutely continuous, we know that F(Y;) marginally
follows the uniform distribution on (0, 1). As noted in Chen and
Fan (2006b), the stationarity and ergodicity of {Y;} and {F(Y;)}
are equivalent due to the absolute continuity of the marginal
distribution F(-). Theorem 1 gives sufficient conditions for the
ergodicity of {X;} and thus that of {Y;}.

Theorem 1. Under the homogeneity condition and Assump-
tions S.1 and S.2 in Section 3 of the supplementary materials,
{X;} is positive Harris recurrent and geometrically ergodic, thus
is {Y¢}, which follows uDvine(p).

A direct result of Theorem 1 is the 8-mixing property of
uDvine(p).

Corollary 1. If Theorem 1 holds, uDvine(p) is 8-mixing with an
exponential decaying rate.

2.3. Copula-Linked Univariate D-Vines (CuDvine) Time
Series Model

The proposed uDvine accounts for various marginal behavior
and temporal dependence of the univariate time series. To
develop a flexible multivariate time series model, we employ



an additional copula to specify the cross-sectional dependence
across uDvines and propose the copula-linked univariate D-
vines (CuDvine) time series model.

Throughout this section, {Y;, = (Yu,..., Y,d)}thl
denotes a d-dimensional multivariate time series, F;_; =
0 (Y¢—1,Y¢—2,...) denotes the sigma field of all past information
and .7-';'71 = 0 (Yi—1,i» Yi—2,, . . .) denotes the sigma field of the
past information from the ith component univariate time series.

The time series {Yt}tT:1 is defined as a CuDvine if its com-
ponent univariate time series {Yti}[T:1 follows a uDvine(p;), for
i=1,...,d, and the conditional joint distribution F(-|F;—1) of
Y, given F;_; can be written as

F(y¢|Fi=1) = F(r15 - - o5 yral Fe—1) (4)
= CEL 0l FL s s Fa0adl FE s Fro1,v)s

where C(:; F¢—1,y) is a d-dimensional parametric copula
with parameter y that captures the conditional cross-sectional
dependence given history F;_;, and Fi(-|]-'ti_1) are the condi-
tional marginal distribution of Yy given its own history F7_,.

Since uDvine(p;) is a p;j-order Markov chain, we have
Fi(yilF{_1) = FiWilyi—1is---»>Yt—p;i)- Given the marginal
distribution F;(-) and the parameter §; of the bivariate copulas
in the ith uDvine(p;), F;(ys |.7-"ti_1) is a function of {F;(y;_,;) }ii:o
and B, such that

Fi(yil Fi_) = Fiailye—1,- - > Vepii) (5)
= &i(Fi(yii)s Fi(ye—1,0)s - - > Fi(Yt—p;.i)3 Bi)s

where gi(u1, . .., upy1; B;) is defined in (3) in Section 2.2.1. In
the following, without loss of generality, we assume that the
order of all uDvines to be p.

Note that (4) is a direct result of the conditional Sklar’s theo-
rem in Patton (2006, Theorem 1), which states that given any d
conditional marginal distributions F;(- |.7-'ti_1), i=1,...,dand
any conditional copula C(-; F;_1, y), the function F(y;| F;—1) in
(4) gives a valid d-dimensional conditional joint distribution of
Y; given F;_;.

Importantly, this indicates that the parametric form of the
conditional cross-sectional copula C(-; F;_1, y) is not restricted
and can be any copula, which greatly increase the flexibility
of CuDvine. This is an important difference between CuDvine
and existing vine-copula based multivariate time series models
where both temporal and cross-sectional dependence are lim-
ited to D-vine copulas (see, e.g., Beare and Seo 2015; Smith
2015).

The specification of the cross-sectional copula C(; F¢—1,y)
is flexible and can take a variety of forms. A popular assumption
in the multivariate time series literature is that the conditional
copula of Y, given F;_; does not depend on F;_1, which implies
that C(-; F;—1, y) is a static copula C(:; y). For low-dimensional
applications, C(;¥) can be an unstructured copula such as
elliptical copula or Archimedean copula. For high-dimensional
applications, C(:; ) can be a parsimonious factor-structured or
spatial-structured copula. A time-varying C(-; F;—1,y) where
the cross-sectional dependence evolves according to F;—; can
also be readily implemented. See Section 2.3.1 for more dis-
cussion of CuDvine for high-dimensional time series. In real
data analysis, we demonstrate the applications of CuDvine
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with both time-varying and spatial-structured cross-sectional
copulas.

One implicit assumption of CuDvine is a conditional inde-
pendence assumption—(A1) the conditional marginal distri-
bution of the ith component univariate time series Yy given
Fi—1 only depends on its own history F!_,. Al may appear
to be restrictive. However, plenty of multivariate time series
models based on Al are shown to perform well in real data
applications, see, for example, the SCOMDY framework in Chen
and Fan (2006a), Patton (2006), Dias and Embrechts (2010),
Almeida, Czado, and Manner (2016), and Oh and Patton (2017).
See Shi and Zhao (2018) and Nikoloulopoulos and Mentzakis
(2017) for models with A1l for multivariate discrete or mixed
longitudinal data. One advantage of Al is that it drastically
reduces the number of parameters for temporal dependence
from O((dp)?) to O(dp) and enables the use of two-stage MLE.
Together with the parsimonious structure of the cross-sectional
copula, CuDvine can easily handle high-dimensional multivari-
ate time series such as spatio-temporal data and large panel data
of stock returns.

2.3.1. CuDvine for High-Dimensional Time Series

With the increasing availability of large financial datasets thanks
to the advances of computing technologies, high-dimensional
time series modeling has become an important topic (Fan, Ly,
and Qi 2011). In this section, we discuss two strategies for CuD-
vine to model high-dimensional time series. The essential idea
is to use an elliptical copula, such as Gaussian or ¢-copula, for
the conditional cross-sectional copula C(-; Fy_1,y) and adapt
the parametric specification of its correlation matrix R to high-
dimension.

