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Abstract—The overheating caused by the operation of
implantable device can cause damage to the surrounding
tissue. In applications like neural prosthesis, 1 °C of tem-
perature increase could lead to irreversible damage to the
subject. Predicting the overheating effect is therefore critical
to maintain safe operation. This work proposes a Bayesian
recursive multi-step prediction method for implantable device
to predict the overheating effect. The method proposed in
this article achieves accurate prediction within a horizon with
low complexity by model updating that iteratively minimizes
a function of the j-step-ahead prediction error. At each time
instant, the new available input output data are stored in a
First In First Out (FIFO) queue of fixed length, and the model
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Thermal Effect Prediction of Implantable Device

parameters are updated by iteratively minimizing the j-step-ahead prediction error of the new data. Moreover, the
regularization methods are introduced to improve the prediction performance by taking the Bayesian interpretation of
the parameters into consideration. Monte Carlo simulation studies indicate that the developed method is able to estimate

the fundamental dynamics of the system when the prediction

model is underparametered, and is robust to measurement

noise. For time varying systems, the developed method can capture the system dynamics during the system variation.
The proposed method is demonstrated via an in-vitro test vehicle, which shows that the temperature increase can be

predicted with high accuracy and low complexity.

Index Terms— Prediction error minimization, multi-step prediction, thermal effect, implantable devices.

|. INTRODUCTION

ITH implantable device becoming more and more pow-
erful, the temperature increase caused by its operation
has drawn growing concern. Within human body, even a
few degree Celsius above the normal body temperature could
cause detrimental effect to the subject. It is reported that a
patient with an implanted deep brain stimulator (DBS) suf-
fered significant brain damage after diathermy treatment, and
subsequently died [1], [2]. Postmortem examinations indicated
that the tissue near the lead electrodes of the DBS deteriorated
due to overheating. Researchers have shown that a temperature
increase greater than 1 °C could have long-term damage to the
brain tissue [3]. It is considered safer to maintain a maximum
temperature increase of 1 °C for brain implants [4]. For visual
implants, where the stimulating circuitry is in close contact
with the retina, even small temperature increase could have
potentially deleterious effects on retinal integrity [5].
In many practical applications, the implantable devices only
have very limited power consumption and comunication with
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external world, or stay in sleep mode most of the time. The
thermal effect is not a significant problem in these cases.
Blood perfusion in the human body often helps to disperse the
heat accumulated around the implantable device. The thermal
safety can be guaranteed by limiting the functionality of the
implantable device during the design phase.

For applicaitons like neural prosthesis, where implantable
devices need to constantly stimulate the body and its neural
tissues with a large number of electrodes and are in continuous
communication with external devices, the heat accumulated
around the implantable device can be dangerous to the subject
body [6]. With the incorporation of high-density, functional
electronic components and as the number of stimulaiton
channels increases, this problem become more and more
significant. For these applications, an accurate real-time tem-
perature model is crucial to guarantee the safe operation of
the implantable device.

In the neural prothesis applications, however, it can be
difficult to obtain a parametric model for the thermal effect
due to the complex internal structure of the human brain and
the dimension of bio-implants. A heat transfer model based
on Pennes bioheat equation [7] can capture the temperature
increase of the surrounding tissue, but is infeasible for real
time applications [8]. Numerical methods [9]-[13] that have
been developed to solve the Pennes bioheat equation all rely
on sampling the temperature value in the simulatio domain
as they evlove in time. The time complexity and space
complexity make them unsuitable for real-time applications.
republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
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Researchers in the field have been evaluating the thermal
effect during the design phase [14], but real-time thermal
effect prediciton is critical to achieve the full potential of the
implantable device.

In our previous work [8], the thermal modeling problem
has been studied based on the system identificaiton methods
[15], [16], or more specifically the mutli-step prediction error
method [17]. However, the performance of the proposed
method gradually degrade through time with the thermal
model deviates from the actual system. Recently, Bayesian
estimation based techniques has also been introduced to the
system identification problem [18]-[22]. In particular, prior
information is introduced to the identification process by
designing a covariance, which is also known as kernel in the
machine learning literature.

In this article, based on the previous results [23], we study
the online prediction of thermal effect of an implantable
device, with a focus on neural prosthesis. The Bayesian
estimation techniques is incorporated to generate a more robust
and accurate thermal effect prediction model that is suitable for
real-time applications. More specifically, a Bayesian recursive
multi-step prediction error method (Bayesian RMSPEM) is
developed based on iteratively minimizing a function of the
Jj-step ahead prediction error. The data used for the estimation
is stored in a FIFO queue with fixed length. At each time
instant, when the new output enters the queue, the estima-
tor uses the data within the j prior steps to calculate the
prediction error of the new data and iteratively update the
model parameter for j = 1,..., k in the prediction horizon.
Output Error (OE) type model is employed as the predic-
tor, as it is able to capture the low-frequency fundamental
dynamics even when the predictor order is lower than the
underlying system. Moreover, with the Bayesian estimation
techniques, the proposed method is able to capture the system
dynamics when the predictor order is greater than that of
the system. By employing the forgetting factor and taking
advantage of the iterative updating procedure, time-varying
thermal dynamics can be modeled with the developed method
regardless of noises. The developed method is shown to have
low complexity and is therefore appropriate for realtime imple-
mentation on implantable devices with limited computational
power.

