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A B S T R A C T

Friedel's law guarantees an inversion-symmetric diffraction pattern for thin, light materials where a kinematic
approximation or a single-scattering model holds. Typically, breaking Friedel symmetry is ascribed to multiple
scattering events within thick, non-centrosymmetric crystals. However, two-dimensional (2D) materials such as
a single monolayer of MoS2 can also violate Friedel's law, with unexpected contrast between conjugate Bragg
peaks. We show analytically that retaining higher order terms in the power series expansion of the scattered
wavefunction can describe the anomalous contrast between hkl and hkl peaks that occurs in 2D crystals with
broken in-plane inversion symmetry. These higher-order terms describe multiple scattering paths starting from
the same atom in an atomically thin material. Furthermore, 2D materials containing heavy elements, such as
WS2, always act as strong phase objects, violating Friedel's law no matter how high the energy of the incident
electron beam. Experimentally, this understanding can enhance diffraction-based techniques to provide rapid
imaging of polarity, twin domains, in-plane rotations, or other polar textures in 2D materials.

1. Introduction

Atomically thin two-dimensional (2D) materials are usually inter-
preted in terms of kinematic scattering and treated in the weak phase
approximation (WPA), leading us to expect a symmetric diffraction
pattern [1-4]. However, dark field transmission electron microscopy
(DF-TEM) on two-dimensional molybdenum disulfide (MoS2) has
shown a difference in the intensities at the hkl and hkl peaks of the
diffraction pattern [5]. This anomalous contrast between the conjugate
peaks can be traced to the breaking of in-plane inversion symmetry, or
non-zero polarity, of these materials. The polarity can be used to ra-
pidly image the twin domains, or adjacent crystals with an in-plane
rotation of 180º, in 2D transitional metal dichalcogenide (TMD) crys-
tals. TMDs are a class of materials of composition MX2 where M is a
transition metal bonded to chalcogens, X, in the planes above and
below. In its monolayer form, the 2H-MX2 polytype has a direct band
gap arising from broken inversion symmetry, making it a promising
candidate for optoelectronic applications [6–8].

In crystallography, Friedel's law states that a diffraction pattern will
have equal intensities for both the hkl and hkl conjugate diffracted

beams: I (hkl) = I (hkl), as expected for kinematic scattering from a real
potential [9, 10]. Historically, the violation of Friedel's law was at-
tributed to multiple scattering from different atoms in a thick crystal, in
a series of weak scattering events [11-15]. It is thus surprising that si-
milar effects are seen in monolayer materials. In 2D materials, tilting of
the specimen has been used to break Friedel symmetry and reveal
stacking order [16].

Here, we demonstrate that a single monolayer of 2D TMD materials
even without any tilt can break Friedel's law. Even single-atom-thick
layers of a 2D material approximated by a zero-thickness film can be-
have as strong scatterers, as they introduce terms beyond the weak
phase and weak amplitude approximations. This strong scattering be-
havior results in anomalous contrast in the diffraction patterns that
reflects the real space polarity of the crystal. In thick crystals, these
effects can be described by Bloch-wave theory, and we show that si-
milar behavior can be recovered even for 2D materials using only the
strong phase approximation.

Recent advances in direct-electron detectors for electron diffraction
have provided new opportunities for studying localized phenomena in
crystal structures [17–20]. Our newly-developed high dynamic range
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electron microscopy pixel array detector (EMPAD) [21] can easily ac-
quire unsaturated diffraction patterns and thus gives a fully quantita-
tive measure of polarity in these monolayer 2D materials. Figure 1a
shows a map of polarity for a graded lateral heterojunction sample of
tungsten disulfide (2H-WS2) / tungsten sulfide selenide (2H-WSxSe2-x) /
tungsten diselenide (2H-WSe2), while Figure 1(b-c) show individual
diffraction patterns from the 2H-WS2 and 2H-WSe2 regions respec-
tively, acquired using the EMPAD. We observe that Friedel's law is
broken in the first order rings for diffraction spots on opposite sides of
the central beam. We define the anomalous contrast that describes the
deviation from Friedel's law, and reflects the degree of polarity, as
= − +P I hkl I hkl I hkl I hkl[ ( ) ( )]/[ ( ) ( )]. The anomalous contrast is more

pronounced in the WS2 region than the WSe2 region, due to the larger
difference in atomic numbers of the elements in WS2 than in WSe2.

