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Parameters
Ayca Ermis, Student Member, IEEE, Yen-Pang Lai, and Ying Zhang, Senior Member, IEEE

Abstract— With the increased functionality of implantable medical devices (IMDs), real-time thermal management of these
devices has gained growing attention to prevent overheating in the surrounding tissue of IMDs in certain applications,
such as neural prostheses like deep brain stimulators (DBS). In this paper, a novel identification method is developed to
predict the thermal dynamics of bio-implants, e.g. Utah electrode array (UEA). The proposed method adopts a thermal
model with multiple heat sources to characterize the thermal dynamics of IMDs with multiple modules using the data
collected by spatially distributed heat sensors. Algorithm predicts the temperature readings of heat sensors in an online
fashion within a time window and updates the system parameters iteratively to improve the performance of the algorithm.
Algorithm validation is realized using COMSOL software simulations as well as using an in vitro experimental system.

Index Terms— implantable medical devices, predictive modeling, spatial estimation, subspace identification, thermal
effect

I. INTRODUCTION

W ITH the increased functionality of implantable medical
devices (IMDs) in monitoring, recording neural sig-

nals and providing required stimulation for medical purposes,
IMDs have gained prominence in the modern society. Such
improved capabilities may lead to damage in the surrounding
tissue of IMDs due to overheating of electrodes in certain ap-
plications, such as neural prostheses like deep brain stimulators
(DBS) [1] and electrodes for intraoperative electrostimulation
used in brain glioma surgeries [2]. Many neural prostheses
interact with the central or the peripheral nervous system and
help to restore motor, sensory or cognitive functionality that
may have been damaged while continuously communicating
with external devices for monitoring and recording purposes.
For the neural IMDs, low power consumption is of importance
to maintain the long-term operation of the device and to protect
patient’s health and safety. Due to their continuous operation
and its close proximity to living tissues, any overheating
caused by the IMD may lead to permanent damage to these
soft tissues [3]. For example in DBS, strong energy fields and
administration of electrical currents, such as electrocautery,
can lead to overheating of the electrodes with a risk of
damage in the surrounding brain tissue [1]. Another origin
of potential damage to the tissue is the electrical stimulation-
induced tissue injury (overstimulation) [4]. European standards
for active IMDs require that the maximum temperature of the
outer surface of the implant does not exceed the normal body
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temperature by 2◦C [5]. In [6], authors discuss an incident
in which a patient with an implanted DBS suffered a serious
brain damage due to overheating in brain tissue surrounding
the DBS in response to diathermy and the patient subsequently
died.

The thermal effect of implantable devices has been studied
in previous literature. In [7], the author studies various causes
of temperature increase of a dual-unit retinal prosthesis and
how to model its thermal effect. According to [7], the causes
of the overheating in the surrounding tissue of the IMD
include telemetry coil, electrodes used for stimulation and
electromagnetic field induced in the body in addition to the
power dissipation of the implanted microchip. The Pennes
bioheat transfer equation is proposed to model this thermal
effect of the IMDs [7]. Finite element analysis (FEA) is used
to solve the Pennes bioheat equation in [8] and similarly in [9],
FEA and finite difference time domain (FDTD) are proposed
to solve the Pennes bioheat equation. FEA and FDTD methods
solve for the heat dissipation and electromagnetic field for
the whole computational domain for each time instance. Due
to their space and time complexity, these aforementioned
numerical methods are not suitable for real-time applications.

For the real-time thermal management, online prediction
of the thermal effect caused by an implantable device has
become essential. In [10], Chai et al. proposed a recursive
multi-step prediction error minimization method (RMSPEM)
for online update of the model parameters of a simplified
thermal model with a single heat source online to support real-
time control. In [11], a predictor-based subspace identification
(PBSID) method is proposed, which uses the high-order vector
auto-regressive with exogenous inputs (VARX) predictor from
[12], since the performance of the VARX predictor compares
favorably to other subspace identification algorithms [13].
However, the PBSID method is a centralized system identi-
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fication technique and its performance is contingent upon the
spatial independence of the data. In [14], the authors imple-
ment a recursive PBSID method with batch pre-processing
using a VARX model to characterize the thermal effect of
bio-implants. In their work, however, the authors neglect the
spatial autocorrelation of the data and treat each sensor as a
subsystem of the overall system to investigate the performance
of PBSID algorithm on characterizing the thermal effect of the
system with multiple power inputs.

With the increase in functionality of IMDs, such as added
wireless capabilities etc., many implantable devices contain
multiple electronic modules. Considering that each module
could contribute to the temperature increase, it has become
necessary to include the spatial distribution of the heat dissi-
pation in our model. There have been studies analyzing spatial
data, many of which focus mainly on identification of spatially
distributed systems, e.g. wireless sensor networks [15] or on
ecological modeling [16]. In geo-spatial analysis, different
algorithms are utilized, such as geographically weighted re-
gression (GWR), spatial autoregressive modeling (SAR) as
well as spatial filtering models [16]. Spatial correlation and
time-space separation of data are used previously in [17] to
investigate the thermal effect of batteries. In [18], authors
introduce a data-driven approach to localize abnormality for
distributed parameter systems using dynamic spatial inde-
pendent component analysis. In [19] and [20], Haber et al.
introduce a new identification algorithm for spatially varying
distributed systems defined on an arbitrary graph. In their
work, system matrices of the global system is derived by ap-
plying the identification methods introduced in [11] to all local
subsystems in the interconnection; thus numerically solving
for the spatial correlation of the local subsystems. However,
computational complexity of their algorithm is O(N2). To the
authors’ knowledge, there have been few studies addressing
the online thermal prediction problem of the implantable
medical device with multiple spatially distributed subsystems.

