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Abstract

Our understanding of how sensory structure design is coupled with neural processing capacity to adaptively support division
of labor is limited. Workers of the remarkably polymorphic fungus-growing ant Atta cephalotes are behaviorally specialized
by size: the smallest workers (minims) tend fungi in dark subterranean chambers while larger workers perform tasks outside
the nest. Strong differences in worksite light conditions are predicted to influence sensory and processing requirements for
vision. Analyzing confocal scans of worker eyes and brains, we found that eye structure and visual neuropils appear to have
been selected to maximize task performance according to light availability. Minim eyes had few ommatidia, large interom-
matidial angles and eye parameter values, suggesting selection for visual sensitivity over acuity. Large workers had larger eyes
with disproportionally more and larger ommatidia, and smaller interommatidial angles and eye parameter values, indicating
peripheral sensory adaptation to ambient rainforest light. Optic lobes and mushroom body collars were disproportionately
small in minims. Within the optic lobe, lamina and lobula relative volumes increased with worker size whereas medulla vol-
ume decreased. Visual system phenotypes thus correspond to task specializations in dark or light environments and illustrate
a functional neuroplasticity underpinning division of labor in this socially complex agricultural ant.
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1992; Schwarz et al. 2011). Scaling patterns of brain size
and brain compartment substructure among polymorphic
workers, moreover, appear to correspond to foraging ecol-
ogy and the sensory and high-order processing demands of
task performance (Gronenberg 2008; Muscedere and Tran-
iello 2012; Gordon et al. 2017). Although olfactory inputs
are principal information sources in ants (Holldobler and
Wilson 1990; Czaczkes et al. 2015), vision can be significant
in foraging ecology and navigation (Knaden and Graham
2016; Narendra et al. 2017). To return home, foragers may
use a celestial compass (Wehner 2003; Muller and Wehner
20006), optic flow (Ronacher and Wehner 1995), visual cues
and landmark panoramas (Graham and Cheng 2009; Miiller
and Wehner 2010; Schwarz et al. 2011; Huber and Knaden
2015; Freas et al. 2018), polarized light (Zeil et al. 2014),
and canopy patterns (Holldobler 1980; Beugnon et al. 2005;
Rodrigues and Oliveira 2014). Additionally, visual naviga-
tion has been associated with peripheral receptor structure,
and primary and higher-order processing brain centers
(Gronenberg and Holldobler 1999; Wehner 2003; Ehmer
and Gronenberg 2004; Muller and Wehner 2006; Knaden
and Graham 2016), and worker behavioral development may
be associated with light-exposure and cued neuroanatomical
reorganization in the visual system (Stieb et al. 2010, 2012;
Yilmaz et al. 2016; Kambhi et al. 2017).

The ommatidia of the ant compound eye are photorecep-
tive units that may change in number and structure according
to visual needs (Moser et al. 2004; Narendra et al. 2016a).
Ommatidia structure affects visual capacity: larger omma-
tidia enhance light sensitivity, ommatidia number determine
image resolution, and lower interommatidial angle improves
acuity (Land 1997). Reproductive and worker division of
labor in social insects may have selected for differences in
compound eye structure (Schwarz et al. 2011; Streinzer et al.
2013). In some ant species, ommatidia number and size scale
with worker body size (Menzel and Wehner 1970; Bern-
stein and Finn 1971; Klotz et al. 1992; Baker and Ma 2006;
Schwarz et al. 2011), vary in males and females (Naren-
dra et al. 2016b), and scale differently among polymorphic
workers within individual compound eyes and between colo-
nies (Perl and Niven 2016a,, 2016b). In bull ants (Greiner
et al. 2007; Narendra et al. 2011), bees (Jander and Jander
2002; Greiner et al. 2004; Somanathan et al. 2009) and dung
beetles (Mclntyre and Caveney 1998) photoreceptor diam-
eter and eye area increase in nocturnal species in comparison
to diurnal species, enhancing visual sensitivity. Ommatidia
facet diameter is generally smaller in diurnal than nocturnal
ants (Narendra et al. 2017), but eye size patterns vary. Eye
size is typically larger in nocturnal ants, although eyes are
larger in some diurnal Camponotus species (Menzi 1987).

