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Abstract—The overheating caused by the operation of
implantable device can cause damage to the surrounding
tissue. In applications like neural prosthesis, 1 ◦C of tem-
perature increase could lead to irreversible damage to the
subject. Predicting the overheating effect is therefore critical
to maintain safe operation. This work proposes a Bayesian
recursive multi-step prediction method for implantable device
to predict the overheating effect. The method proposed in
this article achieves accurate prediction within a horizon with
low complexity by model updating that iteratively minimizes
a function of the j-step-ahead prediction error. At each time
instant, the new available input output data are stored in a
First In First Out (FIFO) queue of fixed length, and the model
parameters are updated by iteratively minimizing the j-step-ahead prediction error of the new data. Moreover, the
regularization methods are introduced to improve the prediction performance by taking the Bayesian interpretation of
the parameters into consideration. Monte Carlo simulation studies indicate that the developed method is able to estimate
the fundamental dynamics of the system when the prediction model is underparametered, and is robust to measurement
noise. For time varying systems, the developed method can capture the system dynamics during the system variation.
The proposed method is demonstrated via an in-vitro test vehicle, which shows that the temperature increase can be
predicted with high accuracy and low complexity.

21 Index Terms— Prediction error minimization, multi-step prediction, thermal effect, implantable devices.

I. INTRODUCTION22

W ITH implantable device becoming more and more pow-23

erful, the temperature increase caused by its operation24

has drawn growing concern. Within human body, even a25

few degree Celsius above the normal body temperature could26

cause detrimental effect to the subject. It is reported that a27

patient with an implanted deep brain stimulator (DBS) suf-28

fered significant brain damage after diathermy treatment, and29

subsequently died [1], [2]. Postmortem examinations indicated30

that the tissue near the lead electrodes of the DBS deteriorated31

due to overheating. Researchers have shown that a temperature32

increase greater than 1 ◦C could have long-term damage to the33

brain tissue [3]. It is considered safer to maintain a maximum34

temperature increase of 1 ◦C for brain implants [4]. For visual35

implants, where the stimulating circuitry is in close contact36

with the retina, even small temperature increase could have37

potentially deleterious effects on retinal integrity [5].38

In many practical applications, the implantable devices only39

have very limited power consumption and comunication with40
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external world, or stay in sleep mode most of the time. The 41

thermal effect is not a significant problem in these cases. 42

Blood perfusion in the human body often helps to disperse the 43

heat accumulated around the implantable device. The thermal 44

safety can be guaranteed by limiting the functionality of the 45

implantable device during the design phase. 46

For applicaitons like neural prosthesis, where implantable 47

devices need to constantly stimulate the body and its neural 48

tissues with a large number of electrodes and are in continuous 49

communication with external devices, the heat accumulated 50

around the implantable device can be dangerous to the subject 51

body [6]. With the incorporation of high-density, functional 52

electronic components and as the number of stimulaiton 53

channels increases, this problem become more and more 54

significant. For these applications, an accurate real-time tem- 55

perature model is crucial to guarantee the safe operation of 56

the implantable device. 57

In the neural prothesis applications, however, it can be 58

difficult to obtain a parametric model for the thermal effect 59

due to the complex internal structure of the human brain and 60

the dimension of bio-implants. A heat transfer model based 61

on Pennes bioheat equation [7] can capture the temperature 62

increase of the surrounding tissue, but is infeasible for real 63

time applications [8]. Numerical methods [9]–[13] that have 64

been developed to solve the Pennes bioheat equation all rely 65

on sampling the temperature value in the simulatio domain 66

as they evlove in time. The time complexity and space 67

complexity make them unsuitable for real-time applications. 68
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Researchers in the field have been evaluating the thermal69

