

Revised version submitted to *Geochimica et Cosmochimica Acta*

Irradiation origin of ^{10}Be in the solar nebula:

Evidence from Li-Be-B and Al-Mg isotope systematics, and REE abundances of CAIs from Yamato-81020 CO3.05 chondrite

Kohei Fukuda ^{a, b, *}, Hajime Hiyagon ^a, Wataru Fujiya ^c, Takanori Kagoshima ^{d, g}, Keita Itano ^{a, f}, Tsuyoshi Iizuka ^a, Noriko T. Kita ^b, and Yuji Sano ^{d, e}.

10 ^a Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo,
11 Bunkyo, Tokyo 113-0033, Japan

¹² ^b WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, 1215 W.
¹³ Dayton St., Madison, WI 53706, USA

14 ° Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan

¹⁵ ^d Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha,
¹⁶ Kashiwa, Chiba 277-8564, Japan

¹⁷ ^e Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, People's
¹⁸ Republic of China

^f Present address: College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan

22 ^g Present address: Department of Environmental Biology and Chemistry, School of
23 Science, University of Toyama, Toyama 930-8555, Japan

24 * Corresponding author. Present address: WiscSIMS, Department of Geoscience,
25 University of Wisconsin-Madison, 1215 W. Dayton St., Madison, WI 53706, USA
26 Email address: kfukuda2@wisc.edu (K. Fukuda)

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

ABSTRACT

49

50

We have performed *in situ* analyses of Li-Be-B and Al-Mg isotope systematics, and abundances of rare earth elements (REEs) in two Ca-Al-rich inclusions (CAIs) from the Ornans-like carbonaceous chondrite Yamato-81020 (CO3.05). The present CO CAIs are depleted in ultra-refractory heavy REEs (group II REE pattern), suggesting condensation of these CAIs or their precursors from the solar nebula. Initial $^{26}\text{Al}/^{27}\text{Al}$ ratios, $(^{26}\text{Al}/^{27}\text{Al})_0$, of these CO CAIs are found to be $(4.8 \pm 0.5) \times 10^{-5}$ and $(4.9 \pm 0.3) \times 10^{-5}$ (95% confidence), indicating their contemporaneous formation with a majority of CAIs from Vigarano-like carbonaceous (CV) chondrites. Melilite grains in the present CO CAIs show clear excesses in ^{10}B , ranging from ~ 370 to $\sim 4300\text{\textperthousand}$ relative to the chondritic B isotopic composition, which are correlated well with $^{9}\text{Be}/^{11}\text{B}$ ratios. The correlation indicates *in situ* decay of ^{10}Be in the present CO CAIs and yields initial $^{10}\text{Be}/^{9}\text{Be}$ ratios, $(^{10}\text{Be}/^{9}\text{Be})_0$, for the individual CAIs of $(2.9 \pm 0.6) \times 10^{-3}$ and $(2.2 \pm 1.0) \times 10^{-3}$ (95% confidence), which are significantly greater than the average $(^{10}\text{Be}/^{9}\text{Be})_0 = \sim 0.7 \times 10^{-3}$ recorded in CAIs from CV chondrites. The apparent variation in $(^{10}\text{Be}/^{9}\text{Be})_0$ between the CO and CV CAIs, despite having indistinguishable $(^{26}\text{Al}/^{27}\text{Al})_0$ of $\sim 5 \times 10^{-5}$, provides evidence for heterogeneous distribution of ^{10}Be in the CAI forming-regions at the very beginning of the Solar System. The elevated $(^{10}\text{Be}/^{9}\text{Be})_0$ and group II REE patterns in the CO CAIs may reflect that compared with the CV CAIs having unfractionated REEs the present CO CAIs have formed closer to the Sun where ^{10}Be was produced more efficiently through solar cosmic ray irradiation caused by solar flares. Alternatively, if the present CO CAIs and CV CAIs formed in the same region, and ^{26}Al was distributed homogeneously at the CAI-forming region, our results indicate that solar cosmic ray fluxes at the forming

73 region have fluctuated by a factor of six within a short duration (\sim 0.2 million years)
74 inferred from the Al-Mg chronology.

75

76

77 **1. Introduction**

78

79 Understanding the origin and distribution of short-lived radionuclides (SLRs) in
80 the early Solar System provides important constraints on the astrophysical environment of
81 the earliest stage of the Solar System evolution (Davis and McKeegan, 2014; Chaussidon
82 and Liu, 2015). The presence of a SLR beryllium-10 ($T_{1/2} = 1.39$ million years, Myr;
83 Korschinek et al., 2010) has been inferred from ^{10}Be - ^{10}B isotope analyses of Ca-Al-rich
84 inclusions (CAIs) (McKeegan et al., 2000) which are thought to be the oldest solids formed
85 in the Solar System (Amelin et al., 2010; Bouvier and Wadhwa, 2010; Connelly et al.,
86 2012). Unlike other SLRs (e.g., ^{26}Al and ^{60}Fe), ^{10}Be cannot be synthesized by
87 thermonuclear reactions in stars (Fowler et al., 1961). Instead, non-thermal nuclear
88 reactions between energetic particles and target materials (i.e., gas and/or dust) could
89 produce ^{10}Be (e.g., Gounelle et al., 2001, 2006; Leya et al., 2003; Bricker and Caffee, 2010;
90 Jacquet, 2019). Thus, the presence of ^{10}Be may be a key to understand cosmic ray
91 interactions at the earliest stage of the Solar System evolution.

92 To date, however, the origin of ^{10}Be in the early Solar System is still
93 controversial. Ion microprobe studies on Li-Be-B isotope systematics of coarse-grained
94 CAIs from Vigarano-like (CV) chondrites and refractory hibonite ($\text{CaAl}_1\text{O}_{19}$) grains from
95 the Murchison (Mighei-like; CM) chondrite revealed variations in initial $^{10}\text{Be}/^{9}\text{Be}$ ratios
96 ($\sim 3\text{-}10 \times 10^{-4}$; McKeegan et al., 2000; Sugiura et al., 2001; Marhas et al., 2002;
97 MacPherson et al., 2003; Chaussidon et al., 2006; Liu et al., 2009, 2010; Wielandt et al.,

98 2012; Srinivasan and Chaussidon, 2013). Among them, initial $^{10}\text{Be}/^{9}\text{Be}$ ratios of CV CAIs
99 with near canonical $^{26}\text{Al}/^{27}\text{Al}$ ratios ($\sim 4\text{--}5 \times 10^{-5}$) range from $(4.8 \pm 1.7) \times 10^{-4}$ to $(8.8 \pm$
100 $0.6) \times 10^{-4}$ (2σ), which vary by a factor of 2 (MacPherson et al., 2003; Chaussidon et al.,
101 2006; Srinivasan and Chaussidon, 2013). The variation in initial $^{10}\text{Be}/^{9}\text{Be}$ ratios of the near
102 canonical CAIs suggests a heterogeneous distribution of ^{10}Be at the CV CAI-forming
103 region, which is consistent with a solar cosmic ray irradiation origin of ^{10}Be (e.g.,
104 McKeegan et al., 2000; Gounelle et al., 2001, 2006; Goswami et al., 2001; Marhas et al.,
105 2002; Leya et al., 2003; Bricker and Caffee, 2010; Jacquet, 2019). Srinivasan and
106 Chaussidon (2013) provided detailed discussion on the origin of the variation in initial
107 $^{10}\text{Be}/^{9}\text{Be}$ ratios based on the relationship between initial $^{10}\text{Be}/^{9}\text{Be}$ ratios and supra-
108 chondritic initial $^{10}\text{B}/^{11}\text{B}$ ratios among CV CAIs. Since the energetic particle interaction
109 could produce ^{10}Be as well as stable isotopes of Li, Be, and B (Reeves, 1994 and references
110 therein; see also a recent review by Liu and Chaussidon, 2018 for B isotopes), Srinivasan
111 and Chaussidon (2013) attributed the variable $^{10}\text{Be}/^{9}\text{Be}$ ratios and supra-chondritic initial B
112 isotope ratios in the CV CAIs to heterogeneous production/distribution of ^{10}Be in the solar
113 protoplanetary disk. Additionally, studies on CAIs from metal-rich carbonaceous
114 chondrites (CH and CH/CB) have shown larger variations in initial $^{10}\text{Be}/^{9}\text{Be}$ ratios ($\sim 0\text{--}100$
115 $\times 10^{-4}$; Gounelle et al., 2013; Fukuda et al., 2019), further indicative of the solar cosmic ray
116 irradiation origin of ^{10}Be . In addition to ^{10}Be , the presence of the SLR ^{7}Be has been inferred
117 from Li-Be-B isotope systematics of CV CAIs (Chaussidon et al., 2006; Mishra and
118 Marhas, 2019). Because ^{7}Be has a half-life of 53 days (Jaeger et al., 1996), the result
119 requires very short time intervals between the production of ^{7}Be and its incorporation into a
120 CAI-forming reservoir. Thus, the co-presence of ^{7}Be and ^{10}Be in CAIs could be a stringent
121 constraint on their production by the solar cosmic ray irradiation. Recently, in contrast,
122 Dunham et al. (2019) proposed a homogeneous distribution of ^{10}Be ($^{10}\text{Be}/^{9}\text{Be} = \sim 7 \times 10^{-4}$)

123 in the solar nebula, based on the statistical data reduction of previous studies (Dunham et
124 al., 2020) and their new Be-B dataset of CAIs from Ornans-like (CO) and CH/CB
125 chondrites. The homogeneous distribution of ^{10}Be favors a hypothesis that ^{10}Be was
126 inherited from the parental molecular cloud of the Solar System that has been irradiated by
127 galactic cosmic rays (Desch et al., 2004). Alternatively, Banerjee et al. (2016) demonstrated
128 that ^{10}Be can be synthesized in low-mass supernovae by neutrino spallation reactions.
129 These new observations and theoretical studies call for a reconsideration of the origin of
130 ^{10}Be in the early Solar System.

131 Most of the initial ^{10}Be abundance data available so far were deduced from the
132 ^{10}Be - ^{10}B analyses of CAIs from CV chondrites because their large sizes (commonly
133 centimeter-sized or even larger; MacPherson, 2014) allow multi-spot ion microprobe
134 analyses within individual inclusions (McKeegan et al., 2000; Sugiura et al., 2001;
135 MacPherson et al., 2003; Chaussidon et al., 2006; Wielandt et al., 2012; Srinivasan and
136 Chaussidon, 2013; Sossi et al., 2017; Mishra and Marhas, 2019). Note, however, that these
137 large CAIs are rare in other chondrites and, therefore, would not be representative of the
138 entire CAI population. To better understand the origin and distribution of ^{10}Be in the early
139 Solar System, Be-B systematics of CAIs from various types of chondrites should be
140 investigated.

