1 Oxygen isotope systematics of chondrules in the Paris CM2 chondrite: 2 indication for a single large formation region across snow line 3

Noël Chaumard^{a,b}, Céline Defouilloy^{a,c}, Andreas T. Hertwig ^{a,d}, Noriko T. Kita^{a,*} 4 5

6 ^aWiscSIMS, Department of Geoscience, University of Wisconsin-Madison, 1215 W. Dayton 7 Street, Madison, WI 53706-1692, USA.

^b 8 Fi Group, Direction scientifique, 14 terrasse Bellini, 92800 Puteaux, France. ^c

9 CAMECA, 29 quai des Grésillons, 92622 Gennevilliers Cedex, France.

^d 10 Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, 69120

11 Heidelberg, Germany.

12

13 Revised version submitted to Geochimica et Cosmochimica Acta 14

15 February 6, 2020

16

17

18

* 19 Corresponding author. E-mail: noriko@geology.wisc.edu

20

21 Keywords: Carbonaceous chondrites, chondrules, oxygen three-isotope measurements, SIMS 22 analyses

23

25 In-situ oxygen three-isotope analyses of chondrules and isolated olivine grains in the Paris 26 (CM) chondrite were conducted by secondary ion mass spectrometry (SIMS). Multiple analyses of olivine and/or pyroxene in each chondrule show indistinguishable Δ 27 17 O values, except for minor occurrences of relict olivine grains (and one low-Ca pyroxene). A mean Δ 28 17 O value of these 29 homogeneous multiple analyses was obtained for each chondrule, which represent oxygen isotope ratios of the chondrule melt. The Δ 30 17 O values of individual chondrules range from –7% to –2% 31 and generally increase with decreasing Mg# of olivine and pyroxene in individual chondrules. Most type I (FeO-poor) chondrules have high Mg# (~99) and variable Δ 32 17 O values from –7.0% to 33 –3.3%. Other type I chondrules (Mg# \leq 97), type II (FeO-rich) chondrules, and two isolated FeO rich olivine grains have host Δ 34 17 O values from –3% to –2%. Eight chondrules contain relict grains that are either 16 O-rich or 16 O-poor relative to their host chondrule and show a wide range of Δ 35 17 O 36 values from –13% to 0%.

37 The results from chondrules in the Paris meteorite are similar to those in Murchison (CM). Collectively, the Δ 38 ¹⁷O values of chondrules in CM chondrites continuously increase from –7‰ to –2‰ with decreasing Mg# from 99 to 37. The majority of type I chondrules (Mg#>98) show Δ 39 ¹⁷O values from –6‰ to –4‰, while the majority of and type II chondrules (Mg# 60-70) show Δ 40 ¹⁷O values of –2.5‰. The covariation of Δ 41 ¹⁷O versus Mg# observed among chondrules in CM 42 chondrites may suggest that most chondrules in carbonaceous chondrites formed in a single large region across the snow line where the contribution of 43 ¹⁶O-poor ice to chondrule precursors and 44 dust enrichment factors varied significantly.

2 46 1. INTRODUCTION

47

48 Among carbonaceous chondrites (CCs), CM (Mighei-like) chondrites are the most 49 abundant group (Weisberg et al., 2006). They are recognized as xenoliths in numerous other groups 50 of CCs and meteorite classes and thus may correspond to the most abundant and/or widely 51 dispersed material in the main belt (e.g., Zolensky et al., 1996; Gounelle et al., 2003; Bischoff et 52 al., 2006; and references therein; Briani et al., 2012), hence their importance to deciphering the 53 formation and evolution of the early Solar System. In addition to low to mild thermal 54 metamorphism (e.g., Nakamura, 2006; Kimura et al., 2011; Tonui et al., 2014), CM chondrites 55 experienced intense parent body aqueous alteration (e.g., Sears and Dodd, 1988; Brearley, 2003; 56 Busemann et al., 2007; Schrader and Davidson, 2017). Most CM chondrites are of petrologic type 57 2 (e.g., McSween 1979; Kallemeyn and Wasson, 1981; Zolensky et al., 1993) and display various 58 degrees of aqueous alteration and have been divided into petrologic subtypes from 3.0 to 2.0, where 59 numbers decreases with increasing alteration (e.g., Zolensky et al., 1997; Rubin et al., 2007; Rubin, 60 2015; Kimura et al., 2020). Some CM chondrites are almost completely altered and assigned to be 61 subtype 2.0, which was previously classified as CM1 (Zolensky et al., 1997; Rubin et al., 2007).

62 Paris is one of the least altered CM chondrites and has been used to investigate the early 63 stages of the parent body aqueous alteration of CM chondrites (Hewins et al., 2014; Marrocchi et 64 al., 2014; Rubin, 2015; Leroux et al., 2015; Pignatelli et al., 2016; Vacher et al., 2016, 2017; 65 Verdier-Paoletti et al., 2017). Based on a detailed petrographic and mineralogical survey, 66 Marrocchi et al. (2014) classified Paris as a CM2.7. However, Paris contains both highly and less 67 altered lithologies

(Hewins et al., 2014). Based on the PCP (Poorly Characterized Phases) index 68 defined by Rubin et al. (2007), the less altered lithology of Paris is of petrologic subtype 2.9

69 (Hewins et al., 2014), which is consistent with the observation of a significant amount of Fe-Ni 70 metal blebs and the presence of a pristine matrix (Leroux et al., 2015; Rubin, 2015). The oxygen isotope ratios of the less altered lithologies are as low as $\delta^{17}O = -2.1\%$ and δ 71 $^{18}O = 2.4\%$, which 72 is at the lower end of a linear trend defined by Paris subsamples and bulk CM2 chondrites (Hewins 73 et al., 2014). The variation of oxygen isotope ratios among bulk CM chondrites is ascribed to 74 heterogeneity in the extent of secondary aqueous alteration processes (Clayton and Mayeda, 1999; 75 Hewins et al., 2014). The less altered lithology of Paris thus offers a unique opportunity to 76 investigate the origin and petrogenesis of CM chondrules.

77 In situ SIMS (secondary ion mass spectrometry) oxygen 3-isotope analysis of individual 78 chondrules is a powerful tool to constrain the conditions of their formation (e.g., Kita et al., 2010; 79 Ushikubo et al., 2012; Schrader et al., 2013; Marrocchi et al. 2018; 2019). Many chondrules in 80 CCs contain olivine grains with heterogeneous oxygen isotope ratios (e.g., Kunihiro et al., 2004, 81 2005; Jones et al., 2004; Wasson et al., 2004; Connolly and Huss, 2010; Rudraswami et al., 2011; 82 Ushikubo et al., 2012; Schrader et al., 2013; 2017; Tenner et al., 2013; Marrocchi et al., 2018; 83 2019). They are considered as "relict" and interpreted as unmelted material that survived the final 84 high-temperature event of chondrule formation. Because of the slow diffusivity of oxygen isotopes 85 in olivine (e.g., Chakraborty, 2010), these relict grains preserved their initial oxygen isotope ratios 86 and would provide important knowledge about precursor solids that formed chondrules. However, 87 multiple high precision SIMS analyses of olivine and/or pyroxene in each chondrules are mostly 88 indistinguishable (e.g., Rudraswami et al., 2011; Ushikubo et al., 2012; Tenner et al., 2013; 2015; 89

2017; Hertwig et al., 2018; 2019a; Chaumard et al., 2018). Ushikubo et al. (2012) showed 90 plagioclase and glass in chondrule mesostasis from Acfer 094 are in agreement with those of 91 olivine and pyroxene phenocrysts of the same chondrules. Internally homogeneous oxygen isotope

92 ratios within individual chondrules represent those of the final chondrule melt from which the 93 "non-relict" olivine and other minerals crystallized.

94 The degree of mass independent isotope fractionation of oxygen 3-isotopes, commonly expressed as $\Delta^{17}O$ (= $\delta^{17}O - 0.52 \times \delta$ 95 ^{18}O), determined for individual chondrules in CCs, 96 systematically vary against the Mg# (= MgO/[MgO+FeO] in mol.%) of olivine and pyroxene 97 (Ushikubo et al., 2012; Tenner et al., 2013; 2015; 2017; Hertwig et al., 2018; 2019a). Variation of

98 Mg#s among chondrules indicates that the redox state of the environments they formed in were 99 variable. Such variations were probably due to metal-silicate equilibria (Zanda et al., 1994) which 100 were influenced by varying proportions of anhydrous dust, H_2O ice, and organic matters relative 101 to the solar-composition nebula gas in the outer disk regions where CC chondrules formed (e.g., 102 Wood and Hashimoto, 1993; Grossman et al., 2008). Heterogeneous oxygen isotope ratios among chondrule precursor phases, such as ^{16}O -rich anhydrous dust and 103 ^{16}O -poor H_2O -ice (Krot et al., 2006; Sakamoto et al., 2007), could explain the negative correlation between Δ 104 ^{17}O values and Mg# 105 among chondrules in CCs (e.g., Connolly and Huss, 2010; Schrader et al., 2013; Tenner et al., 106 2015; Hertwig et al., 2018).

In contrast, Δ 107 ¹⁷O values among chondrules in non-carbonaceous chondrites, such as 108 ordinary and enstatite chondrites that likely derived from inner disk material (Kruijer et al., 2017), show narrower ranges and are 109 ¹⁶O-depleted relative to those in CCs (e.g., Kita et al., 2010; 110 Weisberg et al., 2011; Libourel and Chaussidon, 2011; Schneider et al., 2020). Kita et al. (2010) argued that solid

precursors of ordinary chondrite chondrules were fractionated in δ 111 ^{18}O as a result of condensation of solidsfrom 112 ^{16}O -poor nebula gas at high temperatures. It is likely that the oxygen 113 isotope ratios of precursor phases were homogenized in the inner disk region prior to the formation 114 of chondrules.

115 Chaumard et al. (2018) studied 29 chondrules in the Murchison CM2 chondrite and found that the distribution of Mg#s and Δ 116 ¹⁷O of individual chondrules are similar to those in Acfer 094 117 and CO3 chondrites. Co-existing olivine and pyroxene in individual Murchison chondrules show 118 indistinguishable oxygen isotope ratios excluding the minor occurrence of relict grains, which 119 further indicate that chondrules solidified from numerous melt droplets with homogeneous oxygen 120 isotope ratios. Chondrule oxygen isotope systematics in Murchison further indicated that the CO 121 and CM chondrite parent bodies collected similar populations of chondrules, while other studies 122 suggest that the timing of the CM parent body accretion may have been delayed relative to the CO 123 parent body accretion (e.g., Sugiura and Fujiya, 2014).

124 In Murchison, chondrules have an extremely limited range of Mg#s ranging from 99.6 to 125 99.0 for type I chondrules (with one exception with Mg#~96) and a slightly larger range, from ~65 to ~70, for type II chondrules. The Δ 126 17 O values among Murchison chondrules show a hint of 127 systematic increase with decreasing Mg#s. Here we report *in situ* high precision SIMS oxygen 3-

128 isotope measurements of olivine and pyroxene in chondrules from the less altered lithology of the 129 Paris CM2 chondrite. The Paris meteorite provides an opportunity to study a diverse range of less 130 altered chondrules in CM chondrites in petrologic context, including chondrule textures, 131 mineralogy, and mineral chemistry (Hewins et al., 2014; Rubin, 2015; Stephant et al., 2017). This 132 will enable us to further constrain the nature of pristine chondrules from carbonaceous chondrites 133 in general.

135 2. ANALYTICAL PROCEDURES

136

137 2.1. Sample and chondrule selection

6

138

139 Within the less altered lithology of the Paris CM chondrite (type 2.9; Hewins et al., 2014), 140 we selected and analyzed 29 chondrules from one polished section allocated by the Muséum 141 national d'Histoire naturelle of Paris (MNHN 4029-11). We intended to obtain the most diverse 142 selection of chondrules based on their size, texture, and mineralogy. Selected chondrules include 143 25 type I (Mg#≥90) chondrules (from ~200 °m to ~2 mm in diameter), three type II (Mg#<90) 144 chondrules (~250–600 °m in diameter), and one fragment of a type I chondrule (~600 °m long). 145 We also analyzed two isolated grains of FeO-rich olivine (~250–400 °m in size), one amoeboid 146 olivine aggregate (AOA) (~500 °m long), and one FeO-poor olivine-bearing object (~400 °m 147 long).

148 Nine type I chondrules are porphyritic olivine-pyroxene (POP; 20–80% modal olivine), 149 three are porphyritic olivine (PO; >80% modal olivine), and eight are porphyritic pyroxene (PP; 150 <20% modal olivine). One type I chondrule is barred olivine (BO) and two are composed of a BO 151 core surrounded by a POP rim. We also analyzed one type I granular olivine (GO) chondrule and 152 one granular olivine-pyroxene (GOP) chondrule. The fragment of the type I chondrule displays a 153 BO texture. The three type II chondrules have a PO texture.

154 In all groups of CCs, chondrules are predominantly type I (e.g., Jones, 2012). It has been 155 reported that ~95% of chondrules in CM chondrites are porphyritic, 10–40% of these porphyritic 156 chondrules being type II (Jones, 2012; and references therein). Approximately 80% of the 157

chondrules analyzed are porphyritic and ~13% of them are type II. This selected population is thus 158 roughly representative of chondrules in CM chondrites. Moreover, PO, POP, and PP chondrules 159 in our selection represent approximately 10%, 31%, and 28%, respectively, of the entire population 160 of chondrules analyzed in this study.