The first strategy is via factor model, where we set
C(sFi—1,¥) = C(;y) to be a static elliptical copula and
impose a factor structure on its correlation matrix R. Factor
model is arguably the most popular approach for handling high-
dimensional time series, see Bai and Ng (2002) and Lam and
Yao (2012). Here, we adapt the block factor model proposed
in Oh and Patton (2017) and Zhao and Zhang (2018), which
is designed specifically for financial data. A d-dimensional
random vector Z = (Z1,7Z,,...,Z4) follows a block factor
model if it can be grouped into m blocks such that Z =
U;”ZI(Z,-I, e aZid,-) with 27;1 d; = d and

Zij=¢iOB0+¢ilBi+€ij> i:l,...,m,j: 1,...,d;

where By is the common factor across all blocks, B;’s are block-
specific factors, €;’s are subject level noise, and all random
variables are mutually independent with unit variance. The
correlation matrix R implied by Z admits a block factor structure
with

2 4 42
2 4
corr(Zij, Ziy) = %, fori=1,...,m, andj#j,
1+ ¢ + ¢
Corr(Zij,Zj/j/) — ¢i0¢i’0 ,
J1+65+03\1+9, + 62,
fori=1,...,m, andi #i. (6)

As shown in Oh and Patton (2017) and Zhao and Zhang
(2018), the block factor model is intuitive and is proven to be
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effective for modeling high-dimensional financial time series as
assets (e.g., stocks) can be naturally grouped based on industrial
sectors. In Section 4.4, we further conduct numerical exper-
iments to demonstrate the promising ability of block-factor
structured CuDvine to model high-dimensional multivariate
GARCH process.

The second strategy is via shrinkage, where we set
C(-; Fi—1,y) to be a time-varying elliptical copula and impose a
shrinkage-DCC structure on its conditional correlation matrix
R;. The shrinkage-DCC model is proposed in Engle, Ledoit, and
Wolf (2019) for modeling high-dimensional time series, where
a shrinkage estimator is used to recover the unconditional
correlation matrix of the original DCC model in Engle (2002),
and is shown to work well for modeling high-dimensional asset
returns. In Section 5, we illustrate the promising performance of
a DCC-structured CuDvine (adapting the original DCC model
in Engle (2002)) on modeling electricity prices of multiple
regions in Australia.

2.3.2. Relationship With Existing Modeling Approaches
Most existing multivariate time series models, such as the
SCOMDY framework, follow a purely “conditional” modeling
approach in the sense that both the temporal and cross-sectional
dependence are specified via conditional distributions of Y;
given F;_1. As discussed in Section 2.2.1 and noted by Smith
and Vahey (2016), the conditional approach can be restrictive in
terms of modeling the marginal behavior and temporal depen-
dence of the component univariate time series.

In contrast, the copula time series models in Brechmann
and Czado (2014), Beare and Seo (2015), and Smith (2015)
follow a purely “joint” modeling approach in the sense that
the joint distribution of all the Td observations of {Yt}tT=1 are
specified directly, which helps offer great modeling flexibility.
On the other hand, the joint approach is computationally and
analytically complicated, and can be difficult to incorporate
structured cross-sectional dependence such as time-varying and
factor/spatial-structured dependence, which limits its appli-
cability to low-dimensional time series with a small cross-
sectional dimension d.

CuDvine follows a unique “hybrid” modeling approach—
the marginal behavior and temporal dependence are mod-
eled by a joint approach via uDvine, and the cross-sectional
dependence is modeled by a conditional approach via a d-
dimensional copula. The D-vine based joint approach for the
component univariate time series allows CuDvine to accommo-
date sophisticated marginal behavior and temporal dependence,
which is demonstrated later by numerical experiments and
real data applications. The copula-based conditional approach
enables CuDvine to generate flexible cross-sectional depen-
dence and makes the estimation and prediction procedure
straightforward and computationally efficient, which facili-
tates its application to high-dimensional time series. CuDvine
can readily model time-varying cross-sectional dependence
and high-dimensional factor/spatio-temporal dependence as
demonstrated in Sections 4 and 5. To summarize, the novel
hybrid modeling approach makes CuDvine achieve highly flex-
ible modeling ability and remain analytically and computation-
ally tractable.

3. Estimation and Inference

As pointed out by Aas et al. (2009), the inference for D-vine
consists of two parts: (a) the choice of bivariate copula types
and (b) estimation of copula parameters. The same tasks apply
to CuDvine. In Section 3.1, we discuss model selection for
CuDvine. In particular, we propose a sequential model selec-
tion procedure for the component uDvine. In Section 3.2, we
propose a two-stage MLE for parameter estimation of a given
CuDvine.

3.1. Selection of Bivariate Copulas for uDvine

To implement a CuDvine, one needs to specify the order p and
the bivariate copulas {c;;} for each component uDvine, and
one also needs to specify the cross-sectional copula C(-). The
selection of C(-) can rely on standard procedures such as AIC or
BIC. Here, we focus on the model selection for the component
uDvine.

Given a set of candidate copulas (say m different copulas) and
an order p, the number of possible uDvines is m?, which can be
quite large even for moderate m and p. For computational feasi-
bility, we propose a tree-by-tree sequential selection procedure.

The basic procedure is as follows. We start with the first tree,
selecting the appropriate copula from a given set of candidates
and estimating its parameters. Fixing the selected copula and its
estimated parameters in the first tree, we then select the optimal
copula and estimate its dependence parameters for the second
tree. We continue this process for the next tree of a higher order
while holding the selected copulas and the corresponding esti-
mated parameters fixed in all previous trees. If an independent
copula is selected for a certain tree, we then truncate the uDvine,
that is, assume conditional independence in all higher order
trees (see, e.g., Brechmann, Czado, and Aas 2012).

The commonly used BIC is employed for the copula selection
for each tree. As shown in Section 4.2, the sequential model
selection procedure for uDvine is computationally efficient and
can identify the true model accurately.

Remark 2. Given iid random vectors generated by a D-vine with
known bivariate copulas, Haftf (2013) showed the consistency
and asymptotic normality of the tree-by-tree sequential esti-
mation procedure. With standard arguments (Taylor expansion
and Kullback-Leibler inequality), results in Haft (2013) can be
used to show model selection consistency (under iid case) of
the proposed tree-by-tree sequential selection procedure with
BIC when the bivariate copulas of the D-vine are unknown and
need to be selected from a fixed number of candidate copulas.
Under the conditions of Theorem 1, uDvine is stationary and
ergodic. Thus, we expect the results in Haff (2013) hold for
uDvine with a finite Markov order p and the proposed tree-
by-tree sequential selection procedure is consistent. A rigorous
theoretical investigation is beyond the scope of this article and
we leave it for future research.

3.2. Two-Stage MLE for CuDvine

Given the parametric form of CuDvine, there are three
components to be estimated: (a) the marginal distributions



F(l) )50 F2(~) of the d component uDvines, (b) the parameters
(1), ... B g of bivariate copulas in the d component uDvines, (c)
the parameter y° of the cross-sectional copula C(-). Throughout
this section, we assume that the parametric form (i.e., the bivari-
ate copula types for each uDvine(p;) and the cross-sectional
copula type for C(-)) of CuDvine is known, and we present
the properties of the two-stage MLE under the correct model
specification.
Denote {y; = {}/ti}?zl}thl as the observations of the multi-
variate time series. By differentiating (4), the conditional likeli-
hood function of y; can be obtained as

FilFio1) = cFralF s Faral FE D3 v)
d

[ [fialFip,
i=1

where the conditional marginal distributions Fi(yti|.7-"ti71) and
ﬁ(yﬁlftifl) are defined in Section 2.2.1 and can be derived from
the ith uDvine(p;).

