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Abstract

This paper proposes a hybrid model that combines ensemble empirical mode decom-

position (EEMD), autoregressive integrated moving average (ARIMA), and Taylor

expansion using a tracking differentiator to forecast financial time series. Specifically,

the financial time series is decomposed by EEMD into some subseries. Then, the lin-

ear portion of each subseries is forecasted by the linear ARIMA model, while the

nonlinear portion is predicted by the nonlinear Taylor expansion model. The forecast-

ing results of the linear and nonlinear models are combined into the predicted result

of each subseries. The final prediction result is obtained by combining the prediction

values of all the subseries. The empirical results with real financial time series data

demonstrate that this new hybrid approach outperforms the benchmark hybrid

models considered in this paper.
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1 | INTRODUCTION

Financial time series forecasting is a challenging task. It has attracted considerable attention in academic and practical fields (Ahmad &

Mohd, 2017). As a particular kind of time series, financial time series are intrinsically complex, dynamic, noisy, and nonstationary, which make

them difficult to forecast. The existing literature has many studies on time series forecasting with different models. In general, these models can

be divided into two categories (Wang, Wang, Zhang, & Guo, 2012). The first is traditional prediction models based on statistical principles, such as

autoregressive integrated moving average (ARIMA) (Box & Jenkins, 1970) and generalized autoregressive conditional heteroskedasticity

(Bollerslev, 1986). The second includes the new methods developed on the basis of artificial intelligence (AI). AI has had an increasingly wide appli-

cation in a wide range of research fields (Lu, 2019), where artificial neural networks (ANN) and support vector machines (SVM) are currently popu-

lar AI algorithms which can be used in classification and forecasting (Akman, Karaman, & Kuzey, 2020; Crone, Hibon, & Nikolopoulos, 2011;

Kim, 2003; Kock & Teräsvirta, 2014; Pai & Lin, 2005; Shi, Xu, & Liu, 1996; Shi, Xu, & Liu, 1999; Vafeiadis et al., 2018; Wegener, Spreckelsen,

Basse, & Mettenheim, 2016; Xie, Mao, & Wang, 2015; Yuan, Li, Guan, & Xu, 2010; Zhang, 2003).

A single linear or nonlinear model is not always adequate to determine all characteristics of a time series. Some efforts have been made to

develop hybrid models to overcome the shortcoming. An earlier effort to establish a hybrid approach using both ARIMA and ANN models to pre-

dict time series is made in Zhang (2003). First, the linear structure is extracted with an ARIMA model, while an ANN model predicts the nonlinear

component. Then, the two predicted results are combined as the final predicted result. The results with real data sets indicate that the hybrid

model can effectively improve forecasting accuracy. However, in practice, the neural network algorithm suffered some problems with over-fitting

and local minimums. Based on the structured risk minimization principle, SVM is a kind of machine learning method, which often has good predic-

tion results in nonlinear time series forecasting. Pai and Lin (2005) develop a hybrid model combining ARIMA and SVM, which takes a full advan-

tage of the unique strengths of the two models. They use real data sets of stock prices to examine the forecasting accuracy of the proposed

model and find that the experimental results are very promising. Although SVM can address the problems of small samples, nonlinearity,
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over-fitting, the curse of dimensionality, and local minimums, SVM is sensitive to kernel functions and does not consider the correlation among

sequences in time series, which limits its applications in financial time series.

A hybrid model using ARIMA and Taylor expansion forecasting (TEF) based on a tracking differentiator (TD) is proposed to predict commodi-

ty's future prices in Zhang, Zhang, and Feng (2016). TD is a controller design method in control theory, first developed by Han and Wang (1994)

to extract derivative information on signals with noise interference. An earlier attempt to use a TEF model based on TD to predict the stock price

was in Liu, Wang, and Zhang (2006). The empirical results in Zhang et al. (2016) show that the ARIMA-TEF model achieves better predicted

results than the ARIMA-SVM model.

Financial time series show the characteristics of nonlinearity, nonstationarity, and being multiscale, which pose great challenges in forecasting

them. However, decomposing a complex time series into a set of simple modes with multiscale, simple, stationary, and regular characteristics using

empirical mode decomposition (EMD) simplifies the forecasting task and is suitable for forecasting time series. Introduced by Huang et al. (1998),

EMD is an empirical, intuitive, direct, and self-adaptive data processing method. It not only works with nonlinear and nonstationary data but also

provides economic meaning. Ensemble empirical mode decomposition (EEMD) is an improved EMD (Wu & Huang, 2009), which addresses the

problem of mode mixing in EMD. The models with EMD or EEMD have been widely applied to time series analysis and prediction (Koži�c &