141 Here we report Li-Be-B and Al-Mg isotope systematics of two melilite-rich CAIs
142 from the CO chondrite Yamato-81020 (hereafter Y-81020) that is one of the least
143 metamorphosed carbonaceous chondrites (petrologic type 3.05; Grossman and Brearley,
144 2005; Grossman and Rubin, 2006; Kimura et al., 2008). CAIs from Y-81020 show no
145 textural evidence of secondary alteration on the parent body (Mishra, 2018) so that these
146 CAIs are expected to preserve pristine Li-Be-B and Al-Mg isotopic signatures. Melilite-rich
147 CAIs are most common among CO chondrites, which are similar to Type A CAIs from CV

148 chondrites (Grossman, 1975; MacPherson and Grossman, 1984; Simon et al., 1999),
149 although smaller in size (typically $<500\text{ }\mu\text{m}$) (e.g., Russell et al., 1998; Simon and
150 Grossman, 2015; Zhang et al., 2020). A recent Al-Mg isotope study of small CAIs (<100
151 μm in size) from CO3.03 chondrite Allan Hills A77307 identified two main populations in
152 terms of initial $^{26}\text{Al}/^{27}\text{Al}$ ratios [$(5.4 \pm 0.1) \times 10^{-5}$ and $(4.9 \pm 0.1) \times 10^{-5}$; Liu et al., 2019].
153 The two main populations are marginally resolved from the well-constrained canonical
154 $^{26}\text{Al}/^{27}\text{Al}$ ratio of $(5.2 \pm 0.1) \times 10^{-5}$ characterizing CAIs from CV chondrites (Bizzarro et
155 al., 2004; Jacobsen et al., 2008; Larsen et al., 2011, 2020). Therefore, CAIs from CO and
156 CV chondrites may record different early Solar System histories. Recently, Sossi et al.
157 (2017) conducted a correlated study of Be-B and vanadium isotope analyses, and rare earth
158 element (REE) abundances of CAIs from CV chondrites (Allende and NWA 8616). They
159 found that fine-grained CAIs with a group II CI-normalized REE pattern, which is
160 characterized by depletion in ultra-refractory heavy REEs (Martin and Mason, 1974;
161 Boynton, 1975; Davis and Grossman, 1979), tend to have higher initial $^{10}\text{Be}/^{9}\text{Be}$ ratios
162 ($^{10}\text{Be}/^{9}\text{Be} = \sim 70 \times 10^{-4}$) than those of coarse-grained CAIs with an unfractionated REE
163 pattern ($^{10}\text{Be}/^{9}\text{Be} = \sim 12 \times 10^{-4}$). These observations imply different irradiation conditions
164 for each CAI population. In the present study, we also included REE analyses for the two
165 CO CAIs to see possible relationships between REE abundances and Li-Be-B isotope
166 systematics. Based on a newly obtained dataset in this study, together with the data of
167 previous studies, the origin and distribution of ^{10}Be at the CAI-forming region(s) are
168 discussed.

169

170

171 **2. Material and methods**

172

173 2.1. Sample and electron microscopic analyses

174 Two thin sections of Y-81020 were searched with a JEOL JXA-8530F field
175 emission electron probe microanalyzer (FE-EPMA) at the Department of Earth and
176 Planetary Science, University of Tokyo. Two melilite-rich CAIs, Y20-1X1 (Fig. 1) and
177 Y20-9-1 (Fig. 2), were selected for REE and isotopic measurements. X-ray elemental maps
178 of the two CAIs were obtained with the FE-EPMA, which were performed with a fully
179 focused electron beam, 15 kV accelerating voltage, 80 nA beam current, 30 μ s per pixel
180 acquisition time, and spatial resolution of \sim 0.7-1.5 μ m per pixel. Major element
181 concentrations (Na₂O, MgO, Al₂O₃, SiO₂, K₂O, CaO, TiO₂, V₂O₃, Cr₂O₃, MnO, FeO, and
182 NiO) of minerals in the two CAIs were obtained with the FE-EPMA, which were
183 performed with a 1 μ m focused electron beam, 15 kV accelerating voltage, and 12 nA beam
184 current. Calculated detection limits (99% confidence) for the measured oxides were Na₂O-
185 0.11, MgO-0.11, Al₂O₃-0.11, SiO₂-0.14, K₂O-0.07, CaO-0.10, TiO₂-0.19, V₂O₃-0.12,
186 Cr₂O₃-0.14, MnO-0.18, FeO-0.17, and NiO-0.17 wt%.

187

188 2.2. REE measurements

189 REE abundances of the two CAIs were investigated using an iCAP Qc
190 inductively coupled plasma mass spectrometer (ICP-MS) with a Nd:YAG laser ablation
191 (LA) system at the Department of Earth and Planetary Science, University of Tokyo. The
192 measured ion species and operating conditions of the LA system and ICP-MS are listed in
193 Table A1 (Electronic Annex EA1). The LA-ICP-MS measurements were performed in spot
194 analysis mode (\sim 25-30 μ m in diameter). The instrumental parameters were set so that the
195 oxide production rate of Th (ThO⁺/Th⁺) was smaller than 1% (Itano and Iizuka, 2017).
196 Each of two unknown analyses was bracketed by three measurements of a NIST SRM 612
197 glass standard that was used for the correction of relative sensitivities of measured ion

198 species. An aliquot of BCR-2G glass was measured as a secondary standard. Ion signals of
199 $^{43}\text{Ca}^+$ were used for internal normalization. External reproducibilities of $\text{REE}^+/^{43}\text{Ca}^+$ for
200 NIST SRM 612 were smaller than $\pm 10\%$ (2 standard deviation; 2SD) during a session.
201 Internal errors (2 standard error: 2SE) are assigned as uncertainties on unknown analyses,
202 which were larger than the external reproducibilities ($\pm 10\%$, 2SD) because of their lower
203 count rates.

204

205 2.3. Al-Mg isotope measurements

206 The Al-Mg isotope analyses of melilite, spinel, and diopside were performed with
207 the WiscSIMS Cameca IMS 1280 secondary ion mass spectrometer (SIMS) at the
208 University of Wisconsin-Madison equipped with a radio-frequency (RF) plasma ion source.
209 The analytical conditions are similar to those described in Kita et al. (2012) and Fukuda et
210 al. (2020) except for the primary beam conditions and the use of lower-noise feedback
211 resistors for Faraday cups (FCs) (Fukuda et al., 2021). We prepared two $^{16}\text{O}_2^-$ primary ion
212 beam settings for analyses of melilite ($8 \times 10 \mu\text{m}$, 2nA), and spinel and diopside ($4 \times 5 \mu\text{m}$,
213 0.3nA). Secondary ions ($^{24}\text{Mg}^+$, $^{25}\text{Mg}^+$, $^{26}\text{Mg}^+$, and $^{27}\text{Al}^+$) were detected simultaneously on
214 multi-collector FCs (L'2, C, H1, and H'2) using three 10^{12} ohm and one 10^{11} ohm resistors
215 for $^{24,25,26}\text{Mg}^+$ and $^{27}\text{Al}^+$, respectively. The mass resolving power (MRP) at 10% peak
216 height was set to ~ 2500 (entrance slit; $90 \mu\text{m}$ and exit slit $500 \mu\text{m}$) and interferences of
217 $^{48}\text{Ca}^{2+}$ and $^{24}\text{Mg}^1\text{H}^+$ onto $^{24}\text{Mg}^+$ and $^{25}\text{Mg}^+$ peaks were negligibly small. The energy slit was
218 set to 50 eV width. Matrix matched standards of melilite glasses (\AA k_{15} and \AA k_{35}), diopside
219 (95AK-6 Di), and spinel were used as bracketing standards. These standards, as well as
220 additional melilite glasses (\AA k_{25} and \AA k_{65}) and pyroxene (IG-Cpx) standards, were
221 analyzed to correct instrumental mass fractionations (IMFs) of Mg isotopes, and determine
222 relative sensitivity factors (RSFs) of $^{27}\text{Al}/^{24}\text{Mg}$ ratios. $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values of these standards,

223 except for spinel (where $\delta^{25}\text{Mg}_{\text{DSM-3}} = [({}^{25}\text{Mg}/{}^{24}\text{Mg})_{\text{sample}}/({}^{25}\text{Mg}/{}^{24}\text{Mg})_{\text{DSM-3}} - 1] \times 1000$;
224 per-mil deviation from Mg reference material DSM-3; Galy et al., 2003), have been
225 determined by solution nebulization multi-collector ICP-MS (MC-ICP-MS), which were
226 reported in Kita et al. (2012) and Fukuda et al. (2020). Mg isotope analysis of the spinel
227 standard by MC-ICP-MS is in progress but not available at present, so that the $\delta^{25}\text{Mg}_{\text{DSM-3}}$
228 value of the spinel standard is assumed to be 0 in this study. For melilite analyses, a single
229 analysis took ~8 min, including 100 s of presputtering, ~80 s for automated centering of the
230 secondary ion deflectors (DTFA-X and -Y), and 300 s of integration (10 s \times 30 cycles) of
231 the secondary ion signals. For spinel and diopside analyses, 500 s of integration (10 s \times 50
232 cycles) was employed so that a single analysis took ~12 min. The typical ${}^{24}\text{Mg}^+$ and ${}^{27}\text{Al}^+$
233 count rates during measurement of the melilite glass standard (\AA k_{35}) were 2.1×10^7 and 8.8
234 $\times 10^7$ cps, respectively. Those of the spinel standard were 2.3×10^7 and 4.6×10^7 cps,
235 respectively, and those of the diopside (95AK-6 Di) standard were 1.7×10^7 and 8.5×10^5
236 cps, respectively. The baselines of four FCs were monitored during each presputtering and
237 averaged over eight analyses. The standard deviations of FC baselines over eight analyses
238 were typically 140 cps for L'2, C, and H1, and 530 cps for H'2, corresponding to 7×10^{-6}
239 relative to ${}^{24}\text{Mg}^+$, 5×10^{-5} relative to ${}^{25}\text{Mg}^+$ and ${}^{26}\text{Mg}^+$, and 6×10^{-6} relative to ${}^{27}\text{Al}^+$ ion
240 intensities of the melilite glass standard (\AA k_{35}). Data reduction procedures follow those
241 described in Ushikubo et al. (2017) and are summarized in Electronic Annex EA2. The
242 typical external reproducibilities (2SD) of $\delta^{25}\text{Mg}$, $\delta^{26}\text{Mg}$, and $\Delta^{26}\text{Mg}$ for the melilite glass
243 standards (\AA k_{15} and \AA k_{35}) were $\leq 0.20\text{\textperthousand}$, $\leq 0.25\text{\textperthousand}$, and $\leq 0.35\text{\textperthousand}$, respectively. Those for the
244 diopside and spinel standards were $\leq 0.18\text{\textperthousand}$, $\leq 0.27\text{\textperthousand}$ and $\leq 0.25\text{\textperthousand}$, respectively.
245