7

161

162 2.2. Scanning electron microscopy and electron microprobe analysis

163

164 Backscattered electron (BSE), secondary electron (SE) imaging and energy dispersive X 165 ray spectrometry (EDS) analyses of chondrules were performed using a Hitachi S-3400N scanning 166 electron microscope (SEM) at the University of Wisconsin-Madison. The accelerating voltage was 167 set to 15 kV. The locations of SIMS analyses were selected for olivine and pyroxene grains in each 168 chondrule that are free of cracks and other phases as identified in BSE and SE images. 169 We used a Cameca SXFive FE electron microprobe at the University of Wisconsin 170 Madison to obtain quantitative chemical analyses of olivine and pyroxene grains with an 171 accelerating voltage of 15 keV and a beam current of 20 nA. Counting times for the peak and 172 background were 10 and 5 s, respectively. Several standards were analyzed for matrix correction 173 of individual elements: natural olivine and synthetic forsterite and enstatite (Mg, Si), jadeite (Na, 174 Al), microcline (K), chromian augite (Ca), TiO₂ (Ti), synthetic Cr₂O₃ (Cr), fayalite (Fe), and 175 synthetic Mn₂SiO₄ (Mn). We analyzed Mg, Al, Si, and Na with a LTAP crystal, Ca and K with a 176 LPET crystal, Cr and Ti with a PET crystal, and Mn and Fe with a LLIF crystal. We used the Probe for EPMATM 177 (PFE) software (Donovan, 2015) for data reduction and matrix corrections (ZAF and 178 $\phi_{O(z)}$). For each analysis, we calculated the Mg# based on EPMA measurements. 179

180 2.3. SIMS oxygen three-isotope analysis

182 We performed *in situ* oxygen three-isotope analyses of olivine and pyroxene using the 183 Cameca IMS 1280 at the WiscSIMS laboratory, University of Wisconsin-Madison. Analytical

184 conditions and data reduction methods were generally similar to those of Kita et al. (2010) and Tenner et al. (2013, 2015) using multi-collector Faraday cups; ¹⁶O and 185 ¹⁸O on multi-collector array and 186 ¹⁷O on a fixed mono-collector (axial detector FC2). The analyses were performed in two sessions with different primary Cs⁺ 187 beam conditions; a 15 cm (session #1) and 10 cm (session #2) 188 diameters with intensities of ~3 nA and ~1 nA, respectively. During the analysis session #1 (15 ∝m diameter spot), secondary ion intensities of ¹⁶O, ¹⁷O, and ¹⁸O were ~3.5×10⁹, ~1.5×10⁶ 189, and ~7.5×10⁶ counts per second (cps), respectively. FC amplifier resistors were $10^{11} \Omega$ for ^{17}O and $190^{-18}O$, and $10^{10} \Omega$ for 191 16 O as in the previous studies (e.g., Kita et al., 2010), though a newer version of the FC amplifier board was used for the detection of 192 ¹⁷O on the axial FC2 detector. This newer FC 193 amplifier board from Cameca (for IMS 1280-HR) shows improved thermal noise that is close to 194 the theoretical limit (1SD ~1,300 cps for 4 s integrations) compared to the original FC amplifier 195 board installed to IMS 1280 (1SD ~2,000 cps for 4 s integrations). Taking advantage of lower noise level on 196^{-17} O, the acquisition time for a single analysis was reduced from 200 s to 100 s and 197 the totalanalysis time (including pre-sputtering and secondary beam centering time) was reduced 198 from 7 min to 4 min compared to previous oxygen 3-isotope analyses at the WiscSIMS laboratory. 199 Analyses session #2 (10 µm) was performed at the same time that some of chondrules from the Murchison were analyzed (Chaumard et al., 2018). Secondary ion intensities of ¹⁶O, ¹⁷O, and 200 ¹⁸O decreased to ~1.5×10⁹, ~5.5×10⁵, and ~2.9×10⁶ 201 cps, respectively. In order to reduce the noise level of the FC amplifier for 17 O analyses below 10^6 202 cps intensity, we replaced the resistor and capacitor pair on the original IMS 1280 FC amplifier board by a 10 203 12 Ω resistor and 1 pF capacitor from a 204 Finnigan MAT 251 stable mass spectrometer (noise level was reduced to 1SD ~1,200 cps for 4 s 205 integrations; Chaumard et al., 2018). The mass resolving power (MRP at 10% peak height) for both sessions was set to ~2200 for 16 O and 18 O, and 5000 for 17 O. We measured 16 OH $^{-}$ 206 at the end

of each analysis to determine its contribution to the ¹⁷O⁻207 signal following the methods described by Heck et al. (2010). The correction of the ¹⁷O⁻ signal from 208 ¹⁶OH⁻ was negligible (<0.08‰) for 209 both standards and unknowns.

We normalized the measured $^{18}\text{O}/^{16}\text{O}$ and $^{17}\text{O}/^{16}\text{O}$ ratios to the VSMOW scale (δ 210 ^{18}O and δ 211 ^{17}O expressed as a deviation from standard mean ocean water in the unit of 1/1000; VSMOW 212 scale, Baertschi 1976). The external reproducibility has been determined by intermittent measurements of a San Carlos olivine (SC-OI) standard (δ 213 $^{18}\text{O} = 5.32\%$; Kita et al., 2010). We 214 bracketed 4 to 19 unknown chondrule analyses with 8 SC-OI analyses, 4 before and 4 after (Kita 215 et al., 2009). External reproducibility is calculated as the 2SD of the SC-OI brackets, with average values during session #1 (15 °m) of 0.2%, 0.3%, and 0.3% for δ 18O, δ 17O, and Δ 216 Δ 17O, respectively. For session #2 (10 °m), the 2SD average values are 0.4%, 0.5%, and 0.4% for δ 18O, δ 217 Δ 217 on and Δ 218 Δ 218 as the uncertainties of each individual spot analysis (Kita et al., 2009). Measurements of four 220 olivine (Fo_{0.6-100}), three low-Ca pyroxene (En₇₀₋₉₇), and one diopside (Wo₅₀) standards with known 221 oxygen isotope ratios (Eiler et al., 1997; Kita et al., 2010) were used to estimate corrections for 222 instrumental biases of unknown olivine and pyroxene analyses (EA1). The compositional ranges 223 of standards

cover those of unknowns measured.

224 We obtained multiple SIMS analyses per chondrule (n=4 to 12, typically 8) to examine the 225 homogeneity of the isotope ratios. As in the previous studies, a specific analysis in a single chondrule is identified as a relict when its Δ 226 17 O value deviates more than 0.5‰ and 0.7‰ (3SD 227 limits of bracket standard analyses in each analysis session) from the chondrule mean (Ushikubo 228 et al., 2012; Tenner et al., 2013, 2015; 2017; Hertwig et al., 2018; 2019a; Chaumard et al., 2018).

229 To identify all chondrules containing rare relict grains, a multitude of analyses per chondrules

10 230 (e.g., ~50; Marrocchi et al., 2018; 2019) is required; however, a total of ~8 analyses per chondrule is sufficient to identify the Δ 231 ¹⁷O value of most phenocrysts that in turn represents the value of the 232 chondrule melt, if the chondrule consists largely of minerals with homogeneous oxygen isotope 233 ratios. Thus, we can calculate mean oxygen isotope ratios (referred to as "host chondrule" oxygen 234 isotope ratios) from multiple analyses within each chondrule excluding relict grains. The uncertainties of host δ^{18} O and δ^{18} O and δ^{18} O values is the propagation of (i) the 2 standard error of the mean 236 of multiple analyses that constitute the host chondrule value (=2SD/√number of analyses; 2SD of 237 the bracket standard analyses or 2SD of multiple analyses within a chondrule, whichever is larger), 238 (ii) the 2SE of associated SC-Ol bracketing analyses for instrumental bias correction, and (iii) the 239 uncertainty due to the sample topography and/or sample positioning on the SIMS stage as well as uncertainty of instrumental bias corrections, estimated to be 0.3% for δ^{18} O and 0.15% for δ 240 ¹⁷O (Kita et al., 2009). Because (iii) is mass-dependent and does not affect Δ 241 ¹⁷O, we only use (i) and (ii) for the propagated uncertainty of Δ^{17} O. The uncertainties of Δ 242 17 O in the relict grains are the 243 spot-to-spot reproducibility (2SD) as determined by bracketing analyses of San Carlos olivine.

244 We inspected each SIMS spot by obtaining BSE and SE images using SEM after each 245 SIMS session. Ten of 252 pits were rejected from our final dataset because they either overlapped cracks, imperfections, or display a contribution of ¹⁶OH to the 246 ¹⁷O signal of ~0.1‰ or higher. 247

248 3. RESULTS

249

250 3.1. Texture, petrography, and mineralogy

251

252 Chondrules display a wide diversity of sizes and textures, as previously observed by 253 Hewins et al. (2014) for the Paris CM chondrite. In the following summary, textural features and 254 chemistry of chondrule minerals are described. BSE images of individual chondrules are shown in 255 Figs. 1-4 and EA2, in which locations of EPMA and SIMS analyses are annotated. EPMA major 256 element data for olivine and pyroxene are shown in EA3. Additional petrologic descriptions of 257 individual chondrules can be found in EA4. Within 19 of the 29 chondrules analyzed, coexisting 258 olivine and low-Ca pyroxene have similar Mg#s. For the other 10 chondrules, we were only able 259 to obtain quantitative analyses either for olivine or low-Ca pyroxene. In type I chondrules where 260 both olivine and pyroxene were analyzed, Mg#s of olivine and low-Ca pyroxene are 261 indistinguishable, similar to type I chondrules in other pristine chondrites (e.g., Jones, 1994; 262 Tachibana et al., 2003; Ushikubo et al., 2012; Tenner et al., 2013, 2015; Schrader and Davidson, 263 2017; Schrader et al., 2017; Chaumard et al., 2018; Hertwig et al., 2018; 2019a).

11

264 3.1.1 Type I porphyritic chondrules

265 Olivine in type I porphyritic chondrules is present as large anhedral phenocrysts and 266 euhedral

grains (up to ~300 °m) (Fig. 1, 2). In several chondrules (e.g., C4, C8, C7; Fig. 2a for 267 C7), olivine is located in the cores while the pyroxene is more abundant at the periphery. In type I 268 POP chondrules, low-Ca pyroxene often displays a poikilitic texture with numerous cracks and 269 pores (e.g., C7; Fig. 2a). Low-Ca pyroxene was also observed as large euhedral grains, i.e., up to 270 ~150 °m length in chondrule C7 (Fig. 2a). In type I PP chondrules, low-Ca pyroxene display less 271 cracks and pores (e.g., C21; Fig. 1c). High-Ca pyroxene is also present in many type I porphyritic 272 chondrules as small grains (from a few °m to ~70 °m length), either in association with Low-Ca 273 pyroxene or olivine (e.g., C30; Fig. 1b). Olivine grains in type I porphyritic chondrules are 274 chemically homogeneous, with an average Mg# of 99.0±0.8 (2SD) (97.6–99.8). They contain up

12 275 to 0.44 wt% Al_2O_3 , 0.84 wt% CaO, 0.67 wt% Cr_2O_3 , and 0.46 wt% MnO. Low-Ca pyroxene grains 276 have Mg#s ranging from 92.5 to 99.2 and compositions of $En_{89-98}Fs_{1-7}Wo_{0-4}$. We measured 0.17–

277 2.13 and 0.30–1.07 wt% Al₂O₃ and Cr₂O₃, respectively.

278 The two POP chondrules C5 (Fig. 2b) and C14 (Fig. 3) contain fragments of BO chondrules 279 in their cores with sizes of ~200 °m and ~600 °m, respectively. Olivine and pyroxene 280 compositions do not show significant differences between BO core and POP rim (see analysis 281 locations on BSE images in EA2 and EPMA data in EA3). There are two type I granular chondrules 282 (C1, GOP; C9, GO) that are composed of evenly sized grains. Olivine grains in the chondrule C9 283 display linear trails of micron-sized inclusions of metal (Fig. 2e). Mg# of olivine and low-Ca 284 pyroxene in these type I chondrules are all close to ~99.

285 3.1.2 Type II PO chondrules

286 The three type II chondrules analyzed display a porphyritic texture and are mainly 287 composed of olivine phenocrysts. Most of the olivine grains in chondrule C15 have euhedral 288 shapes (Fig. 4a).

The chondrules C15 and C17 contain olivine grains with forsteritic cores (\sim 20– 289 80 °m, Fo₉₉₋₉₁). The ranges of olivine Mg#s excluding forsteritic core in chondrule C15 and C17 290 are 58.9–77.3 and 69.9–79.7, respectively. In chondrule C22, olivine displays Mg#s ranging from 291 60.3–79.0. Olivine grains in these three type II chondrules contain 0.20–0.60 wt% Cr₂O₃ and 0.02–

292 0.40 wt% MnO.

293 3.1.3 Isolated olivine grains

294 The isolated FeO-rich olivine grains G32 and G33 (Fig. 4b-c) are 200-300 μm in sizes. The 295 Fo contents of olivine grains show ranges of 67-75 and 30-49 for G32 and G33, respectively, which 296 becomes more FeO-rich towards the margin of grains. Another isolated object G24 is FeO-poor 297 olivine-bearing object (Fig. 4d) with Mg# of ~99.4±0.1. The interior of the object G24 is composed

13
298 of olivine that contains numerous μm-sized Fe-metal inclusions. The texture of olivine is similar
299 to that of dusty olivine grains, in which FeO was reduced to form Fe-rich metal (Nagahara, 1981;
300 Rambaldi, 1981).

301 3.1.4 Amoeboid olivine aggregate (AOA)

302 The AOA I3 texturally resembles the amoeboid olivine inclusions (AOI) previously 303 observed by Rubin (2015) in Paris, as well as AOAs in CV and CK chondrites (e.g., Grossman 304 and Steele, 1976; Rubin, 2013). Small grains of diopside (<5 ∝m) are enclosed within large, 305 porous, forsteritic olivine grains. The AOA I3 mostly contains chemically homogeneous olivine 306 with Mg# 99.5±0.1 and 0.35±0.11 and 0.28±0.03 wt% of Cr₂O₃ and MnO₃, respectively.

307

308 3.2. Oxygen isotope ratios

310 A total of 242 oxygen 3-isotope analyses were obtained in 2 SIMS sessions from 33 objects 311 (including 29 chondrules) in the CM2 Paris, which are listed in EA5. Typically, 8 analyses were 312 performed in each object at the same location as the EPMA analyses (EA2 and EA3), including 313 multiple phases (olivine, low-Ca pyroxene, and high-Ca pyroxene) where available. Only four 314 good analyses were obtained from BO chondrule C13 because several analyses were rejected due 315 to significant surface roughness (EA2). Only four analyses each were taken from two FeO-rich 316 isolated olivine grains that were relatively small (200-300 μ m). We performed four analyses in 317 AOA I13, though two were rejected after inspections of the SIMS pits. Our new data plot between 318 the CCAM (carbonaceous chondrite anhydrous mineral; Clayton et al., 1977) and the Y&R (Young 319 and Russell, 1998) lines, close to the PCM (primitive chondrule minerals; Ushikubo et al., 2012) line. The δ^{18} O and δ 320 17 O data from chondrules range from -23% to +4% and from -25% to +2%,

14
321 respectively, for olivine, and from -11‰ to +2‰ and from -14‰ to -1‰, respectively, for 322
pyroxene (Fig. 5). These ranges are very similar to those observed in chondrules from Murchison 323
(Chaumard et al., 2018).