In this paper, modeling the thermal dynamics of the IMDs
with multiple heat sources is explored and a novel algorithm
is proposed to update the model parameters in an online
fashion. Goal of developing this online prediction algorithm
for the thermal effect of the IMDs is to implement a model-
predictive control (MPC) scheme to adjust the power inputs
of the electrodes accordingly to prevent permanent damage
while maintaining the required performance of IMDs. Herein,
we propose an online thermal prediction algorithm which
maintains the spatial distribution of heat dissipation and its
effect on the temperature increase. Different from the previous
work which investigates power dissipation in the circuitry
as the only heat source [10], IMDs with multiple modules
are investigated whose power consumption can be controlled
through the control input, and multiple temperature sensors
spatially distributed on the motherboard. Examples of different
modules on IMDs may include motherboard, radio module for
wireless communication, energy storage device, and so on.
To represent such modules of the IMD, multiple heat sources
are used. Different from previous works in the literature, our
prediction algorithm implements a spatial filter with a novel
spatial weights matrix to separate the temperature readings

of heat sensors into two components based on their spatial
dependence, thus investigating the effect of heat dissipation in
a spatial context. Prediction of the centralized non-spatial, i.e.
spatially independent, data component is achieved by utiliz-
ing predictor-based identification methods with the predictor
model proposed in [11]. This predictor-based identification
algorithm is implemented with a first order VARX predictor
to model slowly time-varying parameters of a multiple-input
system. The spatially dependent component of the temperature
data can then be determined by solving the least squares
problem of a purely lagged spatial autoregressive (SAR)
model. With this online prediction algorithm, thermal effect
of the device could be estimated for power inputs and optimal
power inputs to prevent overheating could then be selected via
MPC.

The remainder of the paper is organized as follows. Fol-
lowing the introduction, Section II presents the system model
of implantable device with neural prosthesis as an example.
The prediction algorithm with spatial filtering is proposed in
Section III. Section IV presents the simulation studies and
in vitro experiments of the proposed method. In section V,
performance and computational cost of the proposed algorithm
is compared with alternative algorithms introduced in [11],
[19] and [20]. At last, conclusions are derived in Section VI.

II. SYSTEM DESCRIPTION

As described in [21], system components of neural pros-
thesis include optics module, power module, radio module
and motherboard module. For our investigation, 3-D Utah
electrode array (UEA) is selected as the microelectrode array,
since it has become a benchmark for neural recording and its
thermal effect has been studied in previous works [8], [9]. The
system diagram introduced in [10], which is created based on
system components presented in [21], is adopted in this paper,
since it is relatively comprehensive. The motherboard module
consists of the microcontroller and power circuitry. The radio
module provides wireless communication between a laptop or
computer and the system for data transmission. Control signals
for power consumption of the system is also transmitted via
the radio module. In this paper, an energy storage device, e.g.
battery or supercapacitor, is not implemented on the testing
vehicle, but its contribution to the temperature increase is
investigated by modeling it as a heat source. A diagram of
the system adopted in this paper is presented in Figure 1.

Fig. 1: Diagram showing the multiple components of the
system.

In our work, temperature increase induced by the afore-
mentioned modules of the neural IMD is modeled as multiple
heat sources. The temperature change is measured via multiple
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on-board temperature sensors. The system dynamics to be
modelled can be formulated with a one-step ahead predictor
as follows

ŷk|k−1 =

p∑
i=0

αiuk−i +

p∑
j=1

βjy
f
k−j + f(Wk−1y

sp
k−1) + ε

(1)
where yf is the filtered non-spatial component of the tempera-
ture data obtained by the sensors, ysp is the spatial component
of the temperature data obtained by the sensors, uk ∈ Rr
is the input vector, ŷk|k−1 ∈ Rl, W is the spatial weights
matrix at time instance k and α, β are the set of parameters to
be estimated. The method for constructing the spatial weights
matrix is described in Section III.A.

Since temperature recording of each temperature sensor
depends on its location with respect to all heat sources, spatial
dependence of temperature readings cannot be neglected.
Thus, it is necessary to introduce a spatial filtering method
to separate the temperature data into two components based
on its spatial dependency, i.e. filtered spatial component vs.
non-spatial component. This spatial filtering method is further
explained in Section III.

III. ONLINE PREDICTION ALGORITHM

The first step of the proposed algorithm is to apply a spatial
filter to the sensor data to separate its spatially dependent
from independent components. After spatial filtering, a SAR
model is used with a kernel recursive least squares (KRLS)
adaptive filter to model the spatial distribution of the data,
while PBSID methods are utilized to predict the centralized
spatially independent component of the temperature data. Main
steps of the overall algorithm is shown in Figure 2. After
the prediction step at each time instant k, prediction results
for both spatial and non-spatial components are combined to
obtain an overall prediction of the system.

