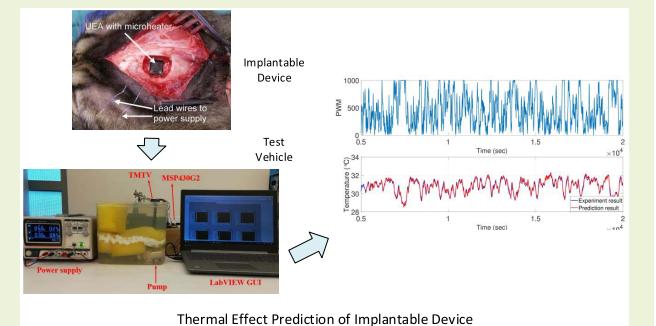


Online Thermal Effect Modeling and Prediction of Implantable Devices

Ruizhi Chai, *Member, IEEE*, and Ying Zhang[✉], *Senior Member, IEEE*

Abstract—The overheating caused by the operation of implantable device can cause damage to the surrounding tissue. In applications like neural prosthesis, 1 °C of temperature increase could lead to irreversible damage to the subject. Predicting the overheating effect is therefore critical to maintain safe operation. This work proposes a Bayesian recursive multi-step prediction method for implantable device to predict the overheating effect. The method proposed in this article achieves accurate prediction within a horizon with low complexity by model updating that iteratively minimizes a function of the j -step-ahead prediction error. At each time instant, the new available input output data are stored in a First In First Out (FIFO) queue of fixed length, and the model parameters are updated by iteratively minimizing the j -step-ahead prediction error of the new data. Moreover, the regularization methods are introduced to improve the prediction performance by taking the Bayesian interpretation of the parameters into consideration. Monte Carlo simulation studies indicate that the developed method is able to estimate the fundamental dynamics of the system when the prediction model is underparameterized, and is robust to measurement noise. For time varying systems, the developed method can capture the system dynamics during the system variation. The proposed method is demonstrated via an in-vitro test vehicle, which shows that the temperature increase can be predicted with high accuracy and low complexity.



Thermal Effect Prediction of Implantable Device

Index Terms—Prediction error minimization, multi-step prediction, thermal effect, implantable devices.

I. INTRODUCTION

WITH implantable device becoming more and more powerful, the temperature increase caused by its operation has drawn growing concern. Within human body, even a few degree Celsius above the normal body temperature could cause detrimental effect to the subject. It is reported that a patient with an implanted deep brain stimulator (DBS) suffered significant brain damage after diathermy treatment, and subsequently died [1], [2]. Postmortem examinations indicated that the tissue near the lead electrodes of the DBS deteriorated due to overheating. Researchers have shown that a temperature increase greater than 1 °C could have long-term damage to the brain tissue [3]. It is considered safer to maintain a maximum temperature increase of 1 °C for brain implants [4]. For visual implants, where the stimulating circuitry is in close contact with the retina, even small temperature increase could have potentially deleterious effects on retinal integrity [5].

In many practical applications, the implantable devices only have very limited power consumption and communication with

external world, or stay in sleep mode most of the time. The thermal effect is not a significant problem in these cases. Blood perfusion in the human body often helps to disperse the heat accumulated around the implantable device. The thermal safety can be guaranteed by limiting the functionality of the implantable device during the design phase.

For applications like neural prosthesis, where implantable devices need to constantly stimulate the body and its neural tissues with a large number of electrodes and are in continuous communication with external devices, the heat accumulated around the implantable device can be dangerous to the subject body [6]. With the incorporation of high-density, functional electronic components and as the number of stimulation channels increases, this problem becomes more and more significant. For these applications, an accurate real-time temperature model is crucial to guarantee the safe operation of the implantable device.

In the neural prosthesis applications, however, it can be difficult to obtain a parametric model for the thermal effect due to the complex internal structure of the human brain and the dimension of bio-implants. A heat transfer model based on Pennes bioheat equation [7] can capture the temperature increase of the surrounding tissue, but is infeasible for real time applications [8]. Numerical methods [9]–[13] that have been developed to solve the Pennes bioheat equation all rely on sampling the temperature value in the simulation domain as they evolve in time. The time complexity and space complexity make them unsuitable for real-time applications.

Manuscript received August 8, 2020; revised September 10, 2020; accepted September 13, 2020. This work was supported in part by the National Science Foundation under Grant ECCS-1711447. The associate editor coordinating the review of this article and approving it for publication was Prof. Subhas C. Mukhopadhyay. (Corresponding author: Ying Zhang.)

The authors are with the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail: rchai3@gatech.edu; yzhang@gatech.edu).

Digital Object Identifier 10.1109/JSEN.2020.3025874

69 Researchers in the field have been evaluating the thermal
 70 effect during the design phase [14], but real-time thermal
 71 effect prediciton is critical to achieve the full potential of the
 72 implantable device.

73 In our previous work [8], the thermal modeling problem
 74 has been studied based on the system identificaiton methods
 75 [15], [16], or more specifically the mutli-step prediction error
 76 method [17]. However, the performance of the proposed
 77 method gradually degrade through time with the thermal
 78 model deviates from the actual system. Recently, Bayesian
 79 estimation based techniques has also been introduced to the
 80 system identification problem [18]–[22]. In particular, prior
 81 information is introduced to the identification process by
 82 designing a covariance, which is also known as kernel in the
 83 machine learning literature.

84 In this article, based on the previous results [23], we study
 85 the online prediction of thermal effect of an implantable
 86 device, with a focus on neural prosthesis. The Bayesian
 87 estimation techniques is incorporated to generate a more robust
 88 and accurate thermal effect prediction model that is suitable for
 89 real-time applications. More specifically, a Bayesian recursive
 90 multi-step prediction error method (Bayesian RMSPEM) is
 91 developed based on iteratively minimizing a function of the
 92 j -step ahead prediction error. The data used for the estimation
 93 is stored in a FIFO queue with fixed length. At each time
 94 instant, when the new output enters the queue, the estimator
 95 uses the data within the j prior steps to calculate the
 96 prediction error of the new data and iteratively update the
 97 model parameter for $j = 1, \dots, k$ in the prediction horizon.
 98 Output Error (OE) type model is employed as the predictor,
 99 as it is able to capture the low-frequency fundamental
 100 dynamics even when the predictor order is lower than the
 101 underlying system. Moreover, with the Bayesian estimation
 102 techniques, the proposed method is able to capture the system
 103 dynamics when the predictor order is greater than that of the
 104 system. By employing the forgetting factor and taking
 105 advantage of the iterative updating procedure, time-varying
 106 thermal dynamics can be modeled with the developed method
 107 regardless of noises. The developed method is shown to have
 108 low complexity and is therefore appropriate for realtime imple-
 109 mentation on implantable devices with limited computational
 110 power.

111 The remainder part of this article is organized as follows.
 112 Following Section I, Section II introduces the system model
 113 used in the paper. The regularized batch preprocessing pro-
 114 cedure is described in Section III. The proposed Bayesian
 115 recursive identification method is presented in Section IV.
 116 Section V extends the algorithm with forgetting factor and
 117 discusses about the computational complexity of the algorithm.
 118 Simulation investigations are presented in Section VI and the
 119 UEA thermal effect prediction is presented in Section VII.
 120 At last, the paper is concluded in Section VIII.

II. SYSTEM MODEL AND IDENTIFICATION CRITERION

122 Let's assume the underlying thermal dynamics \mathcal{F} can be
 123 defined as a general Single Input Single Output (SISO) linear
 124 discrete-time equation of the type:

$$125 \quad y(t) = G(q, \theta^o)u(t) + H(q, \theta^o)e(t), \quad (1)$$

126 where the true parameters of the thermal dynamics are denoted
 127 by θ^o . $G(q, \theta^o)$ represents the transfer function from input
 128 (power consumption) to output (temperature in the surrounding
 129 tissue), and $H(q, \theta^o)$ is the transfer function from a white
 130 noise source e to output additive disturbances. Both $G(q, \theta^o)$
 131 and $H(q, \theta^o)$ are asymptotically stable transfer functions. q
 132 denotes the shift operator $qy(t) = y(t + 1)$.

133 Depending on how to parameterize G and H , many model
 134 structures have been proposed, such as the autoregressive with
 135 exogenous terms (ARX) model, the autoregressive-moving
 136 average with exogenous terms (ARMAX) model, and the
 137 Box-Jenkins model. In this article, the estimation model with
 138 the output error (OE) structure are considered, since the
 139 thermal dynamics around the implantable device can be highly
 140 complicated and time varying. With a OE model structure, low
 141 frequency dynamics can still be captured even when the model
 142 order is lower than that of the thermal dynamics.