324

325 3.2.1. Chondrule oxygen isotope analyses

326 Table 1 lists the host oxygen isotope ratio calculated for all chondrules except for two (C9, 327 C15), as well as their texture, Mg#, the number of measurements per mineral, and the individual 328 analyses that were not included in host chondrule calculations. In 18 chondrules, multiple analyses within a single chondrule display indistinguishable Δ 329 ¹⁷O values within the 3SD external 330 reproducibility (0.5‰ and 0.7‰, for 15 µm and 10 µm spot analyses, respectively). These 331

chondrules are considered to be internally homogeneous in oxygen 3-isotope ratios. Eight chondrules contain olivine grains showing Δ 332 17 O values that differ by more than the 3SD external 333 reproducibility from the average values calculated using the remaining multiple (\geq 5) analyses. As 334 described in section 2.3, these olivine grains with distinct oxygen isotope ratios are considered to 335 be relict and were not used to calculate the individual host chondrule values. In the case of chondrule C1, one each of olivine and low-Ca pyroxene show Δ 336 17 O values of -9.5% and -7.0%, 337 respectively, which are significantly lower than remaining five analyses (two olivine and three low-Ca pyroxene grains) with the mean Δ^{17} O = $-5.0\pm0.6\%$ (2SD) (Fig. 6). We considered the 338 16 O 339 rich olivine and low-Ca pyroxene grains as relict grains. By excluding relict grain data, we 340 calculate the host chondrule oxygen ratios from multiple (4–11) analyses for all but two chondrules. We consider the host chondrule Δ 341 17 O values to represent oxygen isotope ratios of the

342 chondrule melt during their formation (e.g., Ushikubo et al., 2012; Tenner et al., 2013; 2015).

In chondrule C18, five olivine grains display variable Δ 343 ¹⁷O value of $-1.3\pm0.6\%$ (2SD), 344 which differ significantly from three pyroxene analyses ($-3.3\pm0.3\%$; Fig. 1a). We consider 345 pyroxene data to represent the host chondrule value and olivine grains to be relict grains, as was 346 discussed in previous studies (chondrule Y22 in Tenner et al., 2013; chondrule A6 in Chaumard 347 et al., 2018). Similarly, chondrule C8 contains dusty olivine grains (SIMS spot #252, EA2 and EA5) with a Δ 348 ¹⁷O value of $0.1\pm0.4\%$, which are significantly different from the host chondrule Δ 349 ¹⁷O value of $-5.4\pm0.2\%$ that are calculated from five olivine and pyroxene analyses (Table 1).

15

In chondrule C9, seven olivine grains display homogeneous isotope ratios with the mean Δ 350 ^{17}O 351

value of $-0.15\pm0.43\%$ (2SD), which differ significantly from a single analysis of pyroxene (-3527.8%; Fig. 2e). All olivine grains in C9 contain numerous micron-sized inclusions of metal, which 353 suggests they are dusty olivine grains and thus are likely to be relict. The pyroxene data are more 354 likely to represent the host value. However, since there is only a single pyroxene analysis, we do not assign it to be host Δ 355 17 O value.

We also did not assign a host Δ 356 ¹⁷O value to the type II chondrule C15 (Fig. 4a) that show a large range of δ^{18} O and δ 357 ¹⁷O values between PCM and CCAM lines from –6.6‰ to +2.5‰ and 358 from –9.8‰ to –1.0‰, respectively, among 8 olivine analyses. Chondrule C15 contains forsteritic 359 olivine grains in its core (Fo₉₁₋₉₉), indicating that these grains represent relict grains (based on FeO 360 contents, Fe/Mn ratios; Berlin et al., 2011; Frank et al., 2014; Schrader and Davidson, 2017). This is consistent with the lower Δ 361 ¹⁷O values (–4.1‰ to –6.3‰) of forsteritic olivine grains compared to those of the more FeO-rich olivine grains with variable Δ 362 ¹⁷O values (–3.3‰ to –2.3‰).

Host \triangle 363 ¹⁷O values from most of the type I chondrules vary continuously from $-7.0\pm0.2\%$ 364 to $-3.3\pm0.3\%$ (Fig. 6). The two other type I chondrules (C11; Fig. 1d, and C12) and the two type II chondrules (C17 and C22) display a narrow range of host \triangle 365 ¹⁷O values ranging from $-2.5\pm0.2\%$

to $-2.1\pm0.2\%$ (Fig. 6). Most of the relict olivine have Δ 366 17 O values between \sim -2% and -8% (Fig. 367 6) overlapping those of the host values of other chondrules. Similar observation have been made 368 in other carbonaceous chondrites such as Acfer 094, Murchison, Y-82094, CV, CO, and CR 369 chondrites (Rudraswami et al., 2011; Ushikubo et al., 2012; Schrader et al., 2013, 2014, 2017; 370 Tenner et al., 2013, 2015, 2017; Hertwig et al., 2018; 2019a; Chaumard et al., 2018). Only two relict grains have Δ 371 17 O values lower than -8%; the relict grains in chondrule C1 (-9.5%) and C14

(-13.0%) (Fig. 6). Among the 29 relict grains analyzed, 13 (only olivine) display Δ 372 ¹⁷O values 373 between -1.6% and 0.2% (Fig. 6). Most of these were found in the chondrule C9 that contains 7 relict olivine grains with Δ 374 ¹⁷O values ranging from -0.4% to 0.2% (Fig. 2e), and in chondrule C18 that contains 5 relict olivine grains with Δ 375 ¹⁷O values between -1.6% to -0.8% (Fig. 1a).

376

377 3.2.2. Oxygen isotope ratios of isolated grains and AOA

378 Table 2 shows the oxygen isotope ratios of three isolated grains and AOA. Four analyses of FeO-rich olivine grains G32 and G33 are homogeneous with Δ 379 ¹⁷O values of –2.7±0.5‰ and – 380 1.9±0.3‰, respectively (Fig. 4b-c). These analyses are in agreement with type II chondrules C17 381 and C22. In FeO-poor olivine G24, 8 analysis of olivine are widely distributed close to PCM line with δ ¹⁸O and δ 382 ¹⁷O values from –3.2‰ to +3.3‰ and from –5.5‰ to +1.7‰, respectively. The range of Δ ¹⁷O values is from –4‰ to 0‰. As shown in Fig. 4d, the core of G24 is ¹⁶O-poor (Δ 383 ¹⁷O: 384 –0.8‰ to 0.0‰) compared to the coarse rim (–2‰ to –4‰).

385 We analyzed four spots in olivine from AOA I3. While we rejected two analyses that show numerous large cavities in their SIMS spots (EA2), the mean of δ^{18} O, δ^{17} O, and Δ 386 17 O values of the 387 two remaining analyses of olivine in AOA I3 are $-45.5\pm0.5\%$, $-47.3\pm0.4\%$, and $-23.7\pm0.2\%$, 388 respectively.

17

389

390 **3.3.** Chondrule Mg#

391

392 Following the method of Ushikubo et al. (2012) and Tenner et al. (2013, 2015, 2017), we 393 calculated the "host chondrule Mg#" in taking a mean value of olivine and/or low-Ca pyroxene 394

Uncertainties of host chondrule Mg# are defined so that they represent the range of Mg#s in each 396 chondrule, by taking differences between maxima, or minima, and the mean Mg# of olivine and 397 low-Ca pyroxene, respectively. The host chondrules Mg#s of type I chondrules show a narrow 398 range between 98.6 and 99.6, except for the three type I PP chondrules C31, C11 and C12, with 399 Mg# of 97.3, 93.3 and 93.6, respectively. The host chondrule Mg#s for the type II chondrules are 400 calculated to be ~70 by excluding obvious relict forsteritic olivine.

401

402

403 4. DISCUSSION

404

405 4.1. A single or two separate isotope reservoir(s)?

406

The Δ 407 ¹⁷O values of host chondrules and isolated olivine grains (n=30) are shown in Fig. 6 in the sequence of decreasing Δ 408 ¹⁷O values from -1.9 ±0.3‰ to -7.0 ±0.2‰. The majority of type I chondrules show a narrow range of Δ 409 ¹⁷O between -6‰ and -4‰, while all FeO-rich chondrules and isolated olivine grains have Δ 410 ¹⁷O between -3‰ and -2‰. This is very similar to the results from Murchison, where the Δ 411 ¹⁷O values of high Mg# (>98) chondrules range from -6‰ to -4‰

18

412 and those of lower Mg# (96-65) chondrules are between -3% and -2% (Chaumard et al., 2018). 413 Compared to Murchison data, Paris chondrule data are more continuous, without a gap between -4% and -3% and extend to lower Δ 414 17 O \sim -7%. In Fig. 7, the host chondrule Δ 415 ¹⁷O values in Paris are shown against their Mg#s along with 416 data from Murchison (Chaumard et al., 2018). The majority of type I chondrules in Paris plot at highest Mg#s ~99 with Δ^{17} O from -6‰ to -4‰, while the rest of data plot on a trend where Δ 417 ¹⁷O 418 values increase with decreasing Mg#s. In Murchison, chondrules with high Mg#s (>98.5) display host Δ 419 ¹⁷O values ranging from -6.0% to -4.1% while chondrules with lower Mg# (~96-65) have host Δ^{17} O values of \sim 2.5%. Thus, the chondrule Mg#- Δ 420 ¹⁷O relationship in Paris is nearly the 421 same as that observed for Murchison. Indeed, the two isolated FeO-rich olivine grains analyzed in 422 Paris plot along and extend the trend defined by type II chondrules (in both Paris and Murchison), 423 towards lower Mg#s (~37 for the grain G33) than was previously measured in Murchison. One PP (C31) and one POP (C18) chondrule with host Δ 424 ¹⁷O values of -3.3% also plot between Mg# ~96– 99 and two other PP chondrules (C11, C12) with Δ 425 ¹⁷O values of \sim -2.5% have Mg#s \sim 93-94, a 426 range of Mg#s not found in Murchison (Chaumard et al., 2018). Thus, by combining data from two CM chondrites, CM chondrule data define a single continuous trend of increasing Δ 427 ¹⁷O values with decreasing Mg#s. Marrocchi et al. (2018) also reported similar host chondrule Δ 428 ¹⁷O values 429 and Mg# data for three chondrules in NWA 5958, which is a CM-related ungrouped carbonaceous 430 chondrite.

The Mg#- Δ 431 ¹⁷O relationship among chondrules observed in CM chondrites is similar to 432 those obtained from Acfer 094 (Ushikubo et al., 2012) and the Y-81020 CO chondrite (Tenner et 433 al., 2013), as shown in Fig. 8, and to a lesser extent for chondrules in the Y-82094 ungrouped 434 carbonaceous chondrite and CV chondrites (Tenner et al., 2017; Hertwig et al., 2018; 2019a).

436 17 O at \sim -5‰ and -2.5‰ (Fig. 8). Ushikubo et al. (2012) and Tenner et al. (2013) argued that 437 these chondrules formed in two distinct isotope reservoirs; (1) a reducing environment at lower dust enrichments (100 × solar composition gas) in which chondrules with Mg#>97 and Δ 438 17 O \sim -439 5‰ formed and (2) an oxidizing environment showing higher dust enrichments (1000× solar) in which chondrules with Mg# <97 chondrules and Δ 440 17 O \sim -2.5‰ formed. They interpreted the 441 difference in oxygen isotope ratios between the two reservoirs as a result of varying amounts of 442 16 O-poor H₂O ice mixed in with other chondrule precursor solids.

443 Chondrule data from Acfer 094 and Y-810202 overlap almost exactly with the CM 444 chondrule trend (Fig. 8), so that the two separate isotope reservoirs indicated from earlier studies 445 could represent subsets of a single chondrule-forming region, which could have been shared by 446 many CC chondrules. Chondrules in the ungrouped carbonaceous chondrite Y-82094 also show a similar Mg#- Δ 447 ¹⁷O relationship that overlaps with that of CM chondrites. In CV chondrites, chondrules generally have high Mg#s (>98) with Δ 448 ¹⁷O values predominantly ranging from -6‰ 449 to -4‰ (Hertwig et al., 2018; 2019a; Marrocchi et al., 2019). These values overlap exactly with the CM chondrule data for Mg#>98. In all these CCs, type I chondrules with Mg# \leq 97 and Δ 450 ¹⁷O 451 values between -4‰ and -3‰ are scarce. The Paris chondrule C31 (PP) with Mg# \leq 97.3 (+0.5/ \leq

1.6) shows intermediate Δ 452 ¹⁷O = -3.3±0.2‰ and is located in the gap between the two groups of chondrules (Δ^{17} O ~-5‰ and ~-2.5‰ on the Δ 453 ¹⁷O versus Mg# plot, Fig. 8), so is one of the three chondrules studied by Marrocchi et al. (2018) in NWA 5958 with Mg# ~95 and Δ 454 ¹⁷O of -3‰. Identifying more chondrules with intermediate Mg#s and Δ 455 ¹⁷O values would further test if CC 456 chondrules derived from a single continuous region, or if they were derived from two separate

457 reservoirs in terms of time and locations, as argued earlier from Acfer 094 and CO chondrite 458 chondrule data (Ushikubo et al., 2012; Tenner et al., 2013).

459

460 4.2. Nature of the oxygen isotope reservoir(s)

461

462 Tenner et al. (2015) presented a mass balance model to describe the observed negative correlation between Δ 463 17 O values and Mg#s among CR chondrules. As discussed by Tenner et al. 464 (2015), Mg#s of olivine and pyroxene in chondrules mainly depend on the redox state of iron that 465 in turn was controlled by the oxygen fugacity of the chondrule-forming environment. Equilibrium 466 thermodynamic calculations (e.g., Ebel and Grossman 2000) indicate that type I chondrules with 467 high Mg#s formed under reducing conditions, e.g., $fO_2 \sim 3.5$ to ~ 2.5 log units below the IW buffer 468 for Mg# 99 and 96, respectively (Tenner et al., 2015). In the protoplanetary disk, H_2O ice would 469 reside in fine-grained dust particles enriched in organic matter and amorphous silicates, similar to 470 chondritic porous interplanetary dust particles and the matrix in primitive meteorites (e.g., Bradley 471 and Brownlee, 1986; Abreu et al., 2010). Therefore, the model supposes that the chondrule 472 forming region consisted of varying relative proportions of these components. In the scope of the model, H_2O ice, anhydrous dust, organics, and solar-composition gas possessed Δ 473 ^{17}O values of 474 5.1‰, -5.9%, 11.3‰, and -28.4%, respectively (Tenner et al., 2015).

475 The model assumes that chondrules formed in an environment whose effective oxygen 476 isotopic composition and redox state is mostly controlled by the mixture of these four components. 477 During transient heating, this environment comprised the solar-composition gas enriched in the 478 evaporated

portions of the precursors (= ambient gas), a melt component, and unmelted solids.