246 2.4. Li-Be-B isotope measurements

247 The Be-B isotope analyses of melilite and diopside were performed with a
248 Cameca NanoSIMS 50 at Atmosphere and Ocean Research Institute (AORI), University of
249 Tokyo. The analytical conditions are the same as those described in Fukuda et al. (2019),
250 except for primary ion beam conditions. We prepared three $^{16}\text{O}^-$ primary ion beam settings
251 for analyses of melilite ($8 \times 8 \mu\text{m}$, 3 nA and $10 \times 10 \mu\text{m}$, 5 nA) and diopside ($5 \times 5 \mu\text{m}$,
252 1nA). To remove carbon coating and surface boron contamination, we presputtered the
253 samples for 10 min before the measurements. For the presputtering, the $^{16}\text{O}^-$ primary ion
254 beam of 5 nA was rastered over $15 \times 15 \mu\text{m}^2$ areas on the samples for 5 min, and then
255 central parts ($10 \times 10 \mu\text{m}^2$) within the areas were presputtered for additional 5 min.
256 Afterward, the primary ion beam was rastered over the presputtered $10 \times 10 \mu\text{m}^2$ areas for
257 the measurements. Secondary ions of $^9\text{Be}^+$, $^{10}\text{B}^+$, $^{11}\text{B}^+$, and $^{30}\text{Si}^+$ were detected
258 simultaneously with four electron multipliers (EMs). For melilite analyses with the primary
259 ion beam of 5 nA, the typical count rates were ~ 40 cps for $^9\text{Be}^+$, ~ 0.2 cps for $^{10}\text{B}^+$, and 1.0
260 $\times 10^5$ cps for $^{30}\text{Si}^+$. The MRP at 1% peak height was set to ~ 1500 , sufficient to separate
261 $^9\text{Be}^1\text{H}^+$ from $^{10}\text{B}^1\text{H}^+$ and $^{10}\text{B}^1\text{H}^+$ from $^{11}\text{B}^+$. Secondary ion signals from the center of the
262 sputtered areas (24×24 pixels out of 32×32 pixels; i.e., a $\sim 56\%$ electronic beam blanking
263 was applied) were collected to avoid contributions from scattered ions from the surrounding
264 area (Fujiya et al., 2016). The measurement time was up to ~ 70 min for the samples,
265 dependent on the ^{10}B count rate. After each measurement, the backgrounds of four EMs
266 were monitored on each analytical spot for 17 min, which were typically ~ 0.03 cps. The
267 RSFs of Be/B, Be/Si, and B/Si were determined by multiple measurements of a NIST SRM
268 610 glass standard, for which $^9\text{Be}/^{11}\text{B}$ RSF is identical to that for synthetic melilite glasses
269 within uncertainties (Fukuda et al., 2018; Dunham et al., 2020). The IMF on $^{10}\text{B}/^{11}\text{B}$ was
270 corrected using the NIST SRM 610 ($^{10}\text{B}/^{11}\text{B} = 0.2474$; Brand et al., 2014).

271 After the Be-B analyses, Li isotope analyses of melilite were performed under the
272 same secondary ion optics for the Be-B analyses, but moving EMs to certain positions.
273 Two $^{16}\text{O}^-$ primary ion beams ($8 \times 8 \mu\text{m}$, 3nA and $10 \times 10 \mu\text{m}$, 5nA) were used for the
274 analyses. Prior to the measurements, the samples were presputtered with a primary ion
275 beam of 3 or 5 nA that was rastered over $10 \times 10 \mu\text{m}^2$ areas for ~5-10 min. Secondary ions
276 of $^6\text{Li}^+$, $^7\text{Li}^+$, and $^{30}\text{Si}^+$ were detected simultaneously with three EMs. The count rates of
277 $^6\text{Li}^+$ and $^{30}\text{Si}^+$ range from ~2 to 50 cps and 0.4×10^5 to 1.4×10^5 cps, respectively. As for
278 Be-B analyses, electronic beam blanking was applied so that secondary ions from the center
279 of the sputtered areas were collected. The measurement time was up to ~ 50 min for the
280 samples, dependent on the Li count rates. The observed $^7\text{Li}/^6\text{Li}$ ratios and Li elemental
281 abundances of melilite were normalized to those of a NIST SRM 612 glass standard, which
282 has a $^7\text{Li}/^6\text{Li}$ ratio = 12.553 (Kasemann et al., 2005) and Li concentration of 40.2 ppm
283 (Jochum et al., 2011). The present Li-Be-B data ($^7\text{Li}/^6\text{Li}$, $^9\text{Be}/^{11}\text{B}$, and $^{10}\text{B}/^{11}\text{B}$ ratios and
284 elemental concentrations) were obtained by summing up secondary ion signals over the
285 entire analysis (Ogliore et al., 2011). Uncertainties of these data were determined based on
286 counting statistics for the total count numbers of the secondary ion signals.

287

288

289 **3. Results**

290

291 **3.1. Mineralogy and REE abundances**

292 Representative major element compositions are listed in Table A2 (Electronic
293 Annex EA1). REE concentrations are listed in Table A3 (Electronic Annex EA1).
294 Locations of REE, Al-Mg, and Li-Be-B analyses within CAIs are shown in Electronic
295 Annex EA3.

296 CAI Y20-1X1, $\sim 300 \times 300 \mu\text{m}$ in size, is a melilite-rich CAI that has a rounded
297 shape (Fig. 1a). This CAI is composed mostly of melilite (>80 vol%, estimated by using
298 composite elemental maps and *ImageJ* software; Ferreira and Rasband, 2012) and anhedral
299 spinel ($\sim 16 \text{ vol\%}$) and minor perovskite grains. Perovskite grains are often enclosed by Al-
300 Ti-rich diopside (Fig. 1a). Melilite shows chemical zoning with $\text{\AA}k$ ermanite contents
301 increasing from an outer spinel layer ($\sim \text{\AA}k_{34}$) to the CAI interior ($\sim \text{\AA}k_{55}$) (Fig. 1b). No
302 secondary minerals such as nepheline are found. The CAI is surrounded by a double-
303 layered rim of thinner spinel + Al-Ti-rich diopside layer ($\sim 5 \mu\text{m}$) and thicker magnesian
304 diopside layer ($\sim 15 \mu\text{m}$, Fig. 1c). Similar objects have been found in the same meteorite
305 (CAI 18; Mishra, 2018) and another CO chondrite DOM 08004 (Inclusion 26-2; Simon and
306 Grossman, 2015). The Y20-1X1 has a modified group II REE pattern in melilite as well as
307 a perovskite-rich portion (Fig. 3; normalized to REE abundances in CI), which is
308 characterized by depletion in ultra-refractory heavy REEs (HREEs) with positive anomalies
309 in Ce, (Eu), and Yb (Hiyagon et al., 2011). REE concentrations of melilite are $\sim 1\text{-}2$ orders
310 of magnitude lower than those of perovskite + Al-Ti-rich diopside (+ minor melilite)
311 portions except for Eu (Fig. 3).

312 CAI Y20-9-1, $\sim 650 \times 400 \mu\text{m}$ in size, is an irregular-shaped melilite-rich CAI
313 (Fig. 2a), which appears to be a fragment of a larger CAI. Melilite grains have gehlenitic
314 compositions ($\text{\AA}k_{4\text{-}11}$). Minor perovskite grains are also observed, some of which occur
315 around the voids (Fig. 2b). Anhedral spinel grains are concentrated close to the edge of the
316 CAI (Fig. 2c). Melilite close to the rim has more gehlenitic compositions ($\text{\AA}k_{4\text{-}5}$) than that
317 of the CAI interior ($\text{\AA}k_{7\text{-}11}$). No secondary minerals such as nepheline are found. This CAI
318 is surrounded by a double-layered rim of discontinuous spinel + Al-Ti-rich diopside layer
319 and Al-Ti-rich diopside layer (Fig. 2c). Melilite in Y20-9-1 has a modified group II REE

320 pattern (Fig. 3). The mineralogy and texture of this CAI are similar to CAI G104 from
321 Acfer 094 (ungrouped C3.00) that was described by Ushikubo et al. (2017).

322

323 3.2. Al-Mg isotope systematics

324 Magnesium isotope ratios ($\delta^{25}\text{Mg}_{\text{DSM-3}}$ and $\delta^{26}\text{Mg}^*$) and $^{27}\text{Al}/^{24}\text{Mg}$ ratios are
325 given in Table 1. All individual data, including analyses of standards, are listed in
326 Electronic Annex EA4. The $\delta^{26}\text{Mg}^*$ values of melilite in the present CO CAIs are linearly
327 correlated with $^{27}\text{Al}/^{24}\text{Mg}$ ratios (Fig. 4). Data for melilite and spinel in Y20-1X1 form a
328 well-defined linear regression line (Fig. 4a). Initial $^{26}\text{Al}/^{27}\text{Al}$ ratios and initial $\delta^{26}\text{Mg}^*$ values
329 were deduced from isochron regressions (Isoplot 4.15 model 1 fit, Ludwig, 2012).

330 Uncertainties in initial $^{26}\text{Al}/^{27}\text{Al}$ ratios and initial $\delta^{26}\text{Mg}^*$ values are 95% confidence limits.
331 The inferred initial $^{26}\text{Al}/^{27}\text{Al}$ ratios, $(^{26}\text{Al}/^{27}\text{Al})_0$, of Y20-1X1 and Y20-9-1 are $(4.8 \pm 0.5) \times$
332 10^{-5} (MSWD = 0.3) and $(4.9 \pm 0.3) \times 10^{-5}$ (MSWD = 1.3), respectively. These $(^{26}\text{Al}/^{27}\text{Al})_0$
333 values are not resolvable from the canonical value $[(5.2 \pm 0.1) \times 10^{-5}$; Jacobsen et al., 2008;
334 Larsen et al., 2011] and one of the main population observed in CAIs from another CO
335 chondrite Allan Hills A77307 $[(4.9 \pm 0.1) \times 10^{-5}$; Liu et al., 2019]. Intercepts of the
336 regression lines give initial $\delta^{26}\text{Mg}^*$ values, $(\delta^{26}\text{Mg}^*)_0$, of $0.21 \pm 0.16\text{\textperthousand}$ for Y20-1X1 and –
337 $0.01 \pm 0.54\text{\textperthousand}$ for Y20-9-1. The $\delta^{26}\text{Mg}^*$ values of the diopside rim in Y20-1X1 plot slightly
338 lower than the regression line defined by melilite and spinel in this CAI (Fig. 4a). The
339 average $\delta^{26}\text{Mg}^*$ value of the diopside rim of this CAI is $-0.07 \pm 0.06\text{\textperthousand}$ (2SE, N = 7), which
340 is resolvable from the intercept of the melilite-spinel regression line $[(\delta^{26}\text{Mg}^*)_0 = 0.21 \pm$
341 $0.16\text{\textperthousand}]$. Including the data for melilite, spinel, and the diopside rim of Y20-1X1 gives
342 $(^{26}\text{Al}/^{27}\text{Al})_0 = (5.3 \pm 0.3) \times 10^{-5}$ (MSWD = 0.9) and $(\delta^{26}\text{Mg}^*)_0 = -0.01 \pm 0.08\text{\textperthousand}$.