143 Let $G(q, \theta^o)$ be defined as

$$144 \quad G(q, \theta^o) = \frac{N_G(q)}{D_G(q)} = \frac{b_1^o q^{-1} + \dots + b_{n_b^o}^o q^{-n_b^o}}{1 + a_1^o q^{-1} + \dots + a_{n_a^o}^o q^{-n_a^o}}, \quad (2)$$

145 and

$$146 \quad \theta^o(\mathbf{a}^o, \mathbf{b}^o) = \begin{bmatrix} \mathbf{a}^o \\ \mathbf{b}^o \end{bmatrix} = \begin{bmatrix} -a_{n_a^o}^o \\ \vdots \\ -a_1^o \\ b_1^o \\ \vdots \\ b_{n_b^o}^o \end{bmatrix} \quad (3)$$

147 represents the system parameter in G . The numerator $N_G(z)$
 148 and the denominator $D_G(z)$ are assumed to be coprime.

149 The OE prediction model can be represented as

$$150 \quad \hat{y}(t|\theta) = \hat{G}(q, \theta)u(t), \quad (4)$$

151 which doesn't explicitly model the noise. In (4),

$$152 \quad \hat{G}(q, \theta) = \frac{\hat{N}_G(q)}{\hat{D}_G(q)} = \frac{b_1 q^{-1} + \dots + b_{n_b} q^{-n_b}}{1 + a_1 q^{-1} + \dots + a_n q^{-n_a}}, \quad (5)$$

153 and

$$154 \quad \theta = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} -a_{n_a} \\ \vdots \\ -a_1 \\ b_1 \\ \vdots \\ b_{n_b} \end{bmatrix}. \quad (6)$$

155 In general, $n_a \neq n_a^o$ and $n_b \neq n_b^o$.

156 Suppose the input output data of \mathcal{F} are recorded in sequen-
 157 tial in the time domain as

$$158 \quad \mathcal{L} = \{u(1), y(1), \dots, u(N), y(N)\}. \quad (7)$$

159 Then the criterion of fit can be defined for the j -step-ahead
 160 prediction as

$$161 \quad J_P^N(j) = \frac{1}{N-n_b-j+1} \sum_{t=n_b+j}^N [y(t) - \hat{y}(t|t-j)]^2 + \gamma \theta^T P^{-1} \theta. \quad (8)$$

163 In which, $\hat{y}(t|t-j)$ denotes the prediction of $y(t)$ given the
 164 output data up to $t-j$ and input data up to t . Prior information
 165 of the system parameters are taken into account by introducing
 166 a regularization term $\theta^T P^{-1} \theta$ into (8) with P^{-1} represents the
 167 covariance information of the parameter prior distribution. γ
 168 denotes the relative weight of the regularization term.

169 The multi-step prediction error criterion is defined as the
 170 average of the j -step-ahead criterion with $j = 1, \dots, k$:

$$171 J_{MP}^N = \frac{1}{k} \sum_{j=1}^k J_P^N(j). \quad (9)$$

172 Gianluigi Pillonetto *et al.* [18], [24] summarized the
 173 regularization options for system identification, such as Diag-
 174 onal/Correlated (DC) kernel, Tuned/Correlated (TC) kernel
 175 and Stable Spline (SS) kernel, whose frequency properties
 176 are summarized in [25]. The kernels can also be derived
 177 for system identification purposes [26]. The regularized cost
 178 function can then be solved by the regularized least square
 179 estimation.

180 III. REGULARIZED BATCH PRE-PROCESSING

181 To determine the hyperparameters of the regularization and
 182 choose a good starting point for searching the minimum of the
 183 cost function presented in the previous section, a batch of data
 184 is used to initialize the Bayesian RMSPEM algorithm. This
 185 batch of data is called the pre-processing data and represented
 186 as $\mathcal{L}^o = \{u^o(1), y^o(1), \dots, u^o(N_0), y^o(N_0)\}$. In practice, this
 187 procedure helps to generate a reliable model estimation in the
 188 initial phase. In this section, we present how the regularization
 189 technique can be used for the multi-step prediction under the
 190 batch setting.

191 First, (4) can be converted into the linear regression
 192 form as

$$193 \hat{y}(t|\theta) = \phi(t)^T \theta. \quad (10)$$

194 Given the data set \mathcal{L}^o , the one-step predictions can be
 195 concatenated into the vector form

$$196 Y = \Phi \theta, \quad (11)$$

197 in which

$$198 Y = \begin{bmatrix} \hat{y}(1|\theta) \\ \vdots \\ \hat{y}(N_0|\theta) \end{bmatrix}, \quad (12)$$

199 and

$$200 \Phi = \begin{bmatrix} \phi(1)^T \\ \vdots \\ \phi(N_0)^T \end{bmatrix}. \quad (13)$$

201 Let the regularization matrix P be parameterized in terms of
 202 the hyperparameter η . The hyperparameter can be determined
 203 through

$$204 \hat{\eta} = \arg \min_{\eta} Y^T Z(\eta)^{-1} Y + \log |Z(\eta)|, \quad (14)$$

$$205 Z(\eta) = \Phi P(\eta) \Phi^T + \gamma^2 I_{N_0}, \quad (15)$$

206 which represents the maximization of the negative log likeli-
 207 hood function for estimating η from Y .

208 Let's then derive the multi-step prediction error cost
 209 function and its optimization procedure for a batch of data.
 210 Let $\hat{y}(t+j|t)$ be the output value predicted by iterating j
 211 times the recursive equation of (4). It can be represented as
 212 [16], [17]:

$$213 \hat{y}(t+j|t) = R_j(q)y(t) + E_j(q)\hat{N}_G(q)u(t+j), \quad (16)$$

214 where $R_j(q)$ and $E_j(q)$ can be calculated as

$$215 R_j(q) = \mathbf{C} \mathbf{A}^j \begin{bmatrix} q^{-n_a+1} \\ \vdots \\ 1 \end{bmatrix}, \quad (17)$$

216 and

$$217 E_j(q) = \mathbf{C} \sum_{i=0}^{j-1} \mathbf{A}^i \mathbf{B} q^{-i}. \quad (18)$$

218 In which,

$$219 \mathbf{A} = \begin{bmatrix} 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & \dots & 1 \\ -a_{n_a} & -a_{n_a-1} & \dots & -a_1 \end{bmatrix}, \quad (19)$$

$$220 \mathbf{B} = \mathbf{C}^T, \quad (20)$$

221 and

$$222 \mathbf{C} = [0 \ 0 \ \dots \ 1]. \quad (21)$$

223 Let

$$224 Y_t = \begin{bmatrix} y^o(t-n_a+1) \\ \vdots \\ y^o(t) \end{bmatrix}, \quad (22)$$

225 and

$$226 U_{t,j} = \begin{bmatrix} u^o(t+j-1) \\ u^o(t+j-2) \\ \vdots \\ u^o(t-n_b+1) \end{bmatrix}. \quad (23)$$

227 Then define

$$228 \phi_j(t) = \begin{bmatrix} Y_t \\ U_{t,j} \end{bmatrix}, \quad (24)$$

229 and

$$230 \Theta_j(\theta) = \begin{bmatrix} (\mathbf{C} \mathbf{A}^j)^T \\ M_{j,n_b} \mathbf{b} \end{bmatrix}, \quad (25)$$

231 in which

$$232 M_{j,n_b} = \begin{bmatrix} \mathbf{C} \mathbf{B} & \dots & \mathbf{C} \mathbf{A}^{j-1} \mathbf{B} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \mathbf{C} \mathbf{B} & \dots & \mathbf{C} \mathbf{A}^{j-1} \mathbf{B} \end{bmatrix}^T. \quad (26)$$

233 The j -step-ahead predictor can be reformulated as a linear
 234 regression form:

$$235 \hat{y}(t+j|t) = \phi_j(t)^T \Theta_j(\theta). \quad (27)$$

236 $\Theta_j(\theta)$ is the j -step-ahead mapping of the predictor
 237 parameter θ .