Visual input from the compound eyes travels to the optic
lobes (OL) for primary processing (Gronenberg and Holl-
dobler 1999). OL investment reflects visual ecology in social
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insects: in subterranean species, workers are eyeless and
OLs are absent, whereas diurnal solitary foragers have enor-
mous eyes and OLs occupying 33% of their brains (Gronen-
berg and Holldobler 1999). In paper wasps, queens remain
inside the nest and have smaller OLs than foraging workers
(O’Donnell et al. 2014), and in the weaver ant Oecophylla
smaragdina, minor workers nurse brood, rarely leave the
nest, and have disproportionally smaller OLs than majors,
which forage and defend territory (Kambhi et al. 2017).

The OL is comprised of three regions: the lamina (con-
trast detection), medulla (color vision processing and small
field motion), and lobula (color vision processing, wide
field motion detection, and shape and panorama construc-
tion) (Strausfeld 1989; Gronenberg 2008; Dyer et al. 2011).
OL interneurons project to the collar of the mushroom body
(MB) calyx for higher-order processing (Gronenberg 2001;
Farris 2016). In ants, males, queens and worker brains show
differential investment in the medulla, lobula and MB collar
(Ehmer and Gronenberg 2004), reflecting different visual
ecologies. Peripheral sensory structure should correlate with
higher-order processing ability in task-specialized workers,
but this linkage is not well understood.

Visual phenotypes, especially those concerning vari-
ability in eye structure, have been extensively examined in
social insect species that range from diurnal to nocturnal
activity patterns. However, few studies focus on intraspecific
plasticity in visual capabilities related to worker division of
labor, which may be associated with task performance in
environments that vary in light level. To investigate visual
phenotypes within the worker caste, we analyzed variation
in the structure of the compound eyes, OL, and MB collar
in morphologically and behaviorally differentiated workers
of the fungus-growing ant Atta cephalotes. A. cephalotes
workers perform tasks in the complete darkness of fungal
comb chambers and in the filtered light epigaeic environ-
ment beneath rainforest canopy. A. cephalotes workers for-
age day and night (Hodgson 1955; Cherrett 1968), using
trail pheromones, but also vision during orientation along
trails (Vilela et al. 1987; Vick 2005). Although olfaction
appears to be the dominant sensory modality for foraging
in many ants, visual information facilitates trail-following
in Atta laevigata (Jaffé et al. 1990), and other ant species
alter their use of chemicals or vision depending on light
conditions (Beugnon and Fourcassié 1988). In A. cepha-
lotes, improved forager visual ability may enable flexibility
in the use of orientation cues and social signals as ambient
light levels change. Worker head widths (HW) range from
0.6 to 4.5 mm,; this striking polymorphism is associated
with the frequency (Wilson 1980) and efficiency (Wetterer
1991; van Breda and Stradling 1994) of leaf harvesting,
fungal comb maintenance, brood care, hygienic behav-
iors, and colony defense. The smallest workers (minims,
HW < 1.2 mm) primarily tend brood and the fungal comb
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in dark underground chambers (Wilson 1980) whereas
media workers (HW =1.2-3.0 mm) harvest plant material,
traveling along foraging trails beneath rainforest canopy, and
the largest workers (majors, HW > 3.0 mm), are responsible
for defense (Powell and Clark 2004; Holldobler and Wil-
son 2010). Size-variable workers thus have different social
roles and experience environments strongly differing in
ambient light intensity and visual complexity. It is unlikely
that a single eye structure and sensory processing ability has
evolved in all workers. We hypothesized that A. cephalotes
visual system organization is associated with the visual ecol-
ogy of size-related division of labor and has resulted from
selection for adaptive plasticity in ommatidia structure, OL
organization and MB collar investment. Specifically, we pre-
dicted that workers engaging in within-nest or outside-nest
activities (in darkness or light, respectively) would vary in
compound eye structure and relative investment in the OL
and its constituent parts, and in the MB collar to support
the requirements of vision associated to task performance.