343 Minerals in the two CAIs show variations in $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values ($-2.1 \leq$
344 $\delta^{25}\text{Mg}_{\text{DSM-3}} \leq 4.9$; Table 1). Melilite and spinel in Y20-1X1 exhibit positive $\delta^{25}\text{Mg}_{\text{DSM-3}}$

345 values ($2.5 \leq \delta^{25}\text{Mg}_{\text{DSM-3}} \leq 4.9$; Fig. 5), while the diopside rim exhibits negative $\delta^{25}\text{Mg}_{\text{DSM-3}}$
346 values ($-2.1 \leq \delta^{25}\text{Mg}_{\text{DSM-3}} \leq -0.1$; Fig. 5). In contrast to melilite in Y20-1X1, melilite in
347 Y20-9-1 does not show significant mass-dependent isotopic fractionation in Mg isotopes ($-$
348 $1.0 \leq \delta^{25}\text{Mg}_{\text{DSM-3}} \leq 0.6$; Fig. 5) from the chondritic Mg isotope ratio ($\delta^{25}\text{Mg}_{\text{DSM-3}} = -0.15 \pm$
349 $0.04\text{\textperthousand}$, 2SD; Teng et al., 2010).

350

351 3.3. Li-Be-B isotope systematics

352 Figure 6a shows a change of $^{11}\text{B}^+/\text{Si}^+$ ratios during sample measurements,
353 indicating that the $^{11}\text{B}^+/\text{Si}^+$ ratios were stable during individual analyses for ~ 70 min (e.g.,
354 melilite #10 in Fig. 6a). This demonstrates that surface contamination has been removed by
355 the presputtering under the condition described in section 2.4, otherwise we may see a
356 monotonic decrease of the $^{11}\text{B}^+/\text{Si}^+$ ratio at the beginning of the analysis (Fujiya et al.,
357 2016). Some analyses showed an increase of the $^{11}\text{B}^+/\text{Si}^+$ ratios in the middle of the
358 analysis (e.g., melilite #3 in Fig. 6a), which may result from the sputtering of B-rich
359 phase(s) other than melilite. Thus, these measurement cycles were excluded for summing
360 up signals. Figure 6b shows $^9\text{Be}/^{11}\text{B}$ and $^{10}\text{B}/^{11}\text{B}$ ratios calculated from a single analysis of
361 melilite in CAI Y20-9-1 (melilite #10), individuals of which were obtained by summing up
362 signals from different depths (i.e., every 50 cycles within the total 200 cycle analysis). We
363 do not find any resolvable changes in $^9\text{Be}/^{11}\text{B}$ and $^{10}\text{B}/^{11}\text{B}$ ratios at each depth, supporting
364 that the presputtering successfully removed the surface contamination.

365 The Li, Be, and B concentrations, $^9\text{Be}/^{11}\text{B}$, $^{10}\text{B}/^{11}\text{B}$, and $^7\text{Li}/^6\text{Li}$ ratios of measured
366 CAI minerals are given in Table 2. The $^{10}\text{B}/^{11}\text{B}$ ratios as functions of $^9\text{Be}/^{11}\text{B}$ and $1/\text{[B}$
367 (ppm)] of CAI minerals are shown in Fig. 7. Melilite in the two CAIs shows large
368 variations in $^{10}\text{B}/^{11}\text{B}$ ratios ranging from 0.34 ± 0.05 (2σ) to 1.31 ± 0.36 (2σ), all of which
369 are higher than the chondritic B isotopic composition ($^{10}\text{B}/^{11}\text{B} = 0.2481$; Zhai et al., 1996).

370 The corresponding $\delta^{10}\text{B}$ values (where $\delta^{10}\text{B} = [({}^{10}\text{B}/{}^{11}\text{B})_{\text{sample}}/({}^{10}\text{B}/{}^{11}\text{B})_{\text{NIST SRM 951}} - 1] \times 1000$) range from $370 \pm 60\text{‰}$ (2σ) to $4300 \pm 1200\text{‰}$ (2σ). The B isotope ratios of melilite are positively correlated with the corresponding ${}^9\text{Be}/{}^{11}\text{B}$ ratios ranging from 19 ± 2 (2σ) to 335 ± 74 (2σ) (Figs. 7a-b). The observed correlations are better than correlations between the B isotopic ratios and $1/\text{[B (ppm)]}$ (Figs. 7c-d), in favor of in situ decay of ${}^{10}\text{Be}$ rather than mixing lines. The regressions in Fig. 7 were performed using Isoplot 4.15 (model 1, Ludwig, 2012). Uncertainties in initial ${}^{10}\text{Be}/{}^9\text{Be}$ ratios and initial ${}^{10}\text{B}/{}^{11}\text{B}$ ratios are 95% confidence limits. The inferred initial ${}^{10}\text{Be}/{}^9\text{Be}$ ratios, $({}^{10}\text{Be}/{}^9\text{Be})_0$, of Y20-1X1 and Y20-9-1 are $(2.9 \pm 0.6) \times 10^{-3}$ (MSWD = 1.2) and $(2.2 \pm 1.0) \times 10^{-3}$ (MSWD = 2.5), respectively. The initial ${}^{10}\text{B}/{}^{11}\text{B}$ ratios, $({}^{10}\text{B}/{}^{11}\text{B})_0$, are determined to be 0.256 ± 0.059 for Y20-1X1 and 0.269 ± 0.093 for Y20-9-1, which are indistinguishable from the chondritic B isotopic composition (${}^{10}\text{B}/{}^{11}\text{B} = 0.2481$). Note that these $({}^{10}\text{Be}/{}^9\text{Be})_0$ and $({}^{10}\text{B}/{}^{11}\text{B})_0$ values are calculated using the data for melilite only. For CAI Y20-1X1, we also analyzed the diopside rim. The ${}^{10}\text{B}/{}^{11}\text{B}$ and ${}^9\text{Be}/{}^{11}\text{B}$ ratios of the diopside rim are 0.251 ± 0.004 (2σ) and 0.011 ± 0.001 (2σ), respectively. Including the diopside data, we obtain $({}^{10}\text{Be}/{}^9\text{Be})_0 = (3.0 \pm 0.4) \times 10^{-3}$ (MSWD = 1.05) and $({}^{10}\text{B}/{}^{11}\text{B})_0 = 0.251 \pm 0.004$, both of which are consistent with the regression for melilite only.

387 Three Li isotope measurements of melilites (one for Y20-1X1 and the other two
388 for Y20-9-1) yield ${}^7\text{Li}/{}^6\text{Li} = 12.2 \pm 0.2$ (2σ), 12.1 ± 0.4 (2σ), and 12.0 ± 0.4 (2σ), which are
389 identical with the chondritic Li isotopic composition (${}^7\text{Li}/{}^6\text{Li} = 12.06$; Seitz et al., 2007)
390 within uncertainties. The Li concentration of melilite from Y20-1X1 is 630 ± 82 (ppb; 2σ),
391 which is one order of magnitude higher than those of melilites from Y20-9-1 (59-71 ppb).

392

393

394

4. Discussion

395

396 4.1. Formation scenarios of the present CO CAIs inferred from REE and Al-Mg isotope
397 systematics

398 Here we discuss possible formation scenarios of the two CO CAIs Y20-1X1 and
399 Y20-9-1. In the following discussion, formation ages of these CAIs are determined by
400 assuming a homogeneous distribution of ^{26}Al with the canonical $^{26}\text{Al} / ^{27}\text{Al}$ ratio of $5.2 \times$
401 10^{-5} at the CAI-forming region. The bulk Al-Mg isochrons of CAIs from CV and CR
402 chondrites yield well-defined $^{26}\text{Al}/^{27}\text{Al}$ slopes of $\sim 5.1\text{--}5.2 \times 10^{-5}$ (Jacobsen et al., 2008;
403 Larsen et al., 2011; 2020), indicating that at least CV and CR CAI-forming regions might
404 have been significantly homogenized for ^{26}Al abundance. There are no bulk Al-Mg data of
405 CAIs from CO chondrites, while multi-CAI isochrons for CO CAIs indicate that they have
406 formed from reservoir(s) with initial $^{26}\text{Al}/^{27}\text{Al}$ ratios of $\sim 4.9\text{--}5.4 \times 10^{-5}$ (Liu et al., 2019).
407 These data suggest that ^{26}Al heterogeneity of ^{26}Al -bearing CAI-forming regions would
408 have been within 10% of the canonical value. If the initial $^{26}\text{Al}/^{27}\text{Al}$ ratios of CO CAI-
409 forming regions were 10% more/less than those of CV and CR CAI-forming regions, then
410 the relative formation ages of Y20-1X1 and Y20-9-1 would have been under/overestimated
411 by 0.1 Myr. Note, however, that distribution of ^{26}Al was not completely homogeneous at
412 least during an epoch of formation of refractory inclusions because of the presence of ^{26}Al -
413 poor refractory solids that were likely formed prior to injection and/or homogenization of
414 ^{26}Al in the solar protoplanetary disk (Sahijpal and Goswami, 1998; Krot et al., 2012; 2019
415 and references therein; Makide et al., 2013; Holst et al., 2013; Kööp et al., 2016; 2018; Park
416 et al., 2017 and references therein). Thus, we cannot rule out the possibility of
417 heterogeneous distribution of ^{26}Al at the CO CAI-forming region. If this is the case, our Al-
418 Mg data suggest that the present CO CAIs formed in a similar reservoir to that for CV and

419 CR CAIs since $(^{26}\text{Al}/^{27}\text{Al})_0$ values of the present CO CAIs are not resolvable from the
420 canonical value.