239 For the batch pre-processing data, define

$$240 \quad Y_{N_0}^j = \begin{bmatrix} y^o(n_b + j) \\ \vdots \\ y^o(N_0) \end{bmatrix}, \quad (28)$$

241 and

$$242 \quad \Phi_j = \begin{bmatrix} \phi_j(n_b)^T \\ \vdots \\ \phi_j(N_0 - j)^T \end{bmatrix}. \quad (29)$$

243 Let $R_j^0 = \Phi_j^T \Phi_j$ and $K_j^0 = \Phi_j^T Y_{N_0}^j$.

244 The cost function of batch pre-processing is

$$245 \quad J_{MP}^{N_0}(k) = \frac{1}{k} \sum_{j=1}^k J_P^{N_0}(j), \quad (30)$$

246 in which

$$247 \quad J_P^{N_0}(j) = \frac{1}{N_0 - n_b - j + 1} \|Y_{N_0}^j - \Phi_j \Theta_j(\theta)\|^2 + \gamma \theta^T P^{-1} \theta. \quad (31)$$

249 This cost function can be minimized using the standard
250 Newton method. The optimal model parameters can be estimated
251 iteratively as:

$$252 \quad \theta_{j+1} = \theta_j - \left(\frac{\partial^2}{\partial \theta^2} J_{MP}^{N_0}(j) \Big|_{\theta=\theta_j} \right)^{-1} \nabla_{\theta} J_{MP}^{N_0}(j) \Big|_{\theta=\theta_j}, \\ 253 \quad j = 1, \dots, k - 1. \quad (32)$$

254 The Hessian of $J_{MP}^{N_0}(j)$ can be calculated as:

$$255 \quad \frac{\partial^2}{\partial \theta^2} J_{MP}^{N_0}(j) \Big|_{\theta=\theta_j} = \frac{1}{j} \sum_{s=1}^j \frac{\partial^2}{\partial \theta^2} J_P^{N_0}(s), \quad (33)$$

256 and

$$257 \quad \frac{\partial^2}{\partial \theta^2} J_P^{N_0}(s) \approx \frac{2}{N_0 - n_b - s + 1} \nabla_{\theta} \Theta_s(\theta) R_s^0 \nabla_{\theta} \Theta_s(\theta)^T + 2\gamma P^{-1}. \quad (34)$$

259 The gradient of $J_{MP}^{N_0}(j)$ can be expressed as follows:

$$260 \quad \nabla_{\theta} J_{MP}^{N_0}(j) \Big|_{\theta=\theta_j} = \frac{1}{j} \sum_{s=1}^j \nabla_{\theta} J_P^{N_0}(s) \quad (35)$$

261 and

$$262 \quad \nabla_{\theta} J_P^{N_0}(s) = \frac{2}{N_0 - n_b - s + 1} \nabla_{\theta} \Theta_s(\theta) (R_s^0 \Theta_s(\theta) - K_s^0) \\ 263 \quad + 2\gamma P^{-1} \theta. \quad (36)$$

264 In (34) and (36), Θ_j and its gradient $\nabla_{\theta} \Theta_j$ can be updated
265 iteratively over j :

$$266 \quad \Theta_{j+1} = W_j \Theta_j, \quad (37)$$

$$267 \quad \nabla_{\theta} \Theta_{j+1} = \nabla_{\theta} \Theta_j W_j^T + ([\mathbf{C} \ \mathbf{0}_{1,n_b+j-1}] \Theta_j) H_j^T. \quad (38)$$

268 in which,

$$269 \quad W_j = \left[\begin{bmatrix} \mathbf{A}^T \\ \mathbf{0}_{j,n_a} \\ \mathbf{bC} \end{bmatrix}, \begin{bmatrix} \mathbf{0}_{n_a,n_b-1+j} \\ I_{n_b-1+j} \\ \mathbf{0}_{1,n_b-1+j} \end{bmatrix} \right], \quad (39)$$

and

$$270 \quad H_j = \left[\begin{bmatrix} I_{n_a} \\ \mathbf{0}_{n_b+j,n_a} \end{bmatrix}, \begin{bmatrix} \mathbf{0}_{n_a+j,n_b} \\ I_{n_b} \end{bmatrix} \right]. \quad (40)$$

272 The initial value can be set as $\Theta_1 = \theta$, $\nabla_{\theta} \Theta_1 = I_{n_a+n_b}$.

273 During the pre-processing, R_s^0 and K_s^0 are stored for
274 $s = 1, \dots, k$ and used for initialization of the RMSPEM. The
275 calculated θ also provides an initial start to accelerate the
276 convergence of RMSPEM. In practical applications, the model
277 order selection procedure can be incorporated into the pre-
278 processing. The model order that minimizes the cost function
279 (30) can be used for the following Bayesian RMSPEM.
280 This saves the computational cost during the run time. Due
281 to the robustness to model order, many system variations
282 during the run time can still be captured. Moreover, as will be
283 demonstrated below, the computational cost of the Bayesian
284 RMSPEM is proportional to the model order. In many cases,
285 a low model order can be generated in the pre-processing pro-
286 cedure, which helps to reduce the complexity of the proposed
287 algorithm.

IV. BAYESIAN RECURSIVE MSPEM

289 After the regularization hyperparameters and the RMSPEM
290 initial parameters R_s^0 , K_s^0 and θ_0 are determined through
291 the pre-processing, the Bayesian RMSPEM algorithm updates
292 the parameter estimation at each time instant when there is
293 new data available. Assume the test data is represented as
294 $\mathcal{L} = \{u(1), y(1), \dots, u(N), y(N), \dots\}$, the update procedure
295 of the proposed algorithm will be demonstrated by assuming
296 that the current time instant is N , and the new available data
297 are the input $u(N)$ and output $y(N)$. The model parameters
298 are then updated iteratively using the Newton method based
299 on the prediction error of $y(N)$.

300 As shown in the batch pre-processing, to determine the
301 Hessian matrix and the gradient of the cost function, the R
302 matrix and K matrix must be calculated for $j = 1, \dots, k$.
303 Let's define

$$304 \quad R_j^N = R_j^0 + \Phi_j^T \Phi_j \quad (41)$$

305 and

$$306 \quad K_j^N = K_j^0 + Y_N^j \Phi_j. \quad (42)$$

307 At time N , R_j^N and K_j^N must be stored for $j = 1, \dots, k$.

308 R_j^N can be represented as

$$309 \quad R_j^N = R_j^0 + \sum_{s=n_b}^{N-j} \phi_j(s) \phi_j(s)^T, \quad (43)$$

310 which can then be calculated recursively as

$$311 \quad R_j^N = R_j^{N-1} + \phi_j(N-j) \phi_j(N-j)^T. \quad (44)$$

312 On the right hand side of (44), R_j^{N-1} can be determined
313 with all the data up to $(N-1)$ th discrete time instant, and
314 $\phi_j(N-j)$ contains all the data up to N th discrete time instant.

315 Similarly, K_j^N can be represented as

$$316 \quad K_j^N = K_j^0 + \sum_{s=n_b}^{N-j} \phi_j(s) y(s+j), \quad (45)$$

317 and it can be calculated recursively as

$$318 \quad K_j^N = K_j^{N-1} + \phi_j(N-j)y(N). \quad (46)$$

319 In which, K_j^{N-1} can be determined with all the data up to
320 ($N-1$)th discrete time instant. $y(N)$ is the output measure-
321 ment available at N th discrete time instant. $\phi_j(N-j)$ requires
322 the data up to N th discrete time instant.

323 Furthermore, given the saved R_j^{N-1} and K_j^{N-1} , it only
324 requires the input and output values within a finite time
325 window to calculate R_j^N and K_j^N . More specifically, it requires
326 the output measurements from time $N-k-n_a+1$ to time
327 $N-1$ and input values from time $N-k-n_b+1$ to time $N-1$ to
328 calculate $\phi_j(N-j)$, $j = 1, \dots, k$. To calculate K_j^N , the newest
329 output measurement $y(N)$ is also needed. In practice, all the
330 output measurements and input values necessary to update the
331 R matrix and K matrix can be saved in a FIFO queue as

$$332 \quad \begin{aligned} \text{Input Queue: } & \begin{bmatrix} u(N-k-n_b+1) \\ \vdots \\ u(N-1) \end{bmatrix}, \\ \text{Output Queue: } & \begin{bmatrix} y(N-k-n_a+1) \\ \vdots \\ y(N) \end{bmatrix}. \end{aligned} \quad (47)$$

334 For each $j = 1, \dots, k$, the corresponding R matrix and K
335 matrix have to be saved separately. Each time, when the new
336 input and output values are recorded, R matrix and K matrix
337 are to be updated using (44) and (46) for each j .