Methods
Laboratory cultures

Queenright A. cephalotes incipient colonies (~ 100 workers
total) were collected in Trinidad in July 2014 and main-
tained in a Harris environmental chamber (25 °C, 50%
relative humidity, 12:12 h photoperiod [white fluorescent
tube, 4100 K, 273 + 67 1x (avg + std), approx. 400700 nm
wavelength]). Artificial nests were constructed from multi-
ple plastic boxes (11 cm X 18 cm X 13 cm each) connected
by plastic tubing (ID=2.5 cm). Boxes housing fungal combs
had dental stone floors with embedded pebbles to provide
air circulation for the fungus. Colonies were fed locally
collected leaves free of chemicals and organic produce on
alternate days, supplemented with rolled oats, apple, and
orange mesocarp.

Worker size variation and tissue sampling

After approximately 10 months in the laboratory, we sam-
pled adult polymorphic workers, based on cuticle pig-
mentation, from three colonies that had mature to sizes
of more than 2000 workers (Ac09, Ac20, and Ac21). A.
cephalotes appears to exhibit triphasic allometry, with
three worker size classes (subcastes): minims (HW across
the eyes < 1.2 mm), medias (HW 1.2-3.0 mm) and major
workers (HW > 3.0 mm). Each worker was anesthetized on
ice and brains were dissected in ice-cold HEPES buffered
saline. Compound eyes were removed and stored in 70%
ethanol for processing. Because dissection is delicate, we

were not always able to preserve the brain and eyes of the
same individual.

Compound eye imaging and structural
measurements

Ninety-two intact compound eyes were imaged to create
3D stacks (Fig. 1a) to measure ommatidia number (ON),
average ommatidial diameter (D), and interommatidial
angle (A¢). Eyes were stored in 70% ethanol, washed in
100% ethanol (3 X 10 min) before mounting. We measured
one eye (the one better preserved) per worker. Extraneous
cuticle was removed to allow eyes to lie flat and were then
mounted in methyl salicylate between coverslips and imaged
using a Fluoview 1 confocal microscope (A =488 nm, step
size=3.1 pm) with a 20 X air objective (NA=0.5, CA=2).
Cuticle has natural fluorescence. Eye data were recorded
blind to subcaste by randomly assigning identification num-
bers to eyes. To quantify ommatidia number, image stacks
were flattened in ImageJ (Abramoff et al. 2004) and facets
were counted using the Cell Counter plugin. Volume render-
ings were viewed in Amira 6.0 to verify counts.

Mean ommatidial diameter was calculated from the aver-
age diameter of 5 or 10 randomly selected ommatidia, which
were non-adjacent and from of all regions of the compound
eye and eye surface area was calculated from the mean
ommatidial diameter (surface area=ON X 7 X [0.5 X D).
This method for calculating eye surface area has approxi-
matively an average error of only 7% in comparison with
measuring all the ommatidia in the eye (see Supplementary
Material). Ommatidial density (number of ommatidia per
surface area unit) was calculated by dividing the number
of ommatidia by eye surface area (Yilmaz et al. 2014). To
quantify interommatidial angle (A¢), image stacks were re-
sectioned in the yz plane to obtain a virtual cross section
of the eye. ImageJ was used to estimate local eye radius R
(Schwarz et al. 2011), which together with the mean omma-
tidial diameter (D, in um) for that eye, interommatidial
angle (in radians) was estimated as A¢p=D/R (Land 1997,
Schwarz et al. 2011). Eye parameter (P), which indicates the
extent of trade-offs between sensitivity and resolution, was
calculated as Ad x D (Snyder 1977; Rutowski et al. 2009);
lower values of P indicate enhanced acuity, while compro-
mising sensitivity.