Based on (7), the conditional log-likelihood function is

T
Ly, Fgs By Bay|ydie) = D logf(yil Firr)

t=p+1
T
= Y loge(Fr(nlFL ), » Fayual Fiy)sv)
t=p+1
d T ‘
+ Y ) logfi(yal Fi_y). (®)
i=1 t=p+1

The number of parameters to be estimated in (8) is at least
d x p even if we assume all the bivariate copulas of the uDvines
are single-parameter copulas. The full likelihood estimation can
be computationally expensive especially when the dimension
d is large. To improve computational efficiency, we adapt the
two-stage maximum likelihood estimator (MLE) in the copula
literature (e.g., Joe and Xu 1996; Chen and Fan 2006a). The basic
idea is to decompose (8) into several components and optimize
each component separately.

In the first stage, for i = 1,...,d, the marginal distri-
bution F?(-) and the parameter ,B? in uDvine(p;) are esti-
mated using the ith component univariate time series {ys}L_;.
Specifically, the marginal distribution F?(-) is estimated by the
rescaled empirical distribution function f’i(-), where I:“,»(~) =
7= Y I(yii < -). Given Fi(), the MLE B; for B¢ can be
calculated by maximizing

T
LiB) = ) logfiyalFi_y) ©)
t=p+1
T
= Y [logfitr) +logwiFitye, ... Fiyipids B |
t=p+1
where the last equality follows from (2). Note
that maximizing (9) is equivalent to maximizing

ZtT:p—i-l log wi(f:i(yti),...,f:i(yt_p,,');ﬂi) as f3; does not affect
fi().
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In the second stage, given estimators {13,‘(‘)}1‘-1=1 and {8 ,-}le,
the MLE y for y° can be calculated by maximizing
T
Lyy)= Y logeEr(ynlFL -, Faal Fiy)sy)  (10)

t=p+1

T
= Y logegFr1(yn)s .., Fr(i—p1)i B)s- .

t=p+1

gaFaia)s - Fae—pa)s B ),
where the last equality follows from (3).

3.3. Consistency and Normality of the MLE

Both the first stage MLE {ﬁi}le of parameters {/3?}?21 in
the uDvines and the second stage MLE p of the parameter
y? in the cross-sectional copula are essentially the so-called
semiparametric two-stage estimator. A general treatment on its
asymptotic properties can be found in Newey and McFadden
(1994). In the following, we provide the results on consistency
and normality for both { B i}?zl and 7 under the context of D-
vine based time series.

3.3.1. Asymptotic Properties of fi i

Given the estimated marginal distribution F;(-), each B ; is calcu-
lated by maximizing the log-likelihood function (9). Chen and
Fan (2006b) provided asymptotic properties of such two-stage
MLE when the univariate time series is generated by a first-order
Markov chain based on a bivariate copula. Here, we extend the
result to uDvine(p), which is an arbitrary-order Markov chain
based on a D-vine.

Since uDvine(p) is a generalization of the bivariate copula
based first-order Markov chain in Chen and Fan (2006b), it is
natural to expect that the theoretical properties of ﬁ,- are similar
to the ones in Chen and Fan (2006b).

Theorem 2. Assume conditions C1-C5 in the supplementary
materials hold for the ith uDvine(p;), we have ||B; — ﬂ?ll =
0,(1), that is, B; is consistent.

Before stating the result for asymptotic normality, we
first introduce some notations for the ease of presentation.

Denote [j(uy,...,upt138;) = logwi(uy,...,ups15B)),
li,ﬂ(ul,...,up+1;,3i) = 8li(u1>--~’up+l3ﬂi)/a/3is
Ligpuis.. . upr; B) = 0%Li(ur,...,ups1; B;)/0B;9P; and
Lpk(un, .. suprsB) = 0%li(uy,. .. upp1; B) /9B du, for
k=1,2,...,p+1

Further denote Uy = F(Yy), B =
—E%(ig g (Uti Ur—1,is - - ., Ur—pys B))) and

. 1 T
AL = T— Z |:li,ﬂ(Uti: Ui—tis- - > Ur—pyis BY)
t=p+1
p .
+> W,L(Utk,o] ,
k=0

where W (x) = E'(ligk+1(Utis . .., Ur—ps BY)

(I(x < Upg) — Ut,k,i)). Define X; = Tlim Varo(ﬁAiT).
— 00
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Theorem 3. Assume conditions A1-A6 in the supplementary
materials hold for the ith uDvine(p;), we have: (1) 8; — /3? =
—14i . P, 0 —ly g1y ;
B; AL + 0,(1/3/T); (2) VT(B; — BY) — N(0,B;'Z;B ") in

distribution.

As noted in Chen and Fan (2006b), the appearance of the
extra p + 1 terms {Wli}izo in AiT is due to the nonparametric
estimation of the marginal distribution F?(-), and if F?(-) is
known, the terms {W;; }£=o will disappear.

3.3.2. Asymptotic Properties of y

Given {I:“i(')};.’l:1 and {ﬁ,-};i:l, 7 can be calculated by maxi-
mizing the log-likelihood function (10). Compared to B » Vs
obtained based on a log-likelihood function that depends on
both the estimated infinite-dimensional functions {f’i(~)}f:1 and
the extra finite-dimensional estimators { ,@i}f:l. The presence of
the extra {B ,-}le is the main difference between the setting of
y and the setting of [31‘- However, the consistency and normality
results still hold, with an extra term in the asymptotic covariance
due to the presence of {Bi};’l:l.

Chen and Fan (2006a) provided asymptotic properties of
such second stage MLE under the SCOMDY framework, where
the component univariate time series follow conditional uni-
variate models such as ARMA and GARCH. As discussed in
Section 2.3, CuDvine is constructed via a hybrid modeling
approach with the component univariate time series being semi-
parametric uDvines. This difference makes parts of the asymp-

totic result of y for CuDvine distinct from the one in Chen and
Fan (2006a).

Theorem 4. Assume conditions D and E in the supplementary
materials hold for CuDvine, we have || — y?|| = 0p(1), that is,
y is consistent.

Given the true marginal distributions {F?(-)}f:1 and
true uDvine parameters {ﬂ?}fl:l, we denote Fi(Yti|fti_1) =
G(F (Vi) B (Yimp,); BY) = Vi where {(Vaa,..., Vi) }-,
can be thought as the unobserved iid copula process

generated by the cross-sectional copula C(vy,... ,vd;yo).
Denote gig(u1,...,upr138;) = 09gi(ut,....upy1;B8;)/9B;
and gix(up,...,upr13B8;) = 0gi(ur,...,upy1;B;)/duy for
k=1,...,p+1.