338 With the recursive updates of (44) and (46), the estimation
339 of $\frac{\partial^2}{\partial \theta^2} J_P^N(s)$ and $\nabla_\theta J_P^N(s)$ can be formulated as:

$$340 \quad \begin{aligned} \frac{\partial^2}{\partial \theta^2} J_P^N(s) \approx & \frac{2}{N-n_b-s+1} \nabla_\theta \Theta_s(\theta) R_s^N \nabla_\theta \Theta_s(\theta)^T \\ & + 2\gamma P^{-1}, \end{aligned} \quad (48)$$

$$342 \quad \nabla_\theta J_P^N(s) = \frac{2}{N-n_b-s+1} \nabla_\theta \Theta_s(\theta) (R_s^N \Theta_s(\theta) - K_s^N) \\ 343 \quad + 2\gamma P^{-1} \theta. \quad (49)$$

344 Again, Θ_j and its gradient $\nabla_\theta \Theta_j$ can be updated using (39)
345 and (40). Let

$$346 \quad Q_N^j = \frac{1}{j} \sum_{s=1}^j \nabla_\theta \Theta_s(\theta) R_s^N \nabla_\theta \Theta_s(\theta)^T + 2\gamma P^{-1}, \quad (50)$$

$$347 \quad -P_N^j = \frac{1}{j} \sum_{s=1}^j \nabla_\theta \Theta_s(\theta) (R_s^N \Theta_s(\theta) - K_s^N) + 2\gamma P^{-1} \theta. \quad (51)$$

349 Then Q_N^j and P_N^j can be calculated iteratively for
350 $j = 1, \dots, k$ as:

$$351 \quad Q_N^j = \frac{j-1}{j} Q_N^{j-1} + \frac{1}{j} \nabla_\theta \Theta_j(\theta) R_N^j \nabla_\theta \Theta_j(\theta)^T + \frac{2}{j} \gamma P^{-1}, \quad (52)$$

$$353 \quad P_N^j = \frac{j-1}{j} P_N^{j-1} + \frac{1}{j} \nabla_\theta \Theta_j(\theta) (K_s^N - R_s^N \Theta_s(\theta)) - \frac{2}{j} \gamma P^{-1} \theta. \quad (53)$$

355 The parameter update procedure can be represented as

$$356 \quad \theta_{j+1} = \theta_j + \mu (Q_N^j)^{-1} P_N^j. \quad (54)$$

Algorithm 1 Bayesian RMSPEM Method

Require: Previously obtained parameter θ_{pre} , Input Queue U ,
Output Queue Y , R , K
 $\theta = \theta_{pre}$;
 $\Theta = \theta_{pre}$;
 $\nabla_\theta \Theta = I_{n_a+n_b}$;
Set μ ;
 $Q_N = 0$;
 $P_N = 0$;
1: **for** $j=1:k$ **do**
2: Initialize ϕ_j ;
3: $R[j] = R[j] + \phi_j \phi_j^T$;
4: $K[j] = K[j] + \phi_j Y[k]$;
5: $Q_N = \frac{j-1}{j} Q_N + \frac{1}{j} \nabla_\theta \Theta R[j] \nabla_\theta \Theta^T + \frac{2}{j} \gamma P^{-1}$;
6: $P_N = \frac{j-1}{j} P_N + \frac{1}{j} \nabla_\theta \Theta (K[j] - R[j] \Theta) - \frac{2}{j} \gamma P^{-1} \theta$;
7: $\theta = \theta + \mu Q_N^{-1} P_N$;
8: Calculate W_j , H_j ;
9: $\nabla_\theta \Theta = \nabla_\theta \Theta W_j^T + ([C, \mathbf{0}_{1 \times n_b+j-1}] \Theta) H_j^T$;
10: $\Theta = W_j \Theta$;
11: **end for**

357 The computation procedure of the proposed method is
358 summarized in Algorithm 1.

V. ALGORITHM EXTENSION AND ANALYSIS

A. Forgetting Factor

361 For identification of time-varying systems, the
362 aforementioned method can be modified so that past
363 data become less relevant for the current estimation. In this
364 subsection, we propose a routine that use the forgetting factor
365 to weight the past data.

366 Following a classical practice in parametric time-varying
367 system identification [27], we introduce a forgetting factor $\lambda \in$
368 $(0, 1]$ into the update procedure in order to base the estimation
369 mainly on the more recent data. Specifically, we modify the
370 j -step-ahead cost function to be

$$371 \quad J_P^N(j) = \frac{1}{N-n_b-j+1} \|\Lambda_N^j (Y_N^j - \Phi_j \Theta_j(\theta))\|^2 + \gamma \theta^T P^{-1} \theta, \quad (55)$$

372 in which,

$$373 \quad \Lambda_N^j = \begin{bmatrix} \lambda^{\frac{N-n_b-j}{2}} & & & \\ & \lambda^{\frac{N-n_b-j-1}{2}} & & \\ & & \ddots & \\ & & & \lambda^0 \end{bmatrix} \quad (56)$$

375 and λ can often chose from 0.98 to 0.995. By using this
376 forgetting factor, measurements older than $T_0 = \frac{1}{1-\lambda}$ samples
377 are included in the criterion with a weight that is $e^{-1} \approx 36\%$
378 of that of the most recent measurement.

379 With the modified cost function, the algorithm update proce-
380 dure remains the same while the update of data matrix R_s^N and
381 K_s^N in Hessian matrix (52) and Gradient (53) can be modified
382 as

$$383 \quad \bar{R}_j^N = \lambda \bar{R}_j^{N-1} + \phi_j(N-j) \phi_j(N-j)^T, \quad (57)$$

$$384 \quad \bar{K}_j^N = \lambda \bar{K}_j^{N-1} + \phi_j(N-j) y(N). \quad (58)$$

385 **B. Performance Analysis**

386 The time complexity of Algorithm 1 can be analyzed in
 387 terms of the number of flops (floating-point operation). For
 388 each $j = 1, \dots, k$, the calculation requires order $(n_a + n_b)^3$
 389 and j^2 flops. Therefore, the entire algorithm for $j = 1, \dots, k$
 390 requires order $(n_a + n_b)^3$ and k^3 . More specifically, the time
 391 complexity is in an order of magnitude similar to square
 392 matrix multiplication. In real applications, benefiting from the
 393 property of robustness to model orders, the computational cost
 394 can be reduced with a lower model order and shorter prediction
 395 range.

396 In terms of the space complexity, besides the input queue
 397 of length $k + n_b - 1$ and the output queue of length
 398 $k + n_a$, the algorithm needs to store $R[j]$ and $K[j]$ for each
 399 $j = 1, \dots, k$. $R[j]$ is a matrix in $\mathcal{R}^{(n_a+n_b+j-1) \times (n_a+n_b+j-1)}$
 400 and $K[j]$ is a vector in $\mathcal{R}^{n_a+n_b+j-1}$. The previous parameter
 401 estimation $\theta \in \mathcal{R}^{n_a+n_b+j-1}$ also needs to be stored.

402 Online system identification methods like RPEM (recursive
 403 prediction error method) are often less computationally
 404 demanding. However it cannot guarantee long term prediction
 405 performance, especially in the case where complex noise
 406 models are involved. Therefore, it is not very suitable for
 407 practical applications like adaptive MPC, where the prediction
 408 accuracy within a certain horizon is crucial to the performance
 409 of the closed-loop control.

410 The method proposed in [19] has higher computational
 411 cost compared to the method proposed in this article, as it
 412 maintains a high order model and rely on hyper-parameter
 413 updating at each execution to select the appropriate model. The
 414 hyper-parameter calculation process is both computationally
 415 demanding and difficult to implement for embedded systems,
 416 like what is used in the bioimplants. Moreover, the method
 417 in [19] requires a sampling rate that is several times of the
 418 model updating rate, which is also a challenge for many
 419 applications.

420 Compared to the online identification techniques like
 421 RPEM, the developed algorithm falls between the online iden-
 422 tification and the batch identification. It uses the pre-processing
 423 to determine the kernel hyperparameters and initialize
 424 RMSPEM. In applications where the prediction accuracy is
 425 crucial to the performance, this prevents the bad performance
 426 in the initial phase of the algorithm. During the operation,
 427 the developed method has the advantage of low complexity and
 428 robustness to different noise models. Even when the predeter-
 429 mined model structure is underparameterized, the developed
 430 method still captures the low-frequency fundamental dynamics.
 431 With the forgetting factor incorporated, the developed
 432 method is able to track a time varying system and provide a
 433 k -step-ahead prediction based on the history information
 434 within the k prior steps.