Immunohistochemistry and confocal microscopy

After dissection, brains were placed in 16% Zn-formalde-
hyde (Ott 2008), fixed overnight at approximately 18 °C
on a shaker, washed in HBS (6 X 10 min) and then fixed
in Dent’s Fixative (80% methanol, 20% DMSO) for mini-
mally 1 h. Brains were next washed in 100% methanol and
either stored at —17 °C or immediately processed. Brains
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Fig.1 Compound eye structure
in polymorphic A. cephalotes
workers. a Z-projections of
confocal images of eyes from
workers with variable HW
(scale bar=100 um). b Log—log
plot of the ommatidia number
as a function of worker HW
showing a significant change

of slope at 1.38 mm. ¢ Log-log
plot of average ommatidial
diameter as a function of worker
HW. d Log—log plot of the eye
surface area (SA) as a func-
tion of worker HW showing

a significant change of slope

at 1.44 mm. e Log—log plot of
ommatidia density (ommatidial
number/eye SA) as a function of
worker HW. f Log—log plot of
the interommatidial angle (rad)
as a function of worker HW
showing a significant change

of slope at 1.25 mm. g Log—
log plot of the eye parameter

as a function of worker HW
(significant change of slope

at 1.26 mm). b—g Each pink
point represents a single eye.
Solid (significantly different
from isometry) or dashed (not
significantly different from
isometry) black lines show
linear regression or piecewise
linear regressions as appropri-
ate. Purple patches represent
95% confidence intervals of
regression lines. Dashed gray
lines are the best-fitting isomet-
ric regression models. Patches
of increasing shades of gray
group minim, media and major
worker values (as the increasing
size head outlines at the bottom)

were washed in 0.1 M Tris buffer (pH=7.4) and blocked
in PBSTN (5% neutral goat serum, 0.005% sodium azide in
0.2% PBST) at 18 °C for 1 h before incubation for 3 days
at room temperature in primary antibody (1:30 SYNORF
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1 in PBSTN; monoclonal antibody 3C11 obtained from
DSHB, University of Iowa, IA, USA). They were washed
(6 10 min) in 0.2% PBST and incubated in secondary anti-
body (1:100 AlexaFluor 488 goat anti-mouse in PBSTN)
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for 4 days at room temperature. Brains were then washed a
final time (6 X 10 min in 0.2% PBST) and dehydrated in an
ethanol series (10 min/step, 30/50/70/95/100/100% ethanol
in 1 X PBS), cleared with methyl salicylate, and mounted on
stainless steel slides for imaging.

Sixty-three brains were imaged using an Olym-
pus Fluoview 1 confocal microscope (A=488 nm, step
size=3.1 pm) with either a 10 X air objective (NA=0.3,
CA=1), or a 20 X air objective (NA=0.5, CA=2). Voxel
depth was multiplied by a factor of 1.59 to correct for axial
shortening due to mounting in methyl salicylate (Bucher
et al. 2000). Brain image stacks were manually segmented
using Amira 6.0 and Amira 2019.2 software (brush, magic
wand and blow tools) to quantify neuropil volumes (mate-
rial statistics tool). Given their bilateral symmetry, we seg-
mented one hemisphere per brain (the side best preserved),
reporting half-brain volumes. Our study goal required that
only the lamina, medulla and lobula of the OL and MB caly-
ces (separating lip and collar) were segmented separately
(Fig. 2a), the rest of the central brain regions and the suboe-
sophageal ganglion were segmented as a whole. Brain data
collection was blind to worker HW, although extreme size
differences were obvious. Nevertheless, due the randomized
coding of brains, subcaste could not be determined with cer-
tainty by the annotator. We calculated the volume of the
brain hemisphere, the absolute and relative volume of OL
(relative to total brain volume), the absolute and relative
volume of MB collar (relative to total brain volume), and
the relative volumes of OL subregions (relative to total OL
volume).

Statistical evaluation

Statistical evaluations were performed in R (version 3.3.0,
Team 2016) using the ‘segmented’ package to analyze eye
and brain metric scaling (Muggeo 2008). To assess allo-
metries in eye structure and brain volumes in relation to
worker size, least-squares means regression was used on
log10-transformed values to estimate a and b in the scal-
ing equation y= aM?, as log10(y) =log(a) + b xlog(M). To
test the null hypothesis (H,,) of isometry, a separate linear
model was calculated and tested against different slope val-
ues depending on the metric. The slope for H, were 5=0.0
(linear vs. constant values), b=1.0 (linear vs. linear), b=2.0
(linear vs. surface area) and »=3.0 (linear vs. volume) (Kas-
pari and Weiser 1999).