effect during the design phase [14], but real-time thermal70

effect prediciton is critical to achieve the full potential of the71

implantable device.72

In our previous work [8], the thermal modeling problem73

has been studied based on the system identificaiton methods74

[15], [16], or more specifically the mutli-step prediction error75

method [17]. However, the performance of the proposed76

method gradually degrade through time with the thermal77

model deviates from the actual system. Recently, Bayesian78

estimation based techniques has also been introduced to the79

system identification problem [18]–[22]. In particular, prior80

information is introduced to the identification process by81

designing a covariance, which is also known as kernel in the82

machine learning literature.83

In this article, based on the previous results [23], we study84

the online prediction of thermal effect of an implantable85

device, with a focus on neural prosthesis. The Bayesian86

estimation techniques is incorporated to generate a more robust87

and accurate thermal effect prediction model that is suitable for88

real-time applications. More specifically, a Bayesian recursive89

multi-step prediction error method (Bayesian RMSPEM) is90

developed based on iteratively minimizing a function of the91

j -step ahead prediction error. The data used for the estimation92

is stored in a FIFO queue with fixed length. At each time93

instant, when the new output enters the queue, the estima-94

tor uses the data within the j prior steps to calculate the95

prediction error of the new data and iteratively update the96

model parameter for j = 1, . . . , k in the prediction horizon.97

Output Error (OE) type model is employed as the predic-98

tor, as it is able to capture the low-frequency fundamental99

dynamics even when the predictor order is lower than the100

underlying system. Moreover, with the Bayesian estimation101

techniques, the proposed method is able to capture the system102

dynamics when the predictor order is greater than that of103

the system. By employing the forgetting factor and taking104

advantage of the iterative updating procedure, time-varying105

thermal dynamics can be modeled with the developed method106

regardless of noises. The developed method is shown to have107

low complexity and is therefore appropriate for realtime imple-108

mentation on implantable devices with limited computational109

power.110

The remainder part of this article is organized as follows.111

Following Section I, Section II introduces the system model112

used in the paper. The regularized batch preprocessing pro-113

cedure is described in Section III. The proposed Bayesian114

recursive identification method is presented in Section IV.115

Section V extends the algorithm with forgetting factor and116

discusses about the computational complexity of the algorithm.117

Simulation investigations are presented in Section VI and the118

UEA thermal effect prediction is presented in Section VII.119

At last, the paper is concluded in Section VIII.120

II. SYSTEM MODEL AND IDENTIFICATION CRITERION121

Let’s assume the underlying thermal dynamics F can be122

defined as a general Single Input Single Output (SISO) linear123

discrete-time equation of the type:124

y(t) = G(q, θo)u(t) + H (q, θo)e(t), (1)125

where the true parameters of the thermal dynamics are denoted 126

by θo. G(q, θo) represents the transfer function from input 127

(power consumption) to output (temperature in the surrounding 128

tissue), and H (q, θo) is the transfer function from a white 129

noise source e to output additive disturbances. Both G(q, θo) 130

and H (q, θo) are asymptotically stable transfer functions. q 131

denotes the shift operator qy(t) = y(t + 1). 132

Depending on how to parameterize G and H , many model 133

structures have been proposed, such as the autoregressive with 134

exogenous terms (ARX) model, the autoregressive-moving 135

average with exogenous terms (ARMAX) model, and the 136

Box-Jenkins model. In this article, the estimation model with 137

the output error (OE) structure are considered, since the 138

thermal dynamics around the implantable device can be highly 139

complicated and time varying. With a OE model structure, low 140

frequency dynamics can still be captured even when the model 141

order is lower than that of the thermal dynamics. 142

Let G(q, θo) be defined as 143

G(q, θo) = NG (q)

DG (q)
=

bo1q
−1 + · · · + bonob

q−nob

1 + ao1q
−1 + · · · + aonoaq

−noa
, (2) 144

and 145

θo(ao,bo) =
[
ao

bo

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−aonoa
...

−ao1
bo1
...

bonob

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3) 146

represents the system parameter in G. The numerator NG (z) 147

and the denominator DG(z) are assumed to be coprime. 148

The OE prediction model can be represented as 149

ŷ(t|θ) = Ĝ(q, θ)u(t), (4) 150

which doesn’t explicitly model the noise. In (4), 151

Ĝ(q, θ) = N̂G (q)

D̂G (q)
= b1q−1 + · · · + bnbq

−nb

1 + a1q−1 + · · · + anaq−na
, (5) 152

and 153

θ =
[
a
b

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ana
...

−a1
b1
...

bnb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6) 154

In general, na �= noa and nb �= nob. 155

Suppose the input output data of F are recorded in sequen- 156

tial in the time domain as 157

L = {u(1), y(1), . . . , u(N), y(N)}. (7) 158

Then the criterion of fit can be defined for the j -step-ahead 159

prediction as 160

J N
P ( j)= 1

N−nb− j+1

N∑
t=nb+ j

[y(t)− ŷ(t|t− j)]2+γ θT P−1θ. 161

(8) 162
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In which, ŷ(t|t − j) denotes the prediction of y(t) given the163

output data up to t− j and input data up to t . Prior information164

of the system parameters are taken into account by introducing165

a regularization term θT P−1θ into (8) with P−1 represents the166

covariance information of the parameter prior distribution. γ167

denotes the relative weight of the regularization term.168

The multi-step prediction error criterion is defined as the169

average of the j -step-ahead criterion with j = 1, . . . , k:170

J N
MP = 1

k

k∑
j=1

J N
P ( j). (9)171

Gianluigi Pillonetto et al. [18], [24] summarized the172

regularization options for system identification, such as Diag-173

onal/Correlated (DC) kernel, Tuned/Correlated (TC) kernel174

and Stable Spline (SS) kernel, whose frequency properties175

are summarized in [25]. The kernels can also be derived176

for system identification purposes [26]. The regularized cost177

function can then be solved by the regularized least square178

estimation.179

III. REGULARIZED BATCH PRE-PROCESSING180

To determine the hyperparameters of the regularization and181

choose a good starting point for searching the minimum of the182

cost function presented in the previous section, a batch of data183

is used to initialize the Bayesian RMSPEM algorithm. This184

batch of data is called the pre-processing data and represented185

as Lo = {uo(1), yo(1), . . . , uo(N0), yo(N0)}. In practice, this186

procedure helps to generate a reliable model estimation in the187

initial phase. In this section, we present how the regularization188

technique can be used for the multi-step prediction under the189

batch setting.190

First, (4) can be converted into the linear regression191

form as192

ŷ(t|θ) = φ(t)T θ. (10)193

Given the data set Lo, the one-step predictions can be194

concatenated into the vector form195

Y = �θ, (11)196

in which197

Y =
⎡
⎢⎣

ŷ(1|θ)
...

ŷ(N0|θ)

⎤
⎥⎦, (12)198

and199

� =
⎡
⎢⎣

φ(1)T

...

φ(N0)
T

⎤
⎥⎦. (13)200

Let the regularization matrix P be parameterized in terms of201

the hyperparameter η. The hyperparameter can be determined202

through203

η̂ = argmin
η

Y T Z(η)−1Y + log |Z(η)|, (14)204

Z(η) = �P(η)�T + γ 2 IN0 , (15)205

which represents the maximization of the negative log likeli-206

hood function for estimating η from Y .207

Let’s then derive the multi-step prediction error cost 208

function and its optimization procedure for a batch of data. 209

Let ŷ(t + j |t) be the output value predicted by iterating j 210

times the recursive equation of (4). It can be represented as 211

[16], [17]: 212

ŷ(t + j |t) = R j (q)y(t) + E j (q)N̂G(q)u(t + j), (16) 213

where R j (q) and E j (q) can be calculated as 214

R j (q) = CA j

⎡
⎢⎣
q−na+1

...
1

⎤
⎥⎦, (17) 215

and 216

E j (q) = C
j−1∑
i=0

AiBq−i . (18) 217

In which, 218

A =

⎡
⎢⎢⎢⎣

0 1 . . . 0
...

...
. . .

0 0 . . . 1
−ana −ana−1 . . . −a1

⎤
⎥⎥⎥⎦, (19) 219

B = CT , (20) 220

and 221

C = [
0 0 . . . 1

]
. (21) 222

Let 223

Yt =
⎡
⎢⎣
yo(t − na + 1)

...
yo(t)

⎤
⎥⎦, (22) 224

and 225

Ut, j =

⎡
⎢⎢⎢⎣

uo(t + j − 1)
uo(t + j − 2)

...
uo(t − nb + 1)

⎤
⎥⎥⎥⎦. (23) 226

Then define 227

φ j (t) =
[

Yt
Ut, j

]
, (24) 228

and 229

� j (θ) =
[

(CA j )T

Mj,nbb

]
, (25) 230

in which 231

Mj,nb =
⎡
⎣CB . . . CA j−1B 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 CB . . . CA j−1B

⎤
⎦
T

. 232

(26) 233

The j -step-ahead predictor can be reformulated as a linear 234

regression form: 235

ŷ(t + j |t) = φ j (t)
T � j (θ). (27) 236

� j (θ) is the j -step-ahead mapping of the predictor 237

parameter θ . 238
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For the batch pre-processing data, define239

Y j
N0

=
⎡
⎢⎣
yo(nb + j)

...
yo(N0)

⎤
⎥⎦, (28)240

and241

� j =
⎡
⎢⎣

φ j (nb)T

...