479 Being a mixing model, no predictions are made about the actual physical processes operating

21 480 during chondrule formation. It is implied by the model, however, that after evaporation, 481 recondensation into the melt (e.g., Libourel et al., 2006; Nagahara et al., 2008; Libourel and Portail, 482 2018) lead to an effective oxygen exchange between melt and ambient gas (e.g., Kita et al., 2010; 483 Ushikubo et al., 2012; Tenner et al., 2015; Marrocchi and Chaussidon, 2015; Marrocchi et al., 2019), so that melt and ambient gas display the same effective Δ 484 ¹⁷O value at the time of olivine 485 crystallization. The Mg#s of olivine and pyroxene in chondrules would be determined by the 486 oxygen fugacity of the ambient gas, which can be estimated from the relative abundances of H, C, 487 and O of the mixture of ambient gas and the melt component. Further details of the mass balance 488 model are described in Tenner et al. (2015; 2018). 489 Using the model calculation, Tenner et al. (2015) suggested that the majority of type I 490 chondrules in CR chondrites formed at a dust enrichment factor of 100-200 relative to solar 491 composition gas and with a H₂O-ice enhancement of 0-0.8 times relative to CI-composition dust. Subsequently, Hertwig et al. (2018) modified the model parameters by applying Δ 492 17 O values of 493 the anhydrous dust and H_2O ice of -8% and +2%, respectively, in order to explain the distribution of Mg#s and \triangle 494 ¹⁷O values of chondrules in CV chondrites. These parameters were estimated based on the assumptions that (1) the lowest host-chondrule Δ 495 ¹⁷O value is representative of the anhydrous silicate dust component and (2) the average Δ^{17} O value of type II chondrules constrain the Δ 496 ¹⁷O 497 values of H₂O ice based on the oxygen isotope mass balance at high dust enrichments (Tenner et al., 2015). In Paris, the lowest host \triangle 498 ¹⁷O value measured is -7.0%, while the type II chondrules and FeO-rich olivine G33 reach Δ^{17} O values as high as $\sim -2\%$. Consequently, the Δ 499 17 O values for 500

anhydrous silicate dust and H_2O ice used by Hertwig et al. (2018) are useful to estimate both the 501 dust and H_2O enrichments of the precursors during the formation of CM chondrules. Applying the 502 model of Tenner et al. (2015) and the calculations of Hertwig et al. (2018), $Mg\# \sim 99$ chondrules

503 in Paris correspond to dust enrichment factors of 50-100× relative to solar-composition gas and to 504 amounts of H_2O in the dust ranging from 0 (anhydrous dust) to $0.8\times$ relative to the nominal 505 abundance of H_2O ice in the CI dust (Fig. 9). For chondrules with Mg#s lower than 98 and down 506 to mostly 60-70, the ice enrichment factor is roughly constant (between 0.8 and 1× the nominal 507 abundance of H_2O ice, relative to the CI dust) while the dust enrichment factor increases from 508 $\sim 100\times$ to $\geq 1,000\times$ (Fig. 9). We note that Mg# should be controlled not only by oxygen fugacity, 509 but also by iron abundance of the system relative to Mg and Si, which is assumed to be CI 510 chondritic in the model. Chondrules with lower Mg# (< 60 down to ~ 35) might have been formed 511 from precursors that were significantly enriched in iron and may not represent chondrule formation 512 under extremely high dust-enrichments ($> 3,000\times$).

The observed relationship between Δ 513 ¹⁷O values and Mg#s from chondrules in CM 514 chondrites might have resulted from their formation in a single large region in the protoplanetary disk that was radially zoned with respect to the effective Δ 515 ¹⁷O values, possibly due to variable abundances of 516 ¹⁶O-poor H₂O ice. The region would likely have existed near to the snow line, the condensation front of H₂O ice. Inside the snow line, the relative abundance of 517 ¹⁶O-poor H₂O ice 518 among the solid chondrule precursors was low in contrast to outside of the snow line (e.g., 519 Morbidelli et al., 2016). The most reduced chondrules (Mg#s >99) formed inside the snow line, 520 within this large region, where dust enrichment factors were up to ~100×. More oxidized chondrules

with higher Δ 521 ¹⁷O values and lower Mg#s would have formed towards the external part of this single chondrule-forming region where there was addition of 522 ¹⁶O-poor H₂O ice to the nearly 523 anhydrous chondrule precursors and/or an increase of the dust enrichment factor from \sim 100× to 524 \sim 1,000×, as proposed for CR chondrites by Tenner et al. (2015).

23

Alternatively, systematic changes in Mg#-Δ 525 ¹⁷O could have developed over time. Most type I chondrules with Mg#>97 and lower Δ 526 ¹⁷O values ~ -5‰ formed in regions mainly inside of the 527 snow line with dust enrichments lower than ~ 200×. The local disk temperatures would decrease 528 with time and, consequently, the snow line could migrate through the chondrule forming regions. 529 At the same time, the dust layer became thicker prior to the formation of asteroidal bodies (e.g., 530 Alexander et al., 2008). Later-forming chondrules would form under oxidizing environments and with higher $\Delta^{17}{\rm O}$ values \sim -2% due to addition of 531 $^{16}{\rm O}$ -poor ${\rm H_2O}$ ice to chondrule precursors. 532 Hartlep and Cuzzi (2020) estimated dust enrichment factors of the turbulent disk midplane 533 to be typically ~100× where cm-sized pebbles formed by streaming instability. They further 534 discussed that chondrules and their precursors existed in the form of cm-sized pebbles and argued 535 that the estimated particle concentrations are consistent with those of high Mg# chondrules, which 536 are abundant in carbonaceous chondrites. Their model also predicts that particle concentrations 537 may reach ~1,000×, but probability is low. Therefore, in principle, formation of type II chondrules 538 under higher dust-enrichment factors of ~1,000× might have occurred in the protoplanetary disk. 539 Many type I POP chondrules show a mineralogical zoning with olivine grains being located 540 in the core and pyroxene in periphery of individual chondrules (e.g., Krot et al., 2004; Hezel et al., 541 2006; Friend et al., 2016). Further, Villeneuve et al. (2020) observed a large mass-dependent Si 542 isotope

fractionation in type I chondrules, especially in those with high Mg#s. Both observations 543 provide evidence for SiO molecules condensing from the ambient gas to the melt. Based on 544 detailed CL-mapping of chondrule minerals and correlated oxygen isotope systematics, Marrocchi et al. (2019) proposed that SiO (along with Mg atoms) condensing from an 545 16 O-poor nebula gas (Δ^{17} O \sim 0%) interacted with 16 O-rich AOA-like chondrule precursors (Δ 546 17 O \sim -20%) to form type I chondrules with Δ 547 17 O values ranging from -6% to -3%. However, 2-3 Ma after CAIs, ambient

24

548 temperatures of the protoplanetary disk should have been significantly lower than the condensation 549 temperature of Si (e.g., Desch et al., 2018). Hence, the partial pressure of SiO in the nebula gas is 550 expected to be low, prior to the heating events causing chondrule formation. Instead, heating and 551 evaporation of solid precursors, such as silicates, during chondrule formation would produce the 552 majority of gaseous SiO, residing in the ambient gas (e.g., Nagahara et al., 2008) and being 553 available for exchange and interaction with the chondrule melt and solids. Thus, the observed correlation of Δ^{17} O values and Mg#s is better explained by the contribution of 554 16 O-poor H₂O ice (or icy fine-grained dust) rather than addition of 555 16 O-poor SiO gas from nebula gas.

556

557 4.3. Origin of relict grains in CM chondrules

558

559 Some chondrules contain grains predating the host minerals that crystallized from the final 560 chondrule melts. These grains are defined as relict grains and can be identified chemically and/or 561 isotopically (e.g., Jones et al., 2004; Kunihiro et al., 2004; Krot et al., 2006; Rudraswami et al., 562 2011; Ushikubo et al., 2012; Schrader et al., 2013; Tenner et al., 2013; Schrader and Davidson, 563 2017; Hertwig et al., 2018; 2019a; Chaumard et al., 2018; Marrocchi et al., 2018; 2019). Ten of 564 the

27 chondrules in this study contain relict olivine and/or low-Ca pyroxene grains (Table 1, Fig. 565 6). The abundance of relict-grain bearing chondrules (~37%) in Paris is similar to Murchison 566 (CM2) (~38%; Chaumard et al., 2018), Acfer 094 (~ 45%; Ushikubo et al., 2012), and the Y-81020 567 CO chondrite (~ 42%; Tenner et al., 2013). We note that the abundance of relict-grain bearing 568 chondrules in these chondrites is probably underestimated due to the limited number of analyses 569 per chondrules (≤8), in comparison to the 30-50 analyses per chondrules performed in other studies 570 (Marrocchi et al., 2018; 2019). While eight out of the nine relict grains in Murchison chondrules

were 571 16 O-rich compared to their host chondrules (Chaumard et al., 2018), four out of 10 chondrules in Paris contain relict olivine grains with Δ 572 17 O values higher than their host chondrules, which 573 reach as high as 0‰. This difference might be due to selection bias for chondrules in Paris in this work (or in Murchison in previous work) and may not be statistically significant. Similar 574 16 O-poor 575 relict olivine grains have also been reported from other CCs but seem to be not as common 576 (Ushikubo et al., 2012; Tenner et al., 2013; Hertwig et al., 2018; 2019a; Marrocchi et al., 2018; 577 Schrader et al., 2020).

578 In type II chondrules, forsteritic cores in FeO-rich olivine phenocrysts are easily recognized 579 as relict grains (e.g., Jones, 1990; Wasson and Rubin, 2003; Ruzicka et al., 2007, 2008). These 580 observations indicate that at least a part of the type II chondrule precursors formed in more 581 reducing conditions, similar to those during formation of type I chondrules (e.g., Ruzicka et al., 582 2008). Based on re-heating experiments of type I precursor materials at $1450-1500^{\circ}$ C under 583 oxidizing conditions (between the IW and NNO buffers), Villeneuve et al. (2015) proposed that 584 type I chondrules (or fragments) could have been the main precursor material of type II chondrules. These results and the recognition of 16 O-rich relict grains in the type II chondrule C17 with Δ 585 17 O 586 values similar to

those of host type I chondrules (Fig. 6) support this precursor origin of type II 587 chondrules. There are many other examples where type II chondrules enclose FeO-poor olivine 588 grains that are similar to those observed in type I chondrules (Kunihiro et al. 2004; 2005; Ushikubo 589 et al., 2012; Tenner et al. 2013; 2017; Krot and Nagashima, 2017; Krot et al., 2018). Villeneuve et al. (2020) reported negative δ^{30} 590 Si in relict olivine from type II chondrules in carbonaceous 591 chondrites, indicating they could have originated from forsteritic olivine of type I chondrules.

Thirteen relict grains from 7 chondrules have Δ 592 ¹⁷O values within the range of the host values calculated for chondrules (from -7.0% to -2.1%; Fig. 6). Including the 593 ¹⁶O-rich relict

26

594 olivine in type II chondrules, it had been suggested that most relict grains were result of mixing 595 between two distinct major isotope reservoirs (e.g., Jones et al., 2005; Hewins and Zanda, 2012; 596 Ushikubo et al., 2012; Tenner et al., 2013, 2015). The new dataset for Paris chondrules instead 597 may point to mixing within a single chondrule-forming region. Within this region, the radial 598 transport of solids would have occurred (Cuzzi et al., 2010) between an inner area, enriched in reduced and ¹⁶O-rich chondrules, and an outer area, enriched in more oxidized and 599 ¹⁶O-poor 600 chondrules.

The remaining relict grains are significantly ^{16}O -rich ($\Delta^{17}\text{O}$: -13% and -9.5%) or 601 ^{16}O depleted ($\Delta^{17}\text{O}$: from -1.9% to 0.2%; Fig. 6). Similar 602 ^{16}O -rich relict grains were also reported in Murchison chondrules, reaching values of down to -18% (Chaumard et al., 2018). The 603 ^{16}O -rich 604 relict grains might be related to CAI and AOA-like refractory precursors (Ushikubo et al., 2012; 605 Marrocchi et al., 2019), which formed during the earliest stage of the Solar System evolution (\leq 0.2 606 Ma; Kita et al., 2013). However, relict olivine grains in some chondrules (C1 and C14) do neither 607 show any special textural nor major-element compositional difference compared to other 608 coexisting

(non-relict) olivine in the same chondrules. Identification of small differences in minor 609 elements would require detailed elemental mapping of olivine at a high electron-beam intensity, 610 as demonstrated by Marrocchi et al. (2018; 2019) who found that relict grains tend to have lower 611 Ca, Ti, and Al concentrations. In contrast, chondrules C8 and C9 and the isolated olivine grain G24 all show dusty olivine textures and Δ 612 ¹⁷O values \sim 0‰, which are significantly higher than other olivine analyses in the same objects (Table 1). Schrader et al. (2020) reported 613 ¹⁶O-poor dusty olivine with Δ 614 ¹⁷O \sim 0‰ in four type I chondrules from Murchison and Murray CM chondrites and 615 suggested that precursors of dusty olivine in CM include those unrelated to type I and II 616 chondrules, but originated instead from an unequilibrated ordinary chondrite source. Dusty olivine

617 grains are thought to form by the reduction during partial melting of more FeO-rich olivine, derived 618 from a previous generation of chondrules (Nagahara, 1981; Rambaldi, 1981; Jones and Danielson, 619 1997; Leroux et al., 2003). Consequently, their oxygen isotope ratios likely reflect those of the 620 FeO-rich precursors. Our results from C8, C9 and G24 are consistent with those of Schrader et al. 621 (2020) and imply an origin of these relict grains from a different reservoir than the one in which type I (Δ^{17} O: ~-5‰) and type II (Δ 622 17 O: ~-2.5‰) chondrules in CM and other groups of CCs 623 formed. The 624 16 O-poor relict grains may be related to OC-like chondrules in CCs that show homogeneous oxygen isotope ratios with Δ 625 17 O ~0‰ (e.g., Tenner et al., 2017). Tenner et al. (2017) 626 argued that three type II chondrules in Y-82094 (ungroup C) are characterized by intermediate 627 Mg#s (80-90), higher MnO contents in olivine, and oxygen isotope ratios on the terrestrial 628 fractionation line but to the left side of the PCM line, which are similar to chondrules in ordinary 629 chondrites. Recently, Williams et al. (2020) and Schneider et al. (2020) obtained coordinated ϵ^{54} Cr, ϵ^{50} 630 Ti, and SIMS oxygen isotope analyses of individual chondrules from multiple chondrite 631 groups and found

that chondrules generally show isotope signatures similar to those of their host 632 bulk meteorites. However, Williams et al. (2020) also found three BO chondrules in Allende (CV) with Mg#s of 80-90 that show negative ε^{54} Cr and ε^{50} Ti values and Δ 633 17 O =0‰, which are very 634 different from those of the bulk Allende meteorite. These chondrules do not exactly match ordinary 635 chondrite chondrules, but show similar isotope ratios to achondrites.