The remainder part of this article is organized as follows.
Following Section I, Section II introduces the system model
used in the paper. The regularized batch preprocessing pro-
cedure is described in Section III. The proposed Bayesian
recursive identification method is presented in Section IV.
Section V extends the algorithm with forgetting factor and
discusses about the computational complexity of the algorithm.
Simulation investigations are presented in Section VI and the
UEA thermal effect prediction is presented in Section VII.
At last, the paper is concluded in Section VIII.

[I. SYSTEM MODEL AND IDENTIFICATION CRITERION

Let’s assume the underlying thermal dynamics F can be
defined as a general Single Input Single Output (SISO) linear
discrete-time equation of the type:

y(t) = G(q,0%u(t) + H(q,0%e(t), (D

where the true parameters of the thermal dynamics are denoted
by 6°. G(q,0°) represents the transfer function from input
(power consumption) to output (temperature in the surrounding
tissue), and H (g, 0°) is the transfer function from a white
noise source e to output additive disturbances. Both G (g, 9°)
and H(q,0°) are asymptotically stable transfer functions. g
denotes the shift operator gy (1) = y(t + 1).

Depending on how to parameterize G and H, many model
structures have been proposed, such as the autoregressive with
exogenous terms (ARX) model, the autoregressive-moving
average with exogenous terms (ARMAX) model, and the
Box-Jenkins model. In this article, the estimation model with
the output error (OE) structure are considered, since the
thermal dynamics around the implantable device can be highly
complicated and time varying. With a OE model structure, low
frequency dynamics can still be captured even when the model
order is lower than that of the thermal dynamics.

Let G(g,0°) be defined as

Glg.0ye Ne@ | M b A
)= Daq) I+afqg™ +-- +agpg™’
and _ -
~a,
o _ao
60(a0’b0 — [a i|= 1 (3)
) bo bll)
b,
b

represents the system parameter in G. The numerator N (2)
and the denominator Dg(z) are assumed to be coprime.
The OE prediction model can be represented as

$(110) = G(q, O)u ), )
which doesn’t explicitly model the noise. In (4),
; No(q)  big™ 4 +byqg™
G(g,0) = ——— = — T, )
DG(q) 1+alq +.'.+anﬂq ¢
and B i
—dn,
_la| | —ai
- M -1 ®)
L b”b .

In general, n, # ng, and np # njy.
Suppose the input output data of F are recorded in sequen-
tial in the time domain as

L={u(l),yd),...,u(N),y(N)}. (N

Then the criterion of fit can be defined for the j-step-ahead
prediction as

N
Z [y(@)— (|t —H1*+y 0T P10
t=np+j

()=
A
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In which, y(¢|t — j) denotes the prediction of y(#) given the
output data up to ¢ — j and input data up to ¢. Prior information
of the system parameters are taken into account by introducing
a regularization term 7 P~16 into (8) with P~! represents the
covariance information of the parameter prior distribution. y
denotes the relative weight of the regularization term.

The multi-step prediction error criterion is defined as the
average of the j-step-ahead criterion with j =1,...,k:

k
Inp = % > IRG). ©)

j=l1
Gianluigi Pillonetto et al. [18], [24] summarized the
regularization options for system identification, such as Diag-
onal/Correlated (DC) kernel, Tuned/Correlated (TC) kernel
and Stable Spline (SS) kernel, whose frequency properties
are summarized in [25]. The kernels can also be derived
for system identification purposes [26]. The regularized cost
function can then be solved by the regularized least square

estimation.

I1l. REGULARIZED BATCH PRE-PROCESSING

To determine the hyperparameters of the regularization and
choose a good starting point for searching the minimum of the
cost function presented in the previous section, a batch of data
is used to initialize the Bayesian RMSPEM algorithm. This
batch of data is called the pre-processing data and represented
as L2 = {u°(1), y°(1), ..., u’(Ng), y°(No)}. In practice, this
procedure helps to generate a reliable model estimation in the
initial phase. In this section, we present how the regularization
technique can be used for the multi-step prediction under the
batch setting.

First, (4) can be converted into the linear regression
form as

5(t10) = p(1)" 6.