φ j (N0 − j)T

⎤
⎥⎦. (29)242

Let R0
j = �T

j � j and K 0
j = �T

j Y
j
N0
.243

The cost function of batch pre-processing is244

J N0
MP(k) = 1

k

k∑
j=1

J N0
P ( j), (30)245

in which246

J N0
P ( j)= 1

N0−nb− j+1
‖Y j

N0
−� j� j (θ)‖2+γ θT P−1θ.247

(31)248

This cost function can be minimized using the standard249

Newton method. The optimal model parameters can be esti-250

mated iteratively as:251

θ j+1 = θ j − (
∂2

∂θ2
J N0
MP ( j)

∣∣∣
θ=θ j

)−1∇θ J
N0
MP ( j)

∣∣∣
θ=θ j

,252

j = 1, . . . , k − 1. (32)253

The Hessian of J N0
MP ( j) can be calculated as:254

∂2

∂θ2
J N0
MP ( j)

∣∣∣
θ=θ j

= 1

j

j∑
s=1

∂2

∂θ2
J N0
P (s), (33)255

and256

∂2

∂θ2
J N0
P (s)≈ 2

N0−nb−s+1
∇θ�s(θ)R0

s ∇θ�s(θ)T +2γ P−1.257

(34)258

The gradient of J N0
MP( j) can be expressed as follows:259

∇θ J
N0
MP( j)

∣∣∣
θ=θ j

= 1

j

j∑
s=1

∇θ J
N0
P (s) (35)260

and261

∇θ J
N0
P (s) = 2

N0 − nb − s + 1
∇θ�s(θ)(R0

s�s(θ) − K 0
s )262

+ 2γ P−1θ. (36)263

In (34) and (36), � j and its gradient ∇θ� j can be updated264

iteratively over j :265

� j+1 = Wj� j , (37)266

∇θ� j+1 = ∇θ� jW
T
j + ([C 01,nb+ j−1]� j )H

T
j . (38)267

in which,268

Wj =
⎡
⎣

⎡
⎣ AT

0 j,na
bC

⎤
⎦,

⎡
⎣ 0na ,nb−1+ j

Inb−1+ j

01,nb−1+ j

⎤
⎦

⎤
⎦, (39)269

and 270

Hj =
[ [

Ina
0nb+ j,na

]
,

[
0na+ j,nb

Inb

] ]
. (40) 271

The initial value can be set as �1 = θ , ∇θ�1 = Ina+nb . 272

During the pre-processing, R0
s and K 0

s are stored for 273

s = 1, . . . , k and used for initialization of the RMSPEM. The 274

calculated θ also provides an initial start to accelerate the 275

convergence of RMSPEM. In practical applications, the model 276

order selection procedure can be incorporated into the pre- 277

processing. The model order that minimizes the cost func- 278

tion (30) can be used for the following Bayesian RMSPEM. 279

This saves the computational cost during the run time. Due 280

to the robustness to model order, many system variations 281

during the run time can still be captured. Moreover, as will be 282

demonstrated below, the computational cost of the Bayesian 283

RMSPEM is proportional to the model order. In many cases, 284

a low model order can be generated in the pre-processing pro- 285

cedure, which helps to reduce the complexity of the proposed 286

algorithm. 287

IV. BAYESIAN RECURSIVE MSPEM 288

After the regularization hyperparameters and the RMSPEM 289

initial parameters R0
s , K 0

s and θ0 are determined through 290

the pre-processing, the Bayesian RMSPEM algorithm updates 291

the parameter estimation at each time instant when there is 292

new data available. Assume the test data is represented as 293

L = {u(1), y(1), . . . , u(N), y(N), . . . }, the update procedure 294

of the proposed algorithm will be demonstrated by assuming 295

that the current time instant is N , and the new available data 296

are the input u(N) and output y(N). The model parameters 297

are then updated iteratively using the Newton method based 298

on the prediction error of y(N). 299

As shown in the batch pre-processing, to determine the 300

Hessian matrix and the gradient of the cost function, the R 301

matrix and K matrix must be calculated for j = 1, . . . , k. 302

Let’s define 303

RN
j = R0

j + �T
j � j (41) 304

and 305

K N
j = K 0

j + Y j
N

T
� j . (42) 306

At time N , RN
j and K N

j must be stored for j = 1, . . . , k. 307

RN
j can be represented as 308

RN
j = R0

j +
N− j∑
s=nb

φ j (s)φ j (s)
T , (43) 309

which can then be calculated recursively as 310

RN
j = RN−1

j + φ j (N − j)φ j (N − j)T . (44) 311

On the right hand side of (44), RN−1
j can be determined 312

with all the data up to (N − 1)th discrete time instant, and 313

φ j (N− j) contains all the data up to N th discrete time instant. 314

Similarly, K N
j can be represented as 315

K N
j = K 0

j +
N− j∑
s=nb

φ j (s)y(s + j), (45) 316
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and it can be calculated recursively as317

K N
j = K N−1

j + φ j (N − j)y(N). (46)318

In which, K N−1
j can be determined with all the data up to319

(N − 1)th discrete time instant. y(N) is the output measure-320

ment available at N th discrete time instant. φ j (N− j) requires321

the data up to N th discrete time instant.322

Furthermore, given the saved RN−1
j and K N−1

j , it only323

requires the input and output values within a finite time324

window to calculate RN
j and K N

j . More specifically, it requires325

the output measurements from time N − k − na + 1 to time326

N−1 and input values from time N−k−nb+1 to time N−1 to327

calculate φ j (N− j), j = 1, . . . , k. To calculate K N
j , the newest328

output measurement y(N) is also needed. In practice, all the329

output measurements and input values necessary to update the330

R matrix and K matrix can be saved in a FIFO queue as331

Input Queue :
⎡
⎢⎣
u(N − k − nb + 1)

...
u(N − 1)

⎤
⎥⎦ ,332

Output Queue :
⎡
⎢⎣
y(N − k − na + 1)

...
y(N)