Sever, 2014; Plakandaras, Gupta, Gogas, & Papadimitriou, 2015; Tiwari, Dar, Bhanja, & Gupta, 2016; Wang, Hu, Wu, Liu, & Bai, 2014; Wang,

Wang, Song, & Liu, 2018; Yang & Lin, 2016; Yang & Lin, 2017; Zhang, Lin, & Shang, 2017; Zhang, Wei, Tan, Wang, & Tian, 2017; Zhu, Shi,

Chevallier, Wang, & Wei, 2016). Zhang, Lai, and Wang (2008) analyze crude oil prices using the EEMD method and show that the EEMD is a vital

technique for analyzing crude oil prices. Zeng, Qu, Ng, and Zhao (2016) develop an approach based on EMD and ANN for forecasting the Baltic

Dry Index. The prediction results demonstrate that the proposed EMD-ANN method outperforms ANN and vector autoregression. Zhang, Wei,

et al. (2017) propose a hybrid model combining EEMD, an adaptive neural network-based fuzzy inference system, and a seasonal autoregressive

integrated moving average for short-term forecasting of wind speeds. Their numerical testing results based on two wind sites in South Dakota

shed light on the effectiveness of the hybrid method. Wang et al. (2018) use an EEMD-based model to forecast coal overcapacity, and their

empirical results indicate that the proposed model significantly outperforms other widely developed baselines. Yang and Lin (2017) propose a

new hybrid model that intelligently combines the EMD, phase space reconstruction (PSR), and extreme learning machine (ELM) models (EMD-

PSR-ELM) to forecast exchange rates. Their experimental results with real-world exchange rate time series show that the proposed approach

yields superior results than the benchmark prediction models, including Naïve random-walk, ARIMA, back-propagation neural network (BPNN),

ELM, EMD-ELM, and PSR-ELM models.

Although the above-discussed hybrid models exhibit much better forecasting performance in various applications, more accurate prediction

models are still in demand considering the increasing requirements for better prediction of financial time series. As a special kind of data, financial

time series forecasting is regarded as one of the most challenging jobs in forecasting owing to its inherent complexity. To improve the accuracy of

the forecast model, this study is to develop a hybrid model for predicting financial time series. On one hand, it has been known the ARIMA model

is one of the most popular and widely used time series models due to its favourable statistical properties. On the other hand, compared with the

SVM, the TEF model can improve the forecast accuracy. Given that the ARIMA model cannot capture nonlinear patterns, and nonlinear models,

including the TEF model, are not adequate in modelling and forecasting linear time series. A natural idea is to integrate them in a new model. In

addition, the EEMD method has been known for its strong performance in prediction. As such, it should be considered before building prediction

models. These observations led us to propose a new hybrid forecasting model which possesses enhanced prediction capability to forecast finan-

cial time series by combining EEMD, TEF, and ARIMA in this paper.

The main reasons for combining EEMD, ARIMA, and TEF can be summarized as follows. First, using hybrid models or combining several

models has become a common practice to improve the forecasting accuracy where each method's unique strengths are combined to capture

different characteristics in the data. Second, the EEMD can reveal the hidden patterns in time series, and it tends to assist in designing fore-

casting models. It is natural to include the EEMD-based model for forecasting time series. Third, the ARIMA model has achieved successes in

linear domains; so far, it is still a widely used linear model. Fourth, the TEF model owns good strengths, but there are fewer researches on

hybrid models based on the TEF model. It is worth to make further efforts to study the TEF-based hybrid models and extend their

applications.

We first use EEMD to decompose financial time series into some subseries with independent intrinsic modes, including some intrinsic mode func-

tions (IMFs) and one residual. Then, we forecast the linear component of each subseries with the ARIMA model, while the nonlinear component is

predicted with the TEF model. The forecasting results of the two models are combined as the predicted results of the subseries. Ultimately, the

predicted results of all the subseries are combined to obtain the final prediction result of the original financial time series.

In summary, the main contributions of this paper are as follow: (a) a novel hybrid model combining EEMD, ARIMA and TEF model is devel-

oped to forecast the financial time series, and the model developed by Zhang et al. (2016) and the novel EMD-PSR-ELM model proposed by Yang

and Lin (2017) are selected as benchmark models because of their validity and strong performance; (b) to illustrate the extensive applicability, we

use the proposed hybrid model to forecast real-world financial time series, for example, stock indexes which are widely used in the world;

(c) besides the three error criteria commonly used in Zhang et al. (2016) and Yang and Lin (2017), a statistical measure on directional prediction

accuracy is also used to evaluate the predictive accuracy of different models; (d) we conduct experiments with different testing data sets to show
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the superior performance and robustness of the new hybrid EEMD-ARIMA-TEF model; (e) an artificial investment strategy called long-short strat-

egy is considered to show the usefulness of the forecast by the proposed EEMD-ARIMA-TEF model.