2. Theory

As stated above, Friedel's law requires that the diffraction intensities
for the hkl and hkl crystal reflections are equal, or in terms of the
electron wavefunction in reciprocal space,Ψ(q), that for each diffrac-
tion vector, = −q q q, |Ψ( )| |Ψ( )|2 2. This law holds in the kinematic
scattering limit for diffraction using the WPA or the first Born ap-
proximation. In this approximation, the diffraction intensity is directly
proportional to the squared amplitude of the structure factor, |F(q)|2,
resulting in a centrosymmetric diffraction pattern, even when F(q) and
the underlying structure itself are not centrosymmetric [22]. We will
therefore need to go beyond the WPA to explain the asymmetric scat-
tering. The electron wave function in the strong phase approximation
(SPA) is:

=r r riσVΨ( ) Ψ ( )exp( ( )),0 (1)

where σ is the interaction parameter and V(r) is the projected atomic
potential of the material. The SPA is also known as the Eikonal ap-
proximation [23] and is equivalent to a Wentzel-Kramers-Bril-
louin (WKB) approximation for free electrons [24-27]. Here we treat 2D
materials as zero-thickness films oriented perpendicular to the electron
beam—i.e. interlayer scattering is not permitted and the Ewald Sphere
is flat.

In the WPA, we only include the linear order term, σV(r), from a
power series expansion of (1). The wavefunction becomes:

= +r r riσVΨ( ) Ψ ( )(1 ( )) .0 (2)

Taking the Fourier transform of this wavefunction we get

∫= − +q q r r rdr i iσVΨ( ) exp( · )Ψ ( )(1 ( )),π
1
2 0 (3)

and taking the square of its absolute value, we find the diffraction in-
tensity
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Here Ψ0(q) is the Fourier transform of Ψ0(r), e is the charge of an
electron, a0 is the Bohr radius and F(q) is the structure factor, defined as

∫= −q q r rF dr i V( ) exp( · ) ( ).πea
1

2 0 (5)

Equation (4) can be simplified further when diffraction disks do not
overlap by noting that the first two terms are non-zero only for the
central beam, so the contrast of the diffracted beams depend only on the
last term, ie. ⊗q q|Ψ ( ) F( )|σ

π
( ea )
4 0

20 2
2 . From the properties of the Fourier

transform of a real function, we know that F(q), the Fourier transform
of V(r) must satisfy − =q qF F( ) * ( ). As a result, eq. (4) is symmetric
between q and − q for the diffracted beams, and there is no anomalous
contrast between the hkl and hkl peaks in the electron diffraction pat-
tern represented by the σ2 term, since the phase information is not
preserved in the pattern. This is the WPA derivation of Friedel's law.

However, retaining higher order terms in the power series expan-
sion of the wavefunction from eq. (1) gives rise to an anomalous con-
trast between the hkl and hkl peaks, which can be traced to the polarity
or breaking of in-plane inversion symmetry of the crystal. Retaining
higher order terms in the power series expansion of the wavefunction,
we get:

= + − − + …( )r r riσVΨ( ) Ψ ( ) 1 ( ) .r rσ V iσ V
0

( )
2

( )
6

2 2 3 3

(6)

In order to get the diffraction intensity |Ψ(q)|2, we Fourier trans-
form this third order expansion and take the square of its absolute
value:

Figure 1. a, Map of polarity of WS2/WSxSe2-x/WSe2 graded lateral heterojunctions acquired using an electron microscope pixel array detector at a beam energy 120
keV. The TMD triangle is supported on a silicon nitride membrane. Polarity from the anomalous contrast is calculated as − +I I I I[ (010) (01̄0)]/[ (010) (01̄0)]. b, A
diffraction pattern from the WS2 region (yellow in panel a) demonstrates non-centrosymmetry arising from the polarity, visible as an asymmetry in intensities
between conjugate first-order diffraction peaks. c, The polarity is more difficult to observe in the diffraction pattern from WSe2 region (light blue in panel a), where
there is a smaller difference in atomic numbers than in WS2. d, Side-view schematic showing the WS2/WSxSe2-x/WSe2 lateral heterojunctions as seen in a (black box).
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where

= ⊗q q qF F F( ) ( ) ( ),2 (8a)