435 **C. Practical Application**

436 The method presented above assume the input to be the
 437 power consumption of implantable device. However that can
 438 be hard to estimate for a practical system. Instead, we can
 439 choose the input of the model to be the controllable system
 440 operating status, and the relationship between the input and
 441 output of the model can be learned online during the operation.

442 Due to the small size of an implantable device, the
 443 temperature measured by the temperature sensor can be used
 444 to approximate the hot spot temperature in most of the cases.
 445 In those cases where the temperature sensor is placed far away
 446 from the hot spot of an implantable device, we can evaluate
 447 the relationship between the measured temperature and the
 448 hotspot temperature during the preprocessing phase, then
 449 choose the temperature threshold of thermal management more
 450 conservatively, so that the actual hot spot will not overheat.
 451 Compared to the state-of-the-art approach [14] that limits the
 452 functionality of the implantable device by considering the
 453 worst case scenario during the design phase, the proposed
 454 method can still achieve better overall performance while
 455 maintaining safe operation.

456 **VI. SIMULATION INVESTIGATION**

457 In this section, the properties of the developed method are
 458 demonstrated with three simulation studies. The first simu-
 459 lation study is a Monte Carlo test with underparameterized
 460 prediction models, wherein the order of the prediction model
 461 is lower than that of the data generation system. The second
 462 simulation study is a Monte Carlo test that features different
 463 noise models. The third simulation study demonstrates the
 464 performance of the developed method with a linear time
 465 varying system.

466 In these simulation studies, the system generates two kinds
 467 of data sets. The first type is the pre-processing data set
 468 $\mathcal{L}^o = \{u^o(1), y^o(1), \dots, u^o(N_0), y^o(N_0)\}$. The second type is
 469 the test data set $\mathcal{L} = \{u(1), y(1), \dots, u(N), y(N)\}$.

470 The benchmark methods used for comparison are the
 471 commonly used online system identification methods, such
 472 as Recursive ARX and Recursive OE [15], [16], which are
 473 comparable to the proposed method in terms of computational
 474 complexity. More specifically, the methods can be imple-
 475 mented on an embedded platform for real time applications
 476 and the model is updated at every time step when the new
 477 measurements become available. The online Bayesian system
 478 identification techniques mentioned in [19], [20] have higher
 479 computational cost, as it maintains a high order model and rely
 480 on hyper-parameter updating at each execution to select the
 481 appropriate model. The hyper-parameter calculation process
 482 is both computationally demanding and difficult to implement
 483 for embedded systems. Moreover, the method in [19] requires
 484 a sampling rate that is several times of the model updating
 485 rate, which is also a challenge for many applications.

486 **A. Underparameterized Model**

487 We consider Monte Carlo study of 100 runs regarding
 488 identification of discrete-time OE models (4). At each run,
 489 a different 30th order transfer function is generated using the
 490 procedure described in [18]. A second order input filter is also
 491 generated using the similar procedure.

492 The input in the pre-processing data set \mathcal{L}^o is the realization
 493 from white Gaussian noise of unit variance filtered by the
 494 input filter. The delay of the input is equal to 1. Starting from
 495 zero initial conditions, 1000 input-output data are collected
 496 with the output corrupted by an additive white Gaussian noise.
 497 The signal-to-noise ratio (SNR) is randomly chosen with in

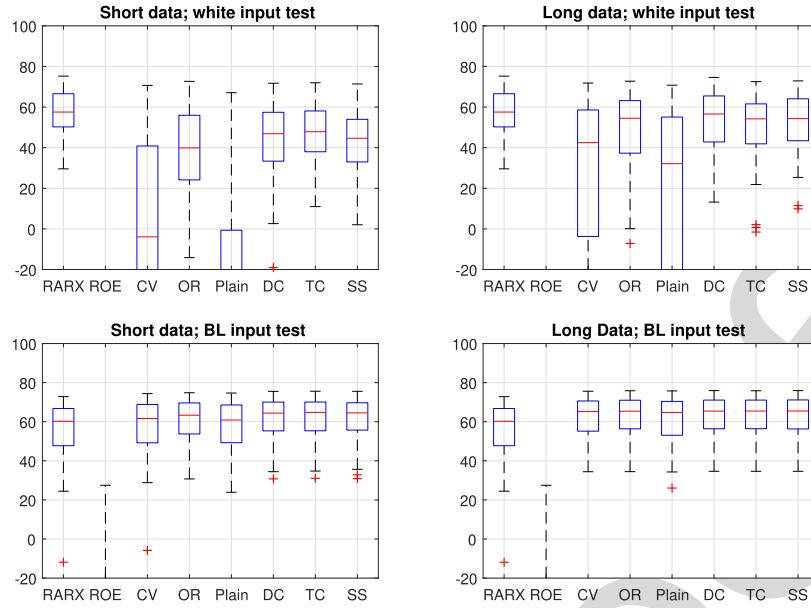


Fig. 1. Identification of discrete-time OE-models.

[1, 10] at every run. In the left two test cases of Figure 1, the preprocessing data set contains the first 150 input-output data while all the 1000 data are used in the right two cases.

Two types of test data sets are generated at every run. The first one contains the white noise corrupted output obtained using a unit variance white Gaussian noise as input. The second one is obtained with a test input generated using the same procedure as in the pre-processing data.

The performance measure (59) as in [18], which represents the variance of the prediction model, is adopted in this article to compare different estimated models. The prediction horizon is chosen to be 20 steps.

$$\mathcal{F}_k(\hat{\theta}) = 100 \left(1 - \sqrt{\frac{\sum_{t=k+1}^N (y(t) - \hat{y}(t|t-k))^2}{\sum_{t=k+1}^N (y(t) - \bar{y})^2}} \right). \quad (59)$$

The following 7 estimation methods are implemented for comparison:

- 513 1) *RecursiveARX*: It implements the recursive PEM
514 approach with ARX model of 8th order. The estimated
515 model is used to predict the output of 20 steps ahead.
516 The estimator is implemented with the *rarx* Matlab
517 routine.
- 518 2) *RecursiveOE*: The recursive OE estimator implements
519 the OE model of 20th order and it predicts the out-
520 put of 20 steps ahead according to the new available
521 data.
- 522 3) *RMSPEM+CV*: The RMSPEM algorithm with model
523 order selected via cross validation (CV). Specifically,
524 the pre-processing data are split into two parts \mathcal{L}_a^o and
525 \mathcal{L}_b^o , containing the first and last $\frac{N}{2}$ input-output pairs in
526 \mathcal{L}^o respectively. The candidate models have the structure
527 that the polynomials B and F have the same order which
528 varies between 1 and 30. For OE models with differ-
529 ent orders, the model parameters are obtained by the
530 batch pre-processing with the estimation data \mathcal{L}_a^o . Then
531 the prediction errors are computed for the validation

532 data \mathcal{L}_b^o . The model order that maximizing the prediction
533 performance is selected and the final model parameter
534 estimation is calculated with batch pre-processing for
535 the complete data set \mathcal{L}^o .

- 536 4) *RMSPEM+Or*: The RMSPEM algorithm with an oracle
537 (Or). In particular, for different model orders between
538 1 and 30, we use the batch pre-procesing to calculate
539 the model parameters with \mathcal{L}^o . Then the oracle chooses
540 the model structure that maximizes the fit on the test
541 data. It represents a case that is impractical in general
542 but provides a reference for performance evaluation.
- 543 5) *RMSPEM*: The RMSPEM algorithm that uses the OE
544 model of 20th order.
- 545 6) *RMSPEM+DC,TC,SS*: The Bayesian RMSPEM algo-
546 rithm equipped with DC, TC, and SS respectively.
547 The employed model is 20th order. During the pre-
548 processing, the kernel hyperparameters are estimated by
549 solving the marginal likelihood optimization.

550 Fig. 1 shows the boxplots of the 100 performance measures
551 calculated in the Monte-Carlo study. The left panels are
552 the results that use only the first 150 input output data for
553 pre-processing, and the right panels are the results that use full
554 1000 input output data during pre-processing. The top panels
555 show the performance measures with the white input signal
556 and the bottom panels are the performance with the filtered
557 input signal like in the pre-processing data set. The vertical
558 axis represent the performance measure for each estimator.