Fig. 2: Diagram of the overall prediction algorithm.

A. Spatial Filtering
Spatial filtering methods are used to partition spatially

autocorrelated data into two components, one of which con-
tains the spatially dependent data and the other component

is the spatially independent data. In [22], Getis and Griffith
apply spatial filtering to potentially independent variables in
a regression equation using two different methods. The first
method in [22], i.e. Getis method, uses Getis-Ord statistic Gi
to convert spatially correlated data into two variates, one of
which captures the spatial correlation and the other variate
contains the filtered non-spatial variable [23]. In the second
method, i.e. Griffith method, the spatially independent variable
could be obtained by removing its embedded spatial pattern
similar to the Getis method using linear combinations of
connectivity matrix eigenvectors [24]. However, the Griffith
method assumes the spatial pattern of the system is known and
thus, a binary geographic connectivity matrix C is available.
In our work, the connectivity matrix of temperature sensors is
not explicitly available. Thus, the Getis method is chosen for
spatial filtering to examine the local spatial association among
temperature sensors.

The main assumption of our work is that all sensors con-
tribute to spatial dependence of temperature readings due to
close proximity of the sensors. Thus, the appropriate distance
d, within which nearby sensors are spatially dependent, is
selected as the radius of the circle encompassing the im-
plantable device. Then for each sensor i = 1, 2, ..., n, spatial
contributions of all other sensors on the selected sensor i is
computed with the local Getis-Ord Gi statistic as

Gi(d) =

∑
j wij · yj∑

j yj
, i 6= j (2)

where i is the observation point, i.e. the selected sensor, yj
denotes the observed temperature readings at the neighboring
sensor j and wij corresponds to the element at the i-th row
and j-th column of n× n weights matrix W . Different from
the conventional choice of the weights matrix W , which is
a binary matrix indicating the neighbors, the weights matrix
W is constructed to be inversely proportional to the distance
between sensors si and sj , i.e. wij = 1

|si−sj | for i 6= j and
W [i, i] = 0 to describe the correlation between each sensor
locations. The matrix W is then normalized via maximum
eigenvalue normalization. In addition to the correlation be-
tween the sensor locations, another measure describing the
spatial thermal effect of the heat sources at sensor locations
is added to the weights matrix W . The heat dissipation from
each heat source is can be modeled as a multi-variate Gaussian
distribution. Since the heat generated at each heat source is
dependent on its power input, this additional measure at sensor
si can be computed as mi = u1p1(si)+· · ·+urpr(si) where u
denotes the power input for the corresponding heat source, r is
the number of heat sources and p denotes the density function
of the corresponding Gaussian distribution. Thus, the spatial
filtering becomes dependent on the inputs at the given time
instance. The measure mi is normalized with respect to the
maximum eigenvalue λmax of the weights matrix and added
to the diagonal of W .

W =


m1 w12 . . . w1n

w21 m2 . . . w2n

...
. . .

...
wn1 . . . wn(n−1) mn

 · 1

λmax
(3)
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The calculated Gi statistics at given sensor locations are
then compared to the expected value of contribution in spatial
dependence embedded in the original variable, which is of the
form Ei(d) =

∑
j wij

(n−1) where n is the number of observations
[22]. The source data y can then be transformed into its filtered
non-spatial component, which is averaged across all sensor
locations to minimize measurement errors with the following
equation

yf =
1

n

∑
i

yi
Ei(d)

Gi(d)
=

1

n(n− 1)

∑
i

∑
j

wijyi
Gi(d)

(4)

Since the original temperature data is a sum of both compo-
nents, i.e. y = ysp + yf , the spatial component is can then be
calculated as ysp = y − yf .

B. Identification of Non-spatial Data Component

For online prediction of the non-spatial component, i.e. yf ,
we utilize identification methods proposed in [11], [25]. A
vector autoregressive model with exogenous inputs (VARX)
is chosen to model the thermal dynamics of the multiple-
input, single-output (MISO) system. One-step-ahead VARX
predictor can be written as

ŷfk|k−1 =

p∑
i=0

αiuk−i +

p∑
i=1

βiy
f
k−i (5)

where ŷfk|k−1 is the predicted output of the subsystem at time
instant k using a finite window of past inputs and outputs. p
denotes the length of the finite window of past data. Ξ̄ :=[
αp αp−1 ... α0 βp ... β1

]
∈ Rl×p(r+l)+r is the set

of VARX paramaters to be estimated. Using the VARX model,
we can estimate Markov parameters of the system as shown
in [11], [25].

1) Regularized Batch Pre-processing: Prior to online pre-
diction, a batch of data is used to determine initial values
for Markov parameters of the centralized non-spatial system.
This procedure is called batch pre-processing. The first step
in batch pre-processing is to construct stacked matrices U ,
Y f , and Hankel matrices for Ȳ fp and Ūp as shown in [11].
Using these stacked matrices, parameters of the linear VARX
predictor in (5) can be estimated using least squares regression
as follows:

Ξ̄ = Y fΨT (ΨΨT + µI)
−1

Ψ =
[
ŪTp UT Ȳ fp

T
]T (6)

where µ is the Tikhonov regularization term selected to
minimize the estimation error via 10-fold cross-validation.