= ⊗ ⊗q q q qF F F F( ) ( ) ( ) ( ).3 (8b)

For the weak phase approximation, the diffraction intensity only has
the leading O(σ2) term, which is directly proportional to |F(q)|2 and
does not retain any phase information, giving rise to a centrosymmetric
diffraction pattern. However, in the higher order expansion, one of the
third order terms is antisymmetric. This is the leading-order contribu-
tion to polarity, P3, labelled as such as reminder that it is a third-order
correction:

= ⊗ ⊗P Im q q q q[(Ψ ( ) F( ))(Ψ*( ) F*( ))] .σea
π3

( )
8 0 0 2
0 3

3 (9)

To simplify this further, we use a general structure factor for a
periodic potential that is written as

= ∑ −q k GF U iϕ δ( ) exp( ) ( ),G G G (10)

where G is a reciprocal lattice vector, UG is the Fourier coefficient and
ϕG is the phase factor. Using this potential and assuming non-over-
lapping disks, eq. (9) can be simplified to

= ∑ − − −− −q GP U U U ϕ ϕ ϕΨ ( ) sin( ),G G G G G G G G G G
σea
π3

( )
8 , 0 1

20 3

3 1 2 1 2 1 2 1 2 1 2

(11)

In symmetric or non-polar materials, V
= − ∴ = −r r q qV F F( ) ( ) ( ) ( ) . Furthermore, since for real potentials,
− =q qF F( ) * ( ), F(q), which is the Fourier transform given by eq. (5),

must be pure real. This sets all the phases ϕG to zero or π and makes
eq. (11) equal to zero for all non-polar materials, resulting in a cen-
trosymmetric diffraction pattern.

The case for polar crystals is more interesting. In fact, some of the
terms in eq. (11) are familiar from three-beam diffraction theory for
non-centrosymmetric bulk crystals (see section 5.6.3 of Zuo and Spence
[28]). In particular, the phase term in eq. (11) is known as a three-phase
invariant, = − − −ϕ ϕ ϕΨ ,G G G G1 2 1 2 because it is invariant under a
change in origin of V(r). Thus, eq. (11) remains zero for non-polar
materials even under a shift in origin, ensuring a centrosymmetric
diffraction pattern. The invariance of Ψ also implies that the sign of
polarity for polar materials is independent of the choice of origin. For
polar materials, sin (Ψ) can serve as a good order parameter for de-
scribing a component of the polarity.

Physically, the higher order terms in eq. (7-9) can be thought of as
multiple scattering paths starting from the same atom. Each convolu-
tion adds an additional family of scattering events that constructively or
destructively interfere to modify the phase factors and give rise to an
asymmetry in the diffraction peaks, as illustrated in Figure 2(b-c).
Looking at the intensity of a particular diffraction spot at

→
G1, we can

remove one summation from eq. (11) to get

= ∑ − −G q GP U U U( ) Ψ ( ) sin(Ψ).G G G G G
σea
π3 1

( )
8 0 1

20 3

3 2 1 2 1 2 (12)

The diffraction intensity depends on a sum over all closed paths
including the incident beam and two scattering events, G1 and G2,
which accumulates a phase shift sin (Ψ). We can see in Figure 2a that
the first order diffraction spots break symmetry from this phase accu-
mulation, while the second order spots do not. In Figure 2b, we can see

graphically that for a given first order diffraction spot 010, there are
two contributing scattering pathways that pass through two spots of
dimmer intensity. For the spot 01̄0, the two contributing scattering
pathways go through two spots of brighter intensity, leading to the
symmetry between 010 and 01̄0 being broken. For the 2D hexagonal
lattice, characteristic of the materials investigated here, further analytic
simplification of eqn (12) is performed in Appendix A. For the first
diffraction ring, as spots g1, g2 and +g g1 2 all lie at the same radial
distance, their amplitudes U are all the same, and their phases are
simply related – they are either ϕG1 or− ϕG1 (orange or yellow). For the
spots of interest in Figure 2b, ± +g g( )1 2 , we find the three-phase in-
variant simplifies to = ± ϕΨ 3 G1, and the leading-order contribution to
the polarity becomes + ∝g gP U ϕ( ) sin(3 )g3 1 2 1