We further denote h(vi,...,vgy) = logc(vi,...,vg9),
hy (Vi,. . Vas YY) = Oh(v1,...,va;¥) /0,
hyyOi..ovasy) = 9*h(v,...,vgy)/dydy’ and
hy i(Vis.. ., vasy) = 3*h(vi, ..., vgsy)/dydvifori=1,...,d.

Denote Uy; = F)(Yy;) and
. T

A= —— [hy(vﬂ, .

d
il ) - Viasv°) +ZQW-(U¢,-)}
t=p+1

i=1
d
P
T
i=1

where Qyi(x) = E%[hyi(Vit,. .., Via, ¥°) 3h_ Gkt (7
Upis BNUI(x < Upk) — Uerd] By =

EO [hy,i(vtl’ B th? Vo)gi,ﬂ (U[i: s U[—p,i;ﬁ?)/] and

Bi_lAiT are defined in Theorem 3. Finally, denote B* =
—E%hy,, (Vi, ..., Vigs ¥0)) and T* = Tli_)ngo var® (v TAL).

Theorem 5. Assume conditions D and N in the supplemen-
tary materials hold for CuDvine, we have: (1)  — y° =
B A% + 0,(1/NT); (2) (P — y%) — N(0,B*'2*B* 1)
in distribution.

Note that the asymptotic result for p is similar to the one
for B;. The extra d terms {Qy,-};.i:1 are introduced by the non-
parametric estimation of the marginal distributions {F?(-)}le,
and the extra d terms {B BI._IA"T}?=1 are introduced by the

estimation of the uDvine parameters {ﬁ?}?zl. As observed in
Newey and McFadden (1994), the estimation of ﬁ? does not
influence the asymptotic covariance of y if ng = 0. In Chen
and Fan (2006a), there are no {B;B;lAiT}le terms in A%, due to
the conditional modeling approach of the component univariate
time series.

There is no closed form solution for the asymptotic covari-
ance for the second-stage MLE. Though the standard plug-
in estimator can be constructed, it will be quite complicated
to implement. A practical solution to the estimation of the
asymptotic covariance is parametric bootstrap (see, e.g., Zhao
and Zhang 2018).

4. Numerical Experiments
4.1. Flexibility of uDvine

4.1.1. Approximating GARCH and GJR-GARCH Processes

In this section, we demonstrate the flexibility of uDvine in
terms of how well it approximates a GARCH (Bollerslev 1986)
or GJR-GARCH process (Glosten, Jagannathan, and Runkle
1993). The GARCH process is one of the most widely used
univariate time series models in financial markets and is able
to capture the unique features observed in stock returns, such
as heavy tailedness and volatility clustering. The GJR-GARCH
process further introduces asymmetry to the GARCH process
by allowing the conditional variance to respond differently to
positive and negative stock returns, and it contains the GARCH
process as a special case. Specifically, a univariate time series { Y/}
follows a GJR-GARCH process, if

iid
Y: = o, e ~ N(O, 1),

(th = wy + a)l(TtZ_l + a)zYtZ_l + w3I(Yi—1 > 0).

If w3 = 0, then {Y;} reduces to a GARCH process. We set the
parameters to be [wg, w1, w2, w3] = [0.05,0.85,0.1,0] for the
GARCH process and [wg, w1, w7, w3] = [0.05,0.85,0.1,0.05]
for the GJR-GARCH process. According to Oh and Patton
(2013), the parameters broadly match the values of estimation
from the real world financial data.

We use uDvine to model {Y[}tT=1 simulated from the above
GARCH or GJR-GARCH process. We do not fix the paramet-
ric form of the uDvine but instead use the sequential selec-
tion method in Section 3.1 to build the uDvine in a data-
driven fashion. This is different from Loaiza-Maya, Smith, and
Maneesoonthorn (2017) where the authors fixed the parametric



forms of vine-copula beforehand. The candidate pool for the
bivariate copulas consists of 40 different bivariate copulas that
are implemented in the R package VineCopula (Schepsmeier
et al. 2017). We assess the goodness of approximation by the
out-of-sample performance on predicting one-day ahead con-
ditional value at risk (VaR) for Y;. Conditional VaR is the
most commonly used extreme risk measure in financial appli-

cations. For 0 < ¢q < 1, VaRtl_q is defined as the 1 — g
conditional quantile of Y; given the past information F;_; =
o (Y¢—1,Yi—2,...), where g is usually taken to be 0.1 or 0.05.
Note that extreme quantile tracking is never an easy task, espe-
cially when the underlying time series has complicated behavior
such as heavy-tailedness, volatility clustering and asymmetric
nonlinear dependence.

Specifically, we first fit the uDvine based on a training
set {Yt}tT:ll. Then using the fitted uDvine, we calculate the
one-day ahead conditional VaRt1 ~1 for each Y; in the test set

{Y,}tT:“;lerl. The one-day ahead VaRtl_q is calculated based
on 1000 bootstrapped samples from the fitted uDvine. The
detailed algorithm for generating bootstrapped samples from
uDvine can be found in Section §5.1 of the supplementary

materials. The true {Yt}tT:l;lTj_l are then compared with the

1- Co
{VaR, q}tT:l}'lTj_l and the number of violations are recorded.

A violation happens when the observed Y; is larger than

the corresponding VaR: ~1 given by the uDvine. If uDvine
approximates the GARCH or GJR-GARCH process well, the
expected proportion of violations in the test set should be close
togq.

We set T1 = 1000, 2000, 5000, T, = 100, and qO = 0.1,0.05.
For each combination of (T4, T, qo), we repeat the experiment
500 times. The ith experiment gives a realized violation percent-
age g; and we report the average percentage, g = Zfﬁ? qi/500,
in Table 1 for both the GARCH and GJR-GARCH process. We
also report in the table the p-values for testing E(g;) = q° using
one-sample Z-tests based on the observed {q,-}?g{.

As observed from Table 1, for all combinations of (T}, T5, qo),
the average violation percentage g achieved by uDvine is very
close to the target level ¢°, for both the GARCH and GJR-
GARCH process. In addition, it passes the Z-test when the
training set is large enough (T; > 2000). For T; = 5000, under
both GARCH and GJR-GARCH process, we find that around
95% of the uDvines are selected to be uDvine(1) with a t-copula
and around 5% are selected to be uDvine(2) with two t-copulas.
This matches the analytic findings of Example 3 in Section §1 of
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process. Specifically, a stationary AR(9) process {Y;} is generated
via

Yt = 0.7Yt,1 — 0.6Yt72 + 0.6Yt73 - O.SYt74 + O.SYt,S
—0.5Y;_6 4+ 0.6Y;_7 —04Y; g+ 0.4Y; 9

o
+ €1, € ~ N(O, 1).