The Davies test was used to detect a statistically signifi-
cant change in slope or a ‘breakpoint’ in a linear relationship
(Davies 2002). We observed that the significance of some
changes in slope depended on a single data point; therefore,
we accepted the change in slope only if its significance was
always below 0.05 when removing any point from the data-
set. The ‘segmented’ package was further used to estimate

the location of the breakpoint. If the Davies’ test revealed
two piecewise linear relationships in a scaling relationship,
least-squares means regression was calculated and tested
against isometry independently.

To further explore whether increased investment in pri-
mary visual neuropil might have an impact in higher-order
visual processing neuropil, we assessed allometry in the
ratio of volumes of the optic lobes and MB collar according
to HW. We also calculated a least-squares means regression
on logl0-transformed values and tested against isometry
(b=0.0).

Results
Eye structure

Larger workers had more ommatidia (Fig. 1b). The average
number of ommatidia (+ std) was 32.75 + 17.88 in minims,
152.29+61.17 in medias, and 354.70 +59.09 in majors. Our
data showed a significant change in the scaling of ommatidia
number and worker size (Davies test, p <0.001) at a HW of
1.38 mm (95% CI 1.20-1.58 mm). Piecewise linear mod-
els calculated for both slopes were significant (p <0.001,
Multiple R*=0.989) with a slope shift from 2.03 (95%
CI 1.91-2.13) to 1.35 (95% CI 1.25-1.45). Piecewise lin-
ear models were also significantly different from isometry
(b=0; p<0.001). Larger workers also had larger ommatidial
diameter (Fig. 1c). The relationship between ommatidial
diameter and worker size showed no significant breakpoint
(Davies test, p>0.5), and these variables were significantly
correlated (F(; 99)=1217, p<0.001, R*=0.93). The slope of
the regression line was 0.25 (95% CI 0.24-0.27), which was
significantly different from isometry (b=1.0; F{; g5, = 1217,
p<0.001).

Larger workers had larger eyes (Fig. 1d). Davies’ test
showed a significant change in the scaling of total eye size
(eye surface area) and worker size (p <0.001) at a HW of
1.44 mm (95% CI 1.20-1.72 mm). Piecewise linear mod-
els calculated for both slopes were significant (p <0.001,
Multiple R*=0.988) with a slope shift from 2.52 (95% CI
2.36-2.68) to 1.84 (95% CI 1.70-1.97). Piecewise linear
models were significantly different from isometry (b=2.0;
p <0.001), although the effect size was small.

Smaller workers had more densely packed ommatidia
(Fig. 1e). The relationship between the density of ommatidia
and worker size showed no significant breakpoint (Davies
test, p> 0.5 and these variables showed a significant cor-
relation (F(; g9, =1217, p<0.001, R?=0.93). The slope was
—0.50 (95% CI —0.53 to —0.48), also significantly different
from isometry (b=0.0; F(; 99)=1217, p<0.001).

Smaller workers had larger interommatidial angles
(Fig. 1f). Average (+std) interommatidial angle was
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Fig.2 Volumes of polymor-
phic A. cephalotes worker
brains and brain compart-
ments. a 3D reconstruction of
the brain hemisphere of an A.
cephalotes worker (HW ~4 mm)
[LA =lamina, ME =medulla,
LO=lobula, CO=collar,
MB-CA = mushroom body
calyx, MB-PE = mushroom
body peduncle, CX =central
complex, SEZ =subesophageal
zone, AL =antennal lobe]. b
Log-log plot of hemisphere
brain volume as a function of
worker HW. ¢ Log-log plot of
relative optic lobe (OL) volume
as a function of worker HW. d
Log-log plot of relative volume
of OL lamina (LA) as a func-
tion of worker HW. e Log—log
plot of relative volume of OL
medulla (ME) as a function of
worker HW. f Log—log plot of
relative volume of OL lobula
(LO) as a function of worker
HW. g Log-log plot of rela-
tive MB collar volume (CO)
as a function of worker HW.

h Log—log plot of MB collar:
OL volume ratio (CO/OL) as

a function of worker HW. b—e
Legend as in Fig. 1
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0.81 +0.19 radians for minims, 0.44 +0.07 for medias,
and 0.34 +0.05 for majors. The Davies’ test for a change in
slope showed a significant change in the scaling relationship
between interommatidial angle and worker size (p <0.001)
at a HW of 1.25 mm (95% CI 1.03—-1.51 mm). Piecewise
linear models were calculated for both slopes and found to
be significant (p <0.001, Multiple R?=0.84), with a slope
shift from —0.98 (95% CI —1.21 to —0.76) to —0.33 (95% CI
—0.43 to —0.23). Piecewise linear models were also signifi-
cantly different from isometry (b=0; p <0.001).

