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Abstract—This paper investigates application of long short-
term memory (LSTM) and recursive system identification
(RSID) algorithms to predict the thermal dynamics of bio-
implants, e.g. UEA under certain assumptions. Both algorithms
implemented in this paper predict the temperature readings of
heat sensors using a window size of 10 data points. Simulations
in COMSOL software as well as experiments using an in
vitro experimental systems are utilized for validation and
comparison of algorithm performances. Mean squared error
(MSE) of prediction results based on the LSTM algorithm is
compared against that of the competitive RSID algorithm for
evaluation. Both simulation and experimental results indicate
that the LSTM can accurately predict the thermal dynamics
of the system and outperforms the RSID algorithm when
certain conditions for inputs hold. According to COMSOL
simulations and in vitro experiments, the LSTM algorithm
returns more reliable predictions for the time period in which
the convergence of the adaptive filters in the RSID algorithm
is not yet achieved. Alternatively, once the adaptive filters
converge, the performance of the RSID algorithm is significantly
better than the LSTM for some cases due to its adaptive learning
capabilities.

Index Terms—long short-term memory (LSTM), recursive
system identification (RSID) methods, implantable medical
device (IMD), thermal effect

I. INTRODUCTION

With recent technological advances in capabilities and ap-
plications of implementable medical devices (IMDs), thermal
management of these devices has become more significant.
Such improvements include increased functionality in moni-
toring, and providing stimulation when required for medical
purposes. In certain applications of IMDs, overheating of the
electrodes in the IMD may lead to permanent damage in the
surrounding soft tissue [1]. Thus, low power consumption
is of importance to maintain the long-term operation of
the device and to protect patient’s health. Potential causes
of permanent damage to soft tissue include tissue injury
due to electrical over-stimulation and administration of high
electrical currents [2], [3]. For example in [4], authors report
an incident in which a patient with an implanted deep brain
stimulator (DBS) suffered a serious brain damage due to

overheating in brain tissue surrounding the DBS in response
to diathermy.

Thermal effect of IMDs has been studied in previous
works [5]- [9]. In [5], authors propose the Pennes bioheat
transfer equation to model this thermal effect of the IMDs.
In [6], finite element analysis (FEA) and finite difference
time domain (FDTD) are proposed to solve the Pennes
bioheat equation, which is used to model the heat dissipation
in IMDs. However the issue with both methods in [6] is
that they solve for the heat dissipation and electromagnetic
field for the whole computational domain for each time
instance, which makes these methods not suitable for real-
time applications due to space and time complexity. In [7]
and [8], Chai et al. proposes a recursive multi-step prediction
error minimization method (RMSPEM) to model implantable
devices with a single heat source and achieve the real-time
thermal management. In [9], authors implement an algorithm
using recursive subspace identification (RSID) methods to
investigate the performance of RSID methods in predicting
temperature readings of an IMD with multiple heat sources.

Artificial neural networks (ANNs) have been utilized
in many applications of system modeling and control. In
[10], the authors develop an ANN-based control scheme
for real-time control of hexacopter trajectories. Similarly in
[11], a multi-layer perceptron (MLP) is used to predict the
aerodynamic flow evolution induced by MEMS. According
to the results presented in [11], the use of ANNs, more
specifically MLP, is promising even with slightly high time
complexity for real-time application. LSTM algorithm was
first introduced by [12] and has been recently used in many
applications of system identification. A survey of benchmark
neural network algorithms used for system identification has
been presented in [13], which includes the LSTM algorithm.
In [14], a new adaptive learning method is proposed for
convex-based LSTM algorithm to achieve online control of
dynamic systems. Sadiqbatcha et al. proposes a thermal
modeling framework using LSTM networks to detect major
hot spots on a commercial multi-core microprocessor with



an infrared thermal imaging in [15]. To the authors’ knowl-
edge, there have been few studies addressing the online
thermal prediction problem of IMDs utilizing the LSTM al-
gorithm. In this paper, we focus on applying LSTM algorithm
with a window size of 10 past data points to predict tem-
perature readings at each time step and compare the results
with alternative system identification methods. Additionally,
certain conditions under which LSTM algorithm outperforms
alternative identification methods are investigated.

II. SYSTEM DESCRIPTION

An implantable neural prosthetics based on Utah Electrode
Array (UEA) is chosen to evaluate the performance of the
algorithms, since it has become a benchmark in research and
applications [16]. The UEA consists of multiple modules,
such as radio, power and motherboard modules. There exists
multiple heat sources as well as multiple spatially distributed
heat sensors on board. Inputs of the system are the power
inputs to the heat sources and temperature readings at sensor
locations are used as system outputs, i.e. multiple-input
multiple-output system.