559 In all the four simulation cases, the *Recursive ARX* method
560 achieves good performance, but is not as good when the
561 input is filtered. The PEM method can't guarantee the k -step-
562 ahead prediction accuracy. The *RMSPEM+CV* approach has
563 good prediction performance for the case with filtered input
564 signal, but for white input signal the performance is unaccept-
565 able, especially when there is less pre-processing data. The
566 *RMSPEM+Or* represents the ideal case where the test data
567 is available for determining the model structure. It is shown
568 that *RMSPEM+Or* achieves good prediction performance in

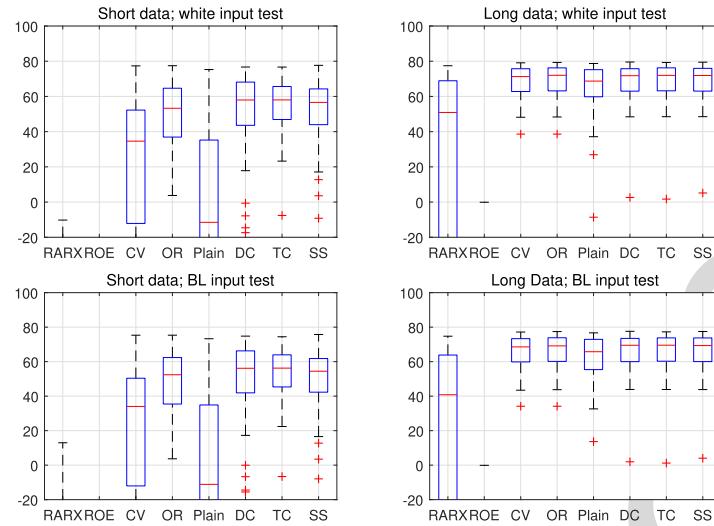


Fig. 2. Identification of discrete-time Box Jenkins models.

569 all of the four scenarios and is therefore used as reference.
 570 The *RMSPEM* algorithm without any regulator is also imple-
 571 mented. When the input signal is white noise, the prediction
 572 performance is significantly inferior compared to other es-
 573 timators. With the incorporated kernels, the Bayesian *RMSPEM*
 574 achieves satisfactory prediction for 20 steps ahead. In the white
 575 noise input case, the Bayesian *RMSPEM* even outperforms the
 576 *RMSPEM+Or*.

577 Additionally, it is obvious that if the data used for
 578 pre-processing is similar to the test data, the prediction per-
 579 formance is generally better. This is because the initial estimate
 580 obtained through the preprocessing is more likely to be in
 581 the neighborhood of the “good” estimate. More preprocessing
 582 data helps to improve the prediction performance, but in
 583 the Bayesian *RMSPEM* case the improvement is limited.
 584 Therefore, it is shown that the developed Bayesian *RMSPEM*
 585 method is very robust to the pre-processing data.

B. Box-Jenkins System

587 Let’s consider a Box-Jenkins type data-generation system,
 588 in which $G(q) = \frac{B(q)}{F(q)}$ and $H(q) = \frac{C(q)}{D(q)}$ are 30th order
 589 transfer functions generated using the procedure described in
 590 the previous section. The SNR is randomly chosen from 1
 591 to 10. The system is excited by two types of input signal.
 592 The first type of input signal is a white Gaussian noise with
 593 unit variance. The second type is the realization from white
 594 Gaussian noise filtered by a second order filter. The delay of
 595 the input is equal to 1. Starting from zero initial conditions,
 596 1000 input-output data are collected.

597 Two sets of pre-processing data are generated. Both contains
 598 the first 200 input output data of the system excited with
 599 filtered white Gaussian noise. The first preprocessing data
 600 set is generated using only the system process model $G(q)$.
 601 The second preprocessing data set is generated using both
 602 the process model $G(q)$ and the noise model $H(q)$ in the
 603 Box-Jenkins model. Moreover, two sets of test data are used,
 604 which include one having the input with the same character-
 605 istic of the pre-processing data and another one that use white
 606 Gaussian noise as input.

607 The following estimators are used in this study:

- 1) *RecursiveARX*: It implements the recursive PEM
 608 approach with ARX model of 30th order. The estimated
 609 model is used to predict the output 20 steps ahead.
- 2) *RecursiveOE*: The recursive OE estimator implements
 610 the OE model of 30th order. The prediction horizon is
 611 20 steps.
- 3) *RMSPEM+CV, RMSPEM+Or, RMSPEM*: These three
 612 estimators use the same setup as in the previous
 613 simulation study.
- 4) *RMSPEM+DC, TC, SS*: The Bayesian *RMSPEM*
 614 approach with DC, TC, SS kernels respectively. The
 615 kernel hyperparameters and the weight γ are determined
 616 using the preprocessing data.

617 The Monte Carlo study runs 80 tests. The prediction
 618 performance are plotted in Figure 2.

619 It is demonstrated in this study that the proposed method
 620 generally has a superior performance over the Recursive ARX
 621 method despite the type of kernel used. Moreover, generating
 622 pre-processing data with only the process model $G(q)$ gives
 623 a better initial estimation, thus the Bayesian *RMSPEM* better
 624 captures the underlying process model in the Monte Carlo tests
 625 shown in the left panel of Figure 2.

C. LTV System

631 In this study, the online parameter identification of linear
 632 time varying system with unknown order is investigated. The
 633 plant has two operating modes. The first mode has a 30th order
 634 transfer function generated randomly using a similar process as
 635 described in Section VI-A. The transfer function of the second
 636 mode is generated by perturbing the transfer function of the
 637 first mode with two additional poles and zeros. Thus both
 638 order and parameters of the time varying system change when
 639 switching from the first mode to the second mode. 100 data
 640 sets consisting of 3000 input-output measurement pairs are
 641 generated using Monte Carlo simulations. The system switch
 642 at time $k = 1001$. The input of the system is generated as
 643 the realization of a unit variance Gaussian signal filtered by a
 644 randomly generated second order filter.

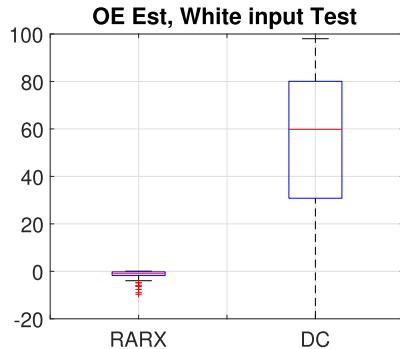


Fig. 3. Identification of linear time varying system.

TABLE I
EXECUTION TIME OF THE TWO ESTIMATORS

	ARX order_select	Bayesian RMSPEM
mean	1.1755 s	0.0506 s
std	11.7552	0.5002

645 The first 400 input output data are used for pre-processing
 646 and the rest of them are used for testing. Two estimators are
 647 implemented for comparison. The first one is the recursive
 648 ARX method which chooses the model order that minimizes
 649 the prediction error at each time instant. The second one is the
 650 Bayesian RMSPEM method with DC regularizer whose hyper-
 651 parameters are determined during the preprocessing process.
 652 Both recursive ARX and the Bayesian RMSPEM use a for-
 653 getting factor of 0.98. The prediction window is set to be 20
 654 steps and the order of the prediction model is chosen to be 30.

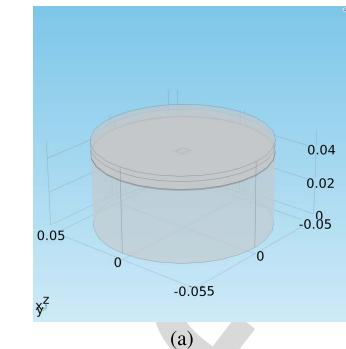
655 The prediction performance of the Monte Carlo study is
 656 shown in Figure 3 with the y axis representing the performance
 657 measure calculated using (59). It is shown that the
 658 proposed method is able to track the switch of the time
 659 varying system, while the recursive ARX method fails to do so.
 660 Moreover, Bayesian RMSPEM is considerably faster than the
 661 recursive ARX with order selection. As is shown in Table I, for
 662 the 3000 input-output data, the mean cumulative time of
 663 the two estimators are 0.0506 seconds and 1.1755 seconds
 664 respectively. This result is measured on a computer platform
 665 with Intel i7-3770 3.40GHz processor and 12 GB memory.