3
1
, and is equal and op-

posite for its Friedel pair at − +g g( ).1 2
To understand the atomic-number dependence of the degree of

polarity, we express the leading-order polarity correction for the 1st ring
of diffraction peaks, P3(010) in terms of the atomic-form factors:

= − −qP f f f f(010) Ψ ( 010) ( ),σ
π a b a b3

3 3
64 0

2
1 1 1 1

3
6 (13)

where fa1 and fb1 are the form factors for the A site and B site atoms at
the first-order scattering angle (See appendix A). Equation 13 explicitly
shows that polarity is dependent on the form factor difference between
the A site and B site. (Note that for the TMD materials with formula unit
AB2, the form factor for the projected structure, fb1, is double the single-
atom form factor.) Graphene is appropriately non-polar while polarity
of other materials scale approximately with the difference in Z number
(Figure A.2 in appendix A). The precise dependence of atomic form
factors on atomic numbers depends on the scattering angle, with for-
ward scattering scaling as ~ Z1/3in the Thomas-Fermi model to Z at
very high angles [11-15]. Appendix Figure A.2 shows the dependence is
closer to linear. For normal diffraction intensities we are used to seeing
the measurement scaling as the square of the form factor, so the linear
dependence from a 3rd order term is perhaps a bit surprising, but
equation (13) makes explicit the linear origin.

A similar scattering analysis for the second ring of spots
(Appendix A) leads to a zero three-phase invariant, and hence zero
polarity. As shown in Figure 2c, we can see that for a given pair of
conjugate second order diffraction spots 110 and 1̄1̄0, the two sets of
scattering pathways go through diffraction spots of the same intensity,
leading to symmetric spots. The preservation of phase information
(through sin (Ψ)) in the closed, multiple scattering paths give rise to the
asymmetry between conjugate diffraction pairs and reflects the polarity
in the diffraction pattern.

From the higher order expansion of the electron wavefunction,
eq. (7), we can demonstrate that even though the anomalous contrast
decreases with increasing incident electron beam energy, it is non-
vanishing for certain polar 2D materials no matter how high the in-
cident beam energy. The relativistic interaction parameter σ is defined
as:

= +
+( )σ .π

λE
m c eE
m c eE

2
20

0 2 0
0 2 0 (14)

Here m0 is the rest mass of the electron, λ is the wavelength of the
electron and E0 is the energy of the incident electron beam. This in-
teraction parameter tends to a finite value as the incident beam energy
E0 → ∞. Substituting for the electron wavelength λ in terms of beam
energy, we get:

= =
→∞ →∞

+
+( )σlim lim .

E E

π
λE

m c eE
m c eE

e
c

2
2 ℏ0 0 0

0 2 0
0 2 0 (15)

Thus, for finite V, σV cannot be made arbitrarily small, and higher
order terms in σV will always be significant for low-order diffraction
beams in heavy elements, even at high beam energies. In Figure 3, we
plot the diffraction intensities of the 010 and 01̄0 peaks of polar 2D
materials—2H-WS2 and boron nitride (BN)—as a function of the
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interaction parameter σ, artificially allowing σ to go to 0, beyond the
relativistic limit we demonstrated. We can see that the intensities at the
two peaks for WS2 only converge at a value of σ that is in the re-
lativistically-forbidden range, i.e. the shaded region. However, for BN,
the intensities at the two peaks practically converge at a relativistically-
allowed value of σ. Figure 3 thus shows that a monolayer of a polar
material with heavy elements such as WS2 acts as a strong phase object
no matter how high the energy of the incident electron beam. The WPA
fails for all beam energies in this case due to the fundamental re-
lativistic limit of the speed of the light.

We see that multiple scattering (understood as the higher order
terms in the expansion of the SPA of the electron wavefunction) can
break Friedel's law within a single atomic layer (zero-thickness film) in
polar 2D materials. Single layer 2H-TMDs, which contain heavy ele-
ments and mirror plane symmetry along the surface normal (c-axis) but
lack in-plane inversion symmetry, provide ideal test materials.

