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Biodiversity science encompasses multiple disciplines and biological scales from mol-
ecules to landscapes. Nevertheless, biodiversity data are often analyzed separately with
discipline-specific methodologies, constraining resulting inferences to a single scale. To
overcome this, we present a topic modeling framework to analyze community com-
position in cross-disciplinary datasets, including those generated from metagenomics,
metabolomics, field ecology and remote sensing. Using topic models, we demonstrate
how community detection in different datasets can inform the conservation of inter-
acting plants and herbivores. We show how topic models can identify members of
molecular, organismal and landscape-level communities that relate to wildlife health,
from gut microbes to forage quality. We conclude with a future vision for how topic
modeling can be used to design cross-scale studies that promote a holistic approach to
detect, monitor and manage biodiversity.
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Introduction

Understanding biodiversity will require crossing disciplinary boundaries to link bio-
logical organization across scales. Early efforts to quantify biodiversity focused on the
organismal scale of plants and animals (Simpson 1949). However, modern biodiver-
sity research encompasses molecular scales, as well as scales beyond individual organ-
isms, including biotic and abiotic features within landscapes, regions and continents.
Studying biodiversity at microscopic and macrosystem scales has led to insights with
relevance for human health (Mohajeri et al. 2018), global sustainability (Bennett et al.
2015) and wildlife conservation (Trevelline et al. 2019). As recognition of the impor-
tance of biodiversity has increased, so have methods for analyzing biodiversity, from
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molecular approaches such as next generation sequencing for
genomic data to airborne sensors that can measure large-scale
landscape features. These discipline-specific methods limit
analysis of biodiversity patterns that may be nested within or
interact among scales. The lack of interdisciplinary cohesion
in biodiversity studies with different terminology and vary-
ing scales of interest is a barrier to understanding biological
processes vital to biodiversity conservation. One step toward
overcoming this lack of cohesion is to identify patterns in
data across disciplines that can then be discussed with a com-
mon language (Mosher et al. 2020).

Community organization is a unifying pattern in bio-
diversity data across scales. Ecological communities of spe-
cies that occupy the same space at the same time are a major
focus of empirical and theoretical work in community ecol-
ogy (Vellend 2010). More recently, ideas from community
ecology have been extended to other biological disciplines,
including detecting co-occurring microbes (Nemergut et al.
2013), functional genes (Burke et al. 2011) and landscape
features (Risinen et al. 2016). Despite differences in com-
munity assembly and study techniques, co-occurring features
can reveal ecologically meaningful patterns in metabolites,
microbial taxa, plant and animal species, and spectral bands
from land surface reflectance. Community detection across
multdiple scales opens the possibility to study cross-scale
interrelationships. For example, metabolite features within
plants influence the microbial organisms of individual her-
bivores (Kohl et al. 2014) and reflectance features of plants
can predict herbivore population dynamics across landscapes
(Fauchald et al. 2017). The overarching importance of com-
munities in ecology and evolution has led to a multitude of
methods to detect communities in ecological data (Legendre
and Legendre 2012).

A common challenge of detecting communities is mixed
membership, when single features and single samples can
potentially be assigned to more than one community. The
degree of mixed membership in communities depends on
whether features arrange themselves as discrete members of
different communities (Clements 1936), or as fluid entities
with membership in multiple communities (Gleason 1926).
Within cellular units, biomolecular processes such as muta-
tion and differential gene expression can promote mixing of
metabolic and genetic features. Within a landscape, processes
such as dispersal and anthropogenic disturbances lead to mix-
ing of species and obscure boundaries between communities
(Lortie et al. 2004). Another challenge for community detec-
tion is the tradeoff between sampling extent and resolution,
a methodological choice that can affect community member-
ship results. For example, in metagenomics, the benefit of
deep sequencing must be weighed against the cost of gener-
ating more reads. Similarly, in remote sensing, larger pixels
capture mote surface area than smaller pixels, but the higher
resolution of smaller pixels improves detection of land cover
features (Kennedy et al. 2009).