The main assumption of this paper is that dynamics of
the system do not change significantly; thus, no adaptive
learning is implemented with the LSTM algorithm. Perfor-
mance of the LSTM algorithm is then compared to recursive
identification methods with adaptive learning to investigate
advantages of the LSTM over adaptive identification methods
under certain conditions. Authors also hypothesize in this
paper that training the LSTM network with randomly gener-
ated Gaussian inputs, the algorithm will achieve successful
prediction of temperature readings given any type of inputs
with the condition that our main assumption holds.

III. LONG SHORT-TERM MEMORY (LSTM)
ALGORITHM

A. Background

A general LSTM cell with memory function consists of
three gated units: a forget gate, an update gate, and an output
gate, and solves the vanishing gradient problem. In Figure 1,
a single cell of the LSTM network is illustrated, where xk is
the input and hk denotes the hidden layer state. σ and tanh
are sigmoid and hyperbolic tangent functions, respectively.
The LSTM network can be formulated as follows

fk = σ(Wf · [hk−1, xk] + bf )

ik = σ(Wi · hk−1 + bi)

gk = ik · tanh(Wc · [hk−1 + bc])

ck = fk ∗ ck−1 + gk

hk = σ(Wo · [hk−1, xk] + bo) ∗ tanh(ck)

(1)

where fk, gk denote the forget gate and update gate respec-
tively, ik determines the hidden state value to be updated,
and ck represents the updated cell state. Wf , We, Wi, Wc,
and Wo denote trainable weights for each layer and bf , bc,
bi, and bo are bias corresponding to each layer.

Fig. 1: An illustration of a single LSTM cell [17].

One step-ahead ARX prediction model of the thermal
effect of the IMDs can be written as follows using the LSTM
network:

T (k) = f(T (k − 1), T (k − 2), ..., T (k − w);

u(k − 1), u(k − 2), ..., u(k − w))
(2)

where T (k) is the temperature at time step k, w is the window
size, u(k) is the input signal at time step k and f(·) is the
nonlinear function that will be learned by the LSTM based
on the Universal Approximation Theorem [18].

B. Architecture of the LSTM Network

One of the main tasks in designing a neural network is
to determine how many layers are needed based on the
training data. Due to the simplicity of the thermal model, our
LSTM network consists of two layers; an LSTM layer and a
dense layer with six neurons as shown in Figure 2. Another
essential task is to optimize the hyper-parameters, which are
dropout rate, batch size and number of neurons in an LSTM
layer for our case. In order to optimize the hyper-parameters,
a grid search with 10-fold cross validation is conducted to
determine the best hyper-parameter combination. For each
group of hyper-parameters, the program is run five times and
the average MSE is used to be compared to decide the hyper-
parameters. As a result, a network with 200 neurons and a
batch size of 64 is chosen for the following sections. The
Adam optimizer with mean squared error (MSE) optimization
function is used to train the network for 10 epochs.

Fig. 2: The overall structure of the LSTM network.

Conventionally, the data set used for training is selected
such that it contains more information of system dynamics.



Since randomly generated input signals can provide more
information about system dynamics due to the introduced
randomness compared to square-wave signals, a training data
with two randomly generated Gaussian inputs are used to
train the neural network and to obtain a suitable model.
The training data set is normalized based on z = (x−µ)

σ
to weight the input features equally. The normalized data is
then used for the training of the model. Due to the real-
time applications of IMDs, standard deviation and mean
of the test data can never be acquired prior to validation.
Thus, we use mini batches with 10 real-time data points
to calculate the standard deviation and mean and normalize
the temperature readings accordingly. After the prediction at
each time instance k, the normalized prediction result is then
converted back to its original form. As a result, the standard
deviation and the mean are continuously updated on each
time horizon of inputs, thus making the neural network more
suitable for online identification and prediction.

Due to the structure of the neural network implemented,
a personal computer with Ubuntu 16.04.4, python version
3.5.2, tensorflow 1.4.0 and CUDA version 8.0.6 is used for
the training and testing purposes.