The rest of this paper is organized as follows: Section 2 introduces the basic principles of EEMD, ARIMA, and TEF models based on TD

respectively. Section 3 explicates the design of the new hybrid model. Section 4 presents the empirical results, and Section 5 concludes.

2 | METHODOLOGY

2.1 | EEMD

EMD, a self-adaptive decomposition technique, is effective in extracting the characteristic information from nonstationary and nonlinear time

series, for example, financial time series. This technique has several evident advantages. First and foremost, EMD can decompose any non-

stationary and nonlinear data into simple independent IMFs. Second, this decomposition technology is based on local characteristic time scales in

time series data, and only the extrema are extracted in the sifting process; therefore, EMD is local, self-adaptive, concretely implicational, and

highly efficient. For comparison, alternatively, wavelet-based models can be used for time series forecasting. For example, Huang and Wu (2008)

propose a wavelet-based hybrid model to forecast stock indexes. It is known that wavelet decomposition techniques need to determine a filter

function before decomposition. However, EMD is not flawless. The main drawback of the EMD method is the mode-mixing problem. To address

this problem, the EEMD method is proposed by Wu and Huang (2009) as follows:

(1) Initialize the number of ensemble M and the standard deviation of added white noise ε, set i = 1.

(2) Add the white noise series to the original financial time series y tð Þf gNt=1, and obtain a new series yi tð Þf gNt=1:

yi tð Þ= y tð Þ+ ni tð Þ ð1Þ

where ni tð Þf gNt=1 denotes the added white noise series i, and yi tð Þf gNt=1 represents the noise-added series i.

(3) Identify all the local maxima and minima of time series yi tð Þf gNt =1 , and generate the upper envelopes and lower envelopes of yi tð Þf gNt=1
with cubic spline interpolation.

(4) Calculate the point-by-point mean from upper and lower envelopes and record as m(t), and then extract the difference between yi(t) and

m(t) as h(t):

h tð Þ= yi tð Þ−m tð Þ ð2Þ

(5) Check the properties of h(t). If h(t) is an IMF, it meets the following two conditions:

(a) The number of extreme values and the number of zero crossings either are equal or differ at most by one;

(b) The mean value of the envelope defined by the local maxima and the envelope defined by the local minima is zero at any point. Take h

(t) as the first IMF ci1 and replace yi(t) with the residual ri(t) = yi(t) − ci1. If h(t) is not an IMF, replace yi(t) with h(t).

(6) Repeat Steps (3)–(5) until the residual satisfies the stopping criterion and obtain all IMFs cij (j = 1, 2, …, n, n is the number of IMFs) and a

residual ri(t).

(7) Set i = i + 1 and repeat Steps (2)–(6) with different white noise series until i = M.

(8) Calculate the combined mean of the M trials for the corresponding IMFs and residual obtained from each decomposition, and take the

mean as the final decomposition results.

2.2 | ARIMA

The ARIMA model, introduced by Box and Jenkins, is one of the most popular approaches to time series forecasting. In an ARIMA model, the

future value of the time series ytf gNt=1 is a linear combination of past values and past errors and it can be expressed as follows:

yt = θ0 +φ1yt−1 +φ2yt−2 + � � �+φpyt−p + εt−θ1εt−1−θ2εt−2− � � �−θqεt−q ð3Þ

where εt is the residual term between the actual data and the forecasting value; φi and θj (i = 1, 2, …, p, j = 1, 2, …, q) are autoregressive coefficients

and moving average coefficients to be estimated. P and q are integers, which are often referred to as orders of the autoregressive and moving
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average models, respectively. In general, this model has three phases: model identification, parameter estimation, and diagnostic checking. The

ARIMA model can be used to predict time series after diagnostic checking is conducted.

2.3 | TEF

The Taylor formula is as follows:

f tið Þ= f ti−1 + hð Þ= f ti−1ð Þ+ _f ti−1ð Þh+ 1
2

::
f ti−1ð Þh2 + � � �+ 1

n!
f nð Þ ti−1ð Þhn + 1

n+1ð Þ! f
n+1ð Þ ti−1 + θhð Þhn+1, θ � 0,1ð Þ: ð4Þ

When h is small enough, Equation (4) can be approximated as:

f ti−1 + hð Þ ≈ f ti−1ð Þ+ _f ti−1ð Þh+ 1
2

::
f ti−1ð Þh2 + � � �+ 1

n!
f nð Þ ti−1ð Þhn ð5Þ

Here, we assume that h represents the time interval, and ti represents a moment. If we know the values of f(t) at ti−1 and its all-order deriva-

tives, then we can obtain the value of f(t) at ti−1 + h using Equation (5), which means that we can forecast the value f(ti−1 + h) at time ti−1, with

error

1
n+1ð Þ! f

n+1ð Þ ti−1 + θhð Þhn+1 ð6Þ

In general, financial time series are neither smooth nor differentiable but can still be predicted with the Taylor expansion model (see Remark