636 The Al-Mg ages of two OC-like chondrules in Acfer 094 are older by 0.4-0.8 Ma than other 637 chondrules in the same meteorite (Ushikubo et al., 2013; Hertwig et al., 2019b). The age difference 638 could represent the transit time for these chondrules to travel from the outside of the CC chondrule 639 forming regions to the Acfer 094 accretion region. Schrader et al. (2020) and Williams et al. (2020)

28

640 suggested that dusty olivine in CM chondrite chondrules and the FeO-rich BO chondrules in 641 Allende, respectively, had migrated outward from inner to outer disk across the Jupiter's gap. Collectively, both refractory ¹⁶O-rich precursors and OC-like 642 ¹⁶O-poor precursors represent inner 643 disk solids that would have been added to the solid precursors of CM chondrules.

644

645 4.4. Oxygen isotope ratios of AOA in CM

646 Here we compare oxygen isotope ratios of AOA I3 in Paris obtained during this work to 647 AOAs in other CCs and refractory inclusions in CM chondrites, which were previously obtained in the WiscSIMS laboratory. The mean of 2 analyses of AOA I3 gives $\delta^{18}O = -45.5 \pm 0.5\%$, δ 648 ¹⁷O = $-47.3 \pm 0.4\%$, and Δ 649 ¹⁷O = $-23.7 \pm 0.2\%$ (Table 1). This is in agreement with AOA analyses in Acfer 094 (mean of four AOA and 2SD; $\delta^{18}O = -45.8 \pm 0.7\%$, $\delta^{17}O = -47.7 \pm 0.7\%$, and Δ 650 ¹⁷O = $-23.8 \pm 0.6\%$; Ushikubo et al., 2017) and those in DOM 08006 (CO3.0; δ 651 ¹⁸O = $-45.8 \pm 0.7\%$ and Δ 652 ¹⁷O = $-24.0 \pm 0.4\%$; Fukuda et al., 2021). Data from I3 are also consistent with spinel-hibonite

inclusions (SHIBs) in Murchison studied by Kööp et al. (2016) with Δ 653 17 O = $-23.4\pm1.1\%$. Other 654 studies reporting oxygen isotope ratios of AOA from multiple CCs (Fagan et al., 2004; Krot et al., 655 2005; 2014; Komatsu et al., 2017), Kakangari (Nagashima et al., 2015), ordinary chondrites (Itoh 656 et al., 2007; Ebert et al., 2020), and enstatite chondrite (Guan et al., 2000) also show similar ranges. Thus, AOA I3 formed in a homogeneous 657 16 O-rich isotope reservoir that formed a wide variety of 658 CAIs (e.g., Ushikubo et al., 2017).

659

660 4.5. Implications for the chondrule formation region

661 The large chondrule formation region discussed in 4.2. would likely be located at around 662 3 AU, where the snow line would be located at the time of chondrule formation (a few Ma after

29

663 CAIs; Morbidelli et al., 2016). This region would have been outside of the OC chondrite accretion 664 region, so that a minor fraction of inner disk materials might have been transported from the inner 665 disk to the outer disk (Hertwig et al., 2018; Schrader et al., 2020; Williams et al., 2020). Several 666 recent studies suggest that CM and other CCs form outside of proto-Jupiter in order to explain the 667 isotope dichotomy between carbonaceous meteorites and non-carbonaceous meteorites (e.g., 668 Kruijer et al., 2017; Desch et al., 2018; Nanne et al., 2019; Van Kooten et al., 2020), a hypothesis first advocated based on bulk meteorite nucleosynthetic anomalies of ⁵⁴Cr and ⁵⁰ 669 Ti by Warren 670 (2011). Kruijer et al. (2017) further suggested that the isolation of carbonaceous and non 671 carbonaceous isotope reservoirs occurred early, within 1 Ma after CAI formation. This predates 672 the events forming CC chondrules which are estimated to have occurred 2-3 Ma after CAI 673 formation (e.g., Ushikubo et al., 2013; Nagashima et al., 2017; Hertwig et al., 2019b). Desch et al. 674 (2018) proposed a comprehensive evolutionary model involving the proto-Jupiter's gap that 675 predicts a

location and formation time for each meteorite parent body in order to explain the 676 chemical diversity among meteorites. In their model, Jupiter originally formed \geq 4 AU and 677 migrated inward to 3 AU to open a gap that separated the two isotope reservoirs. Within this 678 framework, chondrules in CCs should form beyond the snow line, which is in contrast to the dry environments expected for the abundant CM chondrules with high Mg# (>98) and Δ 679 17 O \sim -5‰. 680 Furthermore, complete isolation of carbonaceous and non-carbonaceous meteorite forming regions 681 can not explain chondrules and relict grains with OC-like oxygen isotope ratios in CM chondrites. 682 Schrader et al. (2020) argued that small fragments of UOC chondrules (<300 μ m) could migrate 683 outward beyond the Jupiter's gap and so were incorporated to chondrule precursors for CM chondrites. A few chondrules in Paris contain dusty olivine grains with Δ 684 17 O \sim 0‰ (C8, C9, C24), 685 which are also \sim 300 μ m or smaller and could have migrated from UOC regions across the Jupiter's

30 gap. Chondrules with Δ 686 17 O \sim 0‰ in Acfer 094 and Y-82094 (ungrouped C) are also \leq 300 μm in 687 size, though those in CV are from \sim 500 μm (Hertwig et al., 2018; 2019) to \geq 2 mm (Williams et 688 al., 2020).

689 Alternatively, proto-Jupiter could have been located close to the current Jupiter orbit that 690 is outside of the major CC chondrule-forming regions. Recent numerical simulation by Tanaka et 691 al. (2020) indicated that Jupiter-sized giant planets would not experience a significant radial 692 migration as opposed to those indicated in previous studies (e.g., Lin and Papaloizou 1986). If 693 there were radial transport of solids in the protoplanetary disk (e.g., Cuzzi et al., 2010), a small 694 amount of OC-like chondrules and their fragments could have migrated outward to CM and other 695 major CC forming regions. The main drawback in this scenario is that inward drift of significant 696 amounts of dust from the CC forming regions to the OC forming regions might have occurred.

697 This would be in disagreement with the observed distinct isotope signatures between bulk 698 carbonaceous and non-carbonaceous meteorites (e.g., Budde et al., 2016; Kruijer et al., 2017; 699 Kleine et al. 2020).

700

701 CONCLUSIONS

702

703 In situ SIMS oxygen 3-isotope analyses of 29 chondrules and 3 isolated olivine grains in 704 the least-altered CM chondrite Paris were performed. The results were used to estimate host chondrule Δ 705 17 O values. By combining this data set with that from Murchison chondrules (Chaumard et al., 2018), the Mg#- Δ 706 17 O relationship of CM chondrite chondrules was evaluated.

707

(1) Host chondrule Δ 708 ¹⁷O values in CM chondrites increase continuously from –7‰ to –2‰ 709 with decreasing Mg# from 99 to 37. The majority of types I and II chondrules in CM show high Mg#s ~99 with Δ^{17} O from –6‰ to –4‰ and lower Mg#s of 60-70 with Δ 710 ¹⁷O of – 2.5‰, respectively, while a few type I chondrules with lower Mg# (97-93) show Δ 711 ¹⁷O 712 between –3.3‰ and –2.5‰, We suggest that bimodal distribution of chondrule Mg# and Δ 713 ¹⁷O from Acfer 094 and Y-81020 (CO3) previously reported by Ushikubo et al. (2012)

31

714 and Tenner et al. (2013), respectively, are parts of the CM chondrule trend. (2) Relict grains in CM chondrite chondrules are either ^{16}O -rich or 715 ^{16}O -poor relative to their host chondrules, with the total range from -18% to 0%. The majority of relict grain Δ 716 ^{17}O values overlap the range of host

chondrule Δ 717 ¹⁷O values, suggesting they were derived from a precursor in the same CM chondrite chondrule forming region. Relict grains with Δ 718 ¹⁷O 719 values <-8‰ and ~0‰ are likely from refractory precursors and OC-like precursors, 720 respectively.

721 (3) By adapting the oxygen isotope mass balance model of Tenner et al. (2015) and Hertwig 722 et al. (2018), we argue that the majority of type I chondrules formed under relatively low dust enrichment factors (50-100× Solar) but with a range of 723 16 O-poor H₂O ice (0-0.8× CI) 724 in the precursors. Other chondrules formed under oxidizing environments with higher dust enrichments (100-1,000× Solar) and abundant 725 16 O-poor H₂O ice (0.8-1× CI).

726 (4) CM chondrite chondrule formation could have occurred in a large single region that spanned both sides of the snow line, facilitating a wide range of dust-enrichments and 727 ¹⁶O 728 poor H₂O-ice enhancements. It is possible that the conditions in this region evolved with 729 time, from reducing to more oxidizing, as the local disk became denser and colder. This

32

730 chondrule forming region would have likely exist inside the proto-Jupiter orbit if Jupiter 731 was large enough to produce a gap in the accretion disk.

732 (5) In addition to chondrules, we also analyzed one AOA in Paris, and the data from this AOA 733 are in good agreement with AOAs and other refractory inclusions from Acfer 094, DOM 734 08006 (CO3), and Murchison (CM2).

735

736 **Acknowledgements** We gratefully thank Brigitte Zanda for allocating us Paris thin sections for 737 the SIMS work. We thank John Fournelle and Jim Kern for assistance with electron probe micro 738 analysis and SIMS instrument, respectively. We thank Michael Spicuzza for his reading of earlier 739

version of the paper to improving the quality of the manuscript. We thank Kazu Nagashima and 740 Yves Marrocchi for their constructive reviews and Sasha Krot for editorial handling, which 741 improved clarity of the discussions. This work is supported by the NASA Cosmochemistry 742 program (NNX14AG29G). WiscSIMS is partly supported by NSF (EAR13-55590, EAR 743 1658823).

744

745 REFERENCES

746

747 Abreu N. M. and Brearley A. J. (2010) Early solar system processes recorded in the matrices of 748 two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. *Geochim.* 749 *Cosmochim. Acta* 74, 1146-1171.

750 Alexander C. M. O'D., Grossman J. N., Ebel D. S., and Ciesla F. J. (2008) The formation 751 conditions of chondrules and chondrites. *Science* **320**, 1617-1619.

Baertschi P. (1976) Absolute 752 ¹⁸O content of standard mean ocean water. Earth Planet. Sci. Lett.

33

753 **31**, 341-344.

754 Berlin J., Jones R. H., and Brearley A. J. (2011) Fe-Mn systematics of type IIA chondrules in 755 unequilibrated CO, CR, and ordinary chondrites. *Meteor. Planet. Sci.* **45**, 513-533. 756 Bischoff A., Scott E. R. D., Metzler K., and Goodrich C. A. (2006) Nature and origins of meteoritic 757 breccias. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. 758 Y. Jr. Tucson, Arizona: The University of Arizona Press. pp. 679-712. 759 Brearley A. J. (2003) Nebular versus parent-body processing. In *Meteorites, comets, and planets*, 760 (ed. A. M. Davis). Vol. 1. *Treatise on Geochemistry* (eds. H. D. Holland, and K. K. Turekian) 761 Elsevier-Pergamon, Oxford. pp. 247-268.

763 Analysis. *Science* **231**, 1542-1544.

Society of America, Washington, DC. pp. 603-639.

764 Briani G., Gounelle M., Bourot-Denise M., and Zolensky M. (2012) Xenoliths and microxenoliths 765 in H chondrites: Sampling of the zodiacal cloud in the asteroid Main Belt. *Meteor. Planet. Sci.* 766 47, 880-902.

767 Budde G., Burkhardt C., Brennecka G. A., Fischer-Gödde M., Kruijer T. S., Kleine T. (2016) 768

Molybdenum isotopic evidence for the origin of chondrules and a dis- tinct genetic heritage of 769 carbonaceous and non-carbonaceous meteorites. *Earth Planet. Sci. Lett.* **454**, 293–303. 770 Busemann H., Alexander C. M. O'D, and Nittler L. R. (2007) Characterization of insoluble organic 771 matter in primitive meteorites by microRaman spectroscopy. *Meteor. Planet. Sci.* **42**, 1387-772 1416.

773 Chakraborty S. (2010) Diffusion coefficients in olivine, wadsleyite, and ringwoodite. In *Reviews* 774 *in Mineralogy and Geochemistry*, vol. 72 (eds. Y. Zhang and D. J. Cherniak). Mineralogical 775

34
776 Chaumard N., Defouilloy C., and Kita N. T. (2018) Oxygen isotope systematics of chondrules in
777 the Murchison CM2 chondrite and implications for the CO-CM relationship. *Geochim.* 778

Cosmochim. Acta 228, 220-242.

779 Clayton R. N. and Mayeda T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. 780 *Geochim. Cosmochim. Acta* **63**, 2089-2104.

781 Clayton R. N., Onuma N., Grossman L., and Mayeda T. K. (1977) Distribution of pre-solar 782 component in Allende and other carbonaceous chondrites. *Earth Planet. Sci. Lett.* **34**, 209-224. 783 Connolly, Jr., H. C. and Huss G. R. (2010) Compositional evolution of the protoplanetary disk: 784 oxygen isotopes of type-II chondrules from CR2 chondrites. *Geochim. Cosmochim. Acta* **74**, 785 2473-2483.

786 Cuzzi J. N., Hogan R. C., and Bottke W. F. (2010) Toward initial mass functions for asteroids and 787 Kuiper Belt objects. *Icarus* **208**, 518-538.

788 Desch S. J., Kalyaan A. and Alexander C. M. O'D. (2018) The effect of Jupiter's formation on the 789 distribution of refractory elements and inclusions in meteorites. *Astrophys. J. Suppl. Ser.* **238**, 790 11.

791 Donovan J. J. (2015) Probe for EPMA v. 11.1.5. User's Guide and References. Probe Software, 792 Inc., Eugene, OR.

793 Ebel S. D. and Grossman L. (2000) Condensation in dust-enriched systems. *Geochim. Cosmochim.* 794 *Acta* **64**, 339-366.

795 Ebert S., Nagashima K., Krot A. N., Bischoff A. (2020) Oxygen-isotope heterogeneity in the 796 Northwest Africa 3358 (H3.1) refractory inclusions - Fluid-assisted isotopic exchange on the 797 H-chondrite parent body. *Geochim. Cosmochim. Acta* 282, 98-112.