IV. RECURSIVE SYSTEM IDENTIFICATION (RSID)
ALGORITHM

The recursive system identification algorithm used in this
paper for the performance comparison utilizes spatial filtering
methods introduced in [19] to divide the data into two
components based on spatial dependency. Filtering out the
spatial component of the data, predictor-based RSID methods
presented in [9] are applied to the filtered data to obtain
nonspatial predictions using a vector auto-regressive with
exogenous inputs (VARX) model. One-step-ahead VARX
predictor can be written as

ŷk|k−1 =

p∑
i=0

αiuk−i +

p∑
i=1

βiyk−i (3)

where ŷk|k−1 is the nonspatial output at time instant k
predicted by the algorithm using a finite window (of size
p) of past inputs and outputs.

Additionally, a kernel recursive least squares (KRLS)
filter with surprise criterion (SC) is applied to the spatially
correlated components to obtain the spatial predictions. Both
nonspatial and spatial predictions are then combined to
achieve an overall prediction of the system.

V. SIMULATION STUDIES

Thermal dynamics of the UEA is simulated by the multi-
physics modeling software COMSOL according to previous
work in [16]. The COMSOL model of the UEA is shown in
Fig. 3.

The COMSOL board contains two heat sources (H1&H2)
and six temperature sensors (S1-S6). Temperature data ob-
tained in the COMSOL software is then used as a reference
to demonstrate the performance of the LSTM algorithm.

Eight studies are conducted using the COMSOL model in
Figure 3. For all these studies, different square-wave signals

Fig. 3: Board layout in COMSOL with sensors locations labelled in red.

TABLE I: EXPLANATION OF COMSOL STUDIES

Scenarios Explanation
OD1H Increase one input from 0.125W to 0.5W

while decreasing the other from 0.25W to
0.125W

OD1S Increase one input from 0.125W to 0.5W
while decreasing the other from 0.25W to
0.125W (sudden change)

OS1H Decrease both input amplitudes from 0.25W
to 0.125W

OS2H Increase both input amplitudes from 0.25W
to 0.5W

OS1S Decrease both input amplitudes from 0.25W
to 0.125W (sudden change)

OS2S Increase both input amplitudes from 0.25W
to 0.5W (sudden change)

ODS1H Decrease inputs of 0.125 and 0.25W to
0.0625W

OSD1H Increase one input from 0.25W to 0.5W
while decreasing the other from 0.25W to
0.125W

of 2400 data samples are generated. In all studies, both
inputs have the same 50% duty cycle and a period of 20
seconds. Different COMSOL scenarios are summarized in
Table I below. For studies with (sudden change) notation
in the explanation part in Table I, the change in the input
amplitudes happen not exactly at the halfway, i.e. 1200 sec,
which is the case for the studies without this notation, but
rather the change occurs suddenly at a randomized time
instance close to 1200 sec. The plot of power inputs for each
study is displayed in Fig. 4.

Figure 5 shows the comparison of simulation results for
the scenario ”ODS1H”. More specifically, in Figure 5(a),
comparison between results of the RSID algorithm (in red),
results of the LSTM (in green) and temperature readings
from the corresponding sensor (in blue) are displayed, and
in Figure 5(b) a zoomed-in version of results for sensor 2 is
shown.

Mean squared error (MSE) values of the LSTM for each
of the simulation studies are summarized and compared to
the MSE values of the recursive online identification (RSID)
algorithm in Table II. Additionally, the MSE values of the
RSID algorithm after the convergence of its adaptive filters,
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Fig. 4: Plots of power inputs for each simulation study.
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Fig. 5: (a) Simulation results for ”ODS1H”, (b) Simulation result for S2
(zoomed-in)

i.e. after approximately 400 sec, are included in Table II.
The reason for including the ”after-convergence” MSE values
for RSID is that learning of the system dynamics occurs
online due to the structure of the RSID algorithm while
the LSTM algorithms uses an offline training to obtain the
system model. From the MSE results in Table II, it can be
concluded that the LSTM algorithm outperforms the RSID
algorithm in most scenarios when the overall performance of