Given the data set L£°, the one-step predictions can be
concatenated into the vector form

(10)

Y = @6, (11
in which _
y(110)
r= = | (12)
J(Nol0) |
and
p()T ]
O = : . (13)
P(No)" |

Let the regularization matrix P be parameterized in terms of
the hyperparameter #. The hyperparameter can be determined
through

i =argmin Y'Z()7'Y +1og|Z(p)l,  (14)
n

Z(n) = OP(n)@" + 721y, (15)

which represents the maximization of the negative log likeli-
hood function for estimating # from Y.

Let’s then derive the multi-step prediction error cost
function and its optimization procedure for a batch of data.
Let y(t + j|t) be the output value predicted by iterating j
times the recursive equation of (4). It can be represented as
[16], [17]:

3+ jl) = Rj(@)y(®) + Ej(@)Ne(u( + j),  (16)
where R;(g) and E;(g) can be calculated as
q*nu+1
R;(g) = CA/ : , (17)
1
and
j—1
Ej(@)=C> ABg™". (18)
i=0
In which,
0 1 0
A= : : (19)
0 0 1
ap, —dp,—1 —dai
B = CT, (20)
and
c=[0 0 1]. 21
Let
Vot —ng +1)
Y, = : : (22)
yo(t)
and
u’(t+j—1)
u(t+j—2)
Ur,j = : (23)
u(t —np +1)
Then define
— Yt
¢] (t) - [Ut,j }: (24)
and
(CANHT
0,0)= [ , (25)
J Mj,nbb
in which
CB CA/'B 0 ... o 17
Mig=|... ... .. .
0o ... 0 CB CA/~'B
(26)

The j-step-ahead predictor can be reformulated as a linear
regression form:

3+ jlt) = ;1) ©;(0).

®;(@) is the j-step-ahead mapping of the predictor
parameter 6.
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4
For the batch pre-processing data, define
yo(np + J)
= | (28)
y?(No)
and
¢j(np)"
O; = : 29)
¢j(No — )’
Let RY = ®Td; and K = cDTYf
The cost functlon of batch pre processing is
k
1 :
Iip®) =2 2 Tp°(), (30)
j=1
in which
1
IV ()= ———— Y], —®;0;@)>+y0" P 6.
D= = 0O+

€19

This cost function can be minimized using the standard
Newton method. The optimal model parameters can be esti-
mated iteratively as:

2

0
01 =0 = Gz it (D], )™ Vo it (1)\
j= .,k —1. (32
The Hessian of J 1{/1\]01’ (j) can be calculated as:
2 62 N
a2 el )’9 -0 _zaaz 726, (33)
and
~ Vo@s(@)RIVy @, (0)" +2y P
502P() nb_s+10s()50s()+3’
(34)
The gradient of J AI,\II‘}, (j) can be expressed as follows:
No 1 / No
VoD, =5 2 V0T (35)
s=1
and
2
Vo J N0 (s) = Vo 0,(0)(R°0,(6) — K?
¢9p(5) No—np—s+1 [ s()(s s(@) s)
+2y P70, (36)

In (34) and (36), ®; and its gradient V9 ® ; can be updated
iteratively over j:

O =W;0,, 37
Vo®)11 = VO, W] + (IC 01 ,,4,-110,)H]. (38)
in which,
AT 0na,nb—l+j
W; = 0, | Lny— 14 > (39)
bC 01,1+

and

w0l
np+j,na np
The initial value can be set as @1 =6, Vg®1 = I, 44,
During the pre-processing, R? and K ;) are stored for
s =1,..., k and used for initialization of the RMSPEM. The
calculated 6 also provides an initial start to accelerate the
convergence of RMSPEM. In practical applications, the model
order selection procedure can be incorporated into the pre-
processing. The model order that minimizes the cost func-
tion (30) can be used for the following Bayesian RMSPEM.
This saves the computational cost during the run time. Due
to the robustness to model order, many system variations
during the run time can still be captured. Moreover, as will be
demonstrated below, the computational cost of the Bayesian
RMSPEM is proportional to the model order. In many cases,
a low model order can be generated in the pre-processing pro-
cedure, which helps to reduce the complexity of the proposed
algorithm.

IV. BAYESIAN RECURSIVE MSPEM

After the regularization hyperparameters and the RMSPEM
initial parameters RY, K and 6y are determined through
the pre-processing, the Bayesian RMSPEM algorithm updates
the parameter estimation at each time instant when there is
new data available. Assume the test data is represented as

= {u(l),y(1),...,u(N), y(N), ...}, the update procedure
of the proposed algorithm will be demonstrated by assuming
that the current time instant is N, and the new available data
are the input u(N) and output y(N). The model parameters
are then updated iteratively using the Newton method based
on the prediction error of y(N).