⎤
⎥⎦. (47)333

For each j = 1, . . . , k, the corresponding R matrix and K334

matrix have to be saved separately. Each time, when the new335

input and output values are recorded, R matrix and K matrix336

are to be updated using (44) and (46) for each j .337

With the recursive updates of (44) and (46), the estimation338

of ∂2

∂θ2
J N
P (s) and ∇θ J N

P (s) can be formulated as:339

∂2

∂θ2
J N
P (s) ≈ 2

N − nb − s + 1
∇θ�s(θ)RN

s ∇θ�s(θ)T340

+ 2γ P−1, (48)341

∇θ J
N
P (s) = 2

N − nb − s + 1
∇θ�s(θ)(RN

s �s(θ) − K N
s )342

+ 2γ P−1θ. (49)343

Again, � j and its gradient ∇θ� j can be updated using (39)344

and (40). Let345

Q j
N = 1

j

j∑
s=1

∇θ�s(θ)RN
s ∇θ�s(θ)T + 2γ P−1, (50)346

−P j
N = 1

j

j∑
s=1

∇θ�s(θ)(RN
s �s(θ) − K N

s ) + 2γ P−1θ.347

(51)348

Then Q j
N and P j

N can be calculated iteratively for349

j = 1, . . . , k as:350

Q j
N = j−1

j
Q j−1

N + 1

j
∇θ� j (θ)R j

N∇θ� j (θ)T + 2

j
γ P−1,351

(52)352

P j
N = j−1

j
P j−1
N + 1

j
∇θ� j (θ)(K N

s −RN
s �s(θ))− 2

j
γ P−1θ.353

(53)354

The parameter update procedure can be represented as355

θ j+1 = θ j + μ(Q j
N )−1P j

N . (54)356

Algorithm 1 Bayesian RMSPEM Method
Require: Previously obtained parameter θpre, Input Queue U ,

Output Queue Y , R, K
θ = θpre;
� = θpre;
∇θ� = Ina+nb ;
Set μ;
QN = 0;
PN = 0;

1: for j=1:k do
2: Initialize φ j ;
3: R[ j ] = R[ j ] + φ jφ

T
j ;

4: K [ j ] = K [ j ] + φ j Y [k];
5: QN = j−1

j QN + 1
j ∇θ�R[ j ]∇θ�

T + 2
j γ P−1;

6: PN = j−1
j PN + 1

j ∇θ�(K [ j ]− R[ j ]�)− 2
j γ P−1θ ;

7: θ = θ + μQN
−1PN ;

8: Calculate Wj , Hj ;
9: ∇θ� = ∇θ�WT

j + ([C, 01×nb+ j−1]�)HT
j ;

10: � = Wj�;
11: end for

The computation procedure of the proposed method is 357

summarized in Algorithm 1. 358

V. ALGORITHM EXTENSION AND ANALYSIS 359

A. Forgetting Factor 360

For identification of time-varying systems, the 361

aforementioned method can be modified so that past 362

data become less relevant for the current estimation. In this 363

subsection, we propose a routine that use the forgetting factor 364

to weight the past data. 365

Following a classical practice in parametric time-varying 366

system identification [27], we introduce a forgetting factor λ ∈ 367

(0, 1] into the update procedure in order to base the estimation 368

mainly on the more recent data. Specifically, we modify the 369

j -step-ahead cost function to be 370

J N
P ( j)= 1

N−nb− j+1
‖
 j

N (Y j
N −� j� j (θ))‖2+γ θT P−1θ, 371

(55) 372

in which, 373



j
N =

⎡
⎢⎢⎢⎢⎣

λ
N−nb− j

2

λ
N−nb− j−1

2

. . .