Note that {Y;} is a Markov chain of order 9. Though a straight-
forward model, an AR(9) process is not easy to approximate due
to its high autoregressive order.

We use uDvine to model {Yt}tT= | simulated from the above
AR(9) process. Same as in Section 4.1.1, we do not fix the
parametric form of the uDvine but instead use the sequential
selection method in Section 3.1 to build the uDvine in a data-
driven fashion. The candidate pool for the bivariate copulas
consists of 40 different bivariate copulas that are implemented
in the R package VineCopula (Schepsmeier et al. 2017). We
assess the goodness of approximation by the performance on
out-of-sample one-day ahead prediction for Y; given the past
information F;_; = o (Y;_1, Yi_2,...).

Specifically, we first fit the uDvine based on a training set
{Y,}?;l. Then using the fitted uDvine, we calculate the one-
day ahead prediction for each Y; given F;_; in the test set
{Yt}tT;;Ile. The one-day ahead prediction fi; is calculated as
the sample mean of 1000 bootstrapped samples from the fitted
uDvine. The detailed algorithm for generating bootstrapped
samples from uDvine can be found in Section §5.1 of the
supplementary materials. For comparison, we consider the ora-
cle one-day ahead prediction with u; = E(Y:|Fi—1) =
0.7Y;—1 —0.6Y;_» +0.6Y;_3 —0.5Y;_4 +0.5Y;_5 —0.5Y;_¢ +

0.6Y;_7 — 0.4Y;_g + 0.4Y;_9 based on the AR(9) process. The

true { Y,f};[:1 }'lTj_l are compared with {/lt};‘r:l}'lle or {M,}tT:lJTrlle

via mean squared error (MSE) TLZZtTZIJiTj_I(Yt — [)? or

TL2 ZtT:T_IT_iI(Yt — ).

We set T1 = 200, 500, 1000 and T, = 50. For each combina-
tion of (T, T2), we repeat the experiment 500 times. We report
the mean and median MSE across the 500 experiments in Table 2
for both the oracle and uDvine prediction. In addition, we report
the mean selected order p of uDvine across the 500 experiments.
As can be seen, the performance of uDvine improves as the sam-
ple size T} increases and is comparable to the oracle prediction.

Table 2. The performance of uDvine on approximating an AR(9) process in terms
of one-day ahead prediction error.

the supplementary materials. uDvine Oracle

T Mean MSE Med MSE p Mean MSE Med MSE
4.1.2. Approximating Higher-Order AR Processes 200 1.288 1.232 8.16 1.023 1.003
In thi ti d trate the flexibility of uDvine in t 500 1.101 1.060 8.86 0.996 1.001

n this section, we demonstrate the tiexibility or ubvine in terms 1000 1.036 1.019 9.11 0.990 0.978
of how well it approximates a higher-order autoregressive (AR)
Table 1. The performance of uDvine on approximating the one-day ahead conditional VaR for the GARCH and GJR-GARCH processes.
GARCH GJR-GARCH

T G(g® = 0.1 p-value G (g° = 0.05) p-value G@® =01 p-value G (g° = 0.05) p-value
1000 0.106 0.001 0.055 0.000 0.107 0.001 0.056 0.000
2000 0.103 0.176 0.052 0.196 0.104 0.125 0.052 0.319
5000 0.102 0.267 0.051 0.468 0.104 0.133 0.053 0.170
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Table 3. Performance of the tree-by-tree sequential selection procedure for three
different uDvine(2).

T Orderp =2 Tree 1 (Gaussian) Tree 2 (Gumbel)
1000 0.99 0.99 0.88
2000 0.98 0.97 0.97
5000 1.00 0.99 1.00

T Orderp =2 Tree 1 (t3) Tree 2 (Clayton)
1000 0.98 0.98 0.97
2000 1.00 1.00 1.00
5000 0.99 1.00 1.00

T Orderp =2 Tree 1 (Gaussian) Tree 2 (Gaussian)
1000 0.99 0.99 0.92
2000 1.00 1.00 0.98
5000 1.00 0.99 1.00

The selected uDvine order is close to 9, which is the true order
of the Markov chain.

4.2. Performance of the Sequential Selection for uDvine

In this section, we investigate the performance of the tree-by-
tree sequential selection procedure described in Section 3.1.
Specifically, we conduct numerical experiments for three
uDvine(2)s with different parameter settings. The marginal dis-
tributions for all uDvine(2)s are set to be N(0, 1).

For the first uDvine(2), we set tree 1 to be Gaussian(p! =
0.7) copula and tree 2 to be Gumbel(a! = 1.25) copula. For
the second uDvine(2), we set tree 1 to be t,2_3(p> = 0.7)
copula and tree 2 to be Clayton(6? = 0.5) copula. For the third
uDvine(2), we set tree 1 to be Gaussian(pf = 0.7) copula and
tree 2 to be Gaussian(p; = 0.3) copula. The parameters of all
the bivariate copulas are specified to make the Kendall’s tau of
tree 1 to be 0.5 and that of tree 2 to be 0.2.

We assume the candidate pool of bivariate copulas to be
(Gaussian, t, Clayton, Gumbel, Frank, Joe), which contains the
most widely used copulas in practice. For each uDvine(2), we
perform the sequential selection procedure under sample size of
T = 1000, 2000, and 5000. For each sample size T, we repeat the
numerical experiment 500 times. We report the percentage of
correctly selected order of the uDvine and the percentage of cor-
rectly selected copulas for each tree of the uDvine. The results
are displayed in Table 3. As suggested by the table, the sequential
selection procedure performs well in both order selection and
copula selection. Also, the performance is improving with the
increase of sample size T.

4.3. Performance of the Two-Stage MLE for CuDvine

In this section, we investigate the finite-sample performance of
the two-stage MLE for a three-dimensional CuDvine consisting
of the three uDvine(2) in Section 4.2. To fully specify CuDvine,
we set the cross-sectional copula C(-) to be Gaussian with
(p12> P13> P23) = (0.2,0.5,0.8). We assume that the parametric
form (i.e., the bivariate copula types for each uDvine(2) and the
cross-sectional copula type) of CuDvine is known.

We study the performance of the two-stage MLE under sam-
ple size T = 1000, 2000, and 5000. For each sample size T, we

Table 4. Performance of the two-stage MLE for a three-dimensional CuDvine.