As shown in the batch pre-processing, to determine the
Hessian matrix and the gradient of the cost function, the R

matrix and K matrix must be calculated for j = 1,...,k.
Let’s define
N 0 T
R/ =R; +0;0; 41
and
N 0 T
Ky =K +71 @;. (42)
At time N, R;.v and K]N must be stored for j =1,...,k.
R;V can be represented as
N—j
=RY+ D ¢i()gi()", (43)
s=np
which can then be calculated recursively as
RY = RY™ + (N — ;N = ). (44)

On the right hand side of (44), R;V ~! can be determined
with all the data up to (N — 1)th discrete time instant, and
¢; (N — j) contains all the data up to Nth discrete time instant.

Similarly, K ]N can be represented as

N—j

KY =K+ ¢i()ys + ),

s=np

(45)
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and it can be calculated recursively as

K = Kfv_l + @ (N — j)y(N). (46)

In which, K ]N ~! can be determined with all the data up to
(N — 1)th discrete time instant. y(N) is the output measure-
ment available at N'th discrete time instant. ¢; (N — j) requires
the data up to Nth discrete time instant.

Furthermore, given the saved RN~ and K jN _1, it only
requires the input and output values within a finite time
window to calculate R;V and K. More specifically, it requires
the output measurements from time N — k — n, + 1 to time
N—1 and input values from time N —k—np+1 to time N—1 to
calculate ¢;(N—j), j =1, ..., k. To calculate KV, the newest
output measurement y(N) is also needed. In practice, all the
output measurements and input values necessary to update the
R matrix and K matrix can be saved in a FIFO queue as

u(N —k—np+1)

Input Queue: : s

u(N —1)
YN —k—ngs+1)
Output Queue: 47)
y(N)
For each j =1, ..., k, the corresponding R matrix and K

matrix have to be saved separately. Each time, when the new
input and output values are recorded, R matrix and K matrix
are to be updated using (44) and (46) for each j.

With the recursive updates of (44) and (46), the estimation

of %J}Y (s) and Vy J},V (s) can be formulated as:
2
N N T
- ~ Vv RV
692JP (S) N—np—s+1 993(9) s HG)S(H)
+2y P71, (48)
Vo P (s) = mvg(as(e)uegv 0, — KM
+2y P710. (49)

Again, ©; and its gradient Vy®; can be updated using (39)
and (40). Let

0l = ;ZV9®S(0)R£VVg®S(9)T +2p P71, (50)

s=1

A
Py = 5 2 Vo0, O (RY0,0) = K + 27 P10,
s=1

(51
Thenl Q{\,kand PI{, can be calculated iteratively for
j=1,...,kas:
; i—1 1 1 ; 2
Ol =0 += V00, RV Vo0, O) +=y P,
(52)
i J—=1 11 2
PjvaP/v +7v9®,(9)(K;\’—R;V®S(9))—7yP 6.
(53)

The parameter update procedure can be represented as

041 =0; + u(Qy) " Py, (54)

Algorithm 1 Bayesian RMSPEM Method
Require: Previously obtained parameter 6., Input Queue U,
Output Queue Y, R, K

0 :gpre;
(C) =6pre;
V@@ = I"a+nb;
Set u;
On =0;
Py =0;
1: for j=1:k do
2:  Initialize ¢;;
3 RIj1=RIj1+¢97;
4 K[j1=KL[jl+ ¢, Y[k
55 On =12 0n + IV4OR[j1V40T + 2y P
& Py =15 Pyt VoO(KIjI=RIj1O) — 57 P10:
7. 0=04+ uQn""Py;
8: Calculate W;, Hj;
9: Vg0 = V¢9®WJ-T + ([C,lenb+j—1]®)HjT;
10: ©=W,;0;
11: end for

The computation procedure of the proposed method is
summarized in Algorithm 1.

V. ALGORITHM EXTENSION AND ANALYSIS
A. Forgetting Factor

For identification of time-varying systems, the
aforementioned method can be modified so that past
data become less relevant for the current estimation. In this
subsection, we propose a routine that use the forgetting factor
to weight the past data.

Following a classical practice in parametric time-varying
system identification [27], we introduce a forgetting factor 4 €
(0, 1] into the update procedure in order to base the estimation
mainly on the more recent data. Specifically, we modify the
Jj-step-ahead cost function to be

1 S
IN(j)=———— A (Y] —D,;0,0)>+70T P70,

P(]) N—nb—j—i—l” N( N J j( DI“+y

(535

in which,
N—nb —Jj

2

N—np—j—1

Ay = (56)
/10
and A can often chose from 0.98 to 0.995. By using this
forgetting factor, measurements older than 7y = ﬁ samples
are included in the criterion with a weight that is e~! &~ 36%
of that of the most recent measurement.