Eye parameter decreased with worker size in minims, but
was low and showed high similarity among different size
medias and majors (Fig. 1g). A significant change (Davies’
test, p<0.001) in the scaling relationship between eye
parameter and worker size was found at a HW of 1.26 mm
(95% CI 1.01-1.57 mm). Piecewise linear models were cal-
culated for both slopes and found to be significant (» <0.001,
Multiple R*=0.588) with a slope shift from —0.73 (95% CI
—0.95 to —0.51) to —0.07 (95% CI —0.20 to 0.05). The first
segment of the piecewise linear models was significantly
different from isometry (b=0; p <0.001), but the second
segment was not (b=0; p=0.205).

Brain structure

Larger workers had significantly larger brains (Fig. 2b).
The relationship between brain volume and worker size
showed no significant breakpoint (Davies test, p > 0.05)
and these variables showed a significant positive correla-
tion (F;¢;,=13.91, p<0.001, R*=0.18) with a slope of
0.37 (95% CI 0.17-0.56) significantly different from isom-
etry (b=3.0; F(l,el) =13.91, p<0.001). Larger workers had
disproportionally larger OL (Fig. 2¢). Relative OL volume
and worker size showed a significant positive correlation
(Fuen=271.2, p<0.001, R?=0.81) with no significant
breakpoint (Davies test, p=1). The slope of the regression
line was 0.76 (95% CI 0.67-0.85) significantly different from
isometry (b=0.0; F(; 6;,=271.2, p<0.001).

Within the OL, larger workers invested disproportionally
more in the lamina (Fig. 2d). Relative lamina volume and
HW showed a significant positive correlation (F; ¢,=37.77,
p<0.001, R2=0.37) with no significant breakpoint (Davies
test, p>0.05). The slope of the regression line was 0.64
(95% CI10.43-0.85) and significantly different from isometry
(b=0.0; F; 6;,=37.77, p<0.001). In contrast, smaller work-
ers invested disproportionally more in the medulla (Fig. 2e).
Relative medulla volume and HW showed a significant nega-
tive correlation (F; 4;,=51.1, p<0.001, R? of 0.45) with
no significant breakpoint (Davies test, p > 0.05) and a slope
of —=0.17 (95% CI —0.21 to —0.12), significantly different
from isometry (b=0.0; F(1,61) =51.1, p<0.001). Finally,
as for the lamina, larger workers invested disproportionally
more in lobula (Fig. 2f). Relative lobula volume and HW

showed a significant positive correlation (F ¢, =13.43,
p<0.001, R*=0.17) and no significant breakpoint (Davies
test, p =0.362). The slope of the regression line was 0.21
(95% CI: 0.10 to 0.32) significantly different from isometry
(b=0.0; Fy 6)=13.43, p<0.001).

Larger workers also invested relatively more in the MB
collar (Fig. 2g). Relative collar volume and worker size
showed a significant positive correlation (F ¢,=13.03,
p<0.001, R*=0.16) and no significant breakpoint (Davies
test, p=0.42). The slope of the regression line was 0.19
(95% CI 0.08-0.29), which was significantly different
from isometry (b=0.0; F; ;,=13.03, p<0.001). Despite
investing more in the MB collar, larger workers had a lower
collar:OL volume ratio (Fig. 2h). The relationship between
this ratio and worker size showed a significant negative cor-
relation (F(1,61) =67.17, p<0.001, R?= 0.52), no significant
breakpoint (Davies test, p=0.69), and a slope of —0.57 (95%
CI -0.71 to —0.43), significantly different from isometry
(b=0.0; Fy 6,)=67.17, p<0.001).