3. Methods

We perform dark field transmission electron microscopy (DF-TEM)
on WS2/WSxSe2-x/WSe2 lateral heterojunctions at 120 keV, as shown in
Figure 4. We also perform experiments using our newly-developed high
dynamic range electron microscope pixel array detector (EMPAD) to
extract quantitative diffraction information from lateral heterojunctions
of TMDs on nitride substrate as well as monolayer TMDs to measure
their polarity. The EMPAD acquires a diffraction pattern in .86 ms at

each scan position of the electron beam, and has a linear response and
high dynamic range, allowing us to avoid saturation and access fully
quantitative information [21]. We perform EMPAD experiments on the
lateral heterojunctions of TMDs at 120 keV and on the monolayer TMDs
at 60 keV on an FEI Titan Themis S/TEM, operated at 60-300 kV in
scanning transmission electron microscopy (STEM) mode. The WS2 and
WSe2 lateral heterojunctions were grown by metal-organic chemical
vapor deposition (MOCVD). The individual WS2 and MoS2 samples
were grown by MOCVD with mostly monolayer coverage on silicon
dioxide (SiO2), delaminated in deionized water to separate the film
from the substrate and then transferred to Quantifoil copper TEM grids
with 2μm holes. The WS2 and WSe2 lateral heterojunctions were grown
by metal-organic chemical vapor deposition (MOCVD) and transferred
to silicon nitride membranes for imaging.

We also study the anomalous contrast due to polarity in the 2D TMD
materials through simulations. The exit electron wavefunction through
a specimen is calculated using a multislice algorithm by sequentially
propagating an incident wave through atomically-thin slices using a
strong phase approximation (SPA) at each slice [11-15]. Due to in-
stabilities in the sampling of atomic potentials projected onto a discrete
grid near their origins, multislice codes that generates these potentials
in real space do not reliably reproduce the polarity in the diffraction
pattern. Instead, we implement code to remove the singularity by
adding a finite nuclear radius. We calculate the diffraction intensity
from the full electron wavefunction, i.e. the strong phase approxima-
tion (SPA). The projected crystal potential generated by the code in the

Figure 2. a. Diffraction pattern acquired from monolayer WS2 on the EMPAD at 60 keV clearly shows the polarity, i.e. the asymmetry between the hkl and hkl peaks,
for first order and third order ring of diffraction peaks, while peaks in the second ring are symmetric. b-c, The asymmetry arises from the higher order terms in the
power series expansion of the electron wavefunction. This is a cartoon representation of the physical interpretation of the higher order terms as multiple scattering
paths from the same atom in reciprocal space, modifying the diffraction peak intensities through constructive or destructive interference. b shows a second order
scattering event, where the black scattering paths are constructive, so add in phase (orange/orange) to the first order spot 010. The white paths for the conjugate spot
01̄0 also add in phase but accumulate a different net phase (yellow/yellow) leading to a different sin (Ψ) and hence a different net intensity. c shows second order
scattering paths, where the red and green scattering paths accumulate opposite phases (orange/yellow) for spot 110. The same paths and cancellations are found for
the conjugate spot 1̄1̄0, leading to a symmetric pair of diffraction intensities.

Figure 3. a. The diffraction intensities for the 010 and 01̄0 peaks for WS2 are plotted as a function of the interaction parameter σ. Here, σ is artificially forced to 0,
beyond its relativistic limit. We see that the intensities at the two peaks converge only at a value of σ which is in the relativistically-forbidden range, i.e. the shaded
region. b, The diffraction intensities for the 010 and 01̄0 peaks for BN are plotted as a function of the interaction parameter σ. Here, unlike in a, the intensities of the
two peaks are much closer for relativistically-allowed values of σ, consistent with the weaker scattering and smaller atomic number difference for B and N than that
for W and S.
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SPA is a 1024 × 1024 matrix. We then fast Fourier transform this
matrix, take its absolute value and square the absolute value to get the
diffraction intensity. For a monolayer material, the SPA is equivalent to
running multislice with the layer projected into a single slice – i.e. there
is no propagation step inside the material. The system of units is such
that the atomic potential V(r) is in Volt-Angstroms (V · Å). In addition to
our multislice simulations using the SPA, we also calculate the dif-
fraction intensities from a power series expansion of the wavefunction
up to O(σ3) terms, i.e. including up to O(σ6) order terms in the diffrac-
tion intensity. In case of the power series expansion, the diffraction
intensity is calculated from convolutions of the structure factor for a
particular scattering vector q.