With the modified cost function, the algorithm update proce-
dure remains the same while the update of data matrix RY and

K SN in Hessian matrix (52) and Gradient (53) can be modified
as

(57)
(58)

RY =Ry~ +¢;(N — pg;(N — ),
KY =K} 4+ (N — jy(N).
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B. Performance Analysis

The time complexity of Algorithm 1 can be analyzed in
terms of the number of flops (floating-point operation). For
each j = 1,...,k, the calculation requires order (ng + np)3
and j2 flops. Therefore, the entire algorithm for j = 1,...,k
requires order (n, + np)> and k3. More specifically, the time
complexity is in an order of magnitude similar to square
matrix multiplication. In real applications, benefiting from the
property of robustness to model orders, the computational cost
can be reduced with a lower model order and shorter prediction
range.

In terms of the space complexity, besides the input queue
of length k + np — 1 and the output queue of length
k + ng, the algorithm needs to store R[j] and K[j] for each
j=1,...,k. R[j]is a matrix in Ratm+i—Dx@atnp+j-1)
and K[j] is a vector in R+ +/=! The previous parameter
estimation § € R+ +/=1 als0 needs to be stored.

Online system identification methods like RPEM (recursive
prediction error method) are often less computationally
demanding. However it cannot guarantee long term prediction
performance, especially in the case where complex noise
models are involved. Therefore, it is not very suitable for
practical applications like adaptive MPC, where the prediction
accuracy within a certain horizon is crucial to the performance
of the closed-loop control.

The method proposed in [19] has higher computational
cost compared to the method proposed in this article, as it
maintains a high order model and rely on hyper-parameter
updating at each execution to select the appropriate model. The
hyper-parameter calculation process is both computationally
demanding and difficult to implement for embedded systems,
like what is used in the bioimplants. Moreover, the method
in [19] requires a sampling rate that is several times of the
model updating rate, which is also a challenge for many
applications.

Compared to the online identification techniques likes
RPEM, the developed algorithm falls between the online iden-
tification and the batch identification. It uses the pre-processing
to determine the kernel hyperparameters and initialize
RMSPEM. In applications where the prediction accuracy is
crucial to the performance, this prevents the bad performance
in the initial phase of the algorithm. During the operation,
the developed method has the advantage of low complexity and
robustness to different noise models. Even when the predeter-
mined model structure is underparameterized, the developed
method still captures the low-frequency fundamental dynam-
ics. With the forgetting factor incorporated, the developed
method is able to track a time varying system and provide a
k-step-ahead prediction based on the history information
within the k prior steps.

C. Practical Application

The method presented above assume the input to be the
power consumption of implantable device. However that can
be hard to estimate for a practical system. Instead, we can
choose the input of the model to be the controllable system
operating status, and the relationship between the input and
output of the model can be learned online during the operation.

Due to the small size of an implantable device, the
temperature measured by the temperature sensor can be used
to approximate the hot spot temperature in most of the cases.
In those cases where the temperature sensor is placed far away
from the hot spot of an implantable device, we can evaluate
the relationship between the measured temperature and the
hotspot temperature during the preprocessing phase, then
choose the temperature threshold of thermal management more
conservatively, so that the actual hot spot will not overheat.
Compared to the state-of-the-art approach [14] that limits the
functionality of the implantable device by considering the
worst case scenario during the design phase, the proposed
method can still achieve better overall performance while
maintaining safe operation.

VI. SIMULATION INVESTIGATION

In this section, the properties of the developed method are
demonstrated with three simulation studies. The first simu-
lation study is a Monte Carlo test with underparameterized
prediction models, wherein the order of the prediction model
is lower than that of the data generation system. The second
simulation study is a Monte Carlo test that features different
noise models. The third simulation study demonstrates the
performance of the developed method with a linear time
varying system.

In these simulation studies, the system generates two kinds
of data sets. The first type is the pre-processing data set
Le ={u’(1), y°(),...,u’(Ny), y°(No)}. The second type is
the test data set £ = {u(1), y(1),...,u(N), y(N)}.

The benchmark methods used for comparison are the
commonly used online system identification methods, such
as Recursive ARX and Recursive OE [15], [16], which are
comparable to the proposed method in terms of computational
complexity. More specifically, the methods can be imple-
mented on an embedded platform for real time applications
and the model is updated at every time step when the new
measurements become available. The online Bayesian system
identification techniques mentioned in [19], [20] have higher
computational cost, as it maintains a high order model and rely
on hyper-parameter updating at each execution to select the
appropriate model. The hyper-parameter calculation process
is both computationally demanding and difficult to implement
for embedded systems. Moreover, the method in [19] requires
a sampling rate that is several times of the model updating
rate, which is also a challenge for many applications.

A. Underparameterized Model

We consider Monte Carlo study of 100 runs regarding
identification of discrete-time OE models (4). At each run,
a different 30th order transfer function is generated using the
procedure described in [18]. A second order input filter is also
generated using the similar procedure.