798 Eiler J. M., Graham C., Valley J. W. (1997) SIMS analysis of oxygen isotopes: matrix effects in

799 complex minerals and glasses. Chem. Geol. 138, 221-244.

800 Fagan T. J., Krot A. N., Keil K. and Yurimoto H. (2004) Oxygen isotopic evolution of amoeboid 801 olivine aggregates in the reduced CV3 chondrites Efremovka, Vigarano, and Leoville. 802 *Geochim. Cosmochim. Acta* **68**, 2591-2611.

803 Frank D. R., Zolensky M. E., and Le L. (2014) Olivine in terminal particles of Stardust aerogel 804 tracks and analogous grains in chondrite matrix. *Geochim. Cosmochim. Acta* **142**, 240-259. 805 Friend P., Hezel D. C. and Mucerschi D. (2016) The conditions of chondrule formation, Part II: 806 Open system. *Geochim. Cosmochim. Acta* **173**, 198-209.

807 Fukuda K., Brownlee D. E., Joswiak D. J., Tenner T. J., Kimura M., and Kita N. T. (2021) 808

35

Correlated isotopic and chemical evidence for condensation origins of olivine in comet 809 81P/Wild 2 and in AOAs from CV and CO chondrites. *Geochim. Cosmochim. Acta* **293**, 544-810 574.

811 Gounelle M., Zolensky M. E., Liou J.-C., Bland P. A., and Alard O. (2003) Mineralogy of 812 carbonaceous chondritic microclastsin howardites: Identification of C2 fossil micrometeorites. 813 *Geochim. Cosmochim. Acta* 67, 507-527.

814 Grossman L. and Steele I. M. (1976) Amoeboid olivine aggregates in the Allende meteorite. 815 Geochim. Cosmochim. Acta 40, 149-155.

816 Grossman L., Beckett J. R., Fedkin A. V., Simon S. B., and Ciesla F. J. (2008) Redox conditions 817 in the solar nebula: Observational, experimental, and theoretical constraints. In *Reviews in 818 Mineralogy and Geochemistry*, vol. 68 (ed. G. J. MacPherson). Mineralogical Society of 819 America, Washington, D.C. pp. 93-140.

820 Guan Y., McKeegan K. D. and MacPherson G. J. (2000) Oxygen isotopes in calcium-aluminum 821 rich inclusions from enstatite chondrites: new evidence for a single CAI source in the solar

36 822 nebula. *Earth Planet. Sci. Lett.* **181**, 271-277.

823 Hartlep T. and Cuzzi J. N. (2020) Cascade Model for Planetesimal Formation by Turbulent 824 Clustering. *Astrophys. J.* **892**, 120.

825 Heck P. R., Ushikubo T., Schmitz B., Kita N. T., Spicuzza M. J. and Valley J. W. (2010) A single 826 asteroidal source for extraterrestrial Ordivician chromite grains from Sweden and China: high 827 precision oxygen three-isotope SIMS analysis. *Geochim. Cosmochim. Acta* 74, 497-509. 828 Hertwig A, Defouilloy C., and Kita N. T. (2018) Formation of chondrules in a moderately high 829 dust enriched disk: Evidence from oxygen isotopes of chondrules from the Kaba CV3 830 chondrite. *Geochim. Cosmochim. Acta* 224, 116-131.

831 Hertwig A. T., Kimura M., Defouilloy C. and Kita N. T. (2019a) Oxygen isotope systematics of 832 chondrule olivine, pyroxene, and plagioclase in one of the most pristine CV3_{Red} chondrites 833 (Northwest Africa 8613). *Metorit. Planet. Sci.* **54**, 2666-2685.

Hertwig A. T., Kimura M., Ushikubo T., Defouilloy C. and Kita N. T. (2019b) The ²⁶Al- 834 ²⁶Mg 835 systematics of FeO-rich chondrules from Acfer 094: Two chondrule generations distinct in age 836 and oxygen isotope ratios. *Geochim. Cosmochim. Acta* **253**, 111-126. 837 Hewins R. H. and Zanda B. (2012) Chondrules: Precursors and interactions with the nebular gas. 838 *Meteorit. Planet. Sci.* **47**, 1120-1138. 839 Hewins R. H., Bourot-Denise M., Zanda B., Leroux H., Barrat J.-A., Humayun M., Göpel C., 840 Greenwood R. C., Franchi I. A., Pont S., Lorand J.-P., Cournède C., Gattacceca J., Rochette 841 P., Kuga M., Marrocchi Y., and Marty B. (2014) The Paris meteorite, the least altered CM 842 chondrite so far. *Geochim. Cosmochim. Acta* **124**, 190-222.

843 Hezel D. C., Palme H., Nasdala L., Brenker F. E., (2006) Origin of SiO2-rich components in 844 ordinary chondrites. *Geochim. Cosmochim. Acta* **70**, 1548-1564.

37 845 Itoh S., Russell S. S., Yurimoto H. (2007) Oxygen and magnesium isotopic compositions of 846 amoeboid olivine aggregates from the Semarkona LL3.0 chondrite. *Meteorit. Planet. Sci.* **42**, 847 1241-1247.

848 Jones R. H. (1990) Petrology and mineralogy of type-II, FeO-rich chondrules in Semarkona 849 (LL3.0) – origin by closed-system fractional crystallization, with evidence for supercooling. 850 *Geochim. Cosmochim. Acta* **54,** 1785-1802.

851 Jones R. H. (1994) Petrology of FeO-poor, porphyritic pyroxene chondrules in the Semarkona 852 chondrite. *Geochim. Cosmochim. Acta* **58**, 5325-5340.

853 Jones R. H. (2012) Petrographic constraints on the diversity of chondrule reservoirs in the 854

protoplanetary disk. Meteorit. Planet. Sci. 47, 1176-1190.

855 Jones R. H. and Danielson L. R. (1997) A chondrule origin for dusty relict olivine in 856 unequilibrated chondrites. *Meteorit. Planet. Sci.* **32**, 753-760.

857 Jones R. H., Leshin L. A., Guan Y., Sharp Z. D. Durakiewicz, T., and Schilk A. J. (2004) 858 Oxygen isotope heterogeneity in chondrules from the Mokoia CV3 carbonaceous chondrite. 859 *Geochim. Cosmochim. Acta* **68**, 3423-3438.

860 Jones R. H., Grossman J. N., and Rubin A. E. (2005) Chemical, mineralogical and isotopic 861 properties of chondrules: clues to their origin. In *Chondrules and the Protoplanetary Disk, ASP* 862 *Conference Series* (eds. A. N. Krot, E. R. D. Scott and B. Reipurth). Sheridan Books, Ann 863 Arbor, Michigan, pp. 251-285.

864 Kallemeyn G. W. and Wasson J. T. (1981) The compositional classification of chondrites: I. The 865 carbonaceous chondrite groups. *Geochim. Cosmochim. Acta* **45**, 1217-1230. 866 Kimura M., Grossman J. N., and Weisberg M. K. (2011) Fe-Ni metal and sulfide minerals in CM 867 chondrites: An indicator of thermal history. *Meteorit. Planet. Sci.* **46**, 431-442.

38
868 Kimura M., Imae N., Komatsu M., Barrat J.A., Greenwood R.C., Yamaguchi A., Noguchi T. 869
(2020) The most primitive CM chondrites, Asuka 12085, 12169, and 12236, of subtypes 3.0–870 2.8:
Their characteristic features and classification, *Polar Science* **26,** 100565. Kita N. K. and Ushikubo T.
(2012) Evolution of protoplanetary disk inferred from 871 ²⁶Al chronology 872 of individual chondrules. *Meteorit. Planet. Sci.* **47**, 1108-1119.

873 Kita N. T., Ushikubo T., Fu B. and Valley J. W. (2009) High precision SIMS oxygen isotope 874 analysis and the effect of sample topography. *Chem. Geol.* **264**, 43-57. 875 Kita N. T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M. J., Fournelle J. H. and Valley 876 J. W. (2010) High precision

SIMS oxygen three isotope study of chondrules in LL3 chondrites: 877 role of ambient gas during chondrule formation. *Geochim. Cosmochim. Acta* **74**, 6610-6635. 878 Kita N. T., Yin Q.-Z., MacPherson G. J., Ushikubo T., Jacobsen B., Nagashima K., Kurahashi E., Krot A. N. and Jacobsen S. B. (2013) ²⁶Al– 879 ²⁶Mg isotope systematics of the first solids in the 880 early solar system. *Meteorit. Planet. Sci.* **48**, 1383-1400.

881 Kleine T., Budde G., Burkhardt C., Kruijer T. S., Worsham E. A., Morbidelli A., Nimmo F. (2020) 882 he Non-carbonaceous—Carbonaceous Meteorite Dichotomy. *Space Sci. Rev.* **216**, 55. 883 Komatsu M., Fagan T. J., Krot A. N., Nagashima K., Petaev M. I., Kimura M. and Yamaguchi A. 884 (2018) First evidence for silica condensation within the solar protoplanetary disk. *Proc. Natl.* 885 *Acad. Sci. USA* **115**, 7497-7502.

886 Kööp L., Nakashima D., Heck P. R., Kita N. T., Tenner T. J., Krot A. N., Nagashima K., Park C., and Davis A. M. (2016) New constraints on the relationship between 887 ²⁶Al and oxygen, calcium, 888 and titanium isotopic variation in the early Solar System from a multielement isotopic study 889 of spinel-hibonite inclusions. *Geochim. Cosmochim. Acta* **184**, 151-172.

890 Krot A. N. and Nagashima K. (2017) Constraints on mechanisms of chondrule formation from

891 chondrule precursors and chronology of transient heating events in the protoplanetary disk. 892 *Geochem. J.* **51**, 45-68.

893 Krot A. N., Libourel G., Goodrich C., Petaev M. I. (2004) Silica-igneous rims around magnesian 894 chondrules in CR carbonaceous chondrites: evidence for fractional condensation during 895 chondrule formation. *Meteorit. Planet. Sci.* **39**, 1931-1955.

896 Krot A. N., Fagan T. J., Nagashima K., Petaev M. I. and Yurimoto H. (2005) Origin of low-Ca 897 pyroxene in amoeboid olivine aggregates: Evidence from oxygen isotopic compositions. 898 *Geochim*.

Cosmochim. Acta 69, 1873-1881.

899 Krot A. N., Yurimoto H., McKeegan K. D., Leshin L., Chaussidon M., Libourel G., Yoshitake M., 900 Huss G. R., Guan Y., and Zanda B. (2006) Oxygen isotopic compositions of chondrules: 901 implications for evolution of oxygen isotopic reservoirs in the inner Solar nebula. *Chemie der* 902 *Erde – Geochem.* 66, 249-276.

903 Krot A. N., Park C., Nagashima K. (2014) Amoeboid olivine aggregates from CH carbonaceous 904 chondrites. *Geochim. Cosmochim. Acta* **139**, 131-153.

905 Krot A. N., Nagashima K., Libourel G., and Miller K. E. (2018) Multiple mechanisms of transient 906 heating events in the protoplanetary disk: Evidence from precursors of chondrules and igneous 907 Ca, Al-rich inclusions. In *Chondrules: Records of the Protoplanetary Disk Processes*. (eds. S. 908 S. Russell, H. C. Connolly Jr., and A. N. Krot) Cambridge University Press, U.K., pp. 11-57.

909 Kruijer T. S. Burkhardt C., Budde G., Kleine T. (2017) Age of Jupiter inferred from the distinct 910 genetics and formation times of meteorites. *Proc. Natl. Acad. Sci. USA* **114**, 6712-6716. 911 Kunihiro T., Rubin A. E., McKeegan K. D. and Wasson J. T. (2004) Oxygen-isotopic compositions 912 of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite. *Geochim.* 913 *Cosmochim. Acta* **68**, 3599-3606.

40

914 Kunihiro T., Rubin A. E. and Wasson J. T. (2005) Oxygen-isotopic compositions of low-FeO 915 relicts in high FeO-host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely 916 related to CM. *Geochim. Cosmochim. Acta* **69**, 3831-3840.

917 Leroux H., Libourel G., Lemelle L., Guyot F. (2003) Experimental study and TEM 918 characterization of dusty olivines in chondrites: Evidence for formation by in-situ reduction. 919 *Meteorit. Planet. Sci.* 38, 81-94.

920 Leroux H., Cuvillier P., Zanda B., and Hewins, R. H. (2015) GEMS-like material in the matrix of 921 the Paris meteorite and the early stages of alteration of CM chondrites. *Geochim. Cosmochim.* 922 *Acta* 170, 247-265.

923 Libourel G. and Chaussidon M. (2011) Oxygen isotopic constraints on the origin of Mg-rich 924 olivines from chondritic meteorites. *Earth Planet. Sci. Lett.* **301**, 9-21. 925 Libourel G. and Portail M. (2018) Chondrules as direct thermo- chemical sensors of solar 926 protoplanetary disk gas. *Sci. Adv.* **4**, eaar3321.

927 Libourel G., Krot A. and Tissandier L. (2006) Role of gas-melt interaction during chondrule 928 formation. *Earth Planet. Sci. Lett.* **251**, 232-240.

929 Lin D. N. C. and Papaloizou J. (1986) On the tidal interaction between protoplanets and the 930 protoplanetary disk. III—Orbital migration of protoplanets. *Astrophys. J* **309**, 846-857. 931 Marrocchi Y. and Chaussidon M. (2015) A systematic for oxygen isotopic variation in meteoritic 932 chondrules. *Earth Planet. Sci. Lett.* **430**, 308-315.

933 Marrocchi Y., Gounelle M., Blanchard I., Caste F., and Kearsley A.T. (2014), The Paris CM 934 chondrite: Secondary minerals and asteroidal processing. *Meteorit Planet Sci* **49**, 1232-1249. 935 Marrocchi Y., Villeneuve J., Batanova V., Piani L., Jacquet E. (2018) Oxygen isotopic diversity 936 of chondrule precursors and the nebular origin of chondrules. *Earth Planet. Sci. Lett.* **496**, 132-

41

937 141.

938 Marrocchi Y., Euverte R., Villeneuve J., Batanova V., Welsch B., Ferrière L., Jacquet E. (2019) 939 Formation of CV chondrules by recycling of amoeboid olivine aggregate-like precursors. 940 *Geochim*. *Cosmochim. Acta* 247, 121-141.