After computing the VARX predictor parameters Ξ̄, prod-
uct of the extended observability matrix and state sequence,
Γ̂X , can be computed as Γ̂X =

[
α̂p α̂p−1 ... α̂1

]
Ūp +[

β̂p β̂p−1 ... β̂1
]
Ȳ f p. We derive the predicted full state

sequence X̂ from Γ̂X sequence by solving the rank-n ap-
proximation of the SVD. System matrices A,B,C, D, and
the Kalman gain K can be computed by solving the second
linear problem in (1) with the batch least squares method.

2) Recursive Predictor-based Subspace Identification: Re-
cursive predictor-based subspace identification method updates
the model parameters iteratively. For this method, the system
parameters obtained from batch pre-processing is used for
initialization.

Adaptive filters, more specifically recursive least squares
(RLS) filters, are implemented to track time-varying dynamics
of the system, and a forgetting factor is added to ensure the
past data becomes less relevant for the current estimation.

For recursive prediction, VARX predictor in (5) is re-written
in the linear regression form

yfk = Ξ̃kψk + ek (7)

where ψk =
[
up
T uk

T yfp
T
]T

, up and yp are the vectors
of past p data points at time instant k. Different from batch
pre-processing, Ξ̃ is defined as an adaptive filter of the form

Ξ̃k = Ξ̃k−1 + (yfk − Ξ̃k−1ψk)ψk
TPk (8)

Error covariance matrix Pk is initialized at Pi = ( 1
ρ1

)I with
ρ1 > 0 and Pk is updated iteratively with

Pk =
1

λ1
Pk−1 −

1

λ1
Pk−1ψk(λ1I +ψk

TPk−1ψk)−1ψk
TPk−1

(9)
where 1 > λ1 � 0 is the forgetting factor. Common values
for the forgetting factor λ are between 0.995 > λ > 0.95;
thus, λ = 0.99 is selected for the RLS filter in the algorithm
to minimize the prediction error via 10-fold cross-validation.

The state vector x̂k can then be estimated from
the past input-output data, i.e. up and yp as x̂k =
S(
[
α̂p α̂p−1 ... α̂1

]
up +

[
β̂p β̂p−1 ... β̂1

]
yfp ) at

time instant k, where selection matrix S is determined via
projection approximation subspace tracking (PAST) method
proposed in [26] and has an adaptive filter update. Once the
state vector x̂k is estimated, system matrices Ak, Bk, Ck, Dk,
and the Kalman gain Kk are computed by updating the
corresponding RLS filters.

C. Identification of Spatial Data Component
With the available spatial data components of the temper-

ature data, one-step-ahead spatial component of each sensor
can be estimated by solving the least squares problem of a
nonlinear pure spatially lagged autoregressive (SAR) model.
The nonlinear SAR model at sensor location i can be written
as

yspi = fi(Wiy
sp
i ) + Ei (10)

For recursive prediction, one-step ahead predictor using the
nonlinear SAR model can be written in the regression form as

yspk|k−1 = f(φk−1) + Ek (11)

where φk−1=Wk−1y
sp
k−1

with n × 1 stacked vector of spatial
data components of each sensor location yspk−1 and Ek is the
n×1 error vector which contains the prediction error. A KRLS
filter is then implemented to estimate the nonlinear function
fi(.) that relates the input ψk to the output yk = fi(ψk)
according to this SAR model. As part of the KRLS filter,
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the following Gaussian kernel with σ = 0.95 is selected;
κ(ψi, ψj) = exp(−‖ψi−ψj‖2

2σ2 ). Using the KRLS filter theory,
the nonlinear function f(ψ) can then be formulated as f(ψ) =∑mk−1

i=1 ρiκ(ψi, ψ) where ρi is the weight for corresponding
kernel result κ(ψi, ψ) and mk−1 denotes the number of data
points admitted to the dictionary and used for estimation at
each instant. A dictionary Dk−1 = {(ψ̂i, ŷi)}

mk−1

i=1 has been
constructed from a subset of size mk−1 of the received vectors.

For our work, surprise criterion (SC) is chosen as a spar-
sification technique since it examines the relation between
the inputs of the incoming data and those of the dictionary
and computes the approximation error to determine when to
add a new data point into the dictionary [28]. Surprise is
an information measure of the new sample with respect to
the vectors in the dictionary and can be defined as Sk =
1
2 ln δk+(yspk − kTk−1ρk−1)2/2δk where δk is the approximate
linear dependence (ALD) measure. Using the kernel trick, the
ALD measure δk can be expressed as δk = kkk − kTk−1ak
where kkk = κ(φk, φk), kk−1 is a matrix with entries
[kk−1]i = κ(φ̂i, φk), and ak = K−1k−1kk−1 with the kernel
matrix [Kk−1]i,j = κ(φ̂i, φ̂j). Surprise criterion parameters
T1 and T2 are determined via a 10-fold crossvalidation on the
batch data. The input-output data at time instant k is added
to the dictionary only if it is classified as learnable, i.e. the
surprise measure Sk lies in the interval [T1, T2] [29]. If the
SC test is passed and new vectors are added to the dictionary,
the following KRLS update equations are applied:

Kk
−1 =

1

δk

[
δkK−1k−1 + akakT −ak

−akT 1

]
Pk =

[
Pk−1 0
0T 1

]
ρk =

[
ρk−1 − ak

δk
(yspk − kTk−1ρk−1)

1
δk

(yk − kTk−1ρk−1)

] (12)

Alternatively, if the surprise value does not pass the SC test,
the dictionary remains unchanged. Then the covariance matrix
Pk and the weight vector ρk are updated via the KRLS
recursions [27] as follows:

qk =
Pk−1ak

1 + aTk Pk−1ak
Pk = Pk−1 − qkaTk Pk−1

ρk = ρk−1 −K−1k qk(yspk − kTk−1ρk−1)

(13)

IV. ALGORITHM VALIDATION

Performance of the proposed thermal modeling techniques
and online prediction methods with spatial distribution is
evaluated with both simulation studies in COMSOL software
and in vitro experiments.

A. Simulation Studies
Multiphysics modeling software COMSOL is used to sim-

ulate the thermal dynamics of the UEA. The UEA model
presented in [8] with multiple heat sources is implemented in
the COMSOL software as shown in Figure 3. The COMSOL
software uses the following Pennes’ bioheat equation to model

the heat transfer from the implantable device with multiple
heat sources to its surrounding tissues [10]

ρC
∂T (x, t)

∂t
=∇ · (k∇T (x, T )) +A0 +B0(T (x, t)− Tb)

+ ρSAR+ Pel
(14)

where T denotes the temperature in the tissue at spatial coordi-
nates x for instant t, Pel is the power density of the implanted
device, and ρ and C are the tissue density and specific heat,
respectively [10]. According to [10], ∇· (k∇T (x, T )) models
the thermal diffusion with the thermal conductivity of tissue
k. Since the focus of our paper is to model the thermal
effect of multiple heat sources with spatial distribution, the
heating effect caused by the electromagnetic field, i.e. ρSAR,
the effect of blood perfusion, i.e. B0(T (x, t) − Tb), and heat
generation by metabolism, i.e. A0, are neglected from (11) and
are modeled as disturbances to simplify the thermal model.

As shown in Figure 3, the simulation board includes two
heat sources (H1 and H2) and six probes, (S1 − S6), to
measure the temperature change and the probes are placed at
the given coordinates surrounding two heat sources. COMSOL
software utilizes the FEA method to solve the Pennes bioheat
equation and produces temperature readings of each heat
sensor. These temperature readings are then used as a reference
to demonstrate the performance of the proposed online predic-
tion algorithm. Using the aforementioned COMSOL model,

Fig. 3: Board layout in COMSOL software with sensor
locations in red.

two sets of studies were conducted: (1) 2000 data samples
generated using two Gaussian distributions within the range
of [0.279, 0.837] Watt (W) are used for the power inputs
in the first simulation; and (2) for the second simulation,
square wave signals of length 2000 are used to emulate
the controller effect on the power input and evaluate the
performance of the prediction algorithm when controller is
implemented. The upper value, i.e. 0.837, of the Gaussian
distributions in study (1) corresponds to the upper limit of
operating power inputs. Square wave signals for both inputs
in study (2) have the same 50% duty cycle and a period of
20 seconds. For each simulation study, two separate runs are
conducted to examine the thermal effect of applying same vs.
different power inputs to the two heat sources. The goal of
applying inputs with different amplitudes is to investigate the
effect of having modules of the IMD operating at different
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power levels. In study (2), square wave inputs of amplitude
0.75 W are generated for the case with same inputs. For the
case with different amplitudes in study (2), one of the square
wave inputs has an amplitude of 0.5 W and the other input
has an amplitude of 0.5 W. For all simulation studies, a batch
data with randomly generated Gaussian inputs from a previous
COMSOL simulation is used for preprocessing. As a result of
the 10-fold crossvalidation with the batch data, regularization
term λ is set as λ = 86.8. In addition, thresholds values for
surprise criterion T1 and T2 are calculated to be T1 = 0 and
T2 = 20 via 10-fold crossvalidation.

In Figure 4 and 5, the simulation study results when
Gaussian inputs of different amplitudes are applied, are shown.
More specifically, in Figure 4, the power inputs are displayed,
and Figure 5 shows the comparison between overall prediction
results of the algorithm (in red), which consists of prediction
results of the spatial data component as well as the non-
spatial data component and the temperature readings obtained
in COMSOL corresponding to each heat sensor (in blue). For
each comparison subplot in Figure 5, a zoomed plot is added to
show the comparison of the prediction results and the temper-
ature readings in more detail. As can be seen in Figure 5, the
performance of the prediction results improve significantly af-
ter approximately 400 seconds. This corresponds to the time it
takes for the adaptive filters in the online prediction algorithm
to converge. Once the adaptive filters are fully converged, the
prediction algorithm can predict the thermal dynamics of the
IMD with multiple heat sources with relatively high accuracy.
Figure 6 and 7 show the corresponding simulation results for
the square wave inputs with different amplitudes. As in Figure
5, a zoomed plot for each comparison plot in Figure 7 is
added to show the comparison of the prediction results and the
temperature readings in more detail. Similar to the simulation
study with Gaussian inputs, the performance of the prediction
algorithm in this study improve after the convergence of the
adaptive filters at approximately 400 sec.
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Fig. 4: Different randomly generated Gaussian power inputs.