VII. THERMAL MODELING OF UTAH ELECTRODE ARRAY

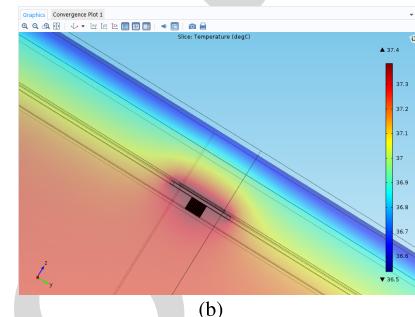
666 In this section, the proposed Bayesian RMSPEM method
 667 is employed to predict the thermal effect of Utah electrode
 668 array (UEA), which is a 3-D microelectrodes used for deep
 669 brain stimulation [28]. The proposed method is suitable for this
 670 application is because it provides an accurate temperature pre-
 671 diction with low computational complexity. The performance
 672 of the method is demonstrated with a COMSOL simulation
 673 and an in-vitro experiment.

A. COMSOL Simulation

674 In this study, the developed method is used to model the
 675 thermal effect of the UEA. A COMSOL Multiphysics model
 676 (Figure 4) is implemented for what is demonstrated in [28].
 677 The details of the model is explained in [8]. The UEA is
 678 placed on the surface of the brain tissue and a probe is place
 679 at $(x, y, z) = (0, 0, 0.042)$ to measure the temperature. The
 680 simulation setup is summarized in Table II. The COMSOL
 681



(a)



(b)

Fig. 4. Illustration of the developed COMSOL model (a) cylindrical human brain model. (b) the UEA model [8].

TABLE II
COMSOL MODEL PARAMETERS

	Thermal Conductivity (W/(m · K))	Specific heat capacity (J/(kg · K))	Density (kg/m ³)
Brain	0.528	3640	1041
Skull	0.650	1300	1990
Scalp	0.342	3150	1100
Blood	0.530	3840	1060
Silicon	124.0	702	2329

683 simulation is conducted for 1000 seconds. The power dissipa-
 684 tion of the UEA is randomly generated every 10 seconds using
 685 a Gaussian distribution, which are then constrained within
 686 $[0, 0.02]$ mW. The temperature measurements are recorded
 687 and converted into the temperature increase with respect to
 688 the body temperature, then stored along with the generated
 689 power dissipation at the same time instant.

690 Bayesian RMSPEM is used to generate a model that pre-
 691 dictions the temperature increase of the UEA given its power
 692 dissipation. The prediction window of the Bayesian RMSPEM
 693 is set to be 10 steps. Each step is 10 seconds. The data of first
 694 200 seconds are used for the pre-processing. The Bayesian
 695 RMSPEM updates the parameters of a 5th order prediction
 696 model according to the temperature increase obtained by
 697 COMSOL. Then the updated model is used to predict the tem-
 698 perature 10 steps later via the j -step-ahead predictor (27). This
 699 prediction is then compared with the results obtained from
 700 COMSOL. The comparison results are shown in Figure 5.

701 This comparison result indicates that the thermal dynamics
 702 of UEA can be captured by the Bayesian RMSPEM method.
 703 The prediction performance is 91.0195. The Mean Square
 704 Error of the prediction is about 1.2850×10^{-5} °C.

B. In Vitro Experiment

705 An in-vitro experiment system [23] is built to emulate the
 706 thermal effect of UEA. The system uses a custom designed
 707

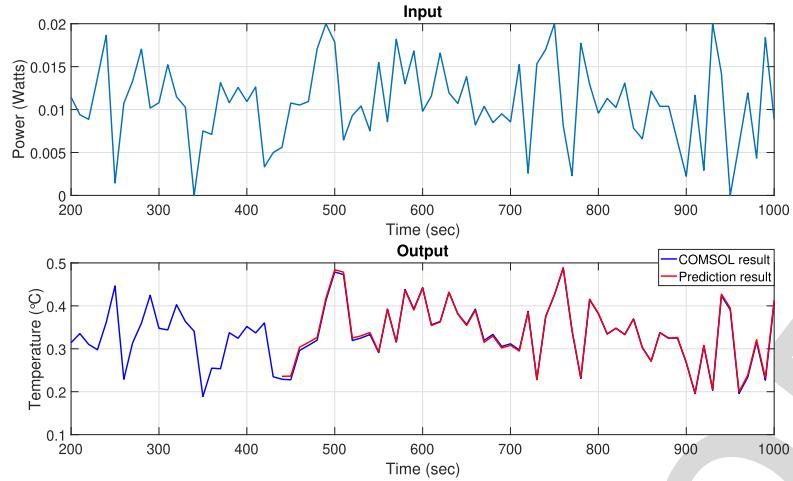
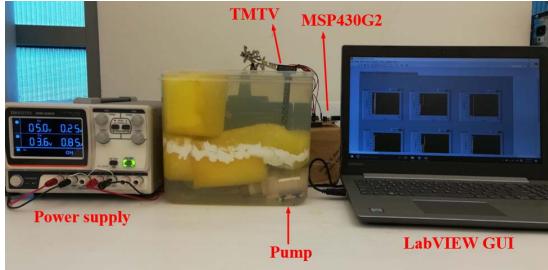
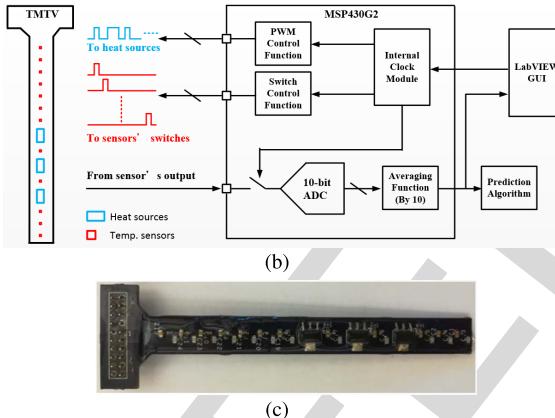


Fig. 5. Modeling the thermal effect of the UEA. Top plot represent the randomly generated power dissipation of the UEA. Bottom plot is the comparison of the simulated UEA temperature and the predicted UEA temperature.



(a)



(b)

(c)

Fig. 6. (a) The developed hardware testing system. (b) Hardware diagram. (c) The developed TMTV system. [23].

708 temperature monitoring and management test vehicle (TMTV)
709 with heat sources and temperature sensors to emulate the
710 implanted electronics and a water circulation system to emulate
711 the blood perfusion effect. A TI MSP430G2 board acts
712 as the middleware between the TMTV and PC. It controls the
713 operation of TMTV via sending PWM signals within the range
714 of [0, 1000] to the heat sources and sends the temperature
715 measurements back to PC, which is then processed by the
716 LabView front end. The PWM signal controls the duty cycle
717 of the heat sources, with 0 being 100% and 1000 being 0%.
718 Figure 6 demonstrates the developed hardware testing system.

719 We use this testing system to evaluate the prediction accu-
720 racy of the simplified thermal model. More specifically, two
721 experiments are conducted. The first experiment randomly

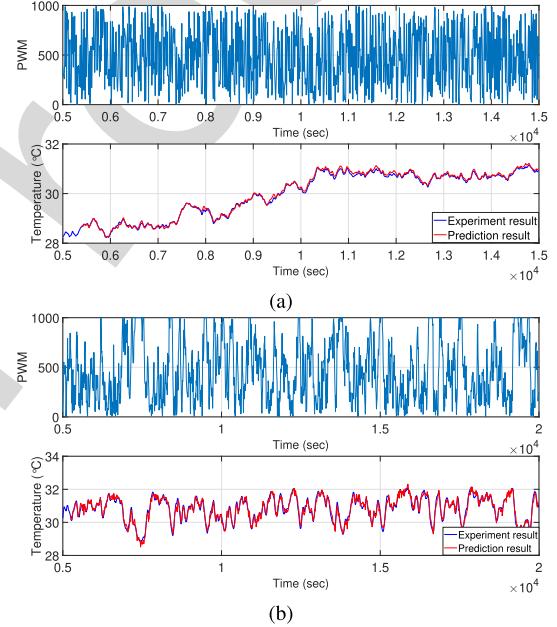


Fig. 7. Experiment results (a) Gaussian input. (b) Filtered Gaussian input.

generates 2000 PWM signals within the range of [0, 1000] using Gaussian distribution and apply the PWM signals to the heat sources on TMTV with a step size of 10 seconds. The temperature recorded by the onboard sensors are then compared with the temperature predicted by the proposed Bayesian RMSPEM method and the prediction error are used for model updating. The Bayesian RMSPEM method implements a 20th order OE model and predicts the temperature measurements of 10 steps ahead. The results are presented in Figure 7(a). It is demonstrated that the Bayesian RMSPEM accurately predicts the temperature variation despite the varying PWM signal and achieves an overall prediction mean square error of 0.131 °C.