1 in Zhang et al., 2016). It is assumed that any given time series yif gNi=1 can be sampled by function φ with step size h, that is, φ(0) = y1, φ(h) = y2,

� � �, φ((N−1)h) = yN. To forecast yN+1 using Equation (5), we need to know φ((N−1)h) and its all-order derivatives. Because of the sensitivity to

noise, however, the derivative of the usually rapidly varying noise will “drown out” the derivative of the original information and it is not available

to compute the derivative directly. Fortunately, the derivatives of φ at (N−1)h can be estimated with the TD (Guo, Han, & Xi, 2002; Guo &

Zhao, 2011). Estimating the derivatives with the TD and then using Taylor expansion, one-step-ahead prediction can be achieved, which is called

the TEF model based on a TD. Next, a key problem is the construction of the TEF model using a TD. For the sake of comparison, we still apply the

following third-order high-gain TD used in Zhang et al. (2016):

_z1 tð Þ= z2 tð Þ−3r z1 tð Þ−φ tð Þ½ �
_z2 tð Þ= z3 tð Þ−6r2 z1 tð Þ−φ tð Þ½ �
_z3 tð Þ= −6r3 z1 tð Þ−φ tð Þ½ �
z1 0ð Þ= z10,z2 0ð Þ= z20,z3 0ð Þ= z30

8>>><
>>>:

ð7Þ

where z10, z20, and z30 are given initial values, φ(t) is input, z1(t), z2(t), and z3(t) are output used to approximate φ(t), _φ tð Þ, and ::
φ tð Þ, respectively,

and r>0 is the gain. The corresponding forecasting strategy of Equation (7) can be designed as follows:

yN +1 =φ Nhð Þ ≈ yN + z2h+
1
2
z3h

2: ð8Þ

In order to use the forecasting model (8), we discretize system (7) to be

Z1 i+ 1ð Þ=Z1 ið Þ+ Z2 ið Þh−3r Z1 ið Þ−φ ið Þ½ �h
Z2 i+ 1ð Þ=Z2 ið Þ+ Z3 ið Þh−6r2 Z1 ið Þ−φ ið Þ½ �h
Z3 i+ 1ð Þ=Z3 ið Þ−6r3 Z1 ið Þ−φ ið Þ½ �h
Z1 1ð Þ= z10,Z2 1ð Þ= z20,Z3 1ð Þ= z30

8>>><
>>>:

ð9Þ

And our forecasting strategy is easily to get:

yN+1 = yN +Z2 Nð Þh+ 1
2
Z3 Nð Þh2: ð10Þ
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3 | DESIGN OF THE NEW HYBRID MODEL

This section is devoted to the design of the proposed hybrid EEMD-ARIMA-TEF model. As discussed earlier, due to the complex features, fore-

casting financial time series is challenging. Deep insights into the original financial time series are important for achieving more accurate prediction

results. Based on a decomposition and combination prediction method, the hybrid EEMD-ARIMA-TEF model with both nonlinear and linear

modelling capabilities is a good choice for forecasting financial time series. The procedures are as follows:

(1) The original financial time series y tð Þf gNt=1 is first decomposed into some IMFs and a residual series with the EEMD method:

y tð Þ=
Xn
j=1

cj tð Þ+ r tð Þ, ð11Þ

where n is the number of IMFs, and cj(t) and r(t) represent the IMFs and the residual series, respectively.

(2) Following the well-established “linear and nonlinear” modelling framework (Pai & Lin, 2005; Zhang, 2003), each subseries xi(t) (i.e., cj(t) and

r(t)) can be represented as follows:

xi tð Þ= l tð Þ+ nl tð Þ, ð12Þ

where l(t) is the linear part, and nl(t) is the nonlinear part of xi(t). We use ARIMA to model l(t), and the residual can be obtained from the

ARIMA model:

e tð Þ= xi tð Þ− l̂ tð Þ, ð13Þ

where l̂ tð Þ is the forecasted value from ARIMA, and e(t) represents the residual.

(3) The residual e(t) contains only the nonlinear relationship. The nonlinear TEF model for e(t) can be represented as follows:

e tð Þ= f e t−1ð Þ,e t−2ð Þ,…,e 1ð Þð Þ+ ε tð Þ, ð14Þ

where f is the nonlinear function defined by the TEF model, and ε(t) is the error term. The nonlinear part nl(t) can be forecasted and

remembered as n̂l tð Þ. Then the combined forecast is:

x̂i tð Þ= l̂ tð Þ+ n̂l tð Þ, ð15Þ

where x̂i tð Þ is the forecasted value of xi(t).