According to the simulation studies, the size of the dictio-
nary Dk never exceeds 15, i.e. m ≤ 15. Hence, no pruning is
necessary to reduce the size of the dictionary. The comparison
between the results of the online prediction algorithm and
the temperature readings obtained in COMSOL shows that
the proposed algorithm predicts the thermal dynamics of bio-
implants with multiple heat sources with relatively high accu-
racy. The overall MSEs of prediction results at given sensor
locations, indicated as S1, S2 etc., are summarized in Table I
for each simulation study and Table II summarizes breakdown
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Fig. 5: Simulation results of the spatial and non-spatial data
components combined for different Gaussian inputs with local
magnification. Each subfigure shows the results for the corre-
sponding sensor probe labeled as S1-S6 in Fig. 3.
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Fig. 6: Square-wave power inputs with different amplitudes
which are used to emulate the power inputs to heat sources
for evaluating performance of the prediction algorithm when
controller is implemented.
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Fig. 7: Simulation results of the spatial and non-spatial data
components combined for different square-wave inputs with
local magnification. Each subfigure shows the results for the
corresponding sensor probe labeled as S1-S6 in Fig. 3.

of the MSE values of the prediction results obtained via
the proposed algorithm into non-spatial identification part vs.
spatial identification part of the algorithm. As seen from
the MSE values in Table I, the proposed online prediction
algorithm predicts the thermal effect with an average mean
squared error of 0.938 × 10−3 ◦C for randomly generated
Gaussian inputs and 1.197×10−3 ◦C for square-wave inputs.
After convergence of the RLS filters are achieved, i.e. after
approximately 400 sec, the averaged MSE values drop to
0.135×10−3 ◦C for randomly generated Gaussian inputs and
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TABLE I: MSE RESULTS IN SIMULATION STUDIES (×10−3 ◦C)

Gaussian Inputs Square-Wave Inputs
Same Different Same Different

S# Inputs Inputs Inputs Inputs
S1 1.164 0.755 1.411 1.112
S2 1.137 1.011 1.360 1.182
S3 1.182 1.038 1.319 1.552
S4 0.921 0.729 1.173 0.971
S5 0.927 0.736 1.176 0.963
S6 0.919 0.736 1.171 0.969

TABLE II: NON-SPATIAL & SPATIAL PREDICTION RESULTS IN SIMULATIONS
(×10−3 ◦C)

Gaussian Inputs Square-Wave Inputs
Same Different Same Different

MSE Inputs Inputs Inputs Inputs
Non-spatial 1.107 0.873 1.323 1.289

Spatial 0.123 0.124 0.087 0.124

to 0.150× 10−3 ◦C for square-wave inputs.

B. Experimental Studies
For in vitro experiments, a temperature monitoring and

management test vehicle (TMTV) with seven temperature
sensors (LMT70) and two heat sources (PZT222A) emulating
the implanted electronics is used. This test vehicle has been
developed based on the previous hardware testing system used
in [10] and [14]. The LMT70 temperature sensors on board
have a typical accuracy of ±0.05◦C and the thermal power
dissipation of each PZT2222A heat source is 1W at maximum
at an ambient temperature of 25◦C. The current version of the
testing vehicle has a width of 46.8 mm and a length of 60.15
mm. The layout of the TMTV and the sensor locations are
illustrated in Figure 8.

The hardware testing system is shown in Figure 9. For the
duration of the experiments, the TMTV is placed in a water-
filled container which is shown in the middle of Figure 9.
In order to emulate the heat diffusion effect of blood flow, a
marine pump and sponge material are placed in the water-
filled container. The marine pump is placed at the bottom
of the water-filled container to create water circulation. Input
voltage of the marine pump is set to 7.5V to generate water
flow similar to the cerebral blood flow rate of 50 ml/min
per 100g of tissue [30]. The sponge is placed in the container
to ensure a uniform water flow. The water tank is then placed
inside an enclosed heat chamber to regulate the environmental
temperature. Temperature of the heat chamber is set to 28◦C.

A Matlab GUI is created to display and save the temperature
measurements and prediction results simultaneously. Continu-
ous temperature data and prediction results for multiple sub-
systems can also be displayed simultaneously in the GUI. This
Matlab front-end is connected with an nRF52 development kit
(nRF52 DK), which acts as the intermediate layer between
the TMTV and PC interface. The nRF52 DK communicates
with the Bluetooth module (MDBT42Q-512KV2) mounted on
the TMTV through Bluetooth protocol and sends pulse-width
modulation (PWM) signals to heat sources on the TMTV to
generate different amounts of heat. nRF52 DK also sends a
control signal to temperature sensors through the Bluetooth
module to switch sensors in a sequence. Temperature readings
from the sensors are digitalized by an embedded 12-bits

Fig. 8: TMTV layout with two heat sources (H1, H2) and
seven temperature sensors shown in red and coordinates of
the sensors.

(a)

(b)

Fig. 9: (a) Illustration of hardware experiment system, (b)
experiment set-up.

analog-to-digital converter (ADC) on the nRF52 board and
are then transmitted to PC.