The input in the pre-processing data set £ is the realization
from white Gaussian noise of unit variance filtered by the
input filter. The delay of the input is equal to 1. Starting from
zero initial conditions, 1000 input-output data are collected
with the output corrupted by an additive white Gaussian noise.
The signal-to-noise ratio (SNR) is randomly chosen with in
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Fig. 1. Identification of discrete-time OE-models.

[1, 10] at every run. In the left two test cases of Figure I,
the preprocessing data set contains the first 150 input-output
data while all the 1000 data are used in the right two cases.

Two types of test data sets are generated at every run. The
first one contains the white noise corrupted output obtained
using a unit variance white Gaussian noise as input. The sec-
ond one is obtained with a test input generated using the same
procedure as in the pre-processing data.

The performance measure (59) as in [18], which represents
the variance of the prediction model, is adopted in this article
to compare different estimated models. The prediction horizon
is chosen to be 20 steps.

SN @) = Sl = k)2
SN () = 7)

The following 7 estimation methods are implemented for
comparison:

1) RecursiveARX: 1t implements the recursive PEM
approach with ARX model of 8th order. The estimated
model is used to predict the output of 20 steps ahead.
The estimator is implemented with the rarx Matlab
routine.

2) RecursiveOE: The recursive OE estimator implements
the OE model of 20th order and it predicts the out-
put of 20 steps ahead according to the new available
data.

3) RMSPEM+CV: The RMSPEM algorithm with model
order selected via cross validation (CV). Specifically,
the pre-processing data are split into two parts £ and
L7, containing the first and last % input-output pairs in
L° respectively. The candidate models have the structure
that the polynomials B and F have the same order which
varies between 1 and 30. For OE models with differ-
ent orders, the model parameters are obtained by the
batch pre-processing with the estimation data £. Then
the prediction errors are computed for the validation

Fe@ =100[1-

(59)

data Lp. The model order that maximizing the prediction
performance is selected and the final model parameter
estimation is calculated with batch pre-processing for
the complete data set L£°.

4) RMSPEM+-Or: The RMSPEM algorithm with an oracle
(Or). In particular, for different model orders between
1 and 30, we use the batch pre-procesing to calculate
the model parameters with £°. Then the oracle chooses
the model structure that maximizes the fit on the test
data. It represents a case that is impractical in general
but provides a reference for performance evaluation.

5) RMSPEM: The RMSPEM algorithm that uses the OE
model of 20th order.

6) RMSPEM+DC,TC,SS: The Bayesian RMSPEM algo-
rithm equipped with DC, TC, and SS respectively.
The employed model is 20th order. During the pre-
processing, the kernel hyperparameters are estimated by
solving the marginal likelihood optimization.

Fig. 1 shows the boxplots of the 100 performance measures
calculated in the Monte-Carlo study. The left panels are
the results that use only the first 150 input output data for
preprocessing, and the right panels are the results that use full
1000 input output data during preprocessing. The top panels
show the performance measures with the white input signal
and the bottom panels are the performance with the filtered
input signal like in the pre-processing data set. The vertical
axis represent the performance measure for each estimator.

In all the four simulation cases, the Recursive ARX method
achieves good performance, but is not as good when the
input is filtered.The PEM method can’t guarantee the k-step-
ahead prediction accuracy. The RMSPEM+-CV approach has
good prediction performance for the case with filtered input
signal, but for white input signal the performance is unaccept-
able, especially when there is less pre-processing data. The
RMSPEM+-Or represents the ideal case where the test data
is available for determining the model structure. It is shown
that RMSPEM+-Or achieves good prediction performance in
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Fig. 2.

all of the four scenarios and is therefore used as reference.
The RMSPEM algorithm without any regulator is also imple-
mented. When the input signal is white noise, the prediction
performance is significantly inferior compared to other esti-
mators. With the incorporated kernels, the Bayesian RMSPEM
achieves satisfactory prediction for 20 steps ahead. In the white
noise input case, the Bayesian RMSPEM even outperforms the
RMSPEM+-Or.

Additionally, it is obvious that if the data used for
pre-processing is similar to the test data, the prediction perfor-
mance is generally better. This is because the initial estimate
obtained through the preprocessing is more likely to be in
the neighborhood of the “good” estimate. More preprocessing
data helps to improve the prediction performance, but in
the Bayesian RMSPEM case the improvement is limited.
Therefore, it is shown that the developed Bayesian RMSPEM
method is very robust to the pre-processing data.

B. Box-Jenkins System

Let’s consider a Box-Jenkins type data- (generatlon system,
in which G(g) = B—q) and H(q) = q are 30th order
transfer functions generated using the procedure described in
the previous section. The SNR is randomly chosen from 1
to 10. The system is excited by two types of input signal.
The first type of input signal is a white Gaussian noise with
unit variance. The second type is the realization from white
Gaussian noise filtered by a second order filter. The delay of
the input is equal to 1. Starting from zero initial conditions,
1000 input-output data are collected.