(4) The final prediction results are obtained by combining the prediction values x̂i tð Þ:

ŷ tð Þ=
Xn+1
i=1

x̂i tð Þ, ð16Þ

where ŷ tð Þ is the forecasted value of the original financial time series y(t).

The proposed EEMD-ARIMA-TEF method can also be illustrated in the flow chart in Figure 1.

4 | EMPIRICAL RESULTS

4.1 | Data

To evaluate the performance of the proposed forecasting model, we base our analysis on daily closing price data sets of stock indexes—namely,

SP500, NIKKEI 225, AORD, and CSI300. The first three data sets are downloaded from Yahoo Finance (http://finance.yahoo.com), and the last

data sets are downloaded from NetEase Finance (https://money.163.com/). These entire daily closing price data sets from January 1, 2010, to

December 31, 2019, are used and illustrated in Figure 2, which indicates that the stock index prices are highly uncertain, nonlinear, and dynamic.

Table 1 presents some brief descriptive statistics for the four stock indexes. These statistics related to skewness, kurtosis, and Jarque-Bera tests

reveal that these stock index prices are all non-normal. To verify the effectiveness of the proposed hybrid model, we predict the prices on the last

30 trading days on the four stock indexes based on past data.
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4.2 | Performance criteria

To evaluate the forecasting performance of different models, we use the three error measures used in Zhang et al. (2016) and Yang and Lin (2017):

mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE). The definitions of these error criteria

are as follows:

MAE=
1
n

Xn
t=1

yt− ŷtj j, ð17Þ

MAPE=
100
n

Xn
t=1

yt− ŷt
yt

����
����, ð18Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t=1

yt− ŷtð Þ2
vuut : ð19Þ

where yt and ŷt are the actual value and predicted value, respectively, and n is the number of prediction samples. Obviously, MAE, MAPE, and

RMSE measure the deviation between actual values and predicted values. Hence, the model's forecasting performance is better when these mea-

sures are lower.

In addition, it is important to predict the future trends of the stock indexes correctly, especially for investors. Therefore, it is still needed to

judge whether the prediction model can predict the trends well by performance criteria. DS (directional symmetry) is a statistical measure on

trend, which measures the directional prediction accuracy. DS can be expressed as:

DS=
1
n

Xn
t=1

dt, where dt =
1, ŷt− ŷt−1ð Þ yt−yt−1ð Þ≥0:
0, otherwise:

�
ð20Þ

It is clearly that a bigger value of DS suggests a better predictor.

4.3 | Implementation of models

As mentioned in Section 1, this study adopts the ARIMA-TEF and EMD-PSR-ELM as benchmarks in our experiment. The use of these two bench-

marks is detailed in Zhang et al. (2016) and Yang and Lin (2017).

Then, we employ our EEMD-ARIMA-TEF model, illustrated in Section 3. It is noteworthy that M (i.e., the ensemble number) and ε (i.e., the

standard deviation of added white noise) are set as 100 and 0.1, respectively, as shown in Wu and Huang (2009). The decomposition results are

in Figures 3–4. The IMFs are sorted by fluctuation frequency from high to low. There is almost no fluctuation in the residual series, as shown at

the bottom of Figures 3–4, which means that the long-term trends in the closing prices remain relatively stable without interference factors.

F IGURE 1 The procedures in
the proposed EEMD-ARIMA-TEF
model. ARIMA, autoregressive
integrated moving average;
EEMD, ensemble empirical mode
decomposition; TEF, Taylor
expansion forecasting
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4.4 | Prediction results

This section is devoted to predicting the closing price on the four stock indexes (SP500, NIKKEI 225, AORD, and CSI300) using the proposed

EEMD-ARIMA-TEF method and the two benchmark models.

Our study considers only one-step-ahead forecasting, which avoids the problems associated with cumulative errors from previous forecast

periods. The forecasting results on the four stock indexes are reported in the following analysis.