Two sets of experiments were conducted with this hardware
testing system to evaluate the performance of the prediction
algorithm under different types of PWM inputs. The range
of PWM inputs admitted to the heat sources on TMTV is
[0, 10000] where 0 denotes a PWM signal with 100% duty
cycle and 10000 denotes a PWM signal with 0% duty cycle.
For each set of experiments, two different runs are conducted
to investigate thermal effect of applying PWM inputs with
same vs. different amplitudes to the two heat sources. The goal
of applying inputs with different amplitudes is to investigate
the effect of having modules of the IMD operating at different
power levels. For the first set of experiments, randomly gener-
ated Gaussian PWM inputs are chosen to test the algorithm’s
prediction accuracy under randomness. In the first run, 2900
data samples generated using a Gaussian distribution within
the range of [1620, 10000] are used for both PWM inputs. For
the case of Gaussian PWM inputs with different amplitudes,
3000 data samples are generated using two Gaussian distri-
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butions within the range of [5000, 10000] and [7500, 10000]
individually. For the second set of experiments, square wave
inputs of length 2100 are used to evaluate the performance
of the prediction algorithm when controller is implemented
in real applications. Square wave inputs have a period of
20 seconds and the same duty cycle of 50%. The ranges of
the square wave PWM inputs with different amplitudes are
[7500, 10000] and [8750, 10000] respectively.

Similar to simulation studies, a batch data with randomly
generated Gaussian inputs from a separate experiment is used
for pre-processing for all experiments such that the recursive
PBSID updating can be initiated after 10 seconds of the
input and output data are obtained. As a result of the 10-
fold crossvalidation with the batch data, regularization term λ
is set as λ = 0.3. Thresholds values for surprise criterion T1
and T2 are calculated to be T1 = 15 and T2 = 22 via 10-fold
crossvalidation. A fixed-lag Kalman smoother with a time lag
of N = 1 is applied to the experiment data to reduce the noise
in data. Process noise and measurement noise for the Kalman
filter are assumed to be zero mean Gaussian random processes
with variances Qk = 0.012 and Rk = 0.012, respectively. For
the prediction algorithm, normalized values of the PWM inputs
are used and both non-spatial and spatial data components are
detrended according to the batch data.

Figure 10 shows the experiment results when Gaussian
inputs of different amplitudes are applied; more specifically,
the overall prediction results of the algorithm (in red) are
compared with the temperature data obtained by the heat
sensors (in blue). For each comparison subplot in Figure 10, a
zoomed plot is added to show the comparison of the prediction
results and the temperature readings in more detail. Similar
to results of the simulation studies, after approx. 400 sec.
performance of the prediction results improve and the pro-
posed algorithm can predict the instant changes in temperature
readings with relatively high accuracy as can be see in Figure
10. In addition, Figure 11 shows the corresponding results
for the square wave inputs with different amplitudes. As in
Figure 10, a zoomed plot for each comparison subplot in
Figure 11 is added to show the comparison of the prediction
results and the temperature readings in more detail. There
exists a small difference between the prediction results and
the actual temperature data for some sensors, e.g. sensor 6
(S6) in Figure 10 and 11. This error in the prediction is
larger for the experimental studies with square-wave inputs
compared to the results of the experiments with Gaussian
inputs. However, this prediction error is less than 0.4◦C at any
data point, which is below the critical temperature increase
of 0.8◦C. Thus, the proposed prediction algorithm can still
predict the thermal dynamics of the IMD with multiple heat
sources. The accuracy of the prediction can be improved by
further modifying the spatial weights matrix or alternatively
by further modifying the kernel function used in the prediction
of spatial data component.

In the experiments, the number of samples in the dictionary
Dk is always under 20, i.e. m < 20, meaning that only
approximately 1% of data points are used for prediction. The
mean squared errors (MSEs) of the prediction results obtained
via the proposed algorithm at given sensor locations, indicated
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Fig. 10: Experiment results of the spatial and non-spatial data
components combined for different Gaussian inputs; prediction
results (red) and temperature readings (blue). Each subfigure
shows the results at corresponding sensor locations labeled as
S1-S6 in Fig. 8.
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Fig. 11: Experiment results of the spatial and non-spatial
data components combined for different square-wave inputs;
prediction results (red) and temperature readings (blue). Each
subfigure shows the results at corresponding sensor locations
labeled as S1-S6 in Fig. 8.
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TABLE III: OVERALL MSE RESULTS OF EXPERIMENTS (◦C)

Gaussian Inputs Square-Wave Inputs
Same Different Same Different

S# Inputs Inputs Inputs Inputs
S1 0.158 0.122 0.313 0.152
S2 0.160 0.124 0.315 0.151
S3 0.157 0.122 0.315 0.150
S4 0.159 0.122 0.316 0.15
S5 0.160 0.122 0.315 0.152
S6 0.158 0.122 0.333 0.151
S7 0.159 0.120 0.315 0.151

TABLE IV: NON-SPATIAL & SPATIAL PREDICTION RESULTS IN
EXPERIMENTS ( ◦C)