λ0

⎤
⎥⎥⎥⎥⎦ (56) 374

and λ can often chose from 0.98 to 0.995. By using this 375

forgetting factor, measurements older than T0 = 1
1−λ samples 376

are included in the criterion with a weight that is e−1 ≈ 36% 377

of that of the most recent measurement. 378

With the modified cost function, the algorithm update proce- 379

dure remains the same while the update of data matrix RN
s and 380

K N
s in Hessian matrix (52) and Gradient (53) can be modified 381

as 382

R̄N
j = λR̄N−1

j + φ j (N − j)φ j (N − j)T , (57) 383

K̄ N
j = λK̄ N−1

j + φ j (N − j)y(N). (58) 384



IEE
E P

ro
of

6 IEEE SENSORS JOURNAL

B. Performance Analysis385

The time complexity of Algorithm 1 can be analyzed in386

terms of the number of flops (floating-point operation). For387

each j = 1, . . . , k, the calculation requires order (na + nb)3388

and j2 flops. Therefore, the entire algorithm for j = 1, . . . , k389

requires order (na + nb)3 and k3. More specifically, the time390

complexity is in an order of magnitude similar to square391

matrix multiplication. In real applications, benefiting from the392

property of robustness to model orders, the computational cost393

can be reduced with a lower model order and shorter prediction394

range.395

In terms of the space complexity, besides the input queue396

of length k + nb − 1 and the output queue of length397

k + na , the algorithm needs to store R[ j ] and K [ j ] for each398

j = 1, . . . , k. R[ j ] is a matrix in R(na+nb+ j−1)×(na+nb+ j−1)
399

and K [ j ] is a vector in Rna+nb+ j−1. The previous parameter400

estimation θ ∈ Rna+nb+ j−1 also needs to be stored.401

Online system identification methods like RPEM (recursive402

prediction error method) are often less computationally403

demanding. However it cannot guarantee long term prediction404

performance, especially in the case where complex noise405

models are involved. Therefore, it is not very suitable for406

practical applications like adaptive MPC, where the prediction407

accuracy within a certain horizon is crucial to the performance408

of the closed-loop control.409

The method proposed in [19] has higher computational410

cost compared to the method proposed in this article, as it411

maintains a high order model and rely on hyper-parameter412

updating at each execution to select the appropriate model. The413

hyper-parameter calculation process is both computationally414

demanding and difficult to implement for embedded systems,415

like what is used in the bioimplants. Moreover, the method416

in [19] requires a sampling rate that is several times of the417

model updating rate, which is also a challenge for many418

applications.419

Compared to the online identification techniques likes420

RPEM, the developed algorithm falls between the online iden-421

tification and the batch identification. It uses the pre-processing422

to determine the kernel hyperparameters and initialize423

RMSPEM. In applications where the prediction accuracy is424

crucial to the performance, this prevents the bad performance425

in the initial phase of the algorithm. During the operation,426

the developed method has the advantage of low complexity and427

robustness to different noise models. Even when the predeter-428

mined model structure is underparameterized, the developed429

method still captures the low-frequency fundamental dynam-430

ics. With the forgetting factor incorporated, the developed431

method is able to track a time varying system and provide a432

k-step-ahead prediction based on the history information433

within the k prior steps.434

C. Practical Application435

The method presented above assume the input to be the436

power consumption of implantable device. However that can437

be hard to estimate for a practical system. Instead, we can438

choose the input of the model to be the controllable system439

operating status, and the relationship between the input and440

output of the model can be learned online during the operation.441

Due to the small size of an implantable device, the 442

temperature measured by the temperature sensor can be used 443

to approximate the hot spot temperature in most of the cases. 444

In those cases where the temperature sensor is placed far away 445

from the hot spot of an implantable device, we can evaluate 446

the relationship between the measured temperature and the 447

hotspot temperature during the preprocessing phase, then 448

choose the temperature threshold of thermal management more 449

conservatively, so that the actual hot spot will not overheat. 450

Compared to the state-of-the-art approach [14] that limits the 451

functionality of the implantable device by considering the 452

worst case scenario during the design phase, the proposed 453

method can still achieve better overall performance while 454

maintaining safe operation. 455

VI. SIMULATION INVESTIGATION 456

In this section, the properties of the developed method are 457

demonstrated with three simulation studies. The first simu- 458

lation study is a Monte Carlo test with underparameterized 459

prediction models, wherein the order of the prediction model 460

is lower than that of the data generation system. The second 461

simulation study is a Monte Carlo test that features different 462

noise models. The third simulation study demonstrates the 463

performance of the developed method with a linear time 464

varying system. 465

In these simulation studies, the system generates two kinds 466

of data sets. The first type is the pre-processing data set 467

Lo = {uo(1), yo(1), . . . , uo(N0), yo(N0)}. The second type is 468

the test data set L = {u(1), y(1), . . . , u(N), y(N)}. 469

The benchmark methods used for comparison are the 470

commonly used online system identification methods, such 471

as Recursive ARX and Recursive OE [15], [16], which are 472

comparable to the proposed method in terms of computational 473

complexity. More specifically, the methods can be imple- 474

mented on an embedded platform for real time applications 475

and the model is updated at every time step when the new 476

measurements become available. The online Bayesian system 477

identification techniques mentioned in [19], [20] have higher 478

computational cost, as it maintains a high order model and rely 479

on hyper-parameter updating at each execution to select the 480

appropriate model. The hyper-parameter calculation process 481

is both computationally demanding and difficult to implement 482

for embedded systems. Moreover, the method in [19] requires 483

a sampling rate that is several times of the model updating 484

rate, which is also a challenge for many applications. 485

A. Underparameterized Model 486

We consider Monte Carlo study of 100 runs regarding 487

identification of discrete-time OE models (4). At each run, 488

a different 30th order transfer function is generated using the 489

procedure described in [18]. A second order input filter is also 490

generated using the similar procedure. 491

The input in the pre-processing data set Lo is the realization 492

from white Gaussian noise of unit variance filtered by the 493

input filter. The delay of the input is equal to 1. Starting from 494

zero initial conditions, 1000 input-output data are collected 495

with the output corrupted by an additive white Gaussian noise. 496

The signal-to-noise ratio (SNR) is randomly chosen with in 497
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Fig. 1. Identification of discrete-time OE-models.

[1, 10] at every run. In the left two test cases of Figure 1,498

the preprocessing data set contains the first 150 input-output499

data while all the 1000 data are used in the right two cases.500

Two types of test data sets are generated at every run. The501

first one contains the white noise corrupted output obtained502

using a unit variance white Gaussian noise as input. The sec-503

ond one is obtained with a test input generated using the same504

procedure as in the pre-processing data.505

The performance measure (59) as in [18], which represents506

the variance of the prediction model, is adopted in this article507

to compare different estimated models. The prediction horizon508

is chosen to be 20 steps.509

Fk(θ̂) = 100

⎛
⎝1 −

√√√√∑N
t=k+1(y(t) − ŷ(t|t − k))2∑N

t=k+1(y(t) − ȳ)

⎞
⎠. (59)510

The following 7 estimation methods are implemented for511

comparison:512

1) RecursiveARX: It implements the recursive PEM513

approach with ARX model of 8th order. The estimated514

model is used to predict the output of 20 steps ahead.515

The estimator is implemented with the rarx Matlab516

routine.517

2) RecursiveOE: The recursive OE estimator implements518

the OE model of 20th order and it predicts the out-519

put of 20 steps ahead according to the new available520

data.521

3) RMSPEM+CV : The RMSPEM algorithm with model522

order selected via cross validation (CV). Specifically,523

the pre-processing data are split into two parts Lo
a and524

Lo
b, containing the first and last N

2 input-output pairs in525

Lo respectively. The candidate models have the structure526

that the polynomials B and F have the same order which527

varies between 1 and 30. For OE models with differ-528

ent orders, the model parameters are obtained by the529

batch pre-processing with the estimation data Lo
a . Then530

the prediction errors are computed for the validation531

data Lo
b. The model order that maximizing the prediction 532

performance is selected and the final model parameter 533

estimation is calculated with batch pre-processing for 534

the complete data set Lo. 535

4) RMSPEM+Or: The RMSPEM algorithm with an oracle 536

(Or). In particular, for different model orders between 537

1 and 30, we use the batch pre-procesing to calculate 538

the model parameters with Lo. Then the oracle chooses 539

the model structure that maximizes the fit on the test 540

data. It represents a case that is impractical in general 541

but provides a reference for performance evaluation. 542

5) RMSPEM: The RMSPEM algorithm that uses the OE 543

model of 20th order. 544

6) RMSPEM+DC,TC,SS: The Bayesian RMSPEM algo- 545

rithm equipped with DC, TC, and SS respectively. 546

The employed model is 20th order. During the pre- 547

processing, the kernel hyperparameters are estimated by 548

solving the marginal likelihood optimization. 549

Fig. 1 shows the boxplots of the 100 performance measures 550

calculated in the Monte-Carlo study. The left panels are 551

the results that use only the first 150 input output data for 552

preprocessing, and the right panels are the results that use full 553

1000 input output data during preprocessing. The top panels 554

show the performance measures with the white input signal 555

and the bottom panels are the performance with the filtered 556

input signal like in the pre-processing data set. The vertical 557

axis represent the performance measure for each estimator. 558

In all the four simulation cases, the Recursive ARX method 559

achieves good performance, but is not as good when the 560

input is filtered.The PEM method can’t guarantee the k-step- 561

ahead prediction accuracy. The RMSPEM+CV approach has 562

good prediction performance for the case with filtered input 563

signal, but for white input signal the performance is unaccept- 564

able, especially when there is less pre-processing data. The 565

RMSPEM+Or represents the ideal case where the test data 566

is available for determining the model structure. It is shown 567

that RMSPEM+Or achieves good prediction performance in 568



IEE
E P

ro
of

8 IEEE SENSORS JOURNAL

Fig. 2. Identification of discrete-time Box Jenkins models.