The second experiment generates a random second order low pass filter and applies it to the 2000 random PWM signals. The filtered PWM signal is then applied to the TMTV. This is used to emulate the output of a real thermal management system, where the computed control signal is usually a low

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

frequency signal that depends on various inputs. In this experiment, it is shown in [Figure 7\(b\)](#) that the temperature output can be predicted with a 5th order OE model, which is much simpler than the 20th order OE model used in the first experiment. By taking advantage of this low order model, the computational cost of the proposed method can be greatly reduced. The overall prediction mean square error is about 0.024 °C.

VIII. CONCLUSION

With the development of more powerful implantable devices, especially the neural prosthesis, the overheating of such devices has become a hidden hazard. Accurate long range prediction of thermal effect is critical to maintain safe operation of implantable device. The existing methods can not guarantee long term performance and achieve full potential of device. A Bayesian multi-step prediction method is developed in this article to generate accurate online thermal effect prediction for implantable devices with limited computational power. The developed method iteratively minimize a function of the j -step-ahead prediction error and recently developed system identification techniques relying on regularization is adopted to improve the prediction performance. Specifically, we assume the online setting in that new data become available at each time instant and then saved into a FIFO queue of fixed length. Based on the input output data saved in the queue, the parameters are updated by iteratively minimizing the j -step-ahead prediction error of the new data. Three simulation studies are presented to demonstrate the performance of the developed method. The first Monte Carlo simulation study shows that when the prediction model is underparameterized the developed method can still capture the low frequency dynamics of the system. The second Monte Carlo simulation study shows that the developed method is robust to different noise models and different input signals. The third Monte Carlo simulation study demonstrates that the developed method is able to capture the dynamics of a time varying system. The application of predicting the thermal effect of UEA is demonstrated via both a COMSOL simulation and an in-vitro experiment, which shows that the developed method can capture the complicated thermal dynamics with great accuracy while only requiring a simple thermal model.

REFERENCES

- [1] P. S. Ruggera, D. M. Witters, G. V. Maltzahn, and H. I. Bassen, "In vitroassessment of tissue heating near metallic medical implants by exposure to pulsed radio frequency diathermy," *Phys. Med. Biol.*, vol. 48, no. 17, pp. 2919–2928, Sep. 2003.
- [2] J. G. Nutt, V. C. Anderson, J. H. Peacock, J. P. Hammerstad, and K. J. Burchiel, "DBS and diathermy interaction induces severe CNS damage," *Neurology*, vol. 56, no. 10, pp. 1384–1386, May 2001.
- [3] J. C. LaManna, K. A. McCracken, M. Patil, and O. J. Prohaska, "Stimulus-activated changes in brain tissue temperature in the anesthetized rat," *Metabolic Brain Disease*, vol. 4, no. 4, pp. 225–237, Dec. 1989.
- [4] T. S. Ibrahim, D. Abraham, and R. L. Rennaker, "Electromagnetic power absorption and temperature changes due to brain machine interface operation," *Ann. Biomed. Eng.*, vol. 35, no. 5, pp. 825–834, Apr. 2007.
- [5] N. L. Opie, "Thermal safety of a retinal prosthesis," Ph.D. dissertation, Dept. Elect. Eng., Univ. Melbourne, Melbourne, VIC, Australia, 2011.
- [6] N. L. Opie, A. N. Burkitt, H. Meffin, and D. B. Grayden, "Heating of the eye by a retinal prosthesis: Modeling, cadaver and *in vivo* study," *IEEE Trans. Biomed. Eng.*, vol. 59, no. 2, pp. 339–345, Feb. 2012.
- [7] H. H. Pennes, "Analysis of tissue and arterial blood temperatures in the resting human forearm," *J. Appl. Physiol.*, vol. 1, no. 2, pp. 93–122, Aug. 1948.
- [8] R. Chai and Y. Zhang, "Adaptive thermal management of implantable device," *IEEE Sensors J.*, vol. 19, no. 3, pp. 1176–1185, Feb. 2019.
- [9] S. C. DeMarco, G. Lazzi, W. Liu, J. D. Weiland, and M. S. Humayun, "Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator. I. Models and methods," *IEEE Trans. Antennas Propag.*, vol. 51, no. 9, pp. 2274–2285, Sep. 2003.
- [10] J.-L. Dillenseger and S. Esneault, "Fast FFT-based bioheat transfer equation computation," *Comput. Biol. Med.*, vol. 40, no. 2, pp. 119–123, Feb. 2010.
- [11] G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, "An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction," *IEEE Trans. Biomed. Eng.*, vol. 60, no. 6, pp. 1735–1741, Jun. 2013.
- [12] V. Singh *et al.*, "On the thermal elevation of a 60-electrode epiretinal prosthesis for the blind," *IEEE Trans. Biomed. Circuits Syst.*, vol. 2, no. 4, pp. 289–300, Dec. 2008.
- [13] S. K. Das, S. T. Clegg, and T. V. Samulski, "Computational techniques for fast hyperthermia temperature optimization," *Med. Phys.*, vol. 26, no. 2, pp. 319–328, Feb. 1999.
- [14] C. Serrano-Amenos *et al.*, "Thermal analysis of a skull implant in brain-computer interfaces," in *Proc. 42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC)*, Jul. 2020, pp. 3066–3069.
- [15] L. Ljung and T. Söderström, *Theory and Practice of Recursive Identification*. Cambridge, MA, USA: MIT Press, 1983.
- [16] L. Ljung, *System Identification: Theory for the User*, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1999.
- [17] M. Farina and L. Piroddi, "Simulation error minimization identification based on multi-stage prediction," *Int. J. Adapt. Control Signal Process.*, vol. 25, no. 5, pp. 389–406, May 2011.
- [18] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, "Kernel methods in system identification, machine learning and function estimation: A survey," *Automatica*, vol. 50, no. 3, pp. 657–682, Mar. 2014.
- [19] G. Prando, D. Romeres, and A. Chiuso, "Online identification of time-varying systems: A Bayesian approach," in *Proc. IEEE 55th Conf. Decis. Control (CDC)*, Dec. 2016, pp. 3775–3780.
- [20] D. Romeres, G. Prando, G. Pillonetto, and A. Chiuso, "On-line Bayesian system identification," in *Proc. Eur. Control Conf. (ECC)*, Jun. 2016, pp. 1359–1364.
- [21] D. Romeres, M. Zorzi, R. Camoriano, S. Traversaro, and A. Chiuso, "Derivative-free online learning of inverse dynamics models," *IEEE Trans. Control Syst. Technol.*, vol. 28, no. 3, pp. 816–830, May 2020.
- [22] D. Romeres, D. K. Jha, A. DallaLibera, B. Yerazunis, and D. Nikovski, "Semiparametrical Gaussian processes learning of forward dynamical models for navigating in a circular maze," in *Proc. Int. Conf. Robot. Autom. (ICRA)*, May 2019, pp. 3195–3202.
- [23] R. Chai, Y.-P. Lai, W. Sun, M. Ghovanloo, and Y. Zhang, "Online predictive modeling for the thermal effect of implantable devices," in *Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS)*, Oct. 2018, pp. 1–4.
- [24] G. Pillonetto, T. Chen, A. Chiuso, G. De Nicolao, and L. Ljung, "Regularized linear system identification using atomic, nuclear and kernel-based norms: The role of the stability constraint," *Automatica*, vol. 69, pp. 137–149, Jul. 2016.
- [25] M. Zorzi and A. Chiuso, "The harmonic analysis of kernel functions," *Automatica*, vol. 94, pp. 125–137, Aug. 2018.
- [26] M. Zorzi and A. Chiuso, "Sparse plus low rank network identification: A nonparametric approach," *Automatica*, vol. 76, pp. 355–366, Feb. 2017.
- [27] P. C. Young, *Recursive Estimation Time-Series Analysis: Introduction*. Cham, Switzerland: Springer, 2012.
- [28] S. Kim, P. Tathireddy, R. A. Normann, and F. Solzbacher, "Thermal impact of an active 3-D microelectrode array implanted in the brain," *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 15, no. 4, pp. 493–501, Dec. 2007.

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867