Gaussian Inputs Square-Wave Inputs
Same Different Same Different

MSE Inputs Inputs Inputs Inputs
Non-spatial 0.156 0.119 0.313 0.149

Spatial 0.002 0.004 0.005 0.003

as S1, S2 etc., are summarized in Table III for each experi-
ment study. In addition, Table IV summarizes breakdown of
the MSE values of the prediction results corresponding to
non-spatial vs. spatial identification parts of the algorithm.
According to the results of the online prediction algorithm,
which are compared with the temperature readings obtained
by the on-board heat sensors, the spatially distributed thermal
dynamics of an bio-implant with multiple heat sources can be
predicted by the proposed algorithm with a mean squared error
of 0.140 ◦C for Gaussian inputs and 0.243 ◦C for square-wave
inputs. Due to convergence of the algorithm, the mean squared
errors are reduced to 0.339× 10−2 ◦C and 1.405× 10−2 ◦C
respectively after 400 seconds of operation. Compared with
the results obtained in [14], our algorithm achieves prediction
with relatively low MSE values while also characterizing the
spatial autocorrelation among the sensor locations.

V. PERFORMANCE COMPARISON

In [11], researchers propose a batch-wise and a recur-
sive PBSID method which use the high-order vector auto-
regressive with exogenous inputs (VARX) predictor from
[12]. Similarly in [19], [20], PBSID methods proposed by
Houtzager et al. in [11] and VARX model are used for
identification of each local subsystem. In [14], Ermis et al. im-
plemented both batch-wise and recursive PBSID methods with
the PAST approach. In addition, multivariate linear regression
(MLR) is a widely used method in statistics when there exist
multiple independent and multiple dependent variables in the
system. Using MLR method, the system behavior is modeled
as yi,k = αi + β1,iu1,k + β2,iu2,k where uj,k, j = 1, 2
are the power inputs at time instance k and α, β are the
corresponding coefficients to be estimated. Another method
used for the performance comparison is squared exponential
Gaussian process regression (GPR). The squared exponential
GPR method follows a similar regression model as the MLR
method utilizing a kernel matrix in which the kernel function
is of the form of a Gaussian distribution.

The proposed algorithm is compared with the aforemen-
tioned algorithms to evaluate its performance. A comparison of
the MSE results of different identification schemes are shown
in Figure 12. Since both in [19] and [11], PBSID methods with
propagator method (PM) are used, we denote the algorithm as

PBSIDpm in the comparison figure. The algorithm used in [14]
is denoted as PBSIDpast. The multivariate linear regression
method is denoted as MLR and the Gaussian process regres-
sion method is denoted as GPR. The COMSOL study with
two different randomly generated Gaussian inputs is selected
for the comparison.

According to the results presented in Figure 12, the pro-
posed modeling algorithm performs overall significantly better
compared to other algorithms in the literature. The perfor-
mance of the proposed algorithm is similar to the performance
of the GPR algorithm for all sensors except for sensor 3, i.e.
S3. The main reason why the performances of both algorithms
is similar for most sensor locations is that both algorithms
utilize a kernel function of the form of a Gaussian distribution
to model the heat dissipation at various sensor locations.
The main difference between the two algorithms being that
the proposed algorithm estimates the non-spatial component
of the temperature increase first and then use the kernel
function to determine the spatially dependent component of
the heat dissipation. Thus, the proposed algorithm provides
more accurate results at various sensor locations, especially
for sensor 3.

S1 S2 S3 S4 S5 S6
0

0.5

1

1.5

2
M

S
E

 (
°
C

)

PBSID
pm

PBSID
past

Proposed

MLR

GPR

Fig. 12: Performance comparison of different identification
schemes for COMSOL study 1 with different power inputs.

VI. CONCLUSION

Due to the technological advances in the medical field, capa-
bilities of the implantable medical devices have significantly
increased. Thus, modeling the thermal effect of implantable
medical devices has gained importance to ensure thermal
management of these devices for safe operation. In this paper,
an online prediction algorithm is proposed to characterize the
spatially correlated thermal effect of the IMDs with multiple
heat sources and update the model parameters iteratively.
Different from the previous work, our paper examines the
online thermal prediction of IMDs with multiple heat sources
using the spatially distributed on-board temperature sensors
and aims to successfully characterize the spatial distribution
of heat dissipation. Using a spatial filter, the algorithm filters
out the spatially dependent component of the data. Then, the
optimized PBSID methods are applied to the filtered data to
predict the non-spatial data component and a KRLS filter with
SC test is applied on a purely lagged SAR model for the
spatially correlated data components.

To validate the proposed online prediction algorithm, nu-
merous simulation studies are conducted with a COMSOL
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model of the IMD. In addition, an in vitro experiment system
with a custom developed TMTV is built. Results of both
COMSOL simulation studies and in vitro experiments suggest
that the proposed algorithm predicts the thermal effect of the
implantable device with high accuracy. The prediction error
decreases substantially after the convergence of the adaptive
filters in the proposed algorithm. The results demonstrate that
the proposed algorithm utilizing spatial filtering, subspace
identification, and kernel adaptive filtering methods can suc-
cessfully characterize the thermal effect of the IMD with mul-
tiple heat sources and spatially distributed temperature sensors.
This indicates that the developed online thermal prediction
algorithm can be used to model the thermal dynamics of an
implantable medical device with multiple heat sources and
support real-time optimal thermal and power management of
IMDs.
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