all of the four scenarios and is therefore used as reference.569

The RMSPEM algorithm without any regulator is also imple-570

mented. When the input signal is white noise, the prediction571

performance is significantly inferior compared to other esti-572

mators. With the incorporated kernels, the Bayesian RMSPEM573

achieves satisfactory prediction for 20 steps ahead. In the white574

noise input case, the Bayesian RMSPEM even outperforms the575

RMSPEM+Or.576

Additionally, it is obvious that if the data used for577

pre-processing is similar to the test data, the prediction perfor-578

mance is generally better. This is because the initial estimate579

obtained through the preprocessing is more likely to be in580

the neighborhood of the “good” estimate. More preprocessing581

data helps to improve the prediction performance, but in582

the Bayesian RMSPEM case the improvement is limited.583

Therefore, it is shown that the developed Bayesian RMSPEM584

method is very robust to the pre-processing data.585

B. Box-Jenkins System586

Let’s consider a Box-Jenkins type data-generation system,587

in which G(q) = B(q)
F(q) and H (q) = C(q)

D(q) are 30th order588

transfer functions generated using the procedure described in589

the previous section. The SNR is randomly chosen from 1590

to 10. The system is excited by two types of input signal.591

The first type of input signal is a white Gaussian noise with592

unit variance. The second type is the realization from white593

Gaussian noise filtered by a second order filter. The delay of594

the input is equal to 1. Starting from zero initial conditions,595

1000 input-output data are collected.596

Two sets of pre-processing data are generated. Both contains597

the first 200 input output data of the system excited with598

filtered white Gaussian noise. The first preprocessing data599

set is generated using only the system process model G(q).600

The second preprocessing data set is generated using both601

the process model G(q) and the noise model H (q) in the602

Box-Jenkins model. Moreover, two sets of test data are used,603

which include one having the input with the same character-604

istic of the pre-processing data and another one that use white605

Gaussian noise as input.606

The following estimators are used in this study: 607

1) RecursiveARX: It implements the recursive PEM 608

approach with ARX model of 30th order. The estimated 609

model is used to predict the output 20 steps ahead. 610

2) RecursiveOE: The recursive OE estimator implements 611

the OE model of 30th order. The prediction horizon is 612

20 steps. 613

3) RMSPEM+CV, RMSPEM+Or, RMSPEM: These three 614

estimators use the same setup as in the previous 615

simulation study. 616

4) RMSPEM+DC,TC,SS: The Bayesian RMSPEM 617

approach with DC, TC, SS kernels respectively. The 618

kernel hyperparameters and the weight γ are determined 619

using the preprocessing data. 620

The Monte Carlo study runs 80 tests. The prediction 621

performance are plotted in Figure 2. 622

It is demonstrated in this study that the proposed method 623

generally has a superior performance over the Recursive ARX 624

method despite the type of kernel used. Moreover, generating 625

pre-processing data with only the process model G(q) gives 626

a better initial estimation, thus the Bayesian RMSPEM better 627

captures the underlying process model in the Monte Carlo tests 628

shown in the left panel of Figure 2. 629

C. LTV System 630

In this study, the online parameter identification of linear 631

time varying system with unknown order is investigated. The 632

plant has two operating modes. The first mode has a 30th order 633

transfer function generated randomly using a similar process as 634

described in Section VI-A. The transfer function of the second 635

mode is generated by perturbing the transfer function of the 636

first mode with two additional poles and zeros. Thus both 637

order and parameters of the time varying system change when 638

switching from the first mode to the second mode. 100 data 639

sets consisting of 3000 input-output measurement pairs are 640

generated using Monte Carlo simulations. The system switch 641

at time k = 1001. The input of the system is generated as 642

the realization of a unit variance Gaussian signal filtered by a 643

randomly generated second order filter. 644
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Fig. 3. Identification of linear time varying system.

TABLE I
EXECUTION TIME OF THE TWO ESTIMATORS

The first 400 input output data are used for pre-processing645

and the rest of them are used for testing. Two estimators are646

implemented for comparison. The first one is the recursive647

ARX method which chooses the model order that minimizes648

the prediction error at each time instant. The second one is the649

Bayesian RMSPEM method with DC regularizer whose hyper-650

parameters are determined during the preprocessing process.651

Both recursive ARX and the Bayesian RMSPEM use a for-652

getting factor of 0.98. The prediction window is set to be 20653

steps and the order of the prediction model is chosen to be 30.654

The prediction performance of the Monte Carlo study is655

shown in Figure 3 with the y axis representing the perfor-656

mance measure calculated using (59). It is shown that the657

proposed method is able to track the switch of the time658

varying system, while the recursive ARX method fails to do so.659

Moreover, Bayesian RMSPEM is considerably faster than the660

recursive ARX with order selection. As is shown in Table I,for661

the 3000 input-output data, the mean cumulative time of662

the two estimators are 0.0506 seconds and 1.1755 seconds663

respectively. This result is measured on a computer platform664

with Intel i7-3770 3.40GHz processor and 12 GB memory.665

VII. THERMAL MODELING OF UTAH ELECTRODE ARRAY666

In this section, the proposed Bayesian RMSPEM method667

is employed to predict the thermal effect of Utah electrode668

array (UEA), which is a 3-D microelectrodes used for deep669

brain stimulation [28]. The proposed method is suitable for this670

application is because it provides an accurate temperature pre-671

diction with low computational complexity. The performance672

of the method is demonstrated with a COMSOL simulation673

and an in-vitro experiment.674

A. COMSOL Simulation675

In this study, the developed method is used to model the676

thermal effect of the UEA. A COMSOL Multiphysics model677

(Figure 4) is implemented for what is demonstrated in [28].678

The details of the model is explained in [8]. The UEA is679

placed on the surface of the brain tissue and a probe is place680

at (x, y, z) = (0, 0, 0.042) to measure the temperature. The681

simulation setup is summarized in Table II. The COMSOL682

Fig. 4. Illustration of the developed COMSOL model (a) cylinderical
human brain model. (b) the UEA model [8].