421

422 4.1.1. Y20-1X1

423 A perovskite-rich region and melilite in Y20-1X1 show similar REE abundance
424 patterns with depletions in ultra-refractory HREEs (Gd to Er and Lu) relative to light REEs
425 (LREEs; La to Sm) (Fig. 3), which are a Group II-like REE pattern (Martin and Mason,
426 1974; Boynton, 1975; Davis and Grossman, 1979). The former shows ~10-100 times higher
427 REE abundances than the latter, while Eu in the latter exhibits a large enrichment relative to
428 other REEs. Repeated analyses confirmed that these characteristics are reproducible (Fig.
429 A1a in Electronic Annex EA2). The higher REE abundances in perovskite-rich regions than
430 melilite, as well as Eu-enrichment in melilite, are best explained by equilibrium partitioning
431 among minerals crystallized from a melt (e.g., Nagasawa et al., 1980). These observations
432 are consistent with the rounded shape of this CAI, suggesting that it was once molten.
433 However, the Group II-like REE pattern cannot be produced by fractionation during
434 melting, but only by condensation from a fractionated gas previously depleted in ultra-
435 refractory HREEs (Martin and Mason, 1974; Boynton, 1975; Davis and Grossman, 1979).
436 Thus, the observed Group II-like REE pattern suggests that its precursor has formed
437 directly by condensation from the solar nebula. Small positive anomalies in Ce and Yb
438 (possibly not in Eu) indicate further condensation of these less-refractory REEs onto the
439 precursor with the Group II REE pattern (Hiyagon et al., 2011). Finally, the precursor with
440 the Group II-like REE pattern would have experienced melting and recrystallization from
441 the melt, resulting in the higher REE abundances in perovskite-rich regions than melilite, as
442 well as Eu-enrichment in melilite.

443 The Mg stable isotope ratios of melilite and spinel in Y20-1X1 are positively
444 fractionated (~ 2.5 - $4.9\text{\textperthousand}$ in $\delta^{25}\text{Mg}_{\text{DSM-3}}$), which could result from melting of their precursor
445 solids in the solar nebula and evaporation of Mg from the melt. The $^{27}\text{Al}/^{24}\text{Mg}$ ratios and
446 $\delta^{26}\text{Mg}^*$ values of melilite and spinel in Y20-1X1 form the well-defined single isochron
447 (Fig. 4a) with $(^{26}\text{Al}/^{27}\text{Al})_0 = (4.8 \pm 0.5) \times 10^{-5}$, indicative of the contemporaneous
448 formation of the melilite and spinel, that is, co-crystallization from an isotopically
449 fractionated melt. In contrast, the Al-Mg isotope data of diopside rim in Y20-1X1 do not
450 plot on the melilite-spinel isochron (Fig. 4a). Furthermore, $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values of diopside
451 are consistently negative (-2.1 to $-0.1\text{\textperthousand}$; Fig. 5), suggesting its formation by condensation
452 from the solar nebula (Richter, 2004). The distinct magnitudes of Mg isotope fractionation
453 between CAI interior and its rim have been observed in CAIs from CV chondrites (Simon
454 et al., 2005; Kawasaki et al., 2019; Han et al., 2020). The Al-Mg isotope systematics of the
455 CO CAI also indicate different origins of the core and rim.

456 The intercept of the melilite-spinel isochron of Y20-1X1 is $(\delta^{26}\text{Mg}^*)_0 = 0.21 \pm$
457 $0.16\text{\textperthousand}$, which is slightly higher than the inferred Solar System initial values ($-0.040\text{\textperthousand}$;
458 Jacobsen et al., 2008, or $-0.016\text{\textperthousand}$; Larsen et al., 2011). The observed $(\delta^{26}\text{Mg}^*)_0$ value can
459 be understood as a result of Mg isotopic evolution due to the decay of ^{26}Al to ^{26}Mg within
460 its precursor material. On the basis of the relationship between $(^{26}\text{Al}/^{27}\text{Al})_0$ and $(\delta^{26}\text{Mg}^*)_0$
461 values obtained from Al-Mg mineral isochron data, the timing of the final bulk Al/Mg
462 fractionation event can be calculated (e.g., MacPherson et al., 2012). As shown in Fig. 8,
463 the observed $(\delta^{26}\text{Mg}^*)_0$ value of Y20-1X1 can be understood as a result of Mg isotopic
464 evolution of a precursor material with $^{27}\text{Al}/^{24}\text{Mg}$ ratio > 3 , which is consistent with the
465 estimated present bulk $^{27}\text{Al}/^{24}\text{Mg}$ ratio (~ 3.2) based on the modal abundances and average
466 chemical compositions of melilite and spinel (Electronic Annex EA2). Thus, the Al-Mg
467 isotope systematics of melilite and spinel are readily explained by thermal processing of

468 precursor solids that have formed with $^{27}\text{Al}/^{24}\text{Mg} = \sim 3.2$ and canonical $(^{26}\text{Al}/^{27}\text{Al})_0$. Of
469 note, we do not take into account the diopside rim for the estimation of the bulk $^{27}\text{Al}/^{24}\text{Mg}$
470 ratio considering that the rim condensed directly from the solar nebula. The $(^{26}\text{Al}/^{27}\text{Al})_0$ of
471 Y20-1X1 is $(4.8 \pm 0.5) \times 10^{-5}$, corresponding to an age difference of $0.1^{-0.10}_{+0.11}$ Myr
472 relative to the canonical $(^{26}\text{Al}/^{27}\text{Al})_0$. Therefore, this thermal processing could have
473 occurred within ~ 0.2 Myr after the formation of the precursor solids. Note, however, that
474 melilite and spinel show positive $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values. This suggests that some amounts of
475 Mg were evaporated from a CAI melt, assuming the chondritic Mg isotopic composition of
476 its precursors. Since the precise $\delta^{25}\text{Mg}_{\text{DSM-3}}$ value for spinel standard was not available at
477 present (see section 2.3), however, the obtained $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values for spinel in Y20-1X1
478 may be systematically offset from the true values. Therefore, we only discuss the
479 $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values for melilite (2.9‰ on average). Richter et al. (2007) conducted
480 evaporation experiments with a type B CAI-like material and investigated a relationship
481 between elemental and Mg isotope fractionation, showing that $\sim 20\%$ loss of Mg would
482 induce isotope fractionation in 2.9‰/amu from the CAI melt. Therefore, if the Mg isotope
483 fractionation occurred at the final melting of Y20-1X1, the precursors of this CAI would
484 have more Mg-rich bulk composition ($^{27}\text{Al}/^{24}\text{Mg} \sim 2.5$). If we adopt a $^{27}\text{Al}/^{24}\text{Mg}$ ratio of 2.5,
485 then the $(\delta^{26}\text{Mg}^*)_0$ value of Y20-1X1 plots at marginally higher than the evolution curve
486 (Fig. 8), suggesting that its precursors have not formed from gas with the chondritic Mg
487 isotopic composition, but isotopically fractionated gas ($\delta^{25}\text{Mg}_{\text{DSM-3}} \sim 2.9\%$). Alternatively,
488 this discrepancy may reflect either that our $^{27}\text{Al}/^{24}\text{Mg}$ estimate based on the two-
489 dimensional elemental mapping is inaccurate and/or that the experimental results for type B
490 CAI-like materials cannot be directly applied to the present CAI Y20-1X1. Note that the
491 pre-evaporation bulk $^{27}\text{Al}/^{24}\text{Mg}$ ratio = 2.5 was estimated assuming that evaporated Mg was
492 not back-condensed onto the CAI. If this assumption is invalid, the estimated evaporative

493 loss of Mg (~20%) would be underestimated (Nagahara and Ozawa, 2000), meaning that
494 the true value is even lower than the estimated value. In this case, the discrepancy between
495 the $(\delta^{26}\text{Mg}^*)_0$ value of Y20-1X1 and the expected evolution curve would be more
496 significant.

497 Overall, the REE and Al-Mg isotope systematics of Y20-1X1 suggest that this
498 CAI formed by melting of CAI-like precursor solids that have been condensed from the
499 solar nebula and its diopside rim has subsequently formed by condensation from the solar
500 nebula. Hence, we deduced the $(^{10}\text{Be}/^{9}\text{Be})_0$ and $(^{10}\text{B}/^{11}\text{B})_0$ values for this CAI from the
501 melilite data only, and the diopside rim data will not be included in the following
502 discussion.

503

504 4.1.2. Y20-9-1

505 Melilite in Y20-9-1 also shows a group II-like REE pattern (Fig. 3 and Fig. A1b
506 in Electronic Annex EA2), suggesting the condensation of this CAI or its precursor from a
507 fractionated gas. Some melilite grains show negative $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values down to $-1.0 \pm$
508 $0.4\text{\textperthousand}$ (2σ ; Fig. 5). The negative $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values are often observed in amoeboid olivine
509 aggregates (Larsen et al., 2011; Olsen et al., 2011; MacPherson et al., 2012; Fukuda et al.,
510 2021) that are thought to be aggregates of solids condensed from the solar nebula (e.g.,
511 Krot et al., 2004). The negative $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values of some melilite grains also indicate that
512 this CAI has condensed from the solar nebula, and not experienced significant melting after
513 their condensation. The $(^{26}\text{Al}/^{27}\text{Al})_0$ value of Y20-9-1 is $(4.9 \pm 0.3) \times 10^{-5}$, corresponding to
514 an age difference of $0.06^{+0.06}_{-0.05}$ Myr relative to the canonical value. The intercept of the
515 melilite isochron is $(\delta^{26}\text{Mg}^*)_0 = -0.01 \pm 0.54\text{\textperthousand}$, which is not resolvable from the inferred
516 Solar System initial values. Although the uncertainty of $(\delta^{26}\text{Mg}^*)_0$ is not small enough to
517 discuss the Mg isotopic evolution precisely (Fig. 8), the unresolvable $(\delta^{26}\text{Mg}^*)_0$ value does

518 not conflict with its condensation from the Solar composition gas. However, Y20-9-1
519 shows positive anomalies in Ce, Eu, and Yb, suggesting that this CAI is not a single stage
520 condensation product but contains later additional condensation component(s) of these most
521 volatile REEs.