T p'=07 oa'=125 p2=07 2 =3 62 =05
1000  0.699(0.030) 1.250(0.035) 0.694(0.034) 3.374(0.760) 0.482(0.088)
2000 0.700(0.024) 1.248(0.024) 0.700(0.022) 3.146(0.558) 0.489(0.068)
5000 0.700(0.016) 1.247(0.015) 0.699(0.016) 3.090(0.299) 0.495(0.041)
T p3 =07 p3 =03 p12=02  p;3=05 p;3=08
1000  0.692(0.026) 0.300(0.032) 0.202(0.032) 0.498(0.027) 0.795(0.012)
2000 0.699(0.021) 0.296(0.019) 0.198(0.024) 0.498(0.018) 0.796(0.010)
5000 0.700(0.013) 0.301(0.012) 0.201(0.013) 0.499(0.011)  0.799(0.005)

NOTE: The sample standard deviations of the MLE are in brackets.

repeat the experiment 500 times. Table 4 summarizes the results,
which show the two-stage MLE is consistent and the accuracy of
MLE is improving with T growing.

4.4. Performance of CuDvine for High-Dimensional Time
Series

In this section, we demonstrate the ability of CuDvine to model
high-dimensional time series and to track large dynamic covari-
ance matrices. Specifically, we generate a 100-dimensional time
series via the multivariate GARCH-CCC (constant conditional
correlation) process in Bollerslev (1990) and model its behavior
via CuDvine. A d-dimensional multivariate time series {Yti};.’lzl
follows a GARCH-CCC process if

2 2 2 .
Yi = 0uinsi, 04 = wjp + winoy_; +wpYy ;, fori=1,2,...,4d,

i
= (s Ni2s- oo d) ~ EQpeg) = 0,var(yy) = 1, cov(n,) = R.
Marginally each univariate time series {Ys},i = 1,2,...,d
follows a GARCH(1,1) process with conditional variance ot%.
Denote D; = diag(atzl, (rtzz, AU 0;), the conditional covariance
matrix of Yy = (Yy1,..

., Yi7) given past information F;_; is
1/2 5 ~1/2
¥; = D,/"RD,’".

For each univariate GARCH process, we set (wip, wi1, wiz) =
(0.05,0.85,0.1) for i = 1,...,d as in Section 4.1.1. To fully
specify the GARCH-CCC process, we need to set the distri-
bution of 5,. To resemble financial data, we set y, to follow a
multivariate ¢-distribution with degree of freedom v = 6. As for
the correlation matrix R of 5, we use the block factor structure
discussed in Section 2.3.1. Specifically, we set d = 100, m = 4
and (di,d,,ds3,ds) = (25,25,25,25), that is, the multivariate
time series is of dimension 100 with four blocks each having 25
time series. We set ¢ = (¢10, P20, P30, Pa0) = (1,1,1.2,1.2),
61 = (P11,P21, P31, 041) = (0.8,0.8,1, 1), implying within-
block correlation of 0.62,0.71 and between-block correlation
of 0.38,0.40, 0.42 (see Equation (6)). Note that the multivariate
GARCH-CCC process implies that given F;_;, the conditional
cross-sectional dependence of Y; follows a ¢-copula with degree
of freedom v and correlation matrix R.

We use CuDvine to model/approximate the high-
dimensional time series {Yt}tT=1 simulated from the above
multivariate GARCH-CCC process. For each univariate time
series {Y4}L_|,i = 1,2,..., 100, the uDvine is estimated in the
same fashion as in Section 4.1.1. The cross-sectional copula of
CuDvine is set to be t-copula with the block factor structure.
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Figure 2. (a) The locations of the five regions in the Australian National Electricity Market. The dashed lines represent high voltage interconnectors among different regions.
(b) The time-varying average correlation across all five regions estimated by the time-varying t-copula.

Table 5. The performance of CuDvine on tracking conditional covariance matrix.

T;  meanMFE  med MFE b10 o1 b
1000 0.091 0085  1018(0.035 0.786(0.027)  7.348(0.551)
2000 0082 0080  1.023(0.028) 0.791(0.020)  7.342(0.344)
5000  0.046 0045  1.021(0017) 0795(0.013)  7.091(0.231)

NOTE: The sample standard deviations of the MLE are in brackets.

The parameter (¢, ¢, v) of the t-copula is estimated via two-
stage MLE. We assess the performance of CuDvine on modeling
high-dimensional time series by its out-of-sample prediction
of the conditional covariance matrix ¥; = D}/ 2RD: 2 of Y,
given F;_;. Note that an accurate prediction of ¥, requires a
precise estimation of both the marginal variance D; and the
high-dimensional correlation matrix R.

Specifically, we first fit the CuDvine based on a training
set {Yt}thll. Then using the fitted CuDvine, we calculate the
conditional covariance matrix for each Y, given F;_; in the test
set {Yt}tT:lJTrlle. The estimated conditional covariance %; of day ¢
is computed as the sample covariance of 1000 bootstrapped sam-
ples {(Y? }éozolo from the fitted CuDvine given F;_. The detailed
algorithm for generating bootstrapped samples from CuDvine
can be found in Section §5.2 (Scenario A) of the supplementary

materials. We compare X; with the true covariance matrix Xy =

D[1 / ZRD}/ 2 by calculating the mean scaled Frobenius norm of
T+ )¢
error (MFE) - 3,102 112 — Sl /114 1%,
We set T{ = 1000,2000,5000 and T, = 50. For each

combination of (T, T,), we repeat the experiment 500 times.
We report the mean and median MFE across the 500 exper-
iments in Table 5. We also report the performance of two-
stage MLE for (¢10,$11,V) across the 500 experiments (esti-
mation for the rest ¢, ¢, is similar and is omitted to save
space).

As can be seen, CuDvine can track the dynamics of the large
conditional covariance matrix ¥; accurately, making around
only 4% to 9% relative error, confirming the ability of CuD-
vine to model high-dimensional time series. The estimated
(¢o>$,, D) of the t-copula is close to the true parameter value,
despite the fact that CuDvine is a misspecified model for the
multivariate GARCH-CCC process.

5. Real Data Applications

In this section, we compare the performance of CuDvine
with the vector autoregressive model (VAR) on the Australian
National Electricity Market (NEM) price dataset.’> Additional
applications of CuDvine in modeling spatio-temporal depen-
dence can be found in Section 7 of the supplementary materials,
where improvement of CuDvine over spatial Gaussian model is
observed.

The NEM interconnects five regional markets of Australia—
New South Wales (NSW), Victoria (VIC), Queensland (QLD),
Tasmania (TAS), and South Australia (SA). Western Aus-
tralia (WA) and Northern Territory (NT) are not connected to
the NEM. A map of the relative locations of the regions can
be found in Figure 2(a). Out of the five regions, NSW, VIC,
and QLD are the major electricity markets with average daily
demands of Ny = 8235, Vy = 5476, and Qs = 5913
megawatts (MW), while TAS and SA are significantly smaller
markets with demands of Ty = 1120 and S; = 1441 MW,
respectively.