Altogether, mixed membership of features within sampling
units and communities is common. Nevertheless, many ana-
lytical methods, such as clustering and ordination techniques

(McCune et al. 2002), lack a probabilistic interpretation
of community membership, which limits the potential for
model transferability and prediction in novel environments.
One solution is topic modeling of community membership,
which has revolutionized multivariate analysis by enabling a
single feature or sampling unit to belong to multiple commu-
nities. The term ‘topic model’ arises from text mining, where
models are used to assign co-occurring words in documents
to underlying subjects (‘topics’; Barde and Bainwad 2017).
Topics are referred to as ‘latent’ because they are not known
before hand and must be inferred from the data. Latent
Dirichlet Allocation (LDA) is a topic modeling approach
that can identify communities of features, while allowing for
mixed membership of features across communities as well as
mixtures of communities within individual sampling units
(Valle et al. 2014). LDA was first developed in population
genetics, motivated by the need to use genotypes as features
that could group individuals into populations, while allow-
ing for admixture (i.e. the presence of several distinct geno-
types/genomes in a single population) (Pritchard et al. 2000).
Several years later, LDA was independently developed as a tool
to uncover latent structure in text data and broadly adopted
by the machine learning community (Blei et al. 2003). Since
then, LDA has resulted in transformative biological insights
across disciplines including annotating unknown chemicals
in fermented beverages (van der Hooft et al. 2016), charac-
terizing functional roles of gene regions (Chen et al. 2010)
and identifying communities of bird species in citizen science
data (Valle et al. 2018). Beyond single discipline applications,
we contend that topic modeling has unrealized potential to
unify biodiversity science across scales.

Here we demonstrate how to apply LDA across multiple
scales to inform conservation of herbivores. We focus on the
sagebrush steppe ecosystem that once covered - 1 million km?
ofland in the western United States but is increasingly threat-
ened by wildfires and invasive species (Requena-Mullor et al.
2019). Sagebrush (Artemisia spp.) are the dominant plant
species in these ecosystems and are critical for two sagebrush
obligate species: the pygmy rabbit Brachylagus idahoen-
sis and the greater sage-grouse (Centrocercus urophasianus,
hereafter sage-grouse). Both herbivores are considered spe-
cies of conservation concern across the Intermountain West.
However, efforts to conserve and reintroduce populations of
pygmy rabbits and sage-grouse have had mixed success due
to problems that range from lack of consideration of local
diet adaptations (Oh et al. 2019) to ecosystem fragmentation
(Cross et al. 2018).

Management of threatened species, including pygmy rab-
bits and sage-grouse, will benefit from a deeper and more
functional understanding of the biological communities
that impact individual health and population dynamics.
We use four case studies from the sagebrush steppe ecosys-
tem to show how LDA can assess community mixtures of 1)
metabolites from leaf material of individual sagebrush plants,
2) microbial species from fecal pellets of pygmy rabbits, 3)
plant species from field plots within sagebrush patches and 4)
spectra from pixels across a sagebrush landscape (Fig. 1). At
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Figure 1. lllustration of how communities are measured in sampling units that span micro- and macro-scales. In the sagebrush steppe eco-
system, these communities are linked across scales. Microbial taxa in fecal pellets from individual herbivores interact with chemical features
in leaf material when herbivores consume individual plants. Metabolite features in leaf material consumed by herbivores are dependent on
the abundance of individual plant taxa detected within field plots. The distribution of plant taxa can be detected with spectral bands in

pixels of aerial imagery obtained remotely within landscapes.

the micro-scale, microbial features in herbivores (Kohl et al.
20106) interact with metabolite concentrations in the gut after
herbivores consume sagebrush (White et al. 1982). At the
macro-scale, features of herbivores and sagebrush are depen-
dent on metabolite concentrations of plant taxa within habi-
tat patches (Frye et al. 2013, Ulappa et al. 2014) and those
plant taxa can be detected with aerial remote sensing plat-
forms (Olsoy et al. 2020). Ultimately, the community pat-
terns that emerge from analyzing features across scales could
deepen our understanding of plant—herbivore interactions
and identify molecular, organismal, and landscape targets for
management in changing landscapes.