522

523 4.2. Initial abundances of ^{26}Al and ^{10}Be in CAIs and their implications for the origin of ^{10}Be
524 in the early Solar System

525 Since the discovery of the former presence of ^{10}Be in CAIs (McKeegan et al.,
526 2000), a possible correlation between ^{26}Al and ^{10}Be abundances in CAIs has been
527 investigated to discuss the origins of these SLRs (Sugiura et al., 2001; Marhas et al., 2002;
528 MacPherson et al., 2003; Chaussidon et al., 2006; Liu et al., 2009, 2010; Srinivasan and
529 Chaussidon, 2013; Gounelle et al., 2013; Fukuda et al., 2019). Figure 9 summarizes the
530 inferred $(^{26}\text{Al}/^{27}\text{Al})_0$ and $(^{10}\text{Be}/^{9}\text{Be})_0$ values of the present CO CAIs and other CAIs from
531 CV, CM, CH, and CH/CB chondrites (MacPherson et al., 2003; Chaussidon et al., 2006;
532 Liu et al., 2009, 2010; Srinivasan and Chaussidon, 2013; Gounelle et al., 2013; Mishra and
533 Marhas, 2019; Fukuda et al., 2019). Data from Sugiura et al. (2001) are not shown in Fig.
534 9, because most of their Al-Mg data were obtained from plagioclase analyses, which could
535 have been disturbed by thermal metamorphism on the parent bodies (e.g., LaTourrette and
536 Wasserburg, 1998; MacPherson et al., 2012; Van Orman et al., 2014). No obvious
537 correlation between the $(^{26}\text{Al}/^{27}\text{Al})_0$ and $(^{10}\text{Be}/^{9}\text{Be})_0$ among CAIs can be observed (Fig. 9).
538 The $(^{26}\text{Al}/^{27}\text{Al})_0$ values of the present CO CAIs are indistinguishable from the canonical
539 value of 5.2×10^{-5} and are also within the range of those of CV CAIs (e.g., MacPherson et
540 al., 2010; 2012; Kita et al., 2012; Srinivasan and Chaussidon, 2013; Mishra and
541 Chaussidon, 2014; Kawasaki et al., 2017; 2018; 2019; 2020). In contrast, $(^{10}\text{Be}/^{9}\text{Be})_0$ values
542 of the present CO CAIs ($2.9 \pm 0.6 \times 10^{-3}$ and $2.2 \pm 1.0 \times 10^{-3}$) are significantly higher than

543 the average $(^{10}\text{Be}/^{9}\text{Be})_0$ value of CV CAIs ($\sim 0.7 \times 10^{-3}$) (Fig. 9). To date, the lowest
544 $(^{10}\text{Be}/^{9}\text{Be})_0$ value for CAIs with near-canonical $(^{26}\text{Al}/^{27}\text{Al})_0 = \sim 4-5 \times 10^{-5}$ (hereafter ^{26}Al -
545 rich CAIs) is $(4.8 \pm 1.7) \times 10^{-4}$ (MacPherson et al., 2003). Hence, the variation in
546 $(^{10}\text{Be}/^{9}\text{Be})_0$ among the ^{26}Al -rich CAI forming-region(s) must be greater than a factor of six.
547 The apparent variation in $(^{10}\text{Be}/^{9}\text{Be})_0$ values among ^{26}Al -rich CAIs provides evidence for
548 heterogeneous distribution of ^{10}Be at the time of ^{26}Al -rich CAI formation and argues
549 against a homogeneous distribution of ^{10}Be expected for its molecular cloud origin (Desch
550 et al., 2004; Dunham et al., 2019).

551 Recently, Fukuda et al. (2019) revisited the origin of ^{10}Be in the early Solar
552 System based on their new Be-B isotopic analyses on CAIs in CH and CH/CB chondrites
553 (hereafter CH-CB CAIs). They observed high and variable $(^{10}\text{Be}/^{9}\text{Be})_0$ values ($0.17-6.1 \times$
554 10^{-3}) in CH-CB CAIs, and concluded that ^{10}Be was produced locally in the solar
555 protoplanetary disk near the proto-Sun. This is because such high $(^{10}\text{Be}/^{9}\text{Be})_0$ values ($> 1 \times$
556 10^{-3}) are difficult to reconcile with models invoking inheritance of ^{10}Be from the presolar
557 molecular cloud (Desch et al., 2004; Tatischeff et al., 2014) or neutrino spallation process
558 in low-mass core-collapse supernovae (Banerjee et al., 2016). For the same reason, the
559 observed high $(^{10}\text{Be}/^{9}\text{Be})_0$ values of the present CO CAIs also support the solar cosmic ray
560 irradiation origin of ^{10}Be in the early Solar System (McKeegan et al., 2000; Gounelle et al.,
561 2001, 2006, 2013; Goswami et al., 2001; MacPherson et al., 2003; Leya et al., 2003;
562 Chaussidon et al., 2006; Liu et al., 2009, 2010; Bricker and Caffee, 2010; Wielandt et al.,
563 2012; Srinivasan and Chaussidon, 2013; Sossi et al., 2017; Mishra and Marhas, 2019;
564 Fukuda et al., 2019; Jacquet, 2019). Hence, the observed variation in $(^{10}\text{Be}/^{9}\text{Be})_0$ values
565 among the ^{26}Al -rich CAIs (Fig. 7) can be well understood as a result of heterogeneous,
566 local production of ^{10}Be by cosmic ray irradiation caused by solar flares.

567 The solar cosmic ray irradiation origin of ^{10}Be is also consistent with the presence
568 of ^7Be in CAIs from CV chondrites ($^{10}\text{Be}/^{9}\text{Be} = \sim 1.6 \times 10^{-3}$; Chaussidon et al., 2006;
569 Mishra and Marhas, 2019). Because of its very short half-life ($T_{1/2} = 53$ days; Jaeger et al.,
570 1996), ^7Be must be synthesized immediately before or after CAI formation, which argues
571 against the inheritance of ^{10}Be from the molecular cloud (Desch et al., 2004) or low-mass
572 core-collapse supernovae (Banerjee et al., 2016). In this study, we obtained Be-B and Li
573 isotope data from different analytical spots so that our dataset cannot be used to discuss the
574 possible presence of ^7Be in the present CO CAIs.

575 In solar cosmic ray irradiation models, one would expect that Li and B isotope
576 ratios of an irradiation target are modified by spallation reactions alongside ^{10}Be production
577 (e.g., Liu et al., 2010). In fact, some CAIs from CV chondrites show sub-chondritic $^7\text{Li}/^6\text{Li}$
578 ratios (MacPherson et al., 2003; Wielandt et al., 2012) and supra-chondritic initial $^{10}\text{B}/^{11}\text{B}$
579 ratios (Liu and Chaussidon, 2018 and references therein). Since the collateral effects on Li
580 and B isotopes are highly dependent on the chemical compositions of irradiation targets
581 (e.g., Chaussidon and Gounelle, 2006), the observed $(^{10}\text{Be}/^{9}\text{Be})_0$, $^7\text{Li}/^6\text{Li}$, and initial $^{10}\text{B}/^{11}\text{B}$
582 ratios would constrain the nature of the irradiation targets, e.g., refractory solids or solar
583 composition gas. The sub-chondritic $^7\text{Li}/^6\text{Li}$ and supra-chondritic initial $^{10}\text{B}/^{11}\text{B}$ ratios
584 among some CV CAIs imply that a part of irradiation have taken place on the targets with
585 elevated Be/Li and Be/B ratios relative to chondritic ones (Liu et al., 2010; Srinivasan and
586 Chaussidon, 2013), which is consistent with the irradiation of CAI themselves. Given the
587 level of their $(^{10}\text{Be}/^{9}\text{Be})_0$ values ($\sim 4-10 \times 10^{-4}$) and chemical compositions, however, the
588 observed $^7\text{Li}/^6\text{Li}$ and initial $^{10}\text{B}/^{11}\text{B}$ ratios among CV CAIs should be close to spallogenic
589 $^7\text{Li}/^6\text{Li}$ (~ 0.8) and $^{10}\text{B}/^{11}\text{B}$ ($\sim 0.4-0.5$) ratios that are theoretically expected based on the
590 spallation production ratios of Li and B (Yiou et al., 1968). In contrast, $^7\text{Li}/^6\text{Li}$ ($\sim 9-14.5$)
591 and initial $^{10}\text{B}/^{11}\text{B}$ ratios ($\sim 0.235-0.258$) among CV CAIs are clearly different from the

592 spallogenic $^{10}\text{B}/^{11}\text{B}$ and $^7\text{Li}/^6\text{Li}$ ratios (McKeegan et al., 2000; Sugiura et al., 2001;
593 MacPherson et al., 2003; Chaussidon et al., 2006; Wielandt et al., 2012; Srinivasan and
594 Chaussidon, 2013; Sossi et al., 2017; Mishra and Marhas, 2019). Therefore, if irradiation
595 took place on the CAI themselves, additional mechanisms are required to explain the
596 observed sub-chondritic $^7\text{Li}/^6\text{Li}$ and supra-chondritic initial $^{10}\text{B}/^{11}\text{B}$ ratios among CV CAIs,
597 such as diffusive loss of spallogenic Li and B (Liu et al., 2010) or mixing between
598 spallogenic Li and B in refractory solids and the chondritic reservoir (e.g., solar
599 composition gas) (Srinivasan and Chaussidon, 2013). In contrast, Fukuda et al. (2019)
600 demonstrated that Li isotope ratios of CAIs from CH/CB chondrites are nearly chondritic,
601 irrespective of their $(^{10}\text{Be}/^9\text{Be})_0$ values. These data can be readily explained by solar cosmic
602 ray irradiation on a target with the chondritic Be/Li ratio of ~ 0.012 , but are inconsistent
603 with a refractory target with elevated Be/Li ratio of ~ 10 . Although secondary modifications
604 of Li isotope ratios by thermal processing in the solar nebula cannot be ruled out due to its
605 high volatility and diffusivity (e.g., Srinivasan and Chaussidon, 2013), Fukuda et al. (2019)
606 concluded that the irradiation targets were not solid CAI themselves but their precursors,
607 possibly solar composition gas. In addition, there are also some CAIs from CV chondrites
608 with sub-chondritic initial $^{10}\text{B}/^{11}\text{B}$ ratios (e.g., MacPherson et al., 2003). Considering both
609 the supra- and sub-chondritic initial $^{10}\text{B}/^{11}\text{B}$ ratios among CV CAIs, it is possible that such
610 a level of B isotopic heterogeneity existed at the CAI-forming regions.

611 Lithium isotope ratios and initial $^{10}\text{B}/^{11}\text{B}$ ratios of the present CO CAIs with high
612 $(^{10}\text{Be}/^9\text{Be})_0$ values are identical to chondritic Li and B isotopic compositions within
613 uncertainties, further supporting the conclusion by Fukuda et al. (2019). However, it should
614 be noted that at least CAI Y20-1X1 would have experienced thermal processing of a CAI-
615 like precursor (see section 4.1.1 and Fig. 8), and therefore, its initial Li and B isotope ratios
616 may have been lost during the thermal processing. Another CAI Y20-9-1 does not show

617 evidence of significant melting after their condensation, which may retain its original Li-
618 Be-B isotopic signatures. As noted earlier, however, because of the high volatility and
619 diffusivity of Li, this is not conclusive. Since fine-grained CAIs tend to show a group II
620 REE pattern, they are thought to be direct condensation products from the solar nebular and
621 were unlikely melted (MacPherson, 2014 and references therein). In this case, these CAIs
622 in the least metamorphosed chondrites may have preserved their initial Li and B isotopic
623 signatures inherited from the solar nebula. Correlated studies on REE and Li-Be-B analyses
624 of fine-grained CAIs will reveal more details of the nature of the irradiation targets.