941 McSween H. Y. (1979) Alteration in CM carbonaceous chondrites inferred from modal and 942

chemical variations in matrix. *Geochim. Cosmochim. Acta* 43, 1761-1770. 943 Morbidelli A., Bitsch B., Crida A., Gounelle M., Guillot T., Jacobson S., Johansen A., Lambrechts 944 M., Lega E. (2016)
Fossilized condensation lines in the Solar System protoplanetary disk. 945 *Icarus* 267, 368-376.
946 Nanne J. A. M., Nimmo F., Cuzzi J. N., Kleine T., (2019) Origin of the non- carbonaceous 947 carbonaceous meteorite dichotomy. *Earth Planet. Sci. Lett.* 511, 44–54. 948 Nagahara H. (1981)
Evidence for secondary origin of chondrules. *Nature* 292, 135–136. 949 Nagahara H., Kita N. T., Ozawa K. and Morishita Y. (2008) Condensation of major elements 950 during chondrule formation and its implication to the origin of chondrules. *Geochim.* 951 *Cosmochim. Acta* 72, 1442-1465.
952 Nagashima K., Krot A. N. and Huss G. R. (2015) Oxygen-isotope compositions of chondrule 953 phenocrysts and matrix grains in Kakangari K-grouplet chondrite: Implication to a chondrule 954 matrix

955 Nakamura T. (2005) Post-hydration thermal metamorphism of carbonaceous chondrites. *J.* 956 *Mineral. Petrol. Sci.* **100**, 260-274.

genetic relationship. Geochim. Cosmochim. Acta 151, 49-67.

957 Pignatelli I., Marrocchi Y., Vacher L. G., Delon R., and Gounelle M. (2016) Multiple precursors
958 of secondary mineralogical assemblages in CM chondrites. *Meteorit. Planet. Sci.* **51**, 785–805. 959
Rambaldi E. R. (1981) Relict grains in chondrules. *Nature* **292**, 558-561.

42
960 Rubin A. E. (2013) An amoeboid olivine inclusion (AOI) in CK3 NWA 1559, comparison to AOIs
961 in CV3 Allende, and the origin of AOIs in CK and CV chondrites. *Meteorit. Planet. Sci.* 48, 962
432-441.

963 Rubin A. E. (2015) An American in Paris: Extent of aqueous alteration of a CM chondrite and the 964 petrography of its refractory and amoeboid olivine inclusions. *Meteorit. Planet. Sci.* **50**, 1595- 965 1612.

966 Rubin A. E., Trigo-Rodríguez J. M., Huber H., and Wasson J. T. (2007) Progressive aqueous 967 alteration of CM carbonaceous chondrites. *Geochim. Cosmochim. Acta* 71, 2361—382. 968 Rudraswami N. G., Ushikubo T., Nakashima D. and Kita N. T. (2011) Oxygen isotope systematics 969 of chondrules in the Allende CV3 chondrite: high precision ion microprobe studies. *Geochim.* 970 *Cosmochim. Acta* 75, 7596-7611.

971 Ruzicka A., Hiyagon H., Hutson M., and Floss C. (2007) Relict olivine, chondrule recycling, and 972 the evolution of nebular oxygen reservoirs. *Earth Planet. Sci. Lett.* **257**, 274-289. 973 Ruzicka A., Floss C., and Hutson M. (2008) Relict olivine grains, chondrules recycling, and 974 implications for the chemical, thermal, and mechanical processing of nebular materials. 975 *Geochim. Cosmochim. Acta* **72**, 5530-5557.

976 Sakamoto N., Seto Y., Itoh S., Kuramoto K., Fujino K., Nagashima K., Krot A. N. and Yurimoto 977 H. (2007) Remnants of the early solar system water enriched in heavy oxygen isotopes. *Science* 978 **317**, 231-233.

979 Schneider J. M., Burkhardt C., Marrocchi Y., Brennecka G., Kleine T. (2020) Early evolution of 980 the solar accretion disk inferred from Cr-Ti-O isotopes in individual chondrules. *Earth Planet*. 981 *Sci. Lett.* **551**, 116585.

982 Schrader D. L. and Davidson J. (2017) CM and CO chondrites: A common parent body or

983 asteroidal neighbors? Insights from chondrule silicates. *Geochim. Cosmochim. Acta* **214**, 157- 984 171.

985 Schrader D. L., Connolly, Jr., H. C., Lauretta D. S., Nagashima K., Huss G. R., Davidson J. and 986 Domanik K. J. (2013) The formation and alteration of the Renazzo-like carbonaceous 987 chondrites II: linking O-isotope composition and oxidation state of chondrule olivine. 988 *Geochim. Cosmochim. Acta*

101, 302-327.

989 Schrader D. L., Nagashima K., Krot A. N., Ogliore R. C., and Hellebrand E. (2014) Variations in 990 the O-isotope composition of gas during the formation of chondrules from the CR chondrites. 991 *Geochim. Cosmochim. Acta* **132**, 50-74.

992 Schrader D. L, Nagashima K., Krot A. N., Ogliore R. C., Yin Q.-Z., Amelin Y., Stirling C. H., Kaltenbach A. (2017) Distribution of 993 ²⁶Al in the CR chondrite chondrule-forming region of 994 the protoplanetary disk. *Geochim. Cosmochim. Acta* **201**, 275-302.

995 Schrader D. L., Nagashima K., Fu R. R., Davidson J., and Ogliore R. C. (2020) Outward migration 996 of chondrule fragments in the early Solar System: O-isotopic evidence for rocky material 997 crossing the Jupiter Gap? *Geochim. Cosmochim. Acta* 282, 133-155.

998 Sears D. W. G. and Dodd R. T. (1988) Overview and classification of meteorites. In *Meteorites* 999 and the early solar system. (eds. J. F. Kerridge and M. S. Matthews) University of Arizona 1000 Press, Tucson, Arizona, pp 3–31.

1001 Stephant A., Remusat L., and Robert F. (2017) Water in type I chondrules of Paris CM chondrite. 1002 *Geochim. Cosmochim. Acta* **199**, 75-90.

Sugiura N. and Fujya W. (2014) Correlated accretion ages and ε^{54} 1003 Cr of meteorite parent bodies 1004 and the evolution of the solar nebula. *Meteorit. Planet. Sci.* **49**, 772-787. 1005 Tachibana S., Nagahara H., Mostefaoui S., and Kita N. T. (2003) Correlation between relative ages

44 inferred from 1006 ²⁶Al and bulk compositions of ferromagnesian chondrules in least equilibrated 1007 ordinary chondrites. *Meteorit. Planet. Sci.* **38**, 939-962.

1008 Tanaka H., Murase K., and Tanigawa T. (2020) Final masses of giant planets. III. Effect of 1009

photoevaporation and a new planetary migration model. *Astrophys. J.* **891**, 143. 1010 Tenner T. J., Ushikubo T., Kurahashi E., Kita N. T. and Nagahara H. (2013) Oxygen isotope 1011 systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: evidence for 1012 two distinct oxygen isotope reservoirs. *Geochim. Cosmochim. Acta* **102**, 226-245. 1013 Tenner T. J., Nakashima D., Ushikubo T., Kita N. T. and Weisberg M. K. (2015) Oxygen isotope 1014 ratios of Fe-poor chondrules in CR3 chondrites: Influence of dust enrichment and H₂O during 1015 chondrule formation. *Geochim. Cosmochim. Acta* **148**, 228-250.

1017 the Yamato-82094 ungrouped carbonaceous chondrite: Further evidence for common O 1018 isotope environments sampled among carbonaceous chondrites. *Meteorit. Planet. Sci.* **52**, 268- 1019 294. 1020 Tenner T. J., Ushikubo T., Nakashima D., Schrader D. L., Weisberg M. K., Kimura M. and Kita 1021 N. T. (2018) Oxygen isotope characteristics of chondrules from recent studies by secondary 1022 ion mass spectrometry. In *Chondrules: Records of the Protoplanetary Disk Processes*. (eds. 1023 SS. Russell, H. C. Connolly Jr., A. N. Krot) Cambridge University Press, U.K., pp. 196-246.

1016 Tenner T. J., Kimura M., and Kita N. T. (2017) Oxygen isotope characteristics of chondrules from

1025 (2014) Petrographic, chemical and spectroscopic evidence for thermal metamorphism in 1026 carbonaceous chondrites I: CI and CM chondrites. *Geochim. Cosmochim. Acta* 126, 284-306. 1027 Ushikubo T., Kimura M., Kita N. T. and Valley J. W. (2012) Primordial oxygen isotope reservoirs 1028 of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. *Geochim.*

1024 Tonui E., Zolensky M. E., Hiroi T., Nakamura T., Lipshutz M. E., Wang M.-S., and Okudaira K.

45

1029 Cosmochim. Acta 90, 242-264.

1030 Ushikubo T., Nakashima D., Kimura M., Tenner T. J. and Kita N. T. (2013) Contemporaneous 1031 formation of chondrules in distinct oxygen isotope reservoirs. *Geochim. Cosmochim. Acta* 109, 1032

Ushikubo T., Tenner T. J., Hiyagon H., and Kita N. T. (2017) A long duration of the 1033 ¹⁶O-rich 1034 reservoir in the solar nebula, as recorded in fine-grained refractory inclusions from the least 1035 metamorphosed carbonaceous chondrites. *Geochim. Cosmochim. Acta* 201, 103-122. 1036 Vacher L. G., Marrocchi Y., Verdier-Paoletti M. J., Villeneuve J., and Gounelle M. (2016) Inward 1037 radial mixing of interstellar water ices in the solar protoplanetary disk. *Astrophys. J. Lett.* 827, 1038 L1.

1039 Vacher L. G., Marrocchi Y., Verdier-Paoletti M. J., Villeneuve J., and Gounelle M. (2017) 1040 Petrographic and C & O isotopic characteristics of the earliest stages of aqueous alteration of 1041 CM chondrites. *Geochim. Cosmochim. Acta* 213, 271-290.

1042 Van Kooten E., Cavalcante L., Wielandt D., and Bizzarro M. (2020) The role of Bells in the 1043 continuous accretion between the CM and CR chondrite reservoirs. *Meteorit. Planet. Sci.* **55**, 1044 575-590.

1045 Verdier-Paoletti M. J., Marrocchi Y., Avice G., Roskosz M., Gurenko A., and Gounelle M. (2017) 1046 Oxygen isotope constraints on the alteration temperatures of CM chondrites. *Earth Planet. Sci.* 1047 *Lett.* **458**, 273-281.

1048 Villeneuve J., Libourel G., Soulié C. (2015) Relationships between type I and type II chondrules: 1049 implications on chondrule formation processes. *Geochim. Cosmochim. Acta* **160,** 277–305 1050 Villeneuve J., Marrocchi Y., Jacquet E. (2020) Silicon isotopic compositions of chondrule silicates 1051 in carbonaceous chondrites and the formation of primordial solids in the accretion disk. *Earth*

46 1052 *Planet. Sci. Lett.* **542**, 116318.

1053 Wasson J. T. and Rubin A. E. (2003) Ubiquitous low-FeO relict grains in type II chondrules and 1054 limited overgrowths on phenocrysts following the final melting event. *Geochim. Cosmochim.* 1055

Acta 67, 2239–2250.

1056 Wasson J. T., Rubin A. E. and Yurimoto H. (2004) Evidence in CO3.0 chondrules for a drift in 1057 the O isotopic composition of the solar nebula. *Meteorit. Planet. Sci.* **39**, 1591-1598. 1058 Warren P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and 1059 Mars: A subordinate role for carbonaceous chondrites. *Earth Planet. Sci. Lett.* **311**, 93-100. 1060 Weisberg M. K., McCoy T. J., and Krot A. N. (2006) Systematics and evaluation of meteorite 1061 classification. In *Meteorites and the Early Solar System II* (eds. D. S. Lauretta and H. Y. 1062 McSween Jr.) University of Arizona Press, Tucson, Arizona, pp. 19-52. 1063 Weisberg M. K., Ebel D. S., Connolly H. C., Kita N. T. and Ushikubo T. (2011) Petrology and 1064 oxygen isotope compositions of chondrules in E3 chondrites. *Geochim. Cosmochim. Acta* **75**, 1065 6556–6569.

1066 Williams C. D., Sanborn M. E., Defouilloy D., Yin Q.-Z., Kita N. T., Ebel D. S., Yamakawa A. 1067 and Yamashita K. (2020) Chondrules reveal large-scale outward transport of inner Solar 1068 System materials in the protoplanetary disk. *Proc. Natl. Acad. Sci. USA* 117, 23426-23435 1069 Wood J. A. and Hashimoto A. (1993) Mineral equilibrium in fractionated nebular systems. 1070 *Geochim. Cosmochim. Acta* 57, 2377-2388.

1071 Young E. D. and Russell S. S. (1998) Oxygen reservoirs in the early solar nebula inferred from an 1072 Allende CAI. *Science* **282**, 2377-2388.

1073 Zanda B., Bourot-Denise M., Perron C. and Hewins R. H. (1994) Origin and metamorphic 1074 redistribution of silicon, chromium, and phosphorous in the metal of chondrites. *Science* **265**,

47

1075 1846-1849.

1076 Zolensky M. E., Barrett R., and Browning L. (1993) Mineralogy and composition of matrix and 1077 chondrule rims in carbonaceous chondrites. *Geochim. Cosmochim. Acta* **57**, 3123–3148. 1078

Zolensky M. E., Weisberg M. K., Buchanan P. C., Mittlefehldt D. W. (1996) Mineralogy of 1079 carbonaceous chondrite clasts in HED achondrites and the Moon. Meteoritics and Planetary 1080 *Science* 31, 518–537.

1081 Zolensky M. E., Mittlefehldt D. W., Lipshutz M. E., Wang M.-S., Clayton R. N., Mayeda T. K., 1082 Grady M. M., Pillinger C. T., and Barber D. (1997) CM chondrites exhibit the complete 1083 petrologic range from type 2 to 1. *Geochim. Cosmochim. Acta* **61**, 5099–5115. 1084

48 1085 Figure Captions

1086

1087 Fig 1. BSE images of type I porphyritic chondrules analyzed in Paris that are homogeneous in 1088

three-isotope analysis points are shown by the vertex of the triangles, color-coded for mineral phases (olivine: blue, relict olivine: white, low-Ca pyroxene: green). Δ 1090 ¹⁷O values of individual 1091 analyses are indicated. (For interpretation of the references to color in this figure legend, the reader 1092 is referred to the web version of this article).

1093 Fig 2. BSE images of type I chondrules analyzed in Paris displaying various textures (C7: POP, 1094 C5: POP + BO core, C16: BO fragment, C25: PP, and C9: GO). SIMS oxygen three-isotope 1095 analysis points are shown by the vertex of the triangles, color-coded for mineral phases (olivine: blue, relict olivine: white, low-Ca pyroxene: green, high-Ca pyroxene: orange). Δ 1096 ¹⁷O values of 1097 individual analyses are indicated. (For interpretation of the references to color in this figure legend, 1098 the reader is referred to the web version of this article).