Overview of Latent Dirichlet Allocation

The overall objective of LDA is to identify latent communi-
ties of co-occurring features in data. Communities are latent
because they are not directly observed in relative abundance
data; instead, communities represent a hidden structure that
can be uncovered with statistical modeling. For example,
consider a book as a sampling unit, filled with words as fea-
tures. The co-occurrence of particular words (e.g. ‘spaceship,
‘alien,” ‘planet’) indicate that book is likely to represent a
particular topic, or community (e.g. science fiction). LDA
assigns both individual words and individual books to latent
communities. LDA factorizes relative abundance data into
two matrices, one representing membership of communities
in sampling units and the other representing feature mem-
bership in communities (Box 1). Input relative abundance
data can either represent binary (zero or one) or multinomial
(count) data (Valle et al. 2018). The number of communities
in LDA can either be set in advance or estimated from the

data (Albuquerque et al. 2019) LDA output includes prob-
abilities of community membership for each sampling unit
and feature. As a generative model (Box 2), LDA can account
for missing data, predict relative abundance at new sites and
represent uncertainty in community membership. For further
technical details on LDA, we refer readers to recent reviews

by Sankaran and Holmes (2017) and Valle et al. (2014).

Applying Latent Dirichlet Allocation across
data sets

We analyzed each of our datasets with LDA models in
RStudio (ver. 3.4.4) to detect communities within sampling
units. Our models applied a Bayesian framework from the
‘Rlda” package (Albuquerque et al. 2019). We used a bino-
mial version of the LDA (Valle et al. 2018) to detect com-
munities from occurrence data on metabolites and spectral
reflectance, and a multinomial parametrization (Blei et al.
2003, Valle et al. 2014) for the analyses of count data on
microbial taxa and leaf area index. We provide detailed meth-
ods for each case study in the Supporting information.

Case study 1. Reflectance of spectral bands within
pixels at the landscape scale

Our first case study uses LDA to assess patterns in spectral
data obtained from remotely sensed images. In this case
study, communities represent co-occurring wavelengths of
spectral reflectance. Understanding impacts of global change
on sagebrush ecosystems will require measurements over
areas larger than that provided by field plots alone. We used a
binomial version of LDA to detect communities or patterns



Box 1. Modeling framework

Latent Dirichlet Allocation (LDA) is a statistical model for identifying latent (unobserved) commeunities. Input data structure for
LDA consists of an abundance matrix organized with sampling units (72) as rows and features () as columns. Sampling units contain
measurements of features. Features measured in sampling units could include species abundance, chemical concentration or sets of reads
from DNA sequencing. Count data on abundance of features in each sample unit is modeled using a multinomial version of LDA:

Abundance of feature n in sample unit m

Y.~ Multinomial (¢z[7n,n] >Zmn )

m,n

Abundance of community z in sample unit m

2,,, ~ Multinomial(6,,,S,.., )

Membership of features in communities

¢ ~ Dirichlet(p)

Membership of communities in sample units

0,, ~ Dirichlet(y)

where (Y, ) represents the observed abundance of 7-th feature in 7-th sample unit. Each entry in the data matrix is assigned to a
community type, which is estimated as a latent variable 2z, , and depends on the distribution of communities across sample unit 72
(8,), and the maximum possible abundance of features in a site (S, ). The Dirichlet distribution is a probability distribution for pro-
portional data (Douma and Weedon 2019) that enables mixed membership. The 0 and ¢ parameter matrices reveal the probability
that sample units and features, respectively, belong to # communities. The hyperparameters, B and vy, represent the degree of mixed
membership in the Dirichlet distribution and are often specified to initiate the model (Supporting information). An alternate param-
eterization of LDA for binary data assumes that observations are drawn from a binomial distribution but is otherwise similar to the
multinomial model (Valle et al. 2018). LDA can be fit with frequentist maximum likelihood estimation or with Bayesian approaches,
such as Gibbs sampling (Hornik and Griin 2011). See the Supporting Information for more details, including R scripts with examples

of LDA fit to multiple types of data.

in reflectance from aerial imagery of a sagebrush steppe land-
scape (data available from National Ecological Observatory
Network 2019, Fig. 2a).