4. Results

In Figure 4(a-c), dark field TEM images formed from Friedel pairs of
diffraction peaks for a lateral heterojunction of TMDs WS2 and WSe2
show the polarity of the sample. The calculated diffraction intensity
from our implementation of the SPA of the electron wavefunction is
shown for WS2 and WSe2 as a function of incident electron beam energy
in Figure 4d. The difference between the 010 peak intensities (solid
lines in Figure 4d) for the two materials is much lower than the cor-
responding difference between the 01̄0 peak intensities (dotted lines in
Figure 4d). This corroborates the reversal of contrast in the triangle
heterostructures in Figure 4(a-b), which arises from the fact that the
real space image in Figure 4a is mapped from one diffraction peak in
Figure 4c while the image in Figure 4b is mapped from its conjugate
peak.

The relative anomalous contrast, P, arising from the polarity, shows
a correlation with the atomic number difference,

= − ×Z Z A n Z BΔ ( ) ( ), where Z is the atomic number of elements A
and B in the polar material ABn (See Appendix A). In Figure 5, we ex-
plore the trends in anomalous contrast as a function of ΔZ for the
common sulfide and selenide TMDs. The results from the EMPAD ex-
periments performed at incident beam energy 60 keV on the free-
standing monolayer WS2 and MoS2 samples are plotted along with the
measures of polarity from the SPA and analytic calculations from the
power series expansion of the electron wavefunction. For the truncated
power series expansion, the anomalous contrast deviates significantly
from the SPA and the experimental measure for the materials with the
highest absolute value of ΔZ, i.e. WS2 and TiSe2. This is because the
phase shifts for these heavy materials with high atomic potential do not
converge for the O(σ3) terms, which is the highest order our calculation
includes, again supporting the argument that these monolayer TMD

materials are acting as strong phase objects. Thermal vibrations, often
approximated by an absorptive potential, may also contribute to the
breakdown of Friedel symmetry. However, the expected absorptive
correction, from the attenuation of the Bragg peaks is only ~1% in
MoS2 at the 1st-order Bragg peaks and 2-3% at the 2nd-order peaks,
based on a 0.075 Å average in-plane atomic displacement [29]. This is
too small to explain the 10% change seen at the 1st-order peaks in MoS2.

The scaling of anomalous contrast with the degree of polarity in the
material also explains the differences in polarity contrast for WS2 and
WSe2 seen in Figures 1 and 4. The diffraction pattern from the WS2
region of the sample in Figure 1b, shows a greater difference in the
diffraction intensities in the 010 and 01̄0 spots than the pattern from the
WSe2 region in Figure 1c, again, as expected from the relative differ-
ence in atomic numbers of the constituent elements, ΔZ, and hence, the
polarity, for the two materials. This difference in polarity is also re-
flected in Figure 4d, where the difference between the intensities the
010 and 01̄0 peaks for WS2 is greater than that for WSe2.

5. Conclusions

Monolayer TMD materials act as sufficiently strong phase objects
that measurable asymmetry exists between the intensities of Friedel

Figure 4. a-b, 120 keV DF-TEM images formed from 010 and 01̄0 peaks of the diffraction pattern of monolayer WS2/WSxSe2-x/WSe2 lateral heterojunctions de-
monstrate the polarity of the sample in the reversed contrast of the images the two dark-field images. c, Diffraction pattern showing the peaks corresponding to the
images in a and b. The inset shows the lattice schematic of the sample in a and b, where each triangle has a similar structure to Fig. 1a due to the same growth
condition. d, The normalized diffraction intensity for WS2 and WSe2 is plotted as a function of beam energy for 010 and 01̄0 peaks. The difference between the two
peaks is greater for WS2 than for WSe2 correlating with the magnitude of ΔZ, where ΔZ =Z(A)-[n×Z(B)], and Z is the atomic number of A and B in the polar material
ABn, is greater WS2 is greater than that for WSe2. The difference between the 010 peaks for the two materials is also much smaller than the corresponding difference
between the 01̄0 peaks, explaining the difference in contrast between the two triangles in a-b.