625 As shown in Fig. 9, ^{26}Al -poor CAIs exhibit a large variation in $(^{10}\text{Be}/^{9}\text{Be})_0$ values
626 (Marhas et al., 2002; MacPherson et al., 2003; Liu et al., 2009; 2010; Wielandt et al., 2012;
627 Gounelle et al., 2013; Fukuda et al., 2019). Among them, $(^{10}\text{Be}/^{9}\text{Be})_0$ values of very
628 refractory, ^{26}Al -poor CH-CB CAIs are highly variable (Gounelle et al., 2013; Fukuda et al.,
629 2019). It has been proposed that very refractory, ^{26}Al -poor CH-CB CAIs formed at the very
630 beginning of the Solar System, prior to injection and/or homogenization of ^{26}Al from a
631 nearby star in the solar protoplanetary disk (e.g., Krot et al., 2008). If true, the high and
632 variable $(^{10}\text{Be}/^{9}\text{Be})_0$ values of ^{26}Al -poor CH-CB CAIs would reflect fluctuations of
633 energetic particle fluxes caused by episodic mass accretion events, such as FU-Ori
634 outbursts (Fukuda et al., 2019). Note, however, that the other ^{26}Al -poor CAIs with large
635 nucleosynthetic isotope anomalies, such as CAIs with fractionation and unidentified
636 nuclear effects (FUN CAIs; e.g., Wasserburg et al., 1977; Krot et al., 2014 and references
637 therein; Park et al., 2017) in CV chondrites and platy hibonite crystals (PLACs; Ireland,
638 1988; Liu et al., 2009; Kööp et al., 2016) from the Murchison CM chondrite, tend to show
639 consistently lower $(^{10}\text{Be}/^{9}\text{Be})_0$ values ($\sim 5 \times 10^{-4}$; Marhas et al., 2002; MacPherson et al.,
640 2003; Liu et al., 2009; 2010; Wielandt et al., 2012). Because the large nucleosynthetic
641 anomalies are not consistent with their late formation after the decay of ^{26}Al , these

refractory solids are thought to have formed prior to injection and/or homogenization of ^{26}Al in the solar protoplanetary disk (e.g., Sahijpal and Goswami, 1998; Liu et al., 2009; Kööp et al., 2016; 2018). The $(^{10}\text{Be}/^{9}\text{Be})_0$ values of FUN CAIs and PLACs are within the range of those for ^{26}Al -poor CH-CB CAIs (Fig. 9), but the consistently lower $(^{10}\text{Be}/^{9}\text{Be})_0$ values would be inconsistent with the variable energetic particle fluxes caused by episodic accretion events. Tatischeff et al. (2014), therefore, concluded that the consistently lower $(^{10}\text{Be}/^{9}\text{Be})_0$ values for FUN CAIs and PLACs might not be derived from solar cosmic ray irradiation, but from irradiation of the presolar molecular cloud by freshly accelerated cosmic ray escaped from an isolated supernova remnant. Since ^{26}Al -poor CH-CB CAIs do not show large nucleosynthetic isotope anomalies (Kimura et al., 1993), the formation timings and/or locations of FUN CAIs and PLACs might be different from those of ^{26}Al -poor CH-CB CAIs. Combined Be-B and stable isotope studies (e.g., Ca and Ti) will provide an opportunity to better understand the origin of ^{10}Be among ^{26}Al -poor CAIs.

655

656 4.3. Irradiation conditions and implications for the astronomical settings of ^{26}Al -rich CAI
657 formation

658 The newly obtained dataset in this study, together with the data of previous
659 studies, reveal the apparent variations in $(^{10}\text{Be}/^{9}\text{Be})_0$ among the ^{26}Al -rich CAIs (Fig. 9). If
660 ^{10}Be was produced by solar cosmic ray irradiation, the variation in $(^{10}\text{Be}/^{9}\text{Be})_0$ among CAIs
661 are expected to reflect different irradiation conditions in the early solar nebula (e.g., proton
662 fluence, chemical compositions of targets; Chaussidon and Gounelle, 2006 and references
663 therein). On the basis of a model introduced by Fowler et al. (1962), the production ratio of
664 ^{10}Be (relative to ^{9}Be) by solar cosmic ray irradiation can be written as
665

$$666 \quad ^{10}\text{Be}/^{9}\text{Be} = ^{16}\text{O}/^{9}\text{Be} \sum_i y_i \int \sigma_i(E) (dF/dE) dE$$

667

668 where y_i is the abundance of cosmic ray species ($i = {}^3\text{He}, {}^4\text{He}$) relative to proton ($y_p = 1$),
669 $\sigma_i(E)$ is the cross section of a given nuclear reaction (cosmic ray + ${}^{16}\text{O} \rightarrow {}^{10}\text{Be}$), and dF/dE
670 is the proton differential fluence, F is the fluence, and E is the energy. If we assume
671 $(dF/dE) = KE^{-\gamma}$ where the γ is the energy distribution spectral slope, $y_i = 0.1$ ($i = {}^4\text{He}$), and
672 use the cross sections of Gounelle et al. (2006), the estimated ${}^{10}\text{Be}/{}^9\text{Be}$ ratio is proportional
673 to the chemical composition of the target (i.e., ${}^{16}\text{O}/{}^9\text{Be}$) and the proton fluence. Thus, by
674 determining the chemical composition of target, the observed variation in $({}^{10}\text{Be}/{}^9\text{Be})_0$
675 among the ${}^{26}\text{Al}$ -rich CAIs can be used to estimate a difference in the proton fluence.
676 Considering the irradiation of CAI solid itself (${}^{16}\text{O}/{}^9\text{Be} = 1.2 \times 10^7$), Gounelle et al. (2013)
677 estimated the proton fluence that needed to account for the $({}^{10}\text{Be}/{}^9\text{Be})_0 = 10.4 \times 10^{-3}$
678 observed in CAI 411 from CH/CB chondrite Isheyev, which ranges from 1.7×10^{19} to 3.4
679 $\times 10^{20}$ protons cm^{-2} for γ varying between 2.5 and 4. Here we refer the estimation by
680 Gounelle et al. (2013), but we consider the irradiation of solar composition gas (i.e.,
681 ${}^{16}\text{O}/{}^9\text{Be} = 3.4 \times 10^7$; Palme et al., 2014) instead of CAI solid itself. Using $({}^{10}\text{Be}/{}^9\text{Be})_0 = (2.9$
682 $\pm 0.6) \times 10^{-3}$ for Y20-1X1 that was better constrained than that of Y20-9-1 [$(2.2 \pm 1.0) \times$
683 10^{-3}], we derive the proton fluences ranging from 1.7×10^{18} to 3.3×10^{19} protons cm^{-2} for γ
684 varying between 2.5 and 4, while those for CV CAIs [$({}^{10}\text{Be}/{}^9\text{Be})_0 = \sim 0.7 \times 10^{-3}$ in average]
685 can also be calculated as 4.0×10^{17} to 8.1×10^{18} protons cm^{-2} for γ varying between 2.5
686 and 4.

687 The variation in the estimated proton fluences among ${}^{26}\text{Al}$ -rich CAIs can be
688 understood as a difference in solar cosmic ray fluxes at their formation region. If all the
689 ${}^{26}\text{Al}$ -rich CAIs formed at the same region and were irradiated by cosmic rays caused by
690 solar flare having the similar spectral slope, one can expect that solar cosmic ray fluxes at
691 the CAI-forming region would have fluctuated by at least a factor of six within a short

duration (~ 0.2 Myr) that is inferred from the Al-Mg chronology. Alternatively, the variation in the estimated proton fluences among ^{26}Al -rich CAIs might reflect a difference in the formation locations of the CAIs (i.e., distance from the proto-Sun). Since energetic particle fluxes at inner parts of the protoplanetary disk were likely higher than at outer parts (e.g., Jacquet, 2019), the present CO CAIs could have formed closer to the Sun compared with ^{26}Al -rich CV CAIs (Fig. 10). Recently, Dunham et al. (2019) reported a weighted average $(^{10}\text{Be}/^{9}\text{Be})_0 = (8.4 \pm 1.6) \times 10^{-4}$ for six CO CAIs, which is clearly lower than $(^{10}\text{Be}/^{9}\text{Be})_0$ values of the present CO CAIs, but rather consistent with those for ^{26}Al -rich CV CAIs. By considering the data from Dunham et al. (2019), the difference in $(^{10}\text{Be}/^{9}\text{Be})_0$ values among CO and CV CAIs is not related to the difference in their host chondrite groups (i.e., CV versus CO). Alternatively, it is possible that higher $(^{10}\text{Be}/^{9}\text{Be})_0$ values are related to their REE abundance patterns (Sossi et al., 2017). The higher $(^{10}\text{Be}/^{9}\text{Be})_0$ values recorded in the present CO CAIs with the group II REE pattern is consistent with the observation by Sossi et al. (2017), who demonstrated that the inferred $(^{10}\text{Be}/^{9}\text{Be})_0$ value for fine-grained CAIs with the group II REE pattern is higher than that for coarse-grained CAIs with an unfractionated REE pattern. These observations indicate that CAIs with the group II REE pattern (or at least their precursors) might have formed at inner parts of the solar protoplanetary disk (Fig. 10).

5. Conclusions

We have investigated Li-Be-B and Al-Mg isotope systematics and REE abundances in two CAIs, Y20-1X1 and Y20-9-1, from Y-81020 that is one of the least metamorphosed carbonaceous chondrites (CO3.05). The $(^{26}\text{Al}/^{27}\text{Al})_0$ values of Y20-1X1

717 and Y20-9-1 are $(4.8 \pm 0.5) \times 10^{-5}$ and $(4.9 \pm 0.3) \times 10^{-5}$, respectively, both of which are
718 identical to the canonical $^{26}\text{Al}/^{27}\text{Al}$ ratio. Assuming the homogenous distribution of ^{26}Al
719 with the canonical $^{26}\text{Al}/^{27}\text{Al}$ ratio at the CAI-forming region, the present CO CAIs formed
720 within ~ 0.2 Myr after the birth of the Solar System. The $(^{10}\text{Be}/^{9}\text{Be})_0$ values of Y20-1X1 and
721 Y20-9-1 are $(2.9 \pm 0.6) \times 10^{-3}$ and $(2.2 \pm 1.0) \times 10^{-3}$, respectively, which are significantly
722 higher than the average $(^{10}\text{Be}/^{9}\text{Be})_0 = \sim 0.7 \times 10^{-3}$ of ^{26}Al -rich CAIs from CV chondrites.
723 The apparent variation provides evidence for heterogeneous distribution of ^{10}Be at the birth
724 of the Solar System and supports the solar cosmic ray irradiation origin of ^{10}Be . The present
725 CO CAIs exhibit the group II-like REE pattern, suggesting the condensation of these CAIs
726 or their precursors from a fractionated gas. Since high $(^{10}\text{Be}/^{9}\text{Be})_0$ values tend to be found
727 in CAIs with the group II REE pattern, these types of CAIs or their precursors might have
728 formed at the innermost part of the solar protoplanetary disk. Alternatively, if the present
729 CO CAIs formed in the same region as ^{26}Al -rich CV CAIs, solar energetic particle fluxes
730 from the proto-Sun would have changed by a factor of six within a short duration (~ 0.2
731 Myr) at the CAI forming-region.