Using LDA, we were able to detect ecological patterns
related to changing composition of plants. We identified
two communities of spectral features characteristic of veg-
etation (Fig. 2a). Based on visual interpretation of con-
currently collected red—green—blue (RGB) imagery, the
first community (Community 1) represents juniper trees
Juniperus spp. while the second community is associated
with low-growing shrubs (Fig. 2b). Juniper range expansion
threatens wildlife species (Severson et al. 2017). The patchi-
ness of Community 1 suggests fine-scale variation in juni-
per cover during the early stages of woody encroachment
(Fig. 2b). The more uniform representation of Community
2 (Fig. 2b, right panel) is actributable to a dominant but
sparse canopy of shrubs documented in ground observa-
tions. Our results demonstrate how high-resolution hyper-
spectral data can detect and map juniper encroachment in
sagebrush steppe. Ultimately, patterns of remotely-sensed,
spectral features could be used to monitor ecological
change in landscapes where herbivores forage (Frye et al.
2013, Ulappa et al. 2014).

Case study 2. Plants within field plots at the habitat
scale

Our second case study uses LDA to detect communi-
ties of plant species in field plots using measurements of

leaf—area—index (LAI). LAI is the relative size of one leaf
over a unit of ground surface (Ewert 2004). Measurements
of LAI in drylands relate to food availability for herbivores
(Olsoy et al. 2015). We quantified LAI in field plots within
a Wyoming big sagebrush habitat (Artemisia tridentata ssp.
wyomingensis) (Fig. 3).

Results from applying LDA suggest that this habitat
type contained six plant species communities (Fig. 3). We
report on the composition of three of these communities due
to their ecological significance. Community 1 and 3 were
dominated by the presence of Wyoming big sagebrush and
a native bunchgrass Sandberg bluegrass Poa secunda, respec-
tively. Wyoming big sagebrush and Sandberg bluegrass are of
particular importance because their presence indicates habi-
tats favorable for herbivores (Beck et al. 2009). Community
6 was dominated by cheatgrass Bromus tectorum, an invasive
annual (Fig. 3a) that indicates degraded ecosystems less suit-
able for herbivores (Steenvoorden et al. 2019).

Our results show that communities in this habitat are
dominated by Wyoming big sagebrush and Sandberg blue-
grass, with low probability of the invasive cheatgrass commu-
nity (Fig. 3b). These results are visible at the level of a single
sampling unit (1 m?, Fig. 3¢). Our leaf-level analysis could be
used to quantify fine-scale suitability for particular wildlife
species. For example, plots monitored after fires with high
probability of Wyoming big sagebrush and low probability
of cheatgrass might indicate successful post-fire restoration
(Baker 2000), including the regeneration of suitable forage
for herbivores (Beck et al. 2012).



Box 2. Latent Dirichlet Allocation as a generative model for biodiversity

LDA belongs to a broad class of models known as generative models that define joint probabilities for latent variables and observed
features (Bernardo et al. 2007), including a data generating mechanism for observed data based on probability distributions. In
contrast, commonly used models for multivariate data in ecology (e.g. ordination; Legendre and Legendre 2012) tend to be non-
generative, describing patterns in community data without a probabilistic explanation. A key advantage of generative models is the
ability to simulate data that is consistent with observed data. Data simulation from generative models is increasingly considered best
practice for statistical analyses (Gabry et al. 2019). Comparing observed data to simulations improves overall understanding of data,
can identify potential pathologies in statistical models, and assists the design of more efficient sampling schemes.

Generative models can also provide a link to ecological theory (Harris et al. 2017). In community ecology, long-standing debates on
biodiversity metrics for alpha, beta and gamma diversity have relied upon simulations for understanding these metrics (Legendre et al.
2005, Baselga 2010, Veech and Crist 2010). However, simulation models used to explore general properties of biodiversity metrics
are often not the same models used to analyze observed data; LDA presents an opportunity to better integrate simulation experiments
and statistical models.