TABLE II
COMSOL MODEL PARAMETERS

simulation is conducted for 1000 seconds. The power dissipa- 683

tion of the UEA is randomly generated every 10 seconds using 684

a Gaussian distribution, which are then constrained within 685

[0, 0.02] mW . The temperature measurements are recorded 686

and converted into the temperature increase with respect to 687

the body temperature, then stored along with the generated 688

power dissipation at the same time instant. 689

Bayesian RMSPEM is used to generate a model that pre- 690

dicts the temperature increase of the UEA given its power 691

dissipation. The prediction window of the Bayesian RMSPEM 692

is set to be 10 steps. Each step is 10 seconds. The data of first 693

200 seconds are used for the pre-processing. The Bayesian 694

RMSPEM updates the parameters of a 5th order prediction 695

model according to the temperature increase obtained by 696

COMSOL. Then the updated model is used to predict the tem- 697

perature 10 steps later via the j -step-ahead predictor (27). This 698

prediction is then compared with the results obtained from 699

COMSOL. The comparison results are shown in Figure 5. 700

This comparison result indicates that the thermal dynamics 701

of UEA can be captured by the Bayesian RMSPEM method. 702

The prediction performance is 91.0195. The Mean Square 703

Error of the prediction is about 1.2850 × 10−5 ◦C. 704

B. In Vitro Experiment 705

An in-vitro experiment system [23] is built to emulate the 706

thermal effect of UEA. The system uses a custom designed 707
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Fig. 5. Modeling the thermal effect of the UEA. Top plot represent the randomly generated power dissipation of the UEA. Bottom plot is the
comparison of the simulated UEA temperature and the predicted UEA temperature.

Fig. 6. (a) The developed hardware testing system. (b) Hardware
diagram. (c) The developed TMTV system. [23].

temperature monitoring and management test vehicle (TMTV)708

with heat sources and temperature sensors to emulate the709

implanted electronics and a water circulation system to emu-710

late the blood perfusion effect. A TI MSP430G2 board acts711

as the middleware between the TMTV and PC. It controls the712

operation of TMTV via sending PWM signals within the range713

of [0, 1000] to the heat sources and sends the temperature714

measurements back to PC, which is then processed by the715

LabView front end. The PWM signal controls the duty cycle716

of the heat sources, with 0 being 100% and 1000 being 0%.717

Figure 6 demonstrates the developed hardware testing system.718

We use this testing system to evaluate the prediction accu-719

racy of the simplified thermal model. More specifically, two720

experiments are conducted. The first experiment randomly721

Fig. 7. Experiment results (a) Gaussian input. (b) Filtered Gaussian
input.

generates 2000 PWM signals within the range of [0, 1000] 722

using Gaussian distribution and apply the PWM signals to the 723

heat sources on TMTV with a step size of 10 seconds. The 724

temperature recorded by the onboard sensors are then com- 725

pared with the temperature predicted by the proposed Bayesian 726

RMSPEM method and the prediction error are used for model 727

updating. The Bayesian RMSPEM method implements a 20th 728

order OE model and predicts the temperature measurements 729

of 10 steps ahead. The results are presented in Figure 7(a). It is 730

demonstrated that the Bayesian RMSPEM accurately predicts 731

the temperature variation despite the varying PWM signal and 732

achieves an overall prediction mean square error of 0.131 ◦C. 733

The second experiment generates a random second order 734

low pass filter and applies it to the 2000 random PWM signals. 735

The filtered PWM signal is then applied to the TMTV. This 736

is used to emulate the output of a real thermal management 737

system, where the computed control signal is usually a low 738
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frequency signal that depends on various inputs. In this739

experiment, it is shown in Figure 7(b) that the temperature740

output can be predicted with a 5th order OE model, which741

is much simpler than the 20th order OE model used in the742

first experiment. By taking advantage of this low order model,743

the computational cost of the proposed method can be greatly744

reduced. The overall prediction mean square error is about745

0.024 ◦C.746

VIII. CONCLUSION747

With the development of more powerful implantable748

devices, especially the neural prosthesis, the overheating of749

such devices has become a hidden hazard. Accurate long750

range prediction of thermal effect is critical to maintain safe751

operation of implantable device. The existing methods can not752

guarantee long term performance and achieve full potential753

of device. A Bayesian multi-step prediction method is devel-754

oped in this article to generate accurate online thermal effect755

prediction for implantable devices with limited computational756

power. The developed method iteratively minimize a function757

of the j -step-ahead prediction error and recently developed758

system identification techniques relying on regularization is759

adopted to improve the prediction performance. Specifically,760

we assume the online setting in that new data become available761

at each time instant and then saved into a FIFO queue of fixed762

length. Based on the input output data saved in the queue,763

the parameters are updated by iteratively minimizing the764

j -step-ahead prediction error of the new data. Three simulation765

studies are presented to demonstrate the performance of the766

developed method. The first Monte Carlo simulation study767

shows that when the prediction model is underparameterized768

the developed method can still capture the low frequency769

dynamics of the system. The second Monte Carlo simula-770

tion study shows that the developed method is robust to771

different noise models and different input signals. The third772

Monte Carlo simulation study demonstrates that the developed773

method is able to capture the dynamics of a time varying774

system. The application of predicting the thermal effect of775

UEA is demonstrated via both a COMSOL simulation and an776

in-vitro experiment, which shows that the developed method777

can capture the complicated thermal dynamics with great778

accuracy while only requiring a simple thermal model.779

REFERENCES780

[1] P. S. Ruggera, D. M. Witters, G. V. Maltzahn, and H. I. Bassen,781

“In vitroassessment of tissue heating near metallic medical implants782

by exposure to pulsed radio frequency diathermy,” Phys. Med. Biol.,783

vol. 48, no. 17, pp. 2919–2928, Sep. 2003.784

[2] J. G. Nutt, V. C. Anderson, J. H. Peacock, J. P. Hammerstad, and785

K. J. Burchiel, “DBS and diathermy interaction induces severe CNS786

damage,” Neurology, vol. 56, no. 10, pp. 1384–1386, May 2001.787

[3] J. C. LaManna, K. A. McCracken, M. Patil, and O. J. Prohaska,788

“Stimulus-activated changes in brain tissue temperature in the anes-789

thetized rat,” Metabolic Brain Disease, vol. 4, no. 4, pp. 225–237,790

Dec. 1989.791

[4] T. S. Ibrahim, D. Abraham, and R. L. Rennaker, “Electromagnetic power792

absorption and temperature changes due to brain machine interface793

operation,” Ann. Biomed. Eng., vol. 35, no. 5, pp. 825–834, Apr. 2007.794

[5] N. L. Opie, “Thermal safety of a retinal prosthesis,” Ph.D. dissertation, 795