The actual values and the predicted results of the four stock indexes by the three hybrid models with the testing data within 30 days

are shown in Figure 5. The point-to-point comparisons of the experimental results in Figure 5 show that the predicted values of the
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F IGURE 2 Daily stock indexes from 2010 to 2019

TABLE 1 Descriptive statistics of the
stock index data

Stock indexes SP500 NIKKEI 225 AORD CSI300

Mean 1962.609 15,786.66 5,341.172 3,129.433

Median 1986.480 16,178.94 5,351.500 3,188.202

Maximum 3,240.020 24,270. 62 6,967.000 5,353.751

Minimum 1,022.580 8,160.010 3,927.600 1876.185

Std. dev. 588.9103 4,933.657 700.2314 627.8903

Skewness 0.203017 −0.096734 0.184720 0.267856

Kurtosis 1.897014 1.592367 2.327263 2.682760

Jarque-Bera 144.8212 206.0078 61.92499 43.20454

p-value 0.000000 0.000000 0.000000 0.000000

Observations 2,516 2,449 2,523 2,675
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EEMD-ARIMA-TEF model are closer to the real data than those of the ARIMA-TEF and EMD-PSR-ELM models, especially for some local extreme

values. Also, the predicted results of the ARIMA-TEF model deviate from the original values severely. In contrast with the other two benchmarks,

our EEMD-ARIMA-TEF model relatively performs well according to the graph.

To compare the performance of different models further, the three error measures (MAE, MAPE, and RMSE) and DS are calculated and reported in

Table 2. We first compare our EEMD-ARIMA-TEF model with the ARIMA-TEF model. It is evidently found that all the testing MAE in EEMD-ARIMA-

TEF are much smaller than those in ARIMA-TEF, for example, 6.9881 and 13.7720 in SP500, respectively. The testing MAPE and RMSE are also much

smaller in our EEMD-ARIMA-TEF model than the ARIMA-TEF model. These results indicate that the deviation between the actual and predicted values

using our EEMD-ARIMA-TEF model is smaller. On the contrary, all testing DS in EEMD-ARIMA-TEF in SP500, NIKKEI 225, AORD, and CSI300 are much

larger than those in ARIMA-TEF, which means the proposed EEMD-ARIMA-TEF model can provide the consistency in the prediction of stock index

trend. It can be seen that the impact of EEMD on ARIMA-TEF is significant, which shows once again, the EEMD step has improved the forecasting
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performance. Next, we can see that all the testing MAE in the EMD-PSR-ELM model are 9.6214 (SP500), 94.3270 (NIKKEI 225), 27.6464 (AORD), and

16.6772 (CSI300), whereas those of our EEMD-ARIMA-TEF model are much lower, at 6.9881, 52.7123, 17.8508, and 10.8782, respectively. In addition

to MAE, the testing MAPE and RMSE are also much smaller using our model. Moreover, our model has higher testing DS, that is, 0.8621 (SP500), 0.7931

(NIKKEI 225), 0.7931 (AORD), and 0.7931 (CSI300), while the DS in EMD-PSR-ELM are 0.6207 (SP500), 0.6207 (NIKKEI 225), 0.7241 (AORD), and

0.5172 (CSI300), respectively. Therefore, it can be concluded that our model can provide a smaller deviation than EMD-PSR-ELM and better in direction

prediction. These results of all the testing performance criteria demonstrate that our proposed model boasts much more excellent prediction performance

than the ARIMA-TEF and EMD-PSR-ELM models.

In short, both the point-to-point comparisons and all criteria indicate that our EEMD-ARIMA-TEF model results in better prediction perfor-

mance than the ARIMA-TEF and EMD-PSR-ELM models.

To show our model is robust, we further predict the prices on the last 60, 100, and 200 trading days of SP500, NIKKEI 225, AORD, and

CSI300 stock indexes. The prediction results are in Figure 6 and Table 2. We observe again that our EEMD-ARIMA-TEF model outperforms the
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F IGURE 5 Comparison of the predicted results of closing price

TABLE 2 Performance comparison

Forecast period
(no. of days) Stock index

Performance
criteria ARIMA-TEF EEMD-ARIMA-TEF EMD-PSR-ELM

30 SP500 MAE 13.7720 6.9881 9.6214

MAPE 0.4367 0.2219 0.3059

RMSE 17.1044 8.9580 12.6945

DS 0.5862 0.8621 0.6207

NIKKEI 225 MAE 123.8213 52.7123 94.3270

MAPE 0.5258 0.2237 0.4013

RMSE 169.8337 64.8000 110.2595

DS 0.5172 0.7931 0.6207

AORD MAE 51.6293 17.8508 27.6464

MAPE 0.7540 0.2603 0.4035

RMSE 65.8928 22.6568 34.6473

DS 0.4828 0.7931 0.7241

CSI300 MAE 25.7858 10.8782 16.6772

MAPE 0.6535 0.2738 0.4244

RMSE 32.1403 14.7213 20.2670

DS 0.5517 0.7931 0.5172
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TABLE 2 (Continued)