732

733

734 **Acknowledgment**

735 We thank National Institute of Polar Research (NIPR, Japan) for providing the
736 Yamato-81020 sample. We also thank Hiroshi Hidaka, Shogo Tachibana, Takashi
737 Mikouchi, Makoto Kimura, and Mingming Zhang for their valuable comments, Naoto
738 Takahata for assistance with NanoSIMS analyses, and Koji Ichimura for technical help
739 with FE-EPMA analyses. We are grateful to Ritesh K. Mishra and two anonymous
740 reviewers for constructive reviews that significantly improved the quality of the paper, and
741 Audrey Bouvier for prompt editorial handling. This work was partly supported by JSPS

742 KAKENHI grants No. 26400524 and 18K03720. WiscSIMS is partly supported by NSF
743 Instrumentation and Facility Program (EAR-1658823). The upgrade of the RF plasma
744 source is supported by the NASA Laboratory Analysis of Returned Samples and Planetary
745 Major Equipment Programs (NNX16AG80G) and the NSF Instrumentation and Facility
746 Program (EAR-1355590).

747

748

749 **References**

750

- 751 Amelin Y., Kaltenbach A., Iizuka T., Stirling C. H., Ireland T. R., Petaev M. and Jacobsen
752 S. B. (2010) U-Pb chronology of the Solar System's oldest solids with variable
753 $^{238}\text{U}/^{235}\text{U}$. *Earth Planet. Sci. Lett.* **300**, 343–350.
- 754 Banerjee P., Qian Y. Z., Heger A. and Haxton W. C. (2016) Evidence from stable isotopes
755 and ^{10}Be for solar system formation triggered by a low-mass supernova. *Nat. Commun.* **7**, 1–6.
- 756 Bizzarro M., Baker J. A. and Haack H. (2004) Mg isotope evidence for contemporaneous
757 formation of chondrules and refractory inclusions. *Nature* **431**, 275–278.
- 758 Bouvier A. and Wadhwa M. (2010) The age of the Solar System redefined by the oldest Pb-
759 Pb age of a meteoritic inclusion. *Nat. Geosci.* **3**, 637–641.
- 760 Boynton W. V. (1975) Fractionation in the solar nebula: condensation of yttrium and the
761 rare earth elements. *Geochim. Cosmochim. Acta* **39**, 569–584.
- 762 Brand W. A., Coplen T. B., Vogl J., Rosner M. and Prohaska T. (2014) Assessment of
763 international reference materials for isotope-ratio analysis (IUPAC technical report).
764 *Pure Appl. Chem.* **86**, 425–467.
- 765 Bricker G. E. and Caffee M. W. (2010) Solar wind implantation model for ^{10}Be in calcium-
766

- 767 aluminum inclusions. *Astrophys. J.* **725**, 443–449.
- 768 Chaussidon M. and Gounelle M. (2006) Irradiation processes in the early solar system. In
769 *Meteorites and the early solar system II* (eds. D. S. Lauretta and H. Y. McSween). The
770 University of Arizona Press, Arizona. pp. 323–339.
- 771 Chaussidon M. and Liu M.-C. (2015) Timing of nebula processes that shaped the
772 precursors of the terrestrial planets. In *The Early Earth: Accretion and Differentiation*
773 (eds. J. Badro and M. Walter). American Geophysical Union, John Wiley & Sons,
774 Inc., Washington, D.C. pp. 1–26.
- 775 Chaussidon M., Robert F. and McKeegan K. D. (2006) Li and B isotopic variations in an
776 Allende CAI: Evidence for the in situ decay of short-lived ^{10}Be and for the possible
777 presence of the short-lived nuclide ^7Be in the early solar system. *Geochim.*
778 *Cosmochim. Acta* **70**, 5433–5436.
- 779 Connelly J. N., Bizzarro M., Krot A. N., Nordlund Å., Wielandt D. and Ivanova M. A.
780 (2012) The absolute chronology and thermal processing of solids in the solar
781 protoplanetary disk. *Science*. **338**, 651–655.
- 782 Davis A. M. and Grossman L. (1979) Condensation and fractionation of rare earths in the
783 solar nebula. *Geochim. Cosmochim. Acta* **43**, 1611–1632.
- 784 Davis A. M. and McKeegan K. D. (2014) Short-lived radionuclides and early Solar System
785 chronology. In *Treatise on Geochemistry: 2nd Edition* (eds. H. Holland and K.
786 Turekian). Elsevier, Oxford. pp. 361–395.
- 787 Desch S. J., Connolly H. C. J. and Srinivasan G. (2004) An interstellar origin for the
788 Beryllium 10 in calcium-rich, aluminum-rich inclusions. *Astrophys. J.* **602**, 528–542.
- 789 Dunham E. T., Liu M.-C., Hertwig A. T., Desch S. J. and Wadhwa M. (2019) CO₃ and
790 CH/CB CAIs suggest ^{10}Be was distributed uniformly in the Solar nebula. In *82nd*
791 *Annual Meeting of The Meteoritical Society*, Abstract #6346.

- 792 Dunham E. T., Wadhwa M., Desch S. J. and Hervig R. L. (2020) Best practices for
793 determination of initial $^{10}\text{Be}/^{9}\text{Be}$ in early Solar System materials by secondary ion
794 mass spectrometry. *Geostand. Geoanalytical Res.* 12329.
- 795 Ferreira T. and Rasband W. (2012) ImageJ User Guide. , 1–187. Available at:
796 <https://imagej.nih.gov/ij/docs/user-guide.pdf>.
- 797 Fowler W. A., Greenstein J. L. and Hoyle F. (1961) Deuteronomy. Synthesis of deuterons
798 and the light nuclei during the early history of the Solar System. *Am. J. Phys.* **29**, 393–
799 403.
- 800 Fowler W. A., Greenstein J. L. and Hoyle F. (1962) Nucleosynthesis during the early
801 history of the Solar System. *Geophys. J. R. Astron. Soc.* **6**, 148–220.
- 802 Fujiya W., Hoppe P. and Ott U. (2016) Boron abundances and isotopic ratios of olivine
803 grains on Itokawa returned by the Hayabusa spacecraft. *Meteorit. Planet. Sci.* **51**,
804 1721–1729.
- 805 Fukuda K., Fujiya W., Hiyagon H., Makino Y., Sugiura N., Takahata N., Hirata T. and
806 Sano Y. (2018) Beryllium-boron relative sensitivity factors for melilitic glasses
807 measured with a NanoSIMS ion microprobe. *Geochem. J.* **52**, 255–262.
- 808 Fukuda K., Hiyagon H., Fujiya W., Takahata N., Kagoshima T. and Sano Y. (2019) Origin
809 of the short-lived radionuclide ^{10}Be and its implications for the astronomical setting of
810 CAI formation in the solar protoplanetary disk. *Astrophys. J.* **886**, 11pp.
- 811 Fukuda K., Beard B. L., Dunlap D. R., Spicuzza M. J., Fournelle J. H., Wadhwa M. and
812 Kita N. T. (2020) Magnesium isotope analysis of olivine and pyroxene by SIMS:
813 Evaluation of matrix effects. *Chem. Geol.* **540**, 119482.
- 814 Fukuda K., Brownlee D. E., Joswiak D. J., Tenner T. J., Kimura M. and Kita N. T. (2021)
815 Correlated isotopic and chemical evidence for condensation origins of olivine in comet
816 81P/Wild 2 and in AOAs from CV and CO chondrites. *Geochim. Cosmochim. Acta*.

- 817 accepted.
- 818 Galy A., Yoffe O., Janney P. E., Williams R. W., Cloquet C., Alard O., Halicz L., Wadhwa
819 M., Hutcheon I. D., Ramon E. and Carignan J. (2003) Magnesium isotope
820 heterogeneity of the isotopic standard SRM980 and new reference materials for
821 magnesium-isotope-ratio measurements. *J. Anal. At. Spectrom.* **18**, 1352.
- 822 Goswami J. N., Srinivasan G. and Ulyanov A. A. (1994) Ion microprobe studies of
823 Efremovka CAIs: I. Magnesium isotope composition. *Geochim. Cosmochim. Acta* **58**,
824 431–447.
- 825 Goswami J. N., Marhas K. K. and Sahijpal S. (2001) Did solar energetic particles produce
826 the short-lived nuclides present in the early Solar System? *Astrophys. J.* **552**, 912–912.
- 827 Gounelle M., Shu F. H., Shang H., Glassgold A. E., Rehm K. E. and Lee T. (2001) Extinct
828 radioactivities and protosolar cosmic rays: Self-shielding and light elements.
829 *Astrophys. J.* **548**, 1051–1070.
- 830 Gounelle M., Shu F. H., Shang H., Glassgold A. E., Rehm K. E. and Lee T. (2006) The
831 irradiation origin of beryllium radioisotopes and other short-lived radionuclides.
832 *Astrophys. J.* **640**, 1163–1170.
- 833 Gounelle M., Chaussidon M. and Rollion-Bard C. (2013) Variable and extreme irradiation
834 conditions in the early solar system inferred from the initial abundance of ^{10}Be in
835 isheyev CAIs. *Astrophys. J. Lett.* **763**, 5pp.
- 836 Grossman J. N. and Brearley A. J. (2005) The onset of metamorphism in ordinary and
837 carbonaceous chondrites. *Meteorit. Planet. Sci.* **40**, 87–122.
- 838 Grossman J. N. and Rubin A. E. (2006) Dominion Range 03238: A possible missing link in
839 the metamorphic sequence of CO3 chondrites. *37th Lunar Planet. Sci. Conf.*, #1383.
- 840 Grossman L. (1975) Petrography and mineral chemistry of Ca-rich inclusions in the
841 Allende meteorite. *Geochim. Cosmochim. Acta* **39**, 433–454.

- 842 Han J., Keller L. P., Liu M. C., Needham A. W., Hertwig A. T., Messenger S. and Simon J.
843 I. (2020) A coordinated microstructural and isotopic study of a Wark-Lovering rim on
844 a Vigarano CAI. *Geochim. Cosmochim. Acta* **269**, 639–660.
- 845 Hiyagon H., Yamakawa A., Ushikubo T., Lin Y. and Kimura M. (2011) Fractionation of
846 rare earth elements in refractory inclusions from the Ningqiang meteorite: Origin of
847 positive anomalies in Ce, Eu, and Yb. *Geochim. Cosmochim. Acta* **75**