Two sets of pre-processing data are generated. Both contains
the first 200 input output data of the system excited with
filtered white Gaussian noise. The first preprocessing data
set is generated using only the system process model G(q).
The second preprocessing data set is generated using both
the process model G(g) and the noise model H(g) in the
Box-Jenkins model. Moreover, two sets of test data are used,
which include one having the input with the same character-
istic of the pre-processing data and another one that use white
Gaussian noise as input.
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Identification of discrete-time Box Jenkins models.

The following estimators are used in this study:

1) RecursiveARX: 1t implements the recursive PEM
approach with ARX model of 30th order. The estimated
model is used to predict the output 20 steps ahead.

2) RecursiveOE: The recursive OE estimator implements
the OE model of 30th order. The prediction horizon is
20 steps.

3) RMSPEM+CV, RMSPEM+Or, RMSPEM: These three
estimators use the same setup as in the previous
simulation study.

4) RMSPEM+DC,TC,SS: The Bayesian RMSPEM
approach with DC, TC, SS kernels respectively. The
kernel hyperparameters and the weight y are determined
using the preprocessing data.

The Monte Carlo study runs 80 tests.

performance are plotted in Figure 2.

It is demonstrated in this study that the proposed method
generally has a superior performance over the Recursive ARX
method despite the type of kernel used. Moreover, generating
pre-processing data with only the process model G(g) gives
a better initial estimation, thus the Bayesian RMSPEM better
captures the underlying process model in the Monte Carlo tests
shown in the left panel of Figure 2.

The prediction

C. LTV System

In this study, the online parameter identification of linear
time varying system with unknown order is investigated. The
plant has two operating modes. The first mode has a 30th order
transfer function generated randomly using a similar process as
described in Section VI-A. The transfer function of the second
mode is generated by perturbing the transfer function of the
first mode with two additional poles and zeros. Thus both
order and parameters of the time varying system change when
switching from the first mode to the second mode. 100 data
sets consisting of 3000 input-output measurement pairs are
generated using Monte Carlo simulations. The system switch
at time k = 1001. The input of the system is generated as
the realization of a unit variance Gaussian signal filtered by a
randomly generated second order filter.
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TABLE |
EXECUTION TIME OF THE TWO ESTIMATORS
ARX order_select | Bayesian RMSPEM
mean 1.1755 s 0.0506 s
std 11.7552 0.5002

The first 400 input output data are used for pre-processing
and the rest of them are used for testing. Two estimators are
implemented for comparison. The first one is the recursive
ARX method which chooses the model order that minimizes
the prediction error at each time instant. The second one is the
Bayesian RMSPEM method with DC regularizer whose hyper-
parameters are determined during the preprocessing process.
Both recursive ARX and the Bayesian RMSPEM use a for-
getting factor of 0.98. The prediction window is set to be 20
steps and the order of the prediction model is chosen to be 30.

The prediction performance of the Monte Carlo study is
shown in Figure 3 with the y axis representing the perfor-
mance measure calculated using (59). It is shown that the
proposed method is able to track the switch of the time
varying system, while the recursive ARX method fails to do so.
Moreover, Bayesian RMSPEM is considerably faster than the
recursive ARX with order selection. As is shown in Table I,for
the 3000 input-output data, the mean cumulative time of
the two estimators are 0.0506 seconds and 1.1755 seconds
respectively. This result is measured on a computer platform
with Intel 17-3770 3.40GHz processor and 12 GB memory.

VII. THERMAL MODELING OF UTAH ELECTRODE ARRAY

In this section, the proposed Bayesian RMSPEM method
is employed to predict the thermal effect of Utah electrode
array (UEA), which is a 3-D microelectrodes used for deep
brain stimulation [28]. The proposed method is suitable for this
application is because it provides an accurate temperature pre-
diction with low computational complexity. The performance
of the method is demonstrated with a COMSOL simulation
and an in-vitro experiment.

A. COMSOL Simulation

In this study, the developed method is used to model the
thermal effect of the UEA. A COMSOL Multiphysics model
(Figure 4) is implemented for what is demonstrated in [28].
The details of the model is explained in [8]. The UEA is
placed on the surface of the brain tissue and a probe is place
at (x,y,z) = (0,0,0.042) to measure the temperature. The
simulation setup is summarized in Table II. The COMSOL

0.04

0.02

-0.85

0.05

(b)

Fig. 4. lllustration of the developed COMSOL model (a) cylinderical
human brain model. (b) the UEA model [8].
TABLE Il
ComMsoL MODEL PARAMETERS
Thermal Conductivity | Specific heat capacity Density
(W/(m - K)) (J/(kg - K)) (kg/m?)
Brain 0.528 3640 1041
Skull 0.650 1300 1990
Scalp 0.342 3150 1100
Blood 0.530 3840 1060
Silicon 124.0 702 2329

simulation is conducted for 1000 seconds. The power dissipa-
tion of the UEA is randomly generated every 10 seconds using
a Gaussian distribution, which are then constrained within
[0,0.02] mW. The temperature measurements are recorded
and converted into the temperature increase with respect to
the body temperature, then stored along with the generated
power dissipation at the same time instant.