the RSID is examined. However, after the adaptive filters
in the RSID algorithm converge, i.e. after approximately
400 sec, the RSID algorithm performs better in half of
the simulation scenarios; ”OS2H”, ”OS1S”, ”OS2S”, and
”ODS1H”. According to the MSE results in Table II, it can
be observed that the LSTM algorithm outperforms the RSID
algorithm in certain scenarios, mainly in which both inputs
have different amplitudes, e.g. ”OD1H”, ”OD1S” etc. Based
on the MSE results in Table II and the plots in Figure 5, it can
be concluded that the main advantage of implementing the
LSTM algorithm is having a stable prediction performance
for the period of time for which the convergence of the
RSID is not yet achieved. However, once the convergence
of the adaptive filters in the RSID is achieved, the recur-
sive algorithm outperforms the LSTM algorithm in some
scenarios due to the fact that the LSTM algorithm does not
have adaptive learning. Additionally, comparing the predic-
tion results of both algorithms and according to Figure 5,
the LSTM algorithm tends to under-predict the temperature
values for a given time instance; whereas, the RSID algorithm
tends to either predict in the same range as the actual
temperature data when the convergence is achieved or it
over-predicts for a given time instance. Since the application
entails implementing a control scheme to successfully prevent
overheating, over-estimating is much preferred than under-
estimating. However, the under-prediction in most cases is
less than 0.01 ◦C, and could potentially be resolved by
implementing an adaptive learning scheme.

Time complexity of both algorithms are averaged across
all eight COMSOL studies and compared. The LSTM has
a slightly higher time complexity at 9.244 sec compared
to the time complexity of the RSID, which is 1.196 sec.
However, this higher time complexity of the LSTM algorithm
is still acceptable for the real-time application of thermal
management in IMDs, since the average time complexity for
each data point is approximately 3.866 ms.

TABLE II: MSE RESULTS IN SIMULATION STUDIES (×10−3 ◦C)

Scenarios LSTM RSID RSID∗

OD1H 0.272 0.605 0.443

OD1S 0.269 0.696 0.388

OS1H 0.116 0.568 0.119

OS2H 0.476 0.713 0.117

OS1S 0.117 1.117 0.026

OS2S 0.468 1.090 0.191

ODS1H 0.067 0.652 0.028

OSD1H 0.302 0.495 0.316

VI. EXPERIMENTS

A previously developed in vitro experimental set-up in [9]
with a temperature monitoring and management test vehicle
(TMTV) is used in the experimental studies. The TMTV
consists of six temperature sensors (LMT70) and two heat
sources to emulate the on-board electronics etc. As in [9],
a MATLAB GUI is utilized as an interface to display and
save the sensor data. The Matlab front-end is connected to



an nRF52 board, through which control signals are sent to
the heat sources on the TMTV. The nRF52 board also cap-
tures the temperature readings from the TMTV via wireless
communication and then transmits them to MATLAB GUI.

For the experiments, the TMTV board is placed in a water-
filled container. An illustration of the experiment setup is
shown in Figure 7. In order to emulate the heat diffusion
effect of blood flow, a marine pump and sponge material
are placed in the water-filled container. The marine pump is
placed to create water circulation and the sponge is used to
ensure a uniform water flow.

(a)
(b)

Fig. 6: (a) Developed TMTV system (taken from [9]), and (b) corresponding
board layout with two heat sources (H1, H2) and six temperature sensors
shown in red and coordinates of the sensors.

Fig. 7: An illustration of the experimental set-up.

Heat sources on the TMTV admit PWM inputs within the
range of [0, 10000]. A PWM input of 10000 corresponds to a
PWM signal with 0% duty cycle, and similarly a PWM input
of 0 denotes a PWM signal with 100% duty cycle [9]. Four
experimental studies have been conducted to evaluate the
performances of the LSTM and the RSID algorithms under
more realistic circumstances. In order to observe the effect
of change in PWM inputs, the scenarios used in COMSOL
studies have been modified slightly. A description of the
four experimental studies are presented in Table III. PWM
inputs in all experiments have a period of 20 seconds and the
same duty cycle of 50%. For experiments ”OD1H”, ”OD1S”,
”ODS1H” and ”OSD1H” data of lengths 2140, 2053, 2234
and 2041 are acquired respectively.

For all experiments, a training data is used for the batch
pre-processing for initialization of the system matrices such
that the recursive updating can be initiated after 10 seconds
of the input and output data are obtained. Similarly, the
same training data is used for the offline training of the
LSTM model. For the RSID prediction algorithm, normalized
values of the PWM inputs are used. A fixed-lag Kalman filter
with zero-mean Gaussian process and measurement noises

TABLE III: EXPLANATION OF EXPERIMENTAL STUDIES

Scenarios Explanation
OD1H Increase one PWM input from 5000 to 7500

while decreasing the other from 7500 to
5000

OD1S Increase one PWM input from 5000 to 7500
while decreasing the other from 7500 to
5000 (sudden change)

ODS1H Change PWM inputs of 5000 and 2500 to
7500

OSD1H Increase one PWM input from 5000 to 7500
while decreasing the other from 5000 to
2500

is applied to the experiment data obtained in each study to
reduce the noise in data.

