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Abstract
Our understanding of how sensory structure design is coupled with neural processing capacity to adaptively support division 
of labor is limited. Workers of the remarkably polymorphic fungus-growing ant Atta cephalotes are behaviorally specialized 
by size: the smallest workers (minims) tend fungi in dark subterranean chambers while larger workers perform tasks outside 
the nest. Strong differences in worksite light conditions are predicted to influence sensory and processing requirements for 
vision. Analyzing confocal scans of worker eyes and brains, we found that eye structure and visual neuropils appear to have 
been selected to maximize task performance according to light availability. Minim eyes had few ommatidia, large interom-
matidial angles and eye parameter values, suggesting selection for visual sensitivity over acuity. Large workers had larger eyes 
with disproportionally more and larger ommatidia, and smaller interommatidial angles and eye parameter values, indicating 
peripheral sensory adaptation to ambient rainforest light. Optic lobes and mushroom body collars were disproportionately 
small in minims. Within the optic lobe, lamina and lobula relative volumes increased with worker size whereas medulla vol-
ume decreased. Visual system phenotypes thus correspond to task specializations in dark or light environments and illustrate 
a functional neuroplasticity underpinning division of labor in this socially complex agricultural ant.
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Introduction

Morphology, behavior, and nervous system structure appear 
to be adaptively integrated (Corral-López et al. 2017; Gor-
don et al. 2017; Iglesias et al. 2018). For example, body 
size correlates with optical sensitivity and resolution in 
insect vision (Spaethe and Chittka 2003; Rutowski et al. 
2009; Palavalli-Nettimi and Narendra 2018; Taylor et al. 
2019) and social insect compound eyes and visual informa-
tion processing neuropils enable behavioral performance 
according to the cognitive challenges of navigation and 
ambient light levels (Jander and Jander 2002; Mares et al. 
2005; Kapustjanskij et al. 2007; Warrant 2008; Narendra 
et al. 2011, 2016a; Streinzer et al. 2013; Yilmaz et al. 2014; 
Bulova et al. 2016). Ants are an ideal model system to 
examine relationships among behavior, body size, and neu-
roanatomy because workers have evolved as task specialists 
in several clades (Hölldobler and Wilson 1990). Eye size 
and ommatidia number correlate with worker size in ants, 
including polymorphic species, and may be associated with 
task performance (Menzel and Wehner 1970; Klotz et al. 
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1992; Schwarz et al. 2011). Scaling patterns of brain size 
and brain compartment substructure among polymorphic 
workers, moreover, appear to correspond to foraging ecol-
ogy and the sensory and high-order processing demands of 
task performance (Gronenberg 2008; Muscedere and Tran-
iello 2012; Gordon et al. 2017). Although olfactory inputs 
are principal information sources in ants (Hölldobler and 
Wilson 1990; Czaczkes et al. 2015), vision can be significant 
in foraging ecology and navigation (Knaden and Graham 
2016; Narendra et al. 2017). To return home, foragers may 
use a celestial compass (Wehner 2003; Muller and Wehner 
2006), optic flow (Ronacher and Wehner 1995), visual cues 
and landmark panoramas (Graham and Cheng 2009; Müller 
and Wehner 2010; Schwarz et al. 2011; Huber and Knaden 
2015; Freas et al. 2018), polarized light (Zeil et al. 2014), 
and canopy patterns (Hölldobler 1980; Beugnon et al. 2005; 
Rodrigues and Oliveira 2014). Additionally, visual naviga-
tion has been associated with peripheral receptor structure, 
and primary and higher-order processing brain centers 
(Gronenberg and Hölldobler 1999; Wehner 2003; Ehmer 
and Gronenberg 2004; Muller and Wehner 2006; Knaden 
and Graham 2016), and worker behavioral development may 
be associated with light-exposure and cued neuroanatomical 
reorganization in the visual system (Stieb et al. 2010, 2012; 
Yilmaz et al. 2016; Kamhi et al. 2017).

The ommatidia of the ant compound eye are photorecep-
tive units that may change in number and structure according 
to visual needs (Moser et al. 2004; Narendra et al. 2016a). 
Ommatidia structure affects visual capacity: larger omma-
tidia enhance light sensitivity, ommatidia number determine 
image resolution, and lower interommatidial angle improves 
acuity (Land 1997). Reproductive and worker division of 
labor in social insects may have selected for differences in 
compound eye structure (Schwarz et al. 2011; Streinzer et al. 
2013). In some ant species, ommatidia number and size scale 
with worker body size (Menzel and Wehner 1970; Bern-
stein and Finn 1971; Klotz et al. 1992; Baker and Ma 2006; 
Schwarz et al. 2011), vary in males and females (Naren-
dra et al. 2016b), and scale differently among polymorphic 
workers within individual compound eyes and between colo-
nies (Perl and Niven 2016a,, 2016b). In bull ants (Greiner 
et al. 2007; Narendra et al. 2011), bees (Jander and Jander 
2002; Greiner et al. 2004; Somanathan et al. 2009) and dung 
beetles (McIntyre and Caveney 1998) photoreceptor diam-
eter and eye area increase in nocturnal species in comparison 
to diurnal species, enhancing visual sensitivity. Ommatidia 
facet diameter is generally smaller in diurnal than nocturnal 
ants (Narendra et al. 2017), but eye size patterns vary. Eye 
size is typically larger in nocturnal ants, although eyes are 
larger in some diurnal Camponotus species (Menzi 1987).

Visual input from the compound eyes travels to the optic 
lobes (OL) for primary processing (Gronenberg and Höll-
dobler 1999). OL investment reflects visual ecology in social 

insects: in subterranean species, workers are eyeless and 
OLs are absent, whereas diurnal solitary foragers have enor-
mous eyes and OLs occupying 33% of their brains (Gronen-
berg and Hölldobler 1999). In paper wasps, queens remain 
inside the nest and have smaller OLs than foraging workers 
(O’Donnell et al. 2014), and in the weaver ant Oecophylla 
smaragdina, minor workers nurse brood, rarely leave the 
nest, and have disproportionally smaller OLs than majors, 
which forage and defend territory (Kamhi et al. 2017).

The OL is comprised of three regions: the lamina (con-
trast detection), medulla (color vision processing and small 
field motion), and lobula (color vision processing, wide 
field motion detection, and shape and panorama construc-
tion) (Strausfeld 1989; Gronenberg 2008; Dyer et al. 2011). 
OL interneurons project to the collar of the mushroom body 
(MB) calyx for higher-order processing (Gronenberg 2001; 
Farris 2016). In ants, males, queens and worker brains show 
differential investment in the medulla, lobula and MB collar 
(Ehmer and Gronenberg 2004), reflecting different visual 
ecologies. Peripheral sensory structure should correlate with 
higher-order processing ability in task-specialized workers, 
but this linkage is not well understood.

Visual phenotypes, especially those concerning vari-
ability in eye structure, have been extensively examined in 
social insect species that range from diurnal to nocturnal 
activity patterns. However, few studies focus on intraspecific 
plasticity in visual capabilities related to worker division of 
labor, which may be associated with task performance in 
environments that vary in light level. To investigate visual 
phenotypes within the worker caste, we analyzed variation 
in the structure of the compound eyes, OL, and MB collar 
in morphologically and behaviorally differentiated workers 
of the fungus-growing ant Atta cephalotes. A. cephalotes 
workers perform tasks in the complete darkness of fungal 
comb chambers and in the filtered light epigaeic environ-
ment beneath rainforest canopy. A. cephalotes workers for-
age day and night (Hodgson 1955; Cherrett 1968), using 
trail pheromones, but also vision during orientation along 
trails (Vilela et al. 1987; Vick 2005). Although olfaction 
appears to be the dominant sensory modality for foraging 
in many ants, visual information facilitates trail-following 
in Atta laevigata (Jaffé et al. 1990), and other ant species 
alter their use of chemicals or vision depending on light 
conditions (Beugnon and Fourcassié 1988). In A. cepha-
lotes, improved forager visual ability may enable flexibility 
in the use of orientation cues and social signals as ambient 
light levels change. Worker head widths (HW) range from 
0.6 to 4.5 mm; this striking polymorphism is associated 
with the frequency (Wilson 1980) and efficiency (Wetterer 
1991; van Breda and Stradling 1994) of leaf harvesting, 
fungal comb maintenance, brood care, hygienic behav-
iors, and colony defense. The smallest workers (minims, 
HW < 1.2 mm) primarily tend brood and the fungal comb 
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in dark underground chambers (Wilson 1980) whereas 
media workers (HW = 1.2–3.0 mm) harvest plant material, 
traveling along foraging trails beneath rainforest canopy, and 
the largest workers (majors, HW > 3.0 mm), are responsible 
for defense (Powell and Clark 2004; Hölldobler and Wil-
son 2010). Size-variable workers thus have different social 
roles and experience environments strongly differing in 
ambient light intensity and visual complexity. It is unlikely 
that a single eye structure and sensory processing ability has 
evolved in all workers. We hypothesized that A. cephalotes 
visual system organization is associated with the visual ecol-
ogy of size-related division of labor and has resulted from 
selection for adaptive plasticity in ommatidia structure, OL 
organization and MB collar investment. Specifically, we pre-
dicted that workers engaging in within-nest or outside-nest 
activities (in darkness or light, respectively) would vary in 
compound eye structure and relative investment in the OL 
and its constituent parts, and in the MB collar to support 
the requirements of vision associated to task performance.

Methods

Laboratory cultures

Queenright A. cephalotes incipient colonies (~ 100 workers 
total) were collected in Trinidad in July 2014 and main-
tained in a Harris environmental chamber (25  °C, 50% 
relative humidity, 12:12 h photoperiod [white fluorescent 
tube, 4100 K, 273 ± 67 lx (avg ± std), approx. 400–700 nm 
wavelength]). Artificial nests were constructed from multi-
ple plastic boxes (11 cm × 18 cm × 13 cm each) connected 
by plastic tubing (ID = 2.5 cm). Boxes housing fungal combs 
had dental stone floors with embedded pebbles to provide 
air circulation for the fungus. Colonies were fed locally 
collected leaves free of chemicals and organic produce on 
alternate days, supplemented with rolled oats, apple, and 
orange mesocarp.

Worker size variation and tissue sampling

After approximately 10 months in the laboratory, we sam-
pled adult polymorphic workers, based on cuticle pig-
mentation, from three colonies that had mature to sizes 
of more than 2000 workers (Ac09, Ac20, and Ac21). A. 
cephalotes appears to exhibit triphasic allometry, with 
three worker size classes (subcastes): minims (HW across 
the eyes < 1.2 mm), medias (HW 1.2–3.0 mm) and major 
workers (HW > 3.0 mm). Each worker was anesthetized on 
ice and brains were dissected in ice-cold HEPES buffered 
saline. Compound eyes were removed and stored in 70% 
ethanol for processing. Because dissection is delicate, we 

were not always able to preserve the brain and eyes of the 
same individual.

Compound eye imaging and structural 
measurements

Ninety-two intact compound eyes were imaged to create 
3D stacks (Fig. 1a) to measure ommatidia number (ON), 
average ommatidial diameter (D), and interommatidial 
angle (Δϕ). Eyes were stored in 70% ethanol, washed in 
100% ethanol (3 × 10 min) before mounting. We measured 
one eye (the one better preserved) per worker. Extraneous 
cuticle was removed to allow eyes to lie flat and were then 
mounted in methyl salicylate between coverslips and imaged 
using a Fluoview 1 confocal microscope (λ = 488 nm, step 
size = 3.1 μm) with a 20 × air objective (NA = 0.5, CA = 2). 
Cuticle has natural fluorescence. Eye data were recorded 
blind to subcaste by randomly assigning identification num-
bers to eyes. To quantify ommatidia number, image stacks 
were flattened in ImageJ (Abràmoff et al. 2004) and facets 
were counted using the Cell Counter plugin. Volume render-
ings were viewed in Amira 6.0 to verify counts.

Mean ommatidial diameter was calculated from the aver-
age diameter of 5 or 10 randomly selected ommatidia, which 
were non-adjacent and from of all regions of the compound 
eye and eye surface area was calculated from the mean 
ommatidial diameter (surface area = ON × π × [0.5 × D]2). 
This method for calculating eye surface area has approxi-
matively an average error of only 7% in comparison with 
measuring all the ommatidia in the eye (see Supplementary 
Material). Ommatidial density (number of ommatidia per 
surface area unit) was calculated by dividing the number 
of ommatidia by eye surface area (Yilmaz et al. 2014). To 
quantify interommatidial angle (Δϕ), image stacks were re-
sectioned in the yz plane to obtain a virtual cross section 
of the eye. ImageJ was used to estimate local eye radius R 
(Schwarz et al. 2011), which together with the mean omma-
tidial diameter (D, in μm) for that eye, interommatidial 
angle (in radians) was estimated as Δϕ = D/R (Land 1997; 
Schwarz et al. 2011). Eye parameter (P), which indicates the 
extent of trade-offs between sensitivity and resolution, was 
calculated as Δϕ × D (Snyder 1977; Rutowski et al. 2009); 
lower values of P indicate enhanced acuity, while compro-
mising sensitivity.

Immunohistochemistry and confocal microscopy

After dissection, brains were placed in 16% Zn-formalde-
hyde (Ott 2008), fixed overnight at approximately 18 °C 
on a shaker, washed in HBS (6 × 10 min) and then fixed 
in Dent’s Fixative (80% methanol, 20% DMSO) for mini-
mally 1 h. Brains were next washed in 100% methanol and 
either stored at –17 °C or immediately processed. Brains 
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were washed in 0.1 M Tris buffer (pH = 7.4) and blocked 
in PBSTN (5% neutral goat serum, 0.005% sodium azide in 
0.2% PBST) at 18 °C for 1 h before incubation for 3 days 
at room temperature in primary antibody (1:30 SYNORF 

1 in PBSTN; monoclonal antibody 3C11 obtained from 
DSHB, University of Iowa, IA, USA). They were washed 
(6 × 10 min) in 0.2% PBST and incubated in secondary anti-
body (1:100 AlexaFluor 488 goat anti-mouse in PBSTN) 

Fig. 1   Compound eye structure 
in polymorphic A. cephalotes 
workers. a Z-projections of 
confocal images of eyes from 
workers with variable HW 
(scale bar = 100 µm). b Log–log 
plot of the ommatidia number 
as a function of worker HW 
showing a significant change 
of slope at 1.38 mm. c Log–log 
plot of average ommatidial 
diameter as a function of worker 
HW. d Log–log plot of the eye 
surface area (SA) as a func-
tion of worker HW showing 
a significant change of slope 
at 1.44 mm. e Log–log plot of 
ommatidia density (ommatidial 
number/eye SA) as a function of 
worker HW. f Log–log plot of 
the interommatidial angle (rad) 
as a function of worker HW 
showing a significant change 
of slope at 1.25 mm. g Log–
log plot of the eye parameter 
as a function of worker HW 
(significant change of slope 
at 1.26 mm). b–g Each pink 
point represents a single eye. 
Solid (significantly different 
from isometry) or dashed (not 
significantly different from 
isometry) black lines show 
linear regression or piecewise 
linear regressions as appropri-
ate. Purple patches represent 
95% confidence intervals of 
regression lines. Dashed gray 
lines are the best-fitting isomet-
ric regression models. Patches 
of increasing shades of gray 
group minim, media and major 
worker values (as the increasing 
size head outlines at the bottom)
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for 4 days at room temperature. Brains were then washed a 
final time (6 × 10 min in 0.2% PBST) and dehydrated in an 
ethanol series (10 min/step, 30/50/70/95/100/100% ethanol 
in 1 × PBS), cleared with methyl salicylate, and mounted on 
stainless steel slides for imaging.

Sixty-three brains were imaged using an Olym-
pus Fluoview 1 confocal microscope (λ = 488 nm, step 
size = 3.1 μm) with either a 10 × air objective (NA = 0.3, 
CA = 1), or a 20 × air objective (NA = 0.5, CA = 2). Voxel 
depth was multiplied by a factor of 1.59 to correct for axial 
shortening due to mounting in methyl salicylate (Bucher 
et al. 2000). Brain image stacks were manually segmented 
using Amira 6.0 and Amira 2019.2 software (brush, magic 
wand and blow tools) to quantify neuropil volumes (mate-
rial statistics tool). Given their bilateral symmetry, we seg-
mented one hemisphere per brain (the side best preserved), 
reporting half-brain volumes. Our study goal required that 
only the lamina, medulla and lobula of the OL and MB caly-
ces (separating lip and collar) were segmented separately 
(Fig. 2a), the rest of the central brain regions and the suboe-
sophageal ganglion were segmented as a whole. Brain data 
collection was blind to worker HW, although extreme size 
differences were obvious. Nevertheless, due the randomized 
coding of brains, subcaste could not be determined with cer-
tainty by the annotator. We calculated the volume of the 
brain hemisphere, the absolute and relative volume of OL 
(relative to total brain volume), the absolute and relative 
volume of MB collar (relative to total brain volume), and 
the relative volumes of OL subregions (relative to total OL 
volume).

Statistical evaluation

Statistical evaluations were performed in R (version 3.3.0, 
Team 2016) using the ‘segmented’ package to analyze eye 
and brain metric scaling (Muggeo 2008). To assess allo-
metries in eye structure and brain volumes in relation to 
worker size, least-squares means regression was used on 
log10-transformed values to estimate a and b in the scal-
ing equation y = aMb, as log10(y) = log(a) + b × log(M). To 
test the null hypothesis (H0) of isometry, a separate linear 
model was calculated and tested against different slope val-
ues depending on the metric. The slope for H0 were b = 0.0 
(linear vs. constant values), b = 1.0 (linear vs. linear), b = 2.0 
(linear vs. surface area) and b = 3.0 (linear vs. volume) (Kas-
pari and Weiser 1999).

The Davies test was used to detect a statistically signifi-
cant change in slope or a ‘breakpoint’ in a linear relationship 
(Davies 2002). We observed that the significance of some 
changes in slope depended on a single data point; therefore, 
we accepted the change in slope only if its significance was 
always below 0.05 when removing any point from the data-
set. The ‘segmented’ package was further used to estimate 

the location of the breakpoint. If the Davies’ test revealed 
two piecewise linear relationships in a scaling relationship, 
least-squares means regression was calculated and tested 
against isometry independently.

To further explore whether increased investment in pri-
mary visual neuropil might have an impact in higher-order 
visual processing neuropil, we assessed allometry in the 
ratio of volumes of the optic lobes and MB collar according 
to HW. We also calculated a least-squares means regression 
on log10-transformed values and tested against isometry 
(b = 0.0).

Results

Eye structure

Larger workers had more ommatidia (Fig. 1b). The average 
number of ommatidia (± std) was 32.75 ± 17.88 in minims, 
152.29 ± 61.17 in medias, and 354.70 ± 59.09 in majors. Our 
data showed a significant change in the scaling of ommatidia 
number and worker size (Davies test, p < 0.001) at a HW of 
1.38 mm (95% CI 1.20–1.58 mm). Piecewise linear mod-
els calculated for both slopes were significant (p < 0.001, 
Multiple R2 = 0.989) with a slope shift from 2.03 (95% 
CI 1.91–2.13) to 1.35 (95% CI 1.25–1.45). Piecewise lin-
ear models were also significantly different from isometry 
(b = 0; p < 0.001). Larger workers also had larger ommatidial 
diameter (Fig. 1c). The relationship between ommatidial 
diameter and worker size showed no significant breakpoint 
(Davies test, p > 0.5), and these variables were significantly 
correlated (F(1,90) = 1217, p < 0.001, R2 = 0.93). The slope of 
the regression line was 0.25 (95% CI 0.24–0.27), which was 
significantly different from isometry (b = 1.0; F(1,90) = 1217, 
p < 0.001).

Larger workers had larger eyes (Fig. 1d). Davies’ test 
showed a significant change in the scaling of total eye size 
(eye surface area) and worker size (p < 0.001) at a HW of 
1.44 mm (95% CI 1.20–1.72 mm). Piecewise linear mod-
els calculated for both slopes were significant (p < 0.001, 
Multiple R2 = 0.988) with a slope shift from 2.52 (95% CI 
2.36–2.68) to 1.84 (95% CI 1.70–1.97). Piecewise linear 
models were significantly different from isometry (b = 2.0; 
p < 0.001), although the effect size was small.

Smaller workers had more densely packed ommatidia 
(Fig. 1e). The relationship between the density of ommatidia 
and worker size showed no significant breakpoint (Davies 
test, p > 0.5 and these variables showed a significant cor-
relation (F(1,90) = 1217, p < 0.001, R2 = 0.93). The slope was 
−0.50 (95% CI −0.53 to −0.48), also significantly different 
from isometry (b = 0.0; F(1,90) = 1217, p < 0.001).

Smaller workers had larger interommatidial angles 
(Fig.  1f). Average (± std) interommatidial angle was 
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Fig. 2   Volumes of polymor-
phic A. cephalotes worker 
brains and brain compart-
ments. a 3D reconstruction of 
the brain hemisphere of an A. 
cephalotes worker (HW ~ 4 mm) 
[LA = lamina, ME = medulla, 
LO = lobula, CO = collar, 
MB-CA = mushroom body 
calyx, MB-PE = mushroom 
body peduncle, CX = central 
complex, SEZ = subesophageal 
zone, AL = antennal lobe]. b 
Log–log plot of hemisphere 
brain volume as a function of 
worker HW. c Log–log plot of 
relative optic lobe (OL) volume 
as a function of worker HW. d 
Log–log plot of relative volume 
of OL lamina (LA) as a func-
tion of worker HW. e Log–log 
plot of relative volume of OL 
medulla (ME) as a function of 
worker HW. f Log–log plot of 
relative volume of OL lobula 
(LO) as a function of worker 
HW. g Log–log plot of rela-
tive MB collar volume (CO) 
as a function of worker HW. 
h Log–log plot of MB collar: 
OL volume ratio (CO/OL) as 
a function of worker HW. b–e 
Legend as in Fig. 1
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0.81 ± 0.19 radians for minims, 0.44 ± 0.07 for medias, 
and 0.34 ± 0.05 for majors. The Davies’ test for a change in 
slope showed a significant change in the scaling relationship 
between interommatidial angle and worker size (p < 0.001) 
at a HW of 1.25 mm (95% CI 1.03–1.51 mm). Piecewise 
linear models were calculated for both slopes and found to 
be significant (p < 0.001, Multiple R2 = 0.84), with a slope 
shift from −0.98 (95% CI −1.21 to −0.76) to −0.33 (95% CI 
−0.43 to −0.23). Piecewise linear models were also signifi-
cantly different from isometry (b = 0; p < 0.001).

Eye parameter decreased with worker size in minims, but 
was low and showed high similarity among different size 
medias and majors (Fig. 1g). A significant change (Davies’ 
test, p < 0.001) in the scaling relationship between eye 
parameter and worker size was found at a HW of 1.26 mm 
(95% CI 1.01–1.57 mm). Piecewise linear models were cal-
culated for both slopes and found to be significant (p < 0.001, 
Multiple R2 = 0.588) with a slope shift from −0.73 (95% CI 
−0.95 to −0.51) to −0.07 (95% CI −0.20 to 0.05). The first 
segment of the piecewise linear models was significantly 
different from isometry (b = 0; p < 0.001), but the second 
segment was not (b = 0; p = 0.205).

Brain structure

Larger workers had significantly larger brains (Fig. 2b). 
The relationship between brain volume and worker size 
showed no significant breakpoint (Davies test, p > 0.05) 
and these variables showed a significant positive correla-
tion (F(1,61) = 13.91, p < 0.001, R2 = 0.18) with a slope of 
0.37 (95% CI 0.17–0.56) significantly different from isom-
etry (b = 3.0; F(1,61) = 13.91, p < 0.001). Larger workers had 
disproportionally larger OL (Fig. 2c). Relative OL volume 
and worker size showed a significant positive correlation 
(F(1,61) = 271.2, p < 0.001, R2 = 0.81) with no significant 
breakpoint (Davies test, p = 1). The slope of the regression 
line was 0.76 (95% CI 0.67–0.85) significantly different from 
isometry (b = 0.0; F(1,61) = 271.2, p < 0.001).

Within the OL, larger workers invested disproportionally 
more in the lamina (Fig. 2d). Relative lamina volume and 
HW showed a significant positive correlation (F(1,61) = 37.77, 
p < 0.001, R2 = 0.37) with no significant breakpoint (Davies 
test, p > 0.05). The slope of the regression line was 0.64 
(95% CI 0.43–0.85) and significantly different from isometry 
(b = 0.0; F(1,61) = 37.77, p < 0.001). In contrast, smaller work-
ers invested disproportionally more in the medulla (Fig. 2e). 
Relative medulla volume and HW showed a significant nega-
tive correlation (F(1,61) = 51.1, p < 0.001, R2 of 0.45) with 
no significant breakpoint (Davies test, p > 0.05) and a slope 
of −0.17 (95% CI −0.21 to −0.12), significantly different 
from isometry (b = 0.0; F(1,61) = 51.1, p < 0.001). Finally, 
as for the lamina, larger workers invested disproportionally 
more in lobula (Fig. 2f). Relative lobula volume and HW 

showed a significant positive correlation (F(1,61) = 13.43, 
p < 0.001, R2 = 0.17) and no significant breakpoint (Davies 
test, p = 0.362). The slope of the regression line was 0.21 
(95% CI: 0.10 to 0.32) significantly different from isometry 
(b = 0.0; F(1,61) = 13.43, p < 0.001).

Larger workers also invested relatively more in the MB 
collar (Fig. 2g). Relative collar volume and worker size 
showed a significant positive correlation (F(1,61) = 13.03, 
p < 0.001, R2 = 0.16) and no significant breakpoint (Davies 
test, p = 0.42). The slope of the regression line was 0.19 
(95% CI 0.08–0.29), which was significantly different 
from isometry (b = 0.0; F(1,61) = 13.03, p < 0.001). Despite 
investing more in the MB collar, larger workers had a lower 
collar:OL volume ratio (Fig. 2h). The relationship between 
this ratio and worker size showed a significant negative cor-
relation (F(1,61) = 67.17, p < 0.001, R2 = 0.52), no significant 
breakpoint (Davies test, p = 0.69), and a slope of −0.57 (95% 
CI −0.71 to −0.43), significantly different from isometry 
(b = 0.0; F(1,61) = 67.17, p < 0.001).

Discussion

Our results show that differences in worksite sensory ecol-
ogy appear to select for visual system polyphenism in the 
polymorphic leaftcutter ant A. cephalotes. Division of labor 
in this species is associated with variation in light levels and 
is strongly correlated with worker body size: minims tend 
fungi deep underground, medias harvest leaves from their 
habitat and labor inside the nest, and majors appear to exclu-
sively perform defense and trail maintenance outside the 
nest. We found that compound eye structure and visual neu-
ropil scaling vary with worker size according to demands for 
adaptive behavior in relation to worksite light availability.

Division of labor and eye structure in A. cephalotes

Given the variation in the spatial distribution of workers 
and their tasks, we expected the eyes of minims to structur-
ally enable light sensitivity over resolution, whereas larger 
worker eyes were predicted to favor spatial resolution over 
sensitivity. It is unclear how minims make use of visual 
information and what level of spatial resolution and sensi-
tivity is needed to work effectively on the fungal comb. Min-
ims, however, perform some tasks outside the nest, “hitch-
hiking” on transported leaves during day and night to defend 
against fly parasites (Linksvayer et al. 2016). We found that 
the number and size of ommatidia and eye surface area were 
significantly smaller in minims, suggesting less capacity to 
capture light and less reliance on vision to perform their 
tasks. The larger ommatidia of media and major workers 
indicate greater sensitivity to light. However, ommatidia 
size increased hypometrically with body size: although the 
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ommatidia of minims were the smallest, relative ommatidia 
size was greater in minims than in medias and majors. This 
may enable minim worker eyes to collect more light than 
expected from their size, suggesting adaptation to darkness 
and light (Greiner 2006; Yilmaz et al. 2014). Alternatively, 
the small size of minim worker eyes and ommatidia may be 
due to a body size constraint: eye size is as large as devel-
opmentally possible to ensure at least a marginal ability to 
capture light, which may be needed to detect and defend 
against parasitic flies. Minims also showed a higher density 
of ommatidia than media and majors. When compared with 
other ant species that overlap in body size (Temnothorax 
rugulatus, Solenopsis invicta, S. richteri), the eyes of size-
matched A. cephalotes workers showed slightly larger but 
considerably fewer ommatidia (Baker and Ma 2006; Ram-
irez-Esquivel et al. 2017), and larger interommatidial angles 
(Ramirez-Esquivel et al. 2017). Although this suggests a 
greater light sensitivity in A. cephalotes minims, additional 
research is needed for confirmation.

Interommatidial angle decreased with worker size, indi-
cating greater visual acuity in larger workers. Eye parameter 
values were significantly lager for minims, but for larger 
workers, values were lower and not correlated with size. 
This suggests minim worker eyes are adapted to enhance 
sensitivity rather than acuity, whereas larger worker eyes 
structure has been selected for sensitivity and acuity. Higher 
acuity is adaptive outside the nest, allowing the resolution 
of more distant objects. The significant breakpoints (HW 
1.0–1.8 mm) found in the linear regressions for ommatidia 
number, eye surface area, interommatidial angle and eye 
parameter suggest structural changes to accommodate the 
body size-associated transition between inside and outside 
nest division of labor in A. cephalotes. Comparisons of eye 
structure between diurnal, cathemeral, and nocturnal ant 
(Greiner et al. 2007; Narendra et al. 2013; Yilmaz et al. 
2014; Ogawa et al. 2019) and bee species (Greiner et al. 
2004) are generally consistent with our findings.

Although lens size and number determine light sensitiv-
ity and visual acuity, variations in the size of rhabdomeres 
(Greiner et al. 2004; Gonzalez-Bellido et al. 2011; Naren-
dra et al. 2017), microsaccadic rhabdomere contractions and 
microvilli refractory time (Juusola et al. 2016) or, pupillary 
systems mediated by pigment ommatidial cells (Narendra 
et al. 2013, 2016a) modify visual abilites. Detailed visual 
adaptations in A. cephalotes polymorphic workers remain 
to be studied.

Division of labor and visual neuropil size 
and structure

In ant species characterized by morphological differenti-
ated subcastes, workers are predicted to vary neurobiologi-
cally to support the sensory demands of specialized tasks 

(Muscedere and Traniello 2012; Kamhi et al. 2015; Gordon 
et al. 2019). If metabolic costs associated with brain produc-
tion and maintenance is high, then selection should favor the 
reduction of neuropil size (e.g. Aiello and Wheeler 1995; 
Niven and Laughlin 2008). We found that brain volume 
increased with worker size, but larger workers had brains 
smaller than expected from their body size. We expected 
A. cephalotes workers would invest differentially in brain 
compartments due to their body size-related task repertoires. 
Age and experience are associated with changes in volume 
and synaptic structure in ant brain neuropils (Gronenberg 
et al. 1996; Kühn-Bühlmann and Wehner 2006; Stieb et al. 
2010; Muscedere and Traniello 2012; Falibene et al. 2015; 
Kamhi et al. 2017; Yilmaz et al. 2019). In our study worker 
age was unlikely to affect our results, because we consist-
ently sampled mature, fully pigmented workers across the 
size distribution. Nevertheless, visual experience likely 
differs among workers that perform tasks inside or outside 
the nest, and we anticipate additional neurobiological cor-
relates will be identified in future studies. We found that 
larger workers had larger eyes and an allometric increase in 
OL volume. Conversely, some diurnal moths have smaller 
eyes but larger optic lobes than nocturnal species (Stöckl 
et al. 2016), a pattern also found in visual brain regions in 
teleost fishes (Iglesias et al. 2018). A. cephalotes OL were 
disproportionally larger in larger workers, and consistent 
with our prediction, minims showed disproportionately less 
OL investment. This suggests a task-related increasing need 
for primary visual information processing in larger workers.

Our analysis revealed that lamina, medulla and lobula 
increased with worker size (Fig. S1), perhaps due to higher 
exposure to light in larger workers active outside the nest 
(Yilmaz et al. 2016). Within the OLs, larger workers pos-
sessed disproportionally larger lamina and lobula, but a 
disproportionally smaller medulla. These OL subregion 
allometries suggest that minims might be better at detecting 
small-field motion whereas larger workers might be better 
at processing contrast, wide-field motion, shape, and pano-
rama information. This neuroplasticity seems to adaptively 
support A. cephalotes worker task specialization inside and 
outside the nest. We also found disproportional investment 
in the MB collar in larger workers. Enlarged MBs in social 
hymenopterans might be the result of ancestral neuroana-
tomical adaptations to process novel visual information (Far-
ris 2016). This evolutionary scenario across phylogenetically 
diverse ant species appears to be reflected in A. cephalotes 
subcastes that vary in visual ecologies. Our results suggest 
that the increased need for visual cognition in larger work-
ers is greater for primary processing than for higher-order 
processing. In Myrmecia species, nocturnal workers invested 
relatively less in OL but relatively more in the MB, includ-
ing the collar, than diurnal workers (Sheehan et al. 2019). 
Our results show that minims had the highest collar:optic 



Journal of Comparative Physiology A	

1 3

lobe ratio, apparently as an adaptation to performing tasks 
in darkness. Collaterally, studies of gene expression differ-
ences in whole brains of A. cephalotes subcastes revealed a 
significant worker size-related increase in the level of a gene 
associated with rod cell development, mirroring the higher 
demand for visual acuity and larger eye structures in larger 
workers (Muratore et al., unpublished data). This trend was 
also true for a gene associated with growth factor activity, 
potentially contributing to the allometric OL enlargement 
and other brain regions.

Conclusion

We found optical and neural plasticity are associated with the 
complex agrarian division of labor of A. cephalotes work-
ers. Previous studies have described differences in worker 
eye structure (Menzel and Wehner 1970; Bernstein and Finn 
1971; Klotz et al. 1992; Baker and Ma 2006; Schwarz et al. 
2011) or visual neuropil investment (O’Donnell et al. 2018). 
Our results advance our understanding of ant visual system 
structure and function by demonstrating worker subcaste-
related compound eye and brain plasticity in response to dif-
ferent worksite light levels. Worker polymorphism has been 
shown to be correlated with patriline in the several leafcut-
ting ant species (Hughes et al. 2003; Evison and Hughes 
2011), suggesting a potential link between genetic variation 
and the neuroanatomical patterns described here. Division of 
labor underpinning the fungicultural habits of A. cephalotes 
appears to have played an important selective role in worker 
visual system evolution. Worker behavior in this species, 
however, depends on visual and olfactory information that 
likely varies with the cognitive requirements of tasks. The 
influence of these factors on the spatial resolving power and 
sensitivity of eyes and macroscopic and cellular structure of 
A. cephalotes brains requires further study.
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