To demonstrate the potential for LDA to simulate biodiversity data, we generated 50 fake datasets from the multinomial model
described in Box 1. For each dataset, we varied the hyperparameter for membership of species (i.e. features) in latent communities (
in Box 1) from f=0.01-1.5 A heuristic explanation for this hyperparameter is the degree of species mixing within communities. A
lower B value corresponds to a minimal mixing of species in communities and results in a few high-abundance species. In contrast,
with increasing B, there is a high degree of species mixing resulting in higher probability of a more uniform distribution of species
abundances. Note, the datasets were generated with the site mixing hyperparameter (y in Box 1) set to zero, resulting in no mixing
across communities (high species turnover). In practice, however, the observed patterns of species abundances within and across sites
jointly depend on both f and y hyperparameters.

The figure above shows two simulated datasets on species
relative abundance, generated by LDA. The left panel shows
three communities from a simulated dataset with low species
mixing in and the right panel shows three communities from
a simulated dataset with high mixing. Each icon represents
one species, with the relative size of each icon indicative of
relative abundance of that species within a community.

After simulating datasets using LDA, we then calcu-
lated alpha diversity, the variation in species composition
within sites, for each of the simulated communities using
the expected number of species (eHfstamen ) Results from
this simulation experiment demonstrate a strong relation-
ship between a commonly-used metric for alpha diversity
and LDA. These results demonstrate how using LDA as
a generative model could provide a way to better under-
stand fundamental concepts in community ecology by
linking statistical models for observed data with simula-
tion experiments.
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Case study 3. Metabolites within leaves at the plant
scale

Our third case study uses LDA to detect patterns in metabo-
lite features, specifically volatile monoterpenes, between two
sagebrush taxa. While several herbivores rely on sagebrush as

forage year-round, the volatile monoterpene features of this
plant influence selection by herbivores at the species, patch
and plant scale (Frye et al. 2013). Although there are known
concentration-dependent consequences of individual monoter-
penes, the unique mixtures of metabolites in plants may bet-
ter explain intake by herbivores (Nobler et al. 2019). Moreover,



foraging herbivores consume mixtures of metabolites, not indi-
vidual metabolites. Approaches that focus on the presence or
concentration of a specific metabolite likely miss differences in
the relative ratios of compounds that better determine diet selec-
tion by herbivores and predict interactions with the microbial
features (e.g. case study 4 below) in herbivore guts. In this case
study, communities represent ‘chemical bouquets,” or groups of
secondary metabolites.

We found that LDA detected communities of monoter-
penes that were relevant to herbivore diet selection in two
different sagebrush taxa (Fig. 4). Specifically, there were three
communities that contained unique individual monoter-
penes known to predict foraging by herbivores. While the
identity of several monoterpenes quantified are unknown
(Unk indicate unknown compounds), the suite of monoter-
penes in Community 1, 3 and 4 were present across many
of the plant samples (Fig. 4b). At the individual sampling
unit (plant) level, three-tip sagebrush Arzemisia tripartita had
a high probability of Community 4, whereas Wyoming big
sagebrush was dominated by Communities 1 and 3 (Fig. 4c).
Concentrations of Unk 21.0 (dominant in Community 4)
and Unk 21.5 (dominant in Community 3) have previously
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been found to predict diet selection by free-ranging sage-
grouse (Fremgen-Tarantino et al. 2020) and p-pinene (dom-
inant in Community 1) was avoided by captive mountain
cottontails Sylvilagus nuttallii (Nobler et al. 2019). Our
results demonstrate how LDA can reveal communities of
metabolite features that predict foraging decisions by herbi-
vores. A potential application of LDA could be to improve
post-fire restoration by reseeding with plants that have simi-
lar chemical community profiles to plants consumed and pre-
ferred by threatened herbivores.