Discussion

Our results show that differences in worksite sensory ecol-
ogy appear to select for visual system polyphenism in the
polymorphic leaftcutter ant A. cephalotes. Division of labor
in this species is associated with variation in light levels and
is strongly correlated with worker body size: minims tend
fungi deep underground, medias harvest leaves from their
habitat and labor inside the nest, and majors appear to exclu-
sively perform defense and trail maintenance outside the
nest. We found that compound eye structure and visual neu-
ropil scaling vary with worker size according to demands for
adaptive behavior in relation to worksite light availability.

Division of labor and eye structure in A. cephalotes

Given the variation in the spatial distribution of workers
and their tasks, we expected the eyes of minims to structur-
ally enable light sensitivity over resolution, whereas larger
worker eyes were predicted to favor spatial resolution over
sensitivity. It is unclear how minims make use of visual
information and what level of spatial resolution and sensi-
tivity is needed to work effectively on the fungal comb. Min-
ims, however, perform some tasks outside the nest, “hitch-
hiking” on transported leaves during day and night to defend
against fly parasites (Linksvayer et al. 2016). We found that
the number and size of ommatidia and eye surface area were
significantly smaller in minims, suggesting less capacity to
capture light and less reliance on vision to perform their
tasks. The larger ommatidia of media and major workers
indicate greater sensitivity to light. However, ommatidia
size increased hypometrically with body size: although the
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ommatidia of minims were the smallest, relative ommatidia
size was greater in minims than in medias and majors. This
may enable minim worker eyes to collect more light than
expected from their size, suggesting adaptation to darkness
and light (Greiner 2006; Yilmaz et al. 2014). Alternatively,
the small size of minim worker eyes and ommatidia may be
due to a body size constraint: eye size is as large as devel-
opmentally possible to ensure at least a marginal ability to
capture light, which may be needed to detect and defend
against parasitic flies. Minims also showed a higher density
of ommatidia than media and majors. When compared with
other ant species that overlap in body size (Temnothorax
rugulatus, Solenopsis invicta, S. richteri), the eyes of size-
matched A. cephalotes workers showed slightly larger but
considerably fewer ommatidia (Baker and Ma 2006; Ram-
irez-Esquivel et al. 2017), and larger interommatidial angles
(Ramirez-Esquivel et al. 2017). Although this suggests a
greater light sensitivity in A. cephalotes minims, additional
research is needed for confirmation.

Interommatidial angle decreased with worker size, indi-
cating greater visual acuity in larger workers. Eye parameter
values were significantly lager for minims, but for larger
workers, values were lower and not correlated with size.
This suggests minim worker eyes are adapted to enhance
sensitivity rather than acuity, whereas larger worker eyes
structure has been selected for sensitivity and acuity. Higher
acuity is adaptive outside the nest, allowing the resolution
of more distant objects. The significant breakpoints (HW
1.0-1.8 mm) found in the linear regressions for ommatidia
number, eye surface area, interommatidial angle and eye
parameter suggest structural changes to accommodate the
body size-associated transition between inside and outside
nest division of labor in A. cephalotes. Comparisons of eye
structure between diurnal, cathemeral, and nocturnal ant
(Greiner et al. 2007; Narendra et al. 2013; Yilmaz et al.
2014; Ogawa et al. 2019) and bee species (Greiner et al.
2004) are generally consistent with our findings.

Although lens size and number determine light sensitiv-
ity and visual acuity, variations in the size of thabdomeres
(Greiner et al. 2004; Gonzalez-Bellido et al. 2011; Naren-
dra et al. 2017), microsaccadic rhabdomere contractions and
microvilli refractory time (Juusola et al. 2016) or, pupillary
systems mediated by pigment ommatidial cells (Narendra
et al. 2013, 2016a) modify visual abilites. Detailed visual
adaptations in A. cephalotes polymorphic workers remain
to be studied.