Forecast period
(no. of days) Stock index

Performance
criteria ARIMA-TEF EEMD-ARIMA-TEF EMD-PSR-ELM

60 SP500 MAE 14.6077 6.2591 9.3901

MAPE 0.4757 0.2029 0.3049

RMSE 18.7060 8.2143 12.0909

DS 0.5424 0.7797 0.6102

NIKKEI 225 MAE 129.1930 61.6058 161.9364

MAPE 0.5623 0.2678 0.6963

RMSE 177.5335 76.4401 193.4958

DS 0.5254 0.8305 0.6949

AORD MAE 45.8208 15.5201 27.3894

MAPE 0.6721 0.2273 0.4017

RMSE 58.7597 19.2036 33.7882

DS 0.5254 0.8136 0.6610

CSI300 MAE 28.2038 10.0629 16.4636

MAPE 0.7177 0.2549 0.4198

RMSE 34.9175 13.2739 20.1328

DS 0.5254 0.8136 0.5763

100 SP500 MAE 19.0311 7.2592 11.4511

MAPE 0.6365 0.2415 0.3829

RMSE 25.1806 9.2996 15.8441

DS 0.4848 0.8182 0.5758

NIKKEI 225 MAE 139.9219 62.4513 421.0170

MAPE 0.6339 0.2826 1.8358

RMSE 182.4020 77.4607 499.3559

DS 0.4949 0.8283 0.6768

AORD MAE 45.4006 15.1282 26.8498

MAPE 0.6721 0.2236 0.3977

RMSE 58.7232 19.2352 33.8894

DS 0.4949 0.8182 0.6465

CSI300 MAE 28.6919 10.8809 17.6248

MAPE 0.7395 0.2801 0.4551

RMSE 36.1295 14.4047 21.3945

DS 0.4747 0.8485 0.5758

200 SP500 MAE 18.9567 7.8950 11.9432

MAPE 0.6450 0.2687 0.4057

RMSE 25.2779 9.9751 15.8486

DS 0.5176 0.8141 0.6382

NIKKEI 225 MAE 147.9214 66.4041 217.5344

MAPE 0.6820 0.3060 0.9665

RMSE 195.7740 84.4125 290.1773

DS 0.4975 0.8291 0.6533

AORD MAE 42.8100 14.5655 25.0036

MAPE 0.6430 0.2190 0.3744

RMSE 54.6670 18.7123 31.6635

DS 0.5276 0.8543 0.6683

CSI300 MAE 37.7335 14.4691 22.5798

MAPE 0.9851 0.3773 0.5894

RMSE 50.5256 19.1782 29.1263

DS 0.4925 0.8291 0.6281

Abbreviations: ARIMA, autoregressive integrated moving average; EEMD, ensemble empirical mode decomposition; TEF, Taylor expansion forecasting.
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ARIMA-TEF model and the EMD-PSR-ELM model in terms of the four criteria. The EEMD-ARIMA-TEF model outperforms the other two models

for the four stock indexes for different testing data sets, which implies our EEMD-ARIMA-TEF model is quite robust to producing more accurate

forecasting results.

The explanations of the proposed EEMD-ARIMA-TEF model's superiority to the ARIMA-TEF and EMD-PSR-ELM models could be summa-

rized in two aspects: on the one hand, the EEMD is conducive to financial time series forecasting, just as previous studies and above analysis.

Table 2 shows that the ARIMA-TEF model, without data preprocessing, gives the worst results among the three models. On the other hand,
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F IGURE 6 Comparison of the predicted results of closing price. Note: (a)–(d) represent predicted results of the last 60 days, (e)–(h) represent
predicted results of the last 100 days, (i)–(l) represent predicted results of the last 200 days
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adopting the hybrid model with linear and nonlinear modelling can exploit the unique advantages of the individual models and improve the com-

prehensive analytical ability to complex time series. It can be seen from Equations (9)–(10) that the TEF model based on TD can utilize the whole

previous data dynamically, which implies it can make full use of the concealed historical information. The ARIMA-TEF with EEMD yields better

results than the EMD-PSR-ELM model, which means our proposed EEMD-ARIMA-TEF model outperforms the naïve random-walk, ARIMA,

BPNN, ELM, EMD-ELM, and PSR-ELM models indirectly. Besides smaller deviation, our EEMD-ARIMA-TEF model owns a higher DS with almost

at 80%. Thus our proposed hybrid model combining EEMD, ARIMA, and TEF shed a new light for modelling financial time series, and investors

can develop an effective decision support system based on this model to improve investment efficiency in consideration of this model's excellent

performance.
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4.5 | Investment strategy

In this section, we set up an artificial investment strategy to show that our EEMD-ARIMA-TEF model is useful in reality. To simplify the applica-

tion, we consider a long-short strategy that longs and holds the stock index when it is forecasted to go up and no buys or shorts otherwise.

Because these stock indexes come from different countries, the transaction systems and costs are different. Thus, we do not consider the costs.