Figure 5. The anomalous contrast, = − +P I hkl I hkl I hkl I hkl[ ( ) ( )]/[ ( ) ( )],
calculated from the strong phase approximation (SPA), a power series expan-
sion of the Born wave function, and EMPAD experimental data for free-standing
monolayers are plotted as a function of ΔZ. We see a clear positive correlation
between the contrast and ΔZ in the SPA, with the experimental data in close
agreement. For the power series expansion, deviations from the trend are most
apparent for the materials with the highest ΔZ (WS2 and TiSe2)
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pairs in their diffraction patterns. The effect is strong enough to be
useful for mapping the direction of polarity in non-centrosymmetric
TMD monolayers, enabling us to rapidly map polarity domains of the
crystal across orders of magnitude in length scale using diffraction-
contrast imaging. We identify the origin of the asymmetry in terms of a
power-series expansion of the strong phase approximation, which leads
to a similar phase analysis in terms of three-phase invariants and
scattering paths as that of the bulk Bloch-wave based multiple scat-
tering analysis for bulk crystals. In using this effect for mapping po-
larity, it is also important to remember that for few-layer samples,
especially those that lack inversion symmetry along the out-of-plane
direction, sample mistilts can also lead to asymmetric contrast -al-
though it is readily distinguishable from polarity by inspection of the
EMPAD data – the second order peaks will change contrast from mistilt,
but not polarity.
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Appendix A

Tracing the Explicit Form Factor Dependence of Polarity

Here we derive an explicit expression for the leading-order contribution to the polarity in terms of the atomic structure factors for atoms in a
hexagonal lattice, a common structure for 2D materials such as graphene and BN, or 2D projections of transition metal dichalcogenides such as
MoS2, WSe2 and the other materials considered in the main body of this paper. For the TMD materials AB2, the B site form factor is twice the atomic
form factor.

We start by calculating the potential distribution in Fourier space, starting with the expression for the structure factor (equation 5):

∫= −q q r rF
πea

dr i V( ) 1
2

exp( · ) ( ).
0 (A. 1)

The real and reciprocal lattice and their basis vectors are shown in Figure A.1. Re-writing the potential as a sum of individually displaced a-site
and b-site atom potentials va(r) and vb(r):

Figure A.1. Diagram of hexagonal lattice and its reciprocal lattice with basis vectors written.
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∫ ∑ ⎜ ⎟= − ⎡
⎣⎢

− − + ⎛
⎝

− − − ⎞
⎠
⎤
⎦⎥

q q r r r r r r rF
πea

dr i v m n v a x m n( ) 1
2

exp( · ) ( * * )
3
^ * * .

m n
a b

0 ,
1 2 1 2

(A.2)

Basic Fourier Transform properties transform the individual potentials into their respective form factors along with a phase due to the dis-
placement:

∑ ⎜ ⎟⎜ ⎟= ⎛
⎝

+ ⎛
⎝
− ⎞

⎠
⎞
⎠

− +q q q q r rF
πea

f f
iq a

i m n( ) 1
2

( ) ( )exp
3

exp( ·( * * )).
m n

a b
x

0 ,
1 2

(A.3)

The phase term at the end can be re-written as a delta functions centered on the reciprocal lattice. As a matter of notation, we use lower case g to
refer to basis vectors, and capital G to refer to general reciprocal space vectors. We can also more explicitly write the phase contribution due to the b-
site displacement:

∑= ⎛
⎝

+ ⎛
⎝
− + ⎞

⎠
⎞
⎠

− −q q q q g gF
πea

f f πi h k δ h k( ) 1
2

( ) ( )exp 2
3
( ) ( ).

h k
a b

0 ,
1 2

(A.4)

We use the electron form factors parametrized by Kirkland [15] for numerical simulations. Equation (A.4) can be re-written as an amplitude and
phase for an explicit = +G g gh k1 2:

= −GF U e( ) G
iϕG (A.5)

= + + ⎛
⎝

+ ⎞
⎠

G G G GU
πea

f f f f π h k1
2

( ) ( ) 2 ( ) ( )cos 2
3
( )G a b a b

0

2 2

(A.6)

=
+

+ +
− ( )

( )
G

G G
ϕ

f h k

f f h k
tan

( )sin ( )

( ) ( )cos ( )
G

b
π

a b
π

1

2
3

2
3 (A.7)

The first-order diffraction spots are at +g g g g, ,1 2 1 2 and their negatives. Since atomic form factors f(q) are radially symmetric, we'll use fa1 and
fb1 to refer to their respective form factors at the first-order scattering angle.