Division of labor and visual neuropil size
and structure

In ant species characterized by morphological differenti-

ated subcastes, workers are predicted to vary neurobiologi-
cally to support the sensory demands of specialized tasks
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(Muscedere and Traniello 2012; Kambhi et al. 2015; Gordon
et al. 2019). If metabolic costs associated with brain produc-
tion and maintenance is high, then selection should favor the
reduction of neuropil size (e.g. Aiello and Wheeler 1995;
Niven and Laughlin 2008). We found that brain volume
increased with worker size, but larger workers had brains
smaller than expected from their body size. We expected
A. cephalotes workers would invest differentially in brain
compartments due to their body size-related task repertoires.
Age and experience are associated with changes in volume
and synaptic structure in ant brain neuropils (Gronenberg
et al. 1996; Kiihn-Biihlmann and Wehner 2006; Stieb et al.
2010; Muscedere and Traniello 2012; Falibene et al. 2015;
Kambhi et al. 2017; Yilmaz et al. 2019). In our study worker
age was unlikely to affect our results, because we consist-
ently sampled mature, fully pigmented workers across the
size distribution. Nevertheless, visual experience likely
differs among workers that perform tasks inside or outside
the nest, and we anticipate additional neurobiological cor-
relates will be identified in future studies. We found that
larger workers had larger eyes and an allometric increase in
OL volume. Conversely, some diurnal moths have smaller
eyes but larger optic lobes than nocturnal species (Stockl
et al. 2016), a pattern also found in visual brain regions in
teleost fishes (Iglesias et al. 2018). A. cephalotes OL were
disproportionally larger in larger workers, and consistent
with our prediction, minims showed disproportionately less
OL investment. This suggests a task-related increasing need
for primary visual information processing in larger workers.

Our analysis revealed that lamina, medulla and lobula
increased with worker size (Fig. S1), perhaps due to higher
exposure to light in larger workers active outside the nest
(Yilmaz et al. 2016). Within the OLs, larger workers pos-
sessed disproportionally larger lamina and lobula, but a
disproportionally smaller medulla. These OL subregion
allometries suggest that minims might be better at detecting
small-field motion whereas larger workers might be better
at processing contrast, wide-field motion, shape, and pano-
rama information. This neuroplasticity seems to adaptively
support A. cephalotes worker task specialization inside and
outside the nest. We also found disproportional investment
in the MB collar in larger workers. Enlarged MBs in social
hymenopterans might be the result of ancestral neuroana-
tomical adaptations to process novel visual information (Far-
ris 2016). This evolutionary scenario across phylogenetically
diverse ant species appears to be reflected in A. cephalotes
subcastes that vary in visual ecologies. Our results suggest
that the increased need for visual cognition in larger work-
ers is greater for primary processing than for higher-order
processing. In Myrmecia species, nocturnal workers invested
relatively less in OL but relatively more in the MB, includ-
ing the collar, than diurnal workers (Sheehan et al. 2019).
Our results show that minims had the highest collar:optic
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lobe ratio, apparently as an adaptation to performing tasks
in darkness. Collaterally, studies of gene expression differ-
ences in whole brains of A. cephalotes subcastes revealed a
significant worker size-related increase in the level of a gene
associated with rod cell development, mirroring the higher
demand for visual acuity and larger eye structures in larger
workers (Muratore et al., unpublished data). This trend was
also true for a gene associated with growth factor activity,
potentially contributing to the allometric OL enlargement
and other brain regions.

Conclusion

We found optical and neural plasticity are associated with the
complex agrarian division of labor of A. cephalotes work-
ers. Previous studies have described differences in worker
eye structure (Menzel and Wehner 1970; Bernstein and Finn
1971; Klotz et al. 1992; Baker and Ma 2006; Schwarz et al.
2011) or visual neuropil investment (O’Donnell et al. 2018).
Our results advance our understanding of ant visual system
structure and function by demonstrating worker subcaste-
related compound eye and brain plasticity in response to dif-
ferent worksite light levels. Worker polymorphism has been
shown to be correlated with patriline in the several leafcut-
ting ant species (Hughes et al. 2003; Evison and Hughes
2011), suggesting a potential link between genetic variation
and the neuroanatomical patterns described here. Division of
labor underpinning the fungicultural habits of A. cephalotes
appears to have played an important selective role in worker
visual system evolution. Worker behavior in this species,
however, depends on visual and olfactory information that
likely varies with the cognitive requirements of tasks. The
influence of these factors on the spatial resolving power and
sensitivity of eyes and macroscopic and cellular structure of
A. cephalotes brains requires further study.
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