The dataset contains five-year observations of daily maxi-
mum electricity price (in log scale) of the five regions from 2009-
01-01 to 2013-12-31. The day of week effect is removed by a
linear regression with seven dummy variables. The “Seasonal

3The data are available freely from https://www.aemo.com.au/Electricity/
National-Electricity-Market-NEM/Data-dashboard
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Figure 3. Contour plot of estimated bivariate copula density (with standard normal margins) for (a) NSW (self lagged), (b) VIC (self lagged), (c) NSW (lagged) versus VIC.

and Trend decomposition using Loess” (STL) method in Cleve-
land et al. (1990) is employed to remove the remaining trend
and seasonality of each component univariate time series. We
train CuDvine and VAR using four-year data from 2009-01-01
to 2012-12-31 (with 1460 days) and hold out the rest one-year
data as the test set.

For all five component univariate time series, a uDvine(2)
is selected according to the tree-by-tree sequential selection
procedure. For NSW and QLD, a t-copula is selected for both
tree 1 and tree 2. For VIC and SA, a t-copula and a Gumbel
copula are selected for tree 1 and tree 2, respectively. For TAS,
a BB8 copula is selected for both tree 1 and tree 2. Note that
most of the copulas of uDvines are selected as non-Gaussian
copulas with tail dependence, indicating potential complicated
dependence structure of the data. We further demonstrate this
point in the last part of this section, see Figure 3 later for more
details.

For the cross-sectional dependence, to capture any seasonal-
ity in strength of dependence,* we use a 5-dimensional time-
varying t-copula, where the correlation matrix is designed to
evolve according to the DCC model in Engle (2002) (see Sec-
tion §6.1 of the supplementary materials for more details). The
estimated degree of freedom is 12.79 and the average estimated
correlation matrix over the training set is reported in Table 6.

As shown in Figure 2(a), there are high voltage interconnec-
tors between NSW and VIC, NSW and QLD, VIC and SA, and
VIC and TAS. This pattern matches the estimated parameters of
the cross-sectional ¢-copula in Table 6. The average correlations
of the four pairs are, respectively, 0.587, 0.430, 0.566, and 0.376,
which are the highest correlations among all pairs. For demon-
stration purpose, we plot the time-varying average correlation

“Note that STL only removes the seasonality for each univariate time series,
but cannot remove the seasonality in the cross-sectional dependence.



Table 6. The average estimated correlation matrix of the cross-sectional time-
varying t-copula over the training set period.

NSW VIC QLD TAS SA
NSW 1 0.587(0.122)  0.430(0.118)  0.278(0.104)  0.381(0.094)
VIC 1 0.310(0.146)  0.376(0.098)  0.566 (0.115)
QLD 1 0.154(0.091)  0.190(0.111)
TAS 1 0.220 (0.108)
SA 1

NOTE: The standard deviation of each time-varying correlation over the training set
period is reported in the brackets.

across all five regions estimated by the time-varying t-copula
in Figure 2(b), which shows strong evidence of seasonality and
achieves peak correlation during winter time in Australia.

The VAR is specified according to AIC where a VAR(1)
model is selected. A VAR(2) model is also implemented to inves-
tigate the effect of time lags on prediction. For a fair comparison,
we also fit a VAR(1)-DCC model, where similar to the time-
varying t-copula of CuDvine, the covariance matrix of the noise
term in VAR(1) evolves based on the DCC model in Engle
(2002) (see Section $6.2 of the supplementary materials for more
details).

We test the model performance on the one-day ahead pre-
diction for each component univariate time series (NSW, VIC,
QLD, TAS, SA), the one-day ahead prediction for the difference
between pairs of time series (VIC-NSW, QLD-NSW, TAS-NSW,
SA-NSW, QLD-VIC, TAS-VIC, SA-VIC, TAS-QLD, SA-QLD,
SA-TAS), and the one-day ahead prediction for the demand-
weighted price of all five time series. On day ¢, denote the price
for the five regions as NSWy, VIC;, QLD;, TAS;, and SA, and the
demand-weighted price is defined to be the demand-normalized
average price over the five regions

(Nd-NSW[+Vd-VICt+Qd-QLDt+Td-TASt+Sd~SAt)/
(Ng+V4+Qu+T;+Sy).

Note that the demand-weighted price can be potentially used as
a price-index of the Australian National Electricity Market.

For each day in the test set, we generate the one-day ahead
prediction distribution based on 1000 bootstrapped samples
from the fitted CuDvine, VAR(1), VAR(2), and VAR(1)-DCC
model. The detailed algorithm for generating bootstrapped
samples from CuDvine can be found in Section 5.2 (Scenario
A) of the supplementary materials. To evaluate the performance
of prediction, we consider two out-of-sample metrics, CRPS
and QRPS, see Gneiting and Raftery (2007). CRPS is a met-
ric for overall prediction accuracy and QRPS is a metric for
prediction accuracy of a specific quantile (e.g., 95% quantile).
Smaller CRPS and QRPS indicate better prediction. For each
day t in the test set, we calculate the CRPS; and QRPS; for the
fitted CuDvine and VAR models, respectively, based on the true
observation and the bootstrapped prediction distribution.

The average CRPS® of one-day ahead prediction for NSW,
VIC, QLD, TAS, and SA achieved by CuDvine, VAR(1), VAR(2),
and VAR(1)-DCC are presented in Table 7. We also report the
percentage of days in the test set when the CRPS of CuDvine

5The average CRPS/QRPS is defined as the sample average of the
CRPS/QRPS's achieved by CuDvine/VAR for each day over the entire
test set.
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Table 7. Average CRPS for CuDvine and three VAR variants, and the percentage of
days that CuDvine is better than VAR(1)-DCC for each component univariate time
series.

NSW VIC QLD TAS SA
CuDvine 0.150 0.171 0.368 0.230 0.351
VAR(1) 0.171 0.187 0.408 0.253 0.372
VAR(2) 0.172 0.187 0.407 0.252 0371
VAR(1)-DCC 0.161 0.183 0.383 0.248 0.365
Percentage 66.30% 67.12% 70.41% 69.86% 68.22%

Table 8. Average CRPS for CuDvine and three VAR variants, and the percentage of
days that CuDvine is better than VAR(1)-DCC for the difference between pairs of time
series.