Bayesian RMSPEM is used to generate a model that pre-
dicts the temperature increase of the UEA given its power
dissipation. The prediction window of the Bayesian RMSPEM
is set to be 10 steps. Each step is 10 seconds. The data of first
200 seconds are used for the pre-processing. The Bayesian
RMSPEM updates the parameters of a 5th order prediction
model according to the temperature increase obtained by
COMSOL. Then the updated model is used to predict the tem-
perature 10 steps later via the j-step-ahead predictor (27). This
prediction is then compared with the results obtained from
COMSOL. The comparison results are shown in Figure 5.

This comparison result indicates that the thermal dynamics
of UEA can be captured by the Bayesian RMSPEM method.
The prediction performance is 91.0195. The Mean Square
Error of the prediction is about 1.2850 x 107> °C.

B. In Vitro Experiment

An in-vitro experiment system [23] is built to emulate the
thermal effect of UEA. The system uses a custom designed
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Fig. 6. (a) The developed hardware testing system. (b) Hardware
diagram. (c) The developed TMTV system. [23].

temperature monitoring and management test vehicle (TMTV)
with heat sources and temperature sensors to emulate the
implanted electronics and a water circulation system to emu-
late the blood perfusion effect. A TI MSP430G2 board acts
as the middleware between the TMTYV and PC. It controls the
operation of TMTV via sending PWM signals within the range
of [0, 1000] to the heat sources and sends the temperature
measurements back to PC, which is then processed by the
LabView front end. The PWM signal controls the duty cycle
of the heat sources, with 0 being 100% and 1000 being 0%.
Figure 6 demonstrates the developed hardware testing system.

We use this testing system to evaluate the prediction accu-
racy of the simplified thermal model. More specifically, two
experiments are conducted. The first experiment randomly
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Fig. 7. Experiment results (a) Gaussian input. (b) Filtered Gaussian
input.

generates 2000 PWM signals within the range of [0, 1000]
using Gaussian distribution and apply the PWM signals to the
heat sources on TMTV with a step size of 10 seconds. The
temperature recorded by the onboard sensors are then com-
pared with the temperature predicted by the proposed Bayesian
RMSPEM method and the prediction error are used for model
updating. The Bayesian RMSPEM method implements a 20th
order OE model and predicts the temperature measurements
of 10 steps ahead. The results are presented in Figure 7(a). It is
demonstrated that the Bayesian RMSPEM accurately predicts
the temperature variation despite the varying PWM signal and
achieves an overall prediction mean square error of 0.131 °C.

The second experiment generates a random second order
low pass filter and applies it to the 2000 random PWM signals.
The filtered PWM signal is then applied to the TMTYV. This
is used to emulate the output of a real thermal management
system, where the computed control signal is usually a low
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frequency signal that depends on various inputs. In this
experiment, it is shown in Figure 7(b) that the temperature
output can be predicted with a 5th order OE model, which
is much simpler than the 20th order OE model used in the
first experiment. By taking advantage of this low order model,
the computational cost of the proposed method can be greatly
reduced. The overall prediction mean square error is about
0.024 °C.

VIIl. CONCLUSION

With the development of more powerful implantable
devices, especially the neural prosthesis, the overheating of
such devices has become a hidden hazard. Accurate long
range prediction of thermal effect is critical to maintain safe
operation of implantable device. The existing methods can not
guarantee long term performance and achieve full potential
of device. A Bayesian multi-step prediction method is devel-
oped in this article to generate accurate online thermal effect
prediction for implantable devices with limited computational
power. The developed method iteratively minimize a function
of the j-step-ahead prediction error and recently developed
system identification techniques relying on regularization is
adopted to improve the prediction performance. Specifically,
we assume the online setting in that new data become available
at each time instant and then saved into a FIFO queue of fixed
length. Based on the input output data saved in the queue,
the parameters are updated by iteratively minimizing the
Jj-step-ahead prediction error of the new data. Three simulation
studies are presented to demonstrate the performance of the
developed method. The first Monte Carlo simulation study
shows that when the prediction model is underparameterized
the developed method can still capture the low frequency
dynamics of the system. The second Monte Carlo simula-
tion study shows that the developed method is robust to
different noise models and different input signals. The third
Monte Carlo simulation study demonstrates that the developed
method is able to capture the dynamics of a time varying
system. The application of predicting the thermal effect of
UEA is demonstrated via both a COMSOL simulation and an
in-vitro experiment, which shows that the developed method
can capture the complicated thermal dynamics with great
accuracy while only requiring a simple thermal model.
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