Dept. Elect. Eng., Univ. Melbourne, Melbourne, VIC, Australia, 2011. 796

[6] N. L. Opie, A. N. Burkitt, H. Meffin, and D. B. Grayden, “Heating of 797

the eye by a retinal prosthesis: Modeling, cadaver and in vivo study,” 798

IEEE Trans. Biomed. Eng., vol. 59, no. 2, pp. 339–345, Feb. 2012. 799

[7] H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the 800

resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, 801

Aug. 1948. 802

[8] R. Chai and Y. Zhang, “Adaptive thermal management of implantable 803

device,” IEEE Sensors J., vol. 19, no. 3, pp. 1176–1185, Feb. 2019. 804

[9] S. C. DeMarco, G. Lazzi, W. Liu, J. D. Weiland, and M. S. Humayun, 805

“Computed SAR and thermal elevation in a 0.25-mm 2-D model of the 806

human eye and head in response to an implanted retinal stimulator. I. 807

Models and methods,” IEEE Trans. Antennas Propag., vol. 51, no. 9, 808

pp. 2274–2285, Sep. 2003. 809

[10] J.-L. Dillenseger and S. Esneault, “Fast FFT-based bioheat transfer 810

equation computation,” Comput. Biol. Med., vol. 40, no. 2, pp. 119–123, 811

Feb. 2010. 812

[11] G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to 813

rapid calculation of temperature change in tissue using spatial filters to 814

approximate effects of thermal conduction,” IEEE Trans. Biomed. Eng., 815

vol. 60, no. 6, pp. 1735–1741, Jun. 2013. 816

[12] V. Singh et al., “On the thermal elevation of a 60-electrode epiretinal 817

prosthesis for the blind,” IEEE Trans. Biomed. Circuits Syst., vol. 2, 818

no. 4, pp. 289–300, Dec. 2008. 819

[13] S. K. Das, S. T. Clegg, and T. V. Samulski, “Computational techniques 820

for fast hyperthermia temperature optimization,” Med. Phys., vol. 26, 821

no. 2, pp. 319–328, Feb. 1999. 822

[14] C. Serrano-Amenos et al., “Thermal analysis of a skull implant in brain- 823

computer interfaces,” in Proc. 42nd Annu. Int. Conf. IEEE Eng. Med. 824

Biol. Soc. (EMBC), Jul. 2020, pp. 3066–3069. 825

[15] L. Ljung and T. Södrestrm, Theory and Practice of Recursive Identifi- 826

cation. Cambridge, MA, USA: MIT Press, 1983. 827

[16] L. Ljung, System Identification: Theory for the User, 2nd ed. 828

Upper Saddle River, NJ, USA: Prentice-Hall, 1999. 829

[17] M. Farina and L. Piroddi, “Simulation error minimization identification 830

based on multi-stage prediction,” Int. J. Adapt. Control Signal Process., 831

vol. 25, no. 5, pp. 389–406, May 2011. 832

[18] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Kernel 833

methods in system identification, machine learning and function estima- 834

tion: A survey,” Automatica, vol. 50, no. 3, pp. 657–682, Mar. 2014. 835

[19] G. Prando, D. Romeres, and A. Chiuso, “Online identification of time- 836

varying systems: A Bayesian approach,” in Proc. IEEE 55th Conf. Decis. 837

Control (CDC), Dec. 2016, pp. 3775–3780. 838

[20] D. Romeres, G. Prando, G. Pillonetto, and A. Chiuso, “On-line Bayesian 839

system identification,” in Proc. Eur. Control Conf. (ECC), Jun. 2016, 840

pp. 1359–1364. 841

[21] D. Romeres, M. Zorzi, R. Camoriano, S. Traversaro, and A. Chiuso, 842

“Derivative-free online learning of inverse dynamics models,” IEEE 843

Trans. Control Syst. Technol., vol. 28, no. 3, pp. 816–830, May 2020. 844

[22] D. Romeres, D. K. Jha, A. DallaLibera, B. Yerazunis, and D. Nikovski, 845

“Semiparametrical Gaussian processes learning of forward dynamical 846

models for navigating in a circular maze,” in Proc. Int. Conf. Robot. 847

Autom. (ICRA), May 2019, pp. 3195–3202. 848

[23] R. Chai, Y.-P. Lai, W. Sun, M. Ghovanloo, and Y. Zhang, “Online 849

predictive modeling for the thermal effect of implantable devices,” 850

in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS), Oct. 2018, 851

pp. 1–4. 852

[24] G. Pillonetto, T. Chen, A. Chiuso, G. De Nicolao, and L. Ljung, 853

“Regularized linear system identification using atomic, nuclear and 854

kernel-based norms: The role of the stability constraint,” Automatica, 855

vol. 69, pp. 137–149, Jul. 2016. 856

[25] M. Zorzi and A. Chiuso, “The harmonic analysis of kernel functions,” 857

Automatica, vol. 94, pp. 125–137, Aug. 2018. 858

[26] M. Zorzi and A. Chiuso, “Sparse plus low rank network identification: 859

A nonparametric approach,” Automatica, vol. 76, pp. 355–366, 860

Feb. 2017. 861

[27] P. C. Young, Recursive Estimation Time-Series Analysis: Introduction. 862

Cham, Switzerland: Springer, 2012. 863

[28] S. Kim, P. Tathireddy, R. A. Normann, and F. Solzbacher, “Thermal 864

impact of an active 3-D microelectrode array implanted in the brain,” 865

IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 4, pp. 493–501, 866

Dec. 2007. 867