Figure 8 shows the comparison of experiment results for
the scenario ”ODS1H”. More specifically, in Figure 8(a),
comparison between results of the RSID algorithm (in red),
results of the LSTM (in green) and temperature readings
from the corresponding sensor (in blue) are displayed, and
in Figure 8(b) a zoomed-in version of results for sensor 2
(S2) is shown. As can be seen in Figure 8(b), the RSID
algorithm performs better in predicting the sudden changes in
the system due to its adaptive filters, particularly around 1400
sec when there is a drastic change in temperature reading,
but the LSTM algorithm has more stable predictions for
approximately the first 400 sec. in which the convergence
of the adaptive filters of the RSID is not yet achieved.

0 500 1000 1500 2000

19

20

21

S1

0 500 1000 1500 2000
15

20
S2

0 500 1000 1500 2000

15

20
S3

0 500 1000 1500 2000

15

20
S4

0 500 1000 1500 2000

15

20
S5

Prediction Results

0 500 1000 1500 2000

15

20
S6

COMSOL result

RSID result

LSTM result

Time (sec)

T
e

m
p

e
ra

tu
re

 (
°
C

)

(a)

0 500 1000 1500 2000
15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5
Prediction Results of S2

COMSOL result

RSID result

LSTM result

400 450 500 550 600

18

18.5

19

2000 2050 2100 2150 2200

18

18.5

19

Time (sec)

T
e

m
p

e
ra

tu
re

 (
°
C

)

(b)

Fig. 8: (a) Experiment results for ”ODS1H”, (b) Experiment result for S2
(zoomed-in).

The MSE values of LSTM for each of experimental studies
are summarized and compared to the MSE values of the



RSID algorithm in Table IV. Similar to the COMSOL studies,
the MSE values of the RSID algorithm after the convergence
is achieved are included as well. From the MSE results in
Table IV, it can be concluded that the LSTM algorithm
outperforms the RSID algorithm in certain scenarios when
the overall performance of the RSID is examined. However,
after the initial convergence of the adaptive filters in the RSID
algorithm is achieved, the RSID algorithm performs better
in two of the four experiments conducted. One exemption
to this improved performance of the RSID algorithm after
convergence is the ”OD1H” scenario in which the MSE value
of the RSID algorithm after the convergence is greater than
over the overall time period due to the unstable peaks at
the halfway when the inputs change. Similar to COMSOL
studies, the time complexity of both algorithms for each
data point is computed and compared. The average time
complexity per data point is 3.704 ms for the LSTM and
0.340 ms for the RSID algorithm respectively.

TABLE IV: MSE RESULTS IN EXPERIMENT STUDIES (◦C)

Scenarios LSTM RSID RSID∗

OD1H 0.003 0.358 0.378

OD1S 0.044 0.034 0.010

ODS1H 0.037 0.044 0.008

OSD1H 0.004 0.115 0.065

VII. CONCLUSIONS

As a result of recent technological advances in implantable
medical devices, thermal management of such devices plays
an important role in maximizing device performance while
ensuring safe operation. In this paper, we implemented and
compared the long short-term memory network and the
recursive system identification method to achieve real-time
prediction of the temperature change due to continuous
operation of the IMD. This paper focuses on evaluating
the performance of both algorithms and investigating the
conditions under which one algorithm is more advantageous
than the other. Both COMSOL simulations and in vitro exper-
iments demonstrate that the main advantage of implementing
the LSTM algorithm is to have more reliable predictions for
the time period in which the convergence of the adaptive
filters in the RSID algorithm is not yet achieved. On the other
hand, once the adaptive filters converge, the performance of
the RSID algorithm is significantly better than the LSTM
in some scenarios due to its adaptive learning capabilities.
Additionally, the LSTM algorithm tends to under-predict
the temperature values for a given time instance, whereas,
the RSID algorithm tends to either predict in the same
range as the actual temperature data when the convergence
is achieved or it over-predicts for a given time instance.
Since the application entails implementing a control scheme
to successfully prevent overheating, over-estimating is much
preferred than under-estimating. Authors think that this issue
of this slight under-prediction in the LSTM results, which
is less than 0.01 ◦C for most cases, could be resolved by
implementing an adaptive learning scheme.

For our future work, we are aiming to implement an
adaptive learning scheme to the LSTM network to achieve
real-time learning of the time-varying system dynamics.
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