CRPS VIC-NSW QLD-NSW TAS-NSW SA-NSW QLD-VIC
CuDvine 0.153 0.369 0.256 0.352 0.385
VAR(1) 0.205 0.425 0.289 0.371 0.432
VAR(2) 0.205 0.422 0.290 0.369 0.431
VAR(1)-DCC 0.193 0.399 0.282 0.364 0.411
Percentage 81.37% 75.07% 71.78% 67.12% 72.05%
CRPS TAS-VIC SA-VIC TAS-QLD SA-QLD SA-TAS
CuDvine 0.239 0.302 0.449 0.554 0.399
VAR(1) 0.280 0.338 0.492 0.585 0.426
VAR(2) 0.281 0.338 0.487 0.583 0.426
VAR(1)-DCC 0.275 0.338 0.471 0.570 0.421
Percentage 74.52% 74.25% 70.96% 67.12% 68.49%

Table 9. Average CRPS/QRPS for CuDvine and three VAR variants, and the empir-
ical coverage rates of the one-day ahead 95% VaR and 95% P.l. for the demand-
weighted price.

CRPS QRPS VaR 95% Pl.95%
CuDvine 0.161 0.040 93.15% (0.117) 94.25% (0.471)
VAR(1) 0.165 0.042 90.96% (0.001) 89.86% (0)
VAR(2) 0.166 0.042 91.23% (0.002) 89.04% (0)
VAR(1)-DCC 0.164 0.040 93.70% (0.278) 90.41% (0)

NOTE: The p-value of the corresponding binomial test is reported in the brackets.

is better than that of the VAR(1)-DCC model, as VAR(1)-DCC
gives the best performance among the three VAR variants. In
terms of CRPS, CuDvine outperforms VAR(1)-DCC in every
time series around two thirds of the days in the test set and
always gives the best overall performance among the four mod-
els. We report the average CRPS of one-day ahead prediction
for the difference between pairs of time series in Table 8. It is
consistently shown that CuDvine is superior to the three VAR
variants in modeling the difference between pairs.

We present the prediction result for the demand-weighted
price in Table 9. We report the average CRPS and the average
QRPS of the 95% quantile. CuDvine delivers the best perfor-
mance in both metrics while VAR(1)-DCC comes second. Based
on the bootstrapped prediction distribution, for each day in
the test set, we also construct one-day ahead 95% prediction
interval (PI.) and 95% VaR for the demand-weighted price.
We present the empirical coverage rates® of the 95% PI. and
95% VaR constructed by CuDvine and VAR, along with the
corresponding p-values for the binomial test in Table 9. If the
fitted model can approximate the multivariate time series well,

5The empirical coverage rate of Pl. is defined to be the percentage of days
in the test set when the true observation falls into the corresponding P..
constructed for it. The empirical coverage rate of VaR is defined to be the
percentage of days in the test set when the true observation is lower than
the corresponding VaR constructed for it.
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the empirical coverage rates of both the constructed PI. and VaR
should be close to 95%. CuDvine gives an empirical coverage
rate that is very close to the target rate (95%) and passes the
binomial tests for both PI. and VaR. Neither VAR(1) or VAR(2)
provides a satisfactory performance, while VAR(1)-DCC per-
forms well for VaR but not for PI.

In summary, the results in Tables 7-9 clearly indicate that
CuDvine has an edge over the VAR models in terms of predic-
tion accuracy. Moreover, note that CuDvine is a parsimonious
model with less parameters than the three VAR models. A few
more observations can be drawn from the prediction results.
First, the performance of VAR(1) is very similar to VAR(2),
indicating its unfavorable performance is not caused by time
lags. Second, VAR(1)-DCC performs the best among the three
VAR models, showing evidence of time-varying dependence
among the five regions. Third, despite the DCC specification,
VAR(1)-DCC is still inferior to CuDvine by a wide margin,
indicating the performance gain from CuDvine is not solely due
to the time-varying cross-sectional dependence.

To further demonstrate the advantage of CuDvine, we com-
pare the in-sample goodness of fit by CuDvine with the three
VAR variants. Specifically, based on each estimated model, we
simulate a time series {Y>°°! (Yheot, .., Y}’S"Ot)}}i’?oo of
length 10,000 and use it to numerically approximate the station-
ary distribution implied by the estimated time series model (see
Section §5.2 (Scenario B) of the supplementary materials for the
detailed simulation algorithm). Two aspects of the multivariate
time series are considered. First, for each univariate time series
{Yu},i = 1,...,5, we estimate the bivariate copula of its
self—lagged pair (Y3, Yr—1,;) based on the bootstrapped sample
{Ybooty 999 via R package kdecopula, which provides ker-
nel smoothing estimation for bivariate copula density. Second,
using the same technique, we estimate the bivariate copula of
cross-lagged pair (Yy;, Y;—1;),i # j based on the bootstrapped
sample. For ground truth, we estimate the empirical bivariate
copulas based on the observed multivariate time series of the
training data {Yt}}flo.

Figures 3(a) and (b) give the contour plot of the estimated
bivariate copula density (with standard normal margins) of self-
lagged pair for NSW and VIC (the result for other regions is
similar and thus is omitted). As can be seen clearly, for both
NSW and VIC, the copula implied by CuDvine best resembles
the empirical copula. This is also confirmed by the correspond-
ing Kendall’s tau and Spearman’s rho (provided on the plot)
of each copula, where CuDvine provides the closest match to
the empirical copula. Note that the empirical copulas assume
irregular shapes and exhibit certain level of tail dependence,
which explains the selection of non-Gaussian copulas (¢- and
Gumbel copula) by uDvines. Figure 3(c) gives the contour plot
of the estimated copula of the cross-lagged pair (NSW, VIC),
which again confirms the favorable performance of CuDvine.

6. Conclusion

In this article, we proposed and studied CuDvine—a novel
multivariate time series model that enables the simultaneous
copula-based modeling of temporal and cross-sectional depen-
dence for multivariate time series. We first studied a univariate

time series model—uDvine, that extends the first-order copula-
based Markov chain to Markov chains of an arbitrary-order.
By pair copula construction, uDvine provides flexible specifi-
cations for the marginal behavior and temporal dependence of
univariate time series. To generalize to the multivariate context,
we designed CuDvine by linking multiple uDvines via a copula.
Compared to existing multivariate time series models, CuDvine
shows greater balance between tractability and flexibility. We
studied the probabilistic properties of uDvine in detail. We
proposed a sequential model selection procedure and a two-
stage MLE for the inference and estimation of CuDvine. The
consistency and asymptotic normality of the MLE were formally
established and affirmed by extensive numerical experiments.
Finally, using applications on the Australian electricity price and
the Ireland wind speed (in the supplementary materials), we
demonstrated CuDvine’s promising ability for modeling time-
varying and spatio-temporal dependence of multivariate time
series, and we observed significant improvement over tradi-
tional time series models in terms of prediction accuracy.

Supplementary Materials

The supplementary materials contain proofs, simulation algorithms, and
additional real data applications.
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