Case study 4. Microbial taxa within fecal pellets at
the herbivore scale

Chemical communities in herbivore forage, including
plants in the wild and artificial pellets in captivity, can
modify microbial species composition within animal guts
(Kohl et al. 2014, Sandifer et al. 2015, Mohajeri et al.
2018). Our fourth case study uses LDA to identify patterns
in microbial taxonomic features detected in fecal pellets of
pygmy rabbits over time. For this case study, communities
represent groups of co-occurring microbial taxa. Specifically,
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Figure 2. LDA applied to a subset of hyperspectral (1 m? resolution) orthomosaic from a sagebrush steppe ecosystem (Onaqui, UT, USA).
(a) The probability of each wavelength of reflected light (nm) belonging to two communities. The rapid change in reflectance between 690
nm and 750 nm (the ‘red edge’) is representative of changes in plant photosynthetic activity. (b) Red, green, blue (RGB) image of the arca
with encroaching juniper trees Juniperus spp. circled in yellow (left image) with community 1 overlay (middle) and community 2 overlay
(right) in the same area outlining a high probability that junipers belong to Community 1. Colors approaching yellow in the community
overlays indicate higher probability of pixel membership from a particular spectral feature.
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Figure 3. The results of LDA analysis on leaf area index (LAI) in a Wyoming big sagebrush habitat. (a) The probability of plant species
occurring within three communities with an image of the dominant species, Artemisia tridentata ssp. wyomingensis, in inset. (b) A landscape
level photo (left) and the probability of presence of the six most common communities within the habitat sampling units (right). (c) A
representative photo of a single 1m? field plot sampling unit (left) and the probability of presence of each community within a single plot
(right).



we analyzed how the taxa of the fecal microbiome from this
obligate sagebrush herbivore would change as they were
transitioned from a natural diet containing Wyoming big
sagebrush to a captive diet, containing commercial rabbit
food, over a seven-day period. Fecal samples from the rabbits
on day 1 (sagebrush diet) and day 10 (captive diet) were col-
lected and analyzed using shotgun metagenomics. We used
LDA to identify communities of bacteria at the genus level
(Fig. 5). The anaerobes, Clostridium and Bacteroides, were
common features of these bacterial communities (Fig. 5a).
Communities 3 and 8 show the highest probability of being
found within all fecal samples (Fig. 5b). Community 3 was
dominated by Bacteroides and had a higher probability of
being present when the rabbits were on a natural diet, whereas

Community 8, which was dominated by Clostridium species,
was more prevalent after a week of transitioning to a captive
diet (Fig. 5¢). Some Clostridium species are associated with
enteritis (inflammation of the small intestine) and increased
mortality in wild and captive animals (Paul and Friend
2019) whereas other Clostridium species may improve ani-
mal health (Liu et al. 2019). These preliminary results sug-
gest that LDA can be used to monitor changes in bacterial
communities associated with dietary shifts, and potential
health, in sagebrush-dependent herbivores. Because micro-
bial function is largely driven by communities, rather than
individual species, community-level analyses (e.g. LDA) are
crucial for identifying physiologically-relevant changes in
herbivore metagenomes.
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Figure 4. Results of LDA analysis of monoterpenes from leaves of sagebrush plants consumed by herbivores. (a) Probability of monoter-
penes occurring within three metabolite communities with an image of the molecular structure of the dominate known monoterpene in
inset. (b) Probability of the eight most common metabolite communities across all sagebrush samples. (c) Probability of the eight metabolite
communities occurring within an individual three-tip Artemisia tripartita and a Wyoming big sagebrush Artemisia tridentata ssp. wyomin-
gensis sampling unit with an image of the leaf morphology of each species in inset.
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Figure 5. LDA analysis using genus level taxonomy counts from metagenomics of fecal samples collected from pygmy rabbits Brachylagus
idahoensis (shown top left). (a) Probability of microbial features within the three most prevalent communities detected in fecal samples, each
dominated by different microbial taxa. (b) Probability of the ten identified microbial communities within fecal samples from the pygmy rab-
bit (n=22). (c) Probability of the ten microbial communities in fecal samples from the pygmy rabbit sampling units consuming a natural
diet (primarily Wyoming big sagebrush Artemisia tridentata ssp. wyomingensis) and after seven days on an artificial pellet diet in captivity.