The returns of n days are:

R tð Þ=
Xn−1

t=0

yt+1−ytð Þg ŷt+1−ytð Þ, where g xð Þ= 1, x>0

0, x≤0

�
ð21Þ

where R(t) are the returns, y � and ŷ � are the actual closing price and predicted price, respectively. g(x) is a piecewise function, and its value of

1 means that the predicted price is rising. Its value of 0 indicates that the predicted index is falling. yt+1− yt stands for the return from day t to

day t+1. A bigger value of R(t) shows a better forecast.

Next, we compute the returns of the four stock indexes based on the long-short strategy under the four different forecast horizons, and the

results are shown in Table 3. We also give the returns of the stock indexes themselves. Table 3 displays that the returns from high to low are the

EEMD-ARIMA-TEF, EMD-PSR-ELM, index itself, and ARIMA-TEF in general. The returns relying on the forecast by the proposed EEMD-ARIMA-

TEF model are highest, which indicates our EEMD-ARIMA-TEF model is helpful to guide investment. Therefore, investors can develop an effec-

tive decision support system based on this model to acquire more profit.

5 | CONCLUSIONS

In this paper, we propose a novel hybrid model that integrates EEMD, ARIMA, and TEF to forecast financial time series. We have compared the

effectiveness of the proposed model with the two benchmark models (ARIMA-TEF and EMD-PSR-ELM) developed in Zhang et al. (2016) and

Yang and Lin (2017). We present empirical results using daily closing price data on four stock indexes (SP500, NIKKEI 225, AORD, and CSI300) to

demonstrate the validity of the proposed EEMD-ARIMA-TEF model. The experimental results lead us to the following conclusions.

(1) The empirical results show that our EEMD-ARIMA-TEF model significantly outperforms the ARIMA-TEF model, which indicates that

EEMD technology is conducive to financial time series forecasting.

(2) The proposed EEMD-ARIMA-TEF model benefits from the “linear and nonlinear” modelling framework, and it is superior to the excellent

EMD-PSR-ELM model, which means our EEMD-ARIMA-TEF model outperforms the Naïve random-walk, ARIMA, BPNN, ELM, EMD-ELM,

and PSR-ELM models indirectly.

(3) The examination of different testing data sets demonstrates that our EEMD-ARIMA-TEF model is robust.

TABLE 3 Returns of the investment
strategy

Stock index Days ARIMA-TEF EEMD-ARIMA-TEF EMD-PSR-ELM Index itself

SP500 30 25.1602 181.4995 158.9397 110.3201

60 149.1802 434.6094 400.7793 278.7700

100 249.5103 874.7388 732.2888 292.6899

200 437.1904 1,646.5295 1,485.5087 397.8401

NIKKEI 225 30 −617.5488 1,679.7500 1,280.1895 239.8594

60 940.0605 4,304.1191 2,869.5977 1878.0097

100 1,152.2285 6,768.8164 1951.1914 2,569.4589

200 −1,010.7343 12,342.8145 7,482.3184 1930.3398

AORD 30 −505.5000 577.6992 518.5000 −96.5000

60 −398.1000 1,115.4990 873.7993 165.5000

100 −178.6997 1789.7988 1,435.2998 139.0000

200 −236.4995 3,504.0981 2,839.5981 518.7998

CSI300 30 182.8692 363.5968 342.6067 149.5429

60 133.9387 747.1130 659.9909 258.9030

100 333.4838 1,355.3212 1,160.8464 420.8937

200 414.8183 3,028.2341 2,785.8673 366.6275

Abbreviations: ARIMA, autoregressive integrated moving average; EEMD, ensemble empirical mode

decomposition; TEF, Taylor expansion forecasting.

14 of 16 LUO ET AL.



(4) The EEMD, ARIMA, and TEF constitute the basics of our model, and the three methodologies are simple and easily conducted. Neverthe-

less, the proposed EEMD-ARIMA-TEF hybrid model improves prediction performance significantly, and the results based on the invest-

ment strategy indicate this model is helpful. These observations show the feasibility of EEMD-ARIMA-TEF for stock index price

forecasting in stock index market trading and financial decision support systems.

Although our EEMD-ARIMA-TEF model is superior, there exist some limitations. In this study, only the daily closing price data sets are used

as illustrative examples to evaluate the performance of the proposed model. As the daily data sets reflect the relatively short-term trend of the

stock price index, while some investors may prefer medium- or long-term investment strategy. Thus, a hybrid model for forecasting with the

weekly or even monthly data becomes a more critical issue in future research. Our proposed model can be extended to predict difficult forecast-

ing tasks other than stock data, particularly complex time series data with diverse common characteristics. Our study uses only the daily closing

prices on the stock index as input variables. Other input variables (e.g., some macroeconomic variables) and the relationships between different

markets can also be considered to further enhance the performance of our prediction model.
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