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

f f π
a

f f π
a

4
3

, 4
3a a b b1 1 (A.8)

⎜ ⎟= = − − = ⎛
⎝

− − ⎞
⎠

F g F g F g g
πea

f f if( ) ( ) ( ) 1
2

1
2

3
2a b b1 2 1 2

0
1 1 1

(A.9)

⎜ ⎟− = − = + = ⎛
⎝

− + ⎞
⎠

F g F g F g g
πea

f f if( ) ( ) ( ) 1
2

1
2

3
2a b b1 2 1 2

0
1 1 1

(A.10)

Second-order spots are at + + −g g g g g g2 , 2 ,1 2 1 2 1 2 and their negatives. These all lie at scattering angle amplitude =q π
a
4 . Notably, these all have

the same form factor.

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

f f π
a

f f π
a

4 , 4
a a b b2 2 (A.11)

⎛
⎝

= ⎞
⎠
= +F q π

a πea
f f4 1

2
( )a b

0
2 2 (A.12)

Looking back at eq. (12) in the main text, we can evaluate the contribution of this third order term for +g g1 2. This is an example of constructive
second scattering contributing to the polarity:

+ = − − − −+ +( )g g q g gP σea
π

U U U ϕ ϕ ϕ( ) ( )
4

Ψ ( ) sin .g g g g g g g g1 2
0
3

3 0 1 2
2

1 2 1 2 1 2 1 2 (A.13)

Looking at eq. (A.9) and (A.10), all the U terms are the same, which we'll re-write as U1. For the phases, = − = −+ϕ ϕ ϕg g g g1 2 1 2
. We can re-write

eq. (A.13) as:

⎜ ⎟+ = − − − ⎛
⎝

⎞
⎠

g g q g gP σea
π

U ϕ( ) ( )
4

Ψ ( ) sin 3 .g3 1 2
0
3

3 0 1 2
2

1
3

1 (A.14)

Calculating this third order term for the − −g g1 2 spot is similar, but gives the negative result because = = −− − −ϕ ϕ ϕg g g g1 2 1 1
:

⎜ ⎟− − = + + ⎛
⎝

⎞
⎠

g g q g gP σea
π

U ϕ( ) ( )
4

Ψ ( ) sin 3 .g3 1 2
0
3

3 0 1 2
2

1
3

1 (A.15)

These results are consistent with Fig. 2b. Furthermore, we can rewrite the sin 3ϕ and multiply with the U terms to re-write eq. (A.14) and (A.15)
in terms of fa1 and fb1:

⎜ ⎟
⎛
⎝

⎞
⎠
= −ϕ ϕ ϕ ϕsin 3 3 sin cos sin .g

2 3
1 (A.16)

Noting that the magnitude U1 times the cosine or sine gives the real and imaginary portions of the form factor, respectively:
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=
−

U ϕ
f
πea

sin
3

4
,b

1
1

0 (A.17)

=
−

U ϕ
f f

πea
cos

2
,a b

1
1

1
2 1

0 (A.18)

⎜ ⎟ ⎜ ⎟+ = − + + ⎛
⎝
− ⎞

⎠
⎛
⎝

− ⎞
⎠
− ⎛

⎝
− ⎞

⎠
g g q g gP σ

π
f f f f( )

32
Ψ ( ) *3 3

2
1
2

3
2

,b a b b3 1 2

3

6 0 1 2
2

1 1 1

2

1

3

(A.19)

+ = − − −g g q g gP σ
π

f f f f( ) 3 3
64

Ψ ( ) ( ),a b a b3 1 2

3

6 0 1 2
2

1 1 1 1 (A.20)

− − = − + + −g g q g gP σ
π

f f f f( ) 3 3
64

Ψ ( ) ( ).a b a b3 1 2

3

6 0 1 2
2

1 1 1 1 (A.21)

Now the polarity strength is explicitly dependent on the difference between form factors. Notably, this clearly shows that for materials like
graphene where =f fa b1 1, there is no polarity. Figure A.2 shows −f f| |a b1 1 as a function of |ΔZ|.

We can do a similar calculation for the second order spots at −g g1 2 and −g g2 1. This time, these paths are destructive since = − −ϕ ϕg g1 2
.

Furthermore, all the second order spots have zero phase. This means, we can easily state:

− =g gP ( ) 01 2 (A.22)

We emphasize that this does not mean that the diffraction spot itself has no intensity, but that there is no polarity-contributing term for this spot.
This is consistent with the graphical construction in Fig. 2c.
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