Discussion

As biodiversity science grows to encompass scales from
molecular to continental, the need for integrative approaches
has increased as well. We have demonstrated the potential
for community detection to unite patterns of biodiversity
across disciplines. Latent Dirichlet Allocation, a topic model
that can represent mixed membership of features, enabled us
to quantify communities across molecular, organismal, and

landscape scales. Our results have potential relevance for con-
servation of threatened herbivores in the sagebrush steppe
ecosystem, including the pygmy rabbit. At the landscape
scale, LDA detected juniper encroachment, a driver of habitat
degradation in sagebrush steppe, from aerial remote sensing
data. At the plant scale, LDA enabled discrimination between
plant species assemblages, with relevance for habitat struc-
ture, including the availability of quality forage for herbivores
and the presence of invasive species. At the molecular scale,



LDA identified mixtures of secondary metabolites that can
differentiate plant species and predict diet selection by herbi-
vores. At the microbial scale, LDA quantified shifts in bacte-
rial communities that are predictive of disease and survival,
and respond to diet transitions of herbivores. Co-analyzing
datasets with LDA improved comprehension of biodiversity
across scales for members of our multidisciplinary research
team, leading us to develop a more holistic view of plant-
herbivore ecology. Common models for disparate datasets,
including LDA, will enable collaborative studies that can bet-
ter inform cross-scale strategies for conservation.

One realization that emerged from co-analyzing our data
is the importance of herbivore gut microbiomes for unit-
ing scales. We argue that studying gut microbiomes has
great potential to develop a more complete understand-
ing of herbivore ecology, particularly if multiple scales are
incorporated into analyses. Herbivores, such as the pygmy
rabbits in our study, make foraging decisions at individual
metabolite, leaf, plant and landscape scales (Ulappa et al.
2014, Nobler et al. 2019). In turn, foraging herbivores can
influence patterns of habitat structure and plant species com-
position (Eldridge et al. 2016). Over long periods of time,
we would expect that gut microbes mediate feedback loops
between plants and herbivores, with ecological and evo-
lutionary implications (Ley et al. 2008, Kohl and Dearing
2016). In a practical sense, the gut microbiome links these
disparate scales and represents the net sum of forage avail-
ability and quality across landscapes (Fig. 2), habitat patches
(Fig. 3) and within plants (Fig. 4). Herbivore foraging has
wide-ranging consequences for above-ground (Frye et al.
2013, Ulappa et al. 2014, Fremgen-Tarantino et al. 2020)
and below-ground (Chomel et al. 2016) ecological processes,
therefore a more holistic understanding of co-occurring
plant, metabolite and microbial communities in the guts of
herbivores is needed. Topic models, such as LDA, present
an opportunity to describe microbial community structure
(Chen et al. 2012). The development of analytical tools that
integrate hierarchies of scale and complex network struc-
ture will further enable researchers to uncover how micro-
bial communities might interact with communities at other
scales, from molecular to landscape.

Given the importance of the gut microbiome, we envision
designing future studies to collect data from multiple bio-
logical units at the same time and place with a focus around
fecal collections. Data collection focused around herbivore
fecal pellets could involve sampling feces from herbivores for
metagenomic and metabolite analyses while simultaneously
collecting leaf tissue from plants browsed by herbivores for
metabolite content (parent and detoxification products), and
mapping the GPS location where pellets and plant samples
are collected. Subsequently, research teams could assess how
communities of microbes, plant-derived metabolites and
plant species detected in feces are influenced by variation in
plant species availability at the scale of foraging plots. Remote
sensing data, such as hyperspectral aerial images, could then
be applied to detect temporal and spatial variation in the
composition of plant species and foliar chemistry across the
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landscape (Fine et al. 2021). This type of data collection will
require extensive interdisciplinary coordination, but will lead
to a more connected understanding of coupled biodiversity
among scales. Long-term ecological research sites, such as
the NEON network, provide a valuable starting point for
this type of study where collection and analyses of herbi-
vore metagenomics and metabolites from plants could add
substantial value to existing data on plant diversity and soil
microbial communities. In the context of planning field stud-
ies, LDA could be applied as a generative model to simulate
data and estimate appropriate sample sizes for statistical infer-
ence (Box 2).

LDA has distinct advantages over other clustering tech-
niques. A key strength of LDA is its probabilistic nature,
enabling detection of novel communities. For example,
when analyzing metabolomic data sets from tandem mass
spectrometry analysis, LDA identified relevant substruc-
tures from co-occurrence of mass fragments and neutral
losses in 70% of spectra analyzed, in contrast to other clus-
tering techniques that only found hits for 25 and 6% of
spectra respectively (van der Hooft 2016). In some cases,
LDA may also improve classification accuracy. For example,
LDA-based methods outperformed simple harmonization
methods based on semantic affinity scores for identifying
latent land cover communities from different source maps
(Li et al. 2020). More broadly, continuous representations
of community membership from LDA enable explanatory
analyses that would not be possible with clustering meth-
ods that assume discrete membership (Knott et al. 2020). In
addition, LDA is a generative model that can simulate data
to improve links between ecological theory and statistical
analyses (Box 2). Altogether, probabilistic topic models for
community detection are poised to generate novel insights
from biodiversity data.

Continued advances in community detection across
scales

While our case studies of community membership represent
separate analyses, topic modeling is well-poised to address
long-standing questions of whether different taxonomic units
co-occur in space and time (Heino 2010). Correlated topic
models represent covariance between communities (Blei and
Lafferty 2007), using mathematical relationships that are
similar to existing models for co-occurrence between spe-
cies in joint species distribution models (Pollock et al. 2014).
Correlated topic models could quantify whether species from
different trophic levels co-occur in space (often referred to
as spatial concordance or cross-taxon congruence; Pearson
and Carroll 1999, Su et al. 2004). Analyses of cross-taxon
congruence typically involves a two-step process, first to
identify latent communities and second to analyze correla-
tions between them (Heino 2010). Correlated topic models
present an opportunity to combine both of these steps into a
single statistical model. The flexibility of probabilistic mod-
els, such as LDA, could prove invaluable for extending ques-
tions of cross-taxon congruence beyond species to secondary



metabolites, genes, landscape features and other levels of bio-
logical organization.

Biodiversity data commonly includes features and commu-
nities that change over time and in response to environmen-
tal covariates. Newly developing topic modeling approaches
could improve our capacity for inference on drivers of com-
munity membership. Dynamic topic models are currently
used in text mining to account for changing community
membership (Blei and Lafferty 2006), while dynamic mixture
models enable realized proportions of communities to change
over time (Wei et al. 2007). In ecology, LDA has recently
been applied to interpret how gradual changes in rodent com-
munities over a 40-year period were related to environmental
drivers (Christensen et al. 2018). As a statistical approach con-
ceptually related to regression models for proportional data
(Douma and Weedon 2019), LDA can provide insights on

community dynamics across time and space.

Conclusions

Coordinated studies of community structure across scales
will enable researchers to address fundamental questions in
ecology and evolution. One such question relates to the long-
standing debate over whether biological features, from genes
to species assemblages, are organized by neutral processes or
deterministic ecological and evolutionary forces (Kreitman
1996, Lynch 2007, Lowe and McPeck 2014). For example,
convergent communities of microbes in the soil and guts of
herbivores exposed to similar plant metabolite communities
across broad biogeographical scales would provide powerful
evidence for the role of non-neutral processes. Alternately,
random associations between overlain communities could
suggest neutral theory as an explanation for observed assem-
blages. Common models for community structure will
provide detailed and cohesive insight into the complex inter-
actions among plants, animals and microbes co-occurring
across landscapes. Altogether, we anticipate that interdisci-
plinary collaboration, facilitated by the common modeling
language of LDA, will have payoffs for biodiversity studies
that must address complex problems across scales.
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