1099 Fig 3. BSE images of the type I chondrule C14 analyzed in Paris. SIMS oxygen three-isotope 1100 analysis points are shown by the vertex of the triangles, color-coded for mineral phases (olivine: blue, relict olivine: white, low-Ca pyroxene: green). Δ 1101 ¹⁷O values of individual analyses are 1102 indicated. (For interpretation of the reference to color in this figure legend, the reader is referred 1103 to the web version of this article).

1104 Fig. 4. BSE images of a type II chondrule (C15: PO), two isolated Fe-rich olivine grains (G32 and 1105 G33), and an isolated Fe-poor olivine grain (G24) analyzed in Paris. SIMS oxygen three-isotope analysis points are shown by the vertex of the triangles, color-coded for olivine (blue). Δ 1106 ¹⁷O values

1107 of individual analyses are indicated. (For interpretation of the reference to color in this figure 1108 legend, the reader is referred to the web version of this article).

1109 Fig. 5. Oxygen 3-isotope diagram of individual spot analyses of olivine, Low-Ca pyroxene (Lpx), 1110 high-Ca pyroxene (Hpx), and relict grains in chondrules in Paris. Error bars, corresponding to the 1111 spot-to-spot reproducibility (2SD), are smaller than the symbol sizes. The CCAM (carbonaceous 1112 chondrite anhydrous mineral; Clayton et al., 1977), Y&R (Young and Russell, 1998), and PCM 1113 (primitive chondrule minerals; Ushikubo et al., 2012) lines are shown for reference. The terrestrial 1114 fractionation line (TFL) is also shown.

1115

Fig. 6. Δ 1116 ¹⁷O values of individual host chondrules and isolated olivine grains in Paris. Relict olivine 1117 (ol.) and low-Ca pyroxene (Lpx) grains are shown together. Data are sorted according to the host Δ ¹⁷O values. Chondrule C9 (GO) contains homogeneously 1118 ¹⁶O-poor olivine, which is likely relict. A single analysis of pyroxene would represent melt oxygen isotope ratios that show lower Δ 1119 ¹⁷O 1120 compared to other host chondrule values. For the heterogeneous chondrule C15 (II PO) and 1121 isolated Fe-poor olivine grain G24, individual analyses are shown. Error bars represents the 1122 propagated uncertainties for host chondrules and olivine in C9 and external reproducibility of 1123 individual analyses for relict grains, pyroxene in C9, and all data in C15 and G24.

Fig. 7. Δ 1124 ¹⁷O values of individual host chondrules in Paris vs. Mg#s (open diamonds). Data from 1125 the Murchison CM2 chondrite (black and white squares; Chaumard et al., 2018) are shown for 1126 comparison. Chondrule Mg# uncertainties correspond to the range of measured values, while uncertainties in Δ 1127 ¹⁷O are the propagated 2SE.

Fig. 8. Δ 1128 17 O values vs. Mg#s of individual host chondrules in CM (open diamonds; Chaumard et

1129 al., 2018; this work), CO (grey circles; Tenner et al., 2013), and Acfer 094 (black circles; Ushikubo 1130 et al., 2012) chondrites. Chondrule Mg# uncertainties correspond to the range of measured values, while uncertainties in Δ 1131 ¹⁷O are the propagated 2SE.

Fig. 9. Δ 1132 ¹⁷O values of individual host chondrules in the CM chondrites Paris (this work) and 1133 Murchison (Chaumard et al., 2018) and Mg#s superimposed by oxygen isotope mixing curves of 1134 constant dust enrichment and ice enhancement from Tenner at el. (2015) and Hertwig et al. (2018). 1135 In this model, the anhydrous silicate dust, Solar gas, water ice, and organics in the dust are considered to have Δ 1136 ¹⁷O values of –8.0‰, –28.4‰, +2.0‰, and +11.3‰, respectively (Hertwig 1137 et al., 2018). Chondrule Mg# uncertainties correspond to the range of measured values, while uncertainties in Δ 1138 ¹⁷O are the propagated 2SE.

1139

1140

Table 1. Mg#'s and O-isotope ratios of host chondrules and relict grains.

```
(ol, lpx, hpx) ^{c} \delta^{18}O unc. \delta^{17}O unc. \Delta^{17}O unc. \Delta^{17}O Chondrule Type, texture Mg# ^{a} +/- ^{b} n Beam 2SD (\mum)
```

Homogeneous

C21 I, PP 99.0 0.2/0.3 2,5,0 -7.7 0.3 -10.9 0.3 -6.93 0.22 0.6 15 C6 I, PP 98.8 0.3/0.8 2,4,0 -6.5 0.4 -9.5 0.4 -6.10 0.34 0.3 15 C28 I, PO 99.6 0.1/0.2 8,0,0 -6.3 0.3 -9.3 0.3 -5.99 0.18 0.4 15 C23 I, POP 98.7 0.3/0.3 3,4,0 -5.7 0.6 -8.8 0.3 -5.84 0.17 0.4 15 C10 I, PO 99.2 0.1/0.2 5,1,0 -6.4 0.5 -9.1 0.3 -5.72 0.16 0.3 15

relict ol 99.3 n.a. 1,0,0 –5.8 0.2 –9.5 0.3 –6.5 0.3 n.a. 15 relict ol 99.0 n.a. 1,0,0 –7.3 0.2 –10.3 0.3 –6.6 0.3 n.a. 15 C27 I, PP 99.3 0.5/0.9 6,2,0 –4.5 0.4 –7.9 0.3 –5.57 0.13 0.2 15 C4 I, POP 99.0 0.2/0.3 6,2,0 –5.9 0.4 –8.7 0.4 –5.63 0.31 0.2 15 C26 I, POP 99.0 0.1/0.1 2,3,0 –4.7 0.4 –7.9 0.3 –5.51 0.25 0.4 15 relict ol 99.3 n.a. 1,0,0 –6.8 0.2 –9.8 0.5 –6.3 0.4 n.a. 15 relict ol 99.3 n.a. 1,0,0 –6.8 0.2 –10.1 0.5 –6.6 0.4 n.a. 15 relict ol 99.2 n.a. 1,0,0 –6.3 0.2 –9.9 0.5 –6.6 0.4 n.a. 15 C29 I, PP 99.0 0.3/0.9 2,4,0 –4.8 0.4 –7.9 0.3 –5.43 0.19 0.4 15 C20 I, POP 98.9 0.4/0.2 4,5,0 –5.0 0.3 –7.9 0.2 –5.32 0.18 0.4 15 C13 I, BO 99.1 0.2/0.1 4,0,0 –4.2 0.4 –7.4 0.3 –5.18 0.19 0.3 15 C2 I, POP 98.9 0.3/0.4 4,4,0 –4.8 0.4 –7.7 0.2 –5.19 0.17 0.4 15 C19 I, POP 98.6 0.2/0.2 5,3,0 –4.8 0.3 –7.5 0.2 –4.98 0.14 0.3 15 C30 I, PO 98.8 0.1/0.1 6,0,0 –3.2 0.3 –5.6 0.3 –3.90 0.26 0.2 15 relict ol 98.7 n.a. 1,0,0 1.0 0.3 –1.3 0.4 –1.9 0.5 n.a. 15 relict ol 98.4 n.a. 1,0,0 –4.3 0.3 –6.3 0.4 –4.1 0.5 n.a. 15 C18 I, POP 98.7 0.1/0.3 0,3,0 –1.2 0.5 –4.0 0.4 –3.31 0.29 0.4 15 relict ol 99.3 n.a. 1,0,0 2.8 0.2 0.7 0.5 –0.8 0.4 n.a. 15 relict ol 99.1 n.a. 1,0,0 2.4 0.2 0.0 0.5

-1.2 0.4 n.a. 15 relict ol 99.1 n.a. 1,0,0 2.3 0.2 0.0 0.5 -1.2 0.4 n.a. 15 relict ol 99.1 n.a. 1,0,0 2.0 0.2 -0.5 0.5 -1.5 0.4 n.a. 15 relict ol 99.1 n.a. 1,0,0 2.4 0.2 -0.4 0.5 -1.6 0.4 n.a. 15 C11 I, PP 93.2 0.2/0.7 0,8,0 1.5 0.3 -1.7 0.3 -2.51 0.18 0.5 15 C12 I, PP 93.6 0.8/0.6 0,7,0 1.3 0.4 -1.7 0.2 -2.37 0.13 0.3 15 C16 I, BO, frag. 99.4 0.2/0.2 8,0,0 -7.9 0.4 -11.1 0.3 -6.99 0.24 0.4 10 C7 I, POP 99.0 0.1/0.2 6,2,0 -6.7 0.5 -9.4 0.4 -5.90 0.24 0.4 10

C8 I, POP 98.9 0.0/0.1 3,2,0 -5.3 0.4 -8.2 0.3 -5.42 0.22 0.4 10 relict of 98.8 n.a. 1,0,0 2.2 0.4 1.2 0.4 0.1 0.4 n.a. 10 relict of 98.7 n.a. 1,0,0 -2.1 0.4 -5.7 0.4 -4.6 0.4 n.a. 10 relict of 98.7 n.a. 1,0,0 -0.9 0.4 -3.8

0.4 –3.3 0.4 n.a. 10 C₁₄ I, POP+BO

 $\begin{array}{l} core 99.0\ 0.2/0.3\ 7,4,0\ -5.3\ 0.5\ -8.0\ 0.3\ -5.26\ 0.23\ 0.6\ 10\ relict\ ol\ 99.1\ n.a.\ 1,0,0\ -22.7\ 0.3\ -24.8\ 0.4\\ -13.0\ 0.4\ n.a.\ 10\ C1\ I,\ GOP\ 98.6\ 0.3/0.3\ 2,3,0\ -3.7\ 0.5\ -6.9\ 0.4\ -4.99\ 0.33\ 0.6\ 10\ relict\ ol\ 99.0\ n.a.\ 1,0,0\\ -14.6\ 0.6\ -17.2\ 0.6\ -9.5\ 0.5\ n.a.\ 10\ relict\ lpx\ 98.8\ n.a.\ 0,1,0\ -8.4\ 0.6\ -11.4\ 0.6\ -7.0\ 0.5\ n.a.\ 10\ C25\ I,\ PP\end{array}$

98.8 0.4/0.8 3,4,1 -3.2 0.4 -6.3 0.4 -4.66 0.26 0.6 10 _{C5} I, POP+BO

core 98.6 0.2/0.3 4,4,0 –4.8 0.8 –7.3 0.4 –4.77 0.23 0.4 10 C31 I, PP 97.3 0.5/1.6 1,5,0 0.0 0.4 –3.3 0.4 –3.28 0.23 0.4 10 relict ol 97.8 n.a. 1,0,0 –3.5 0.5 –7.1 0.6 –5.3 0.4 n.a. 10 relict ol 97.6 n.a. 1,0,0 –5.2 0.5 –8.9 0.6 –6.2 0.4 n.a. 10 C22 II, PO 69.7 9.3/9.4 7,0,0 2.3 0.4 –1.0 0.3 –2.21 0.15 0.3 15 C17 II, PO 74.4 5.2/4.5 5,0,0 2.8 0.3 –0.6 0.3 –2.09 0.25 0.5 15 relict ol 99 n.a. 1,0,0 –7.1 0.1 –10.2 0.3 –6.5 0.3 n.a. 15 relict ol 76.6 n.a. 1,0,0 –3.7 0.1 –7.0 0.3 –5.1 0.3 n.a. 15 relict ol 71.4 n.a. 1,0,0 0.5 0.1 –2.6 0.3 –2.9 0.3 n.a. 15

Heterogeneous

C9 I, GO 99.4 0.1/0.1 7,0,0 3.5 0.4 1.7 0.3 -0.15 0.20 0.4 10 99.3 n.a. 0,1,0 -11.3 0.4 -13.7 0.4 -7.8 0.4 n.a. 10 C15 II, PO 98.5 n.a. 1,0,0 -6.6 0.1 -9.8 0.2 -6.3 0.2 n.a. 15 98.3 n.a. 1,0,0 -3.4 0.1 -6.6 0.2 -4.8 0.2 n.a. 15 97.7 n.a. 1,0,0 -2.6 0.1 -5.9 0.2 -4.5 0.2 n.a. 15 91.3 n.a. 1,0,0 -2.4 0.1 -5.4 0.2 -4.1 0.2 n.a. 15 77.3 n.a. 1,0,0 1.2 0.1 -2.7 0.2 -3.3 0.2 n.a. 15 66.9 n.a. 1,0,0 1.6 0.1 -2.4 0.2 -3.3 0.2 n.a. 15 63.4 n.a. 1,0,0 2.5 0.1 -1.0 0.2 -2.3 0.2 n.a. 15 $\underline{58.9}$ n.a. 1,0,0 1.9 0.1 -2.2 0.2 $\underline{-3.2}$ 0.2 n.a. 15 $\underline{^a}$ Mg# = Mg/(Fe+Mg) molar % of olivine and/or pyroxene in each chondrule.

^b Uncertainties represent the range in measured Mg#'s of olivine and/or pyroxenes.

^c Numbers of mineral phases analyzed (olivine, low-Ca pyroxene, and high-Ca pyroxene). Table 2. Mg#'s and O-isotope ratios of isolated olivine grains and aggregate olivine inclusion.

Object Type, texture Mg# +/– n (ol) $\delta^{18}O$ unc. $\delta^{17}O$ unc. $\Delta^{17}O$ unc. $\Delta^{17}O$ Beam

2SD

 (μm)

G32 Isolated FeO-rich olivine 72.2 2.3/5.7 4 2.2 0.7 –1.6 0.5 –2.7 0.5 0.8 15 *G33* Isolated FeO-rich olivine 37.3 11.4/7.7 4 1.8 0.9 –0.9 0.5 –1.9 0.3 0.3 15 G24 Isolated FeO-poor olivine 99.4 n.c. 1 3.3 0.3 1.7 0.5 0.0 0.5 n.a. 10 99.4 n.c. 1 2.0 0.3 0.4 0.5 –0.6 0.5 n.a. 10

99.4 n.c. 1 –1.8 0.3 –4.0 0.5 –3.1 0.5 n.a. 10

99.4 n.c. 1 –3.2 0.3 –5.5 0.5 –3.8 0.5 n.a. 10

99.3 n.c. 1 2.6 0.3 0.6 0.5 -0.8 0.5 n.a. 10

99.3 n.c. 1 0.2 0.3 –2.2 0.5 –2.3 0.5 n.a. 10

99.3 n.c. 1 -3.1 0.3 -5.4 0.5 -3.9 0.5 n.a. 10

I3 AOI 99.5 0.1/0.0 2 -45.5 0.5 -47.3 0.4 -23.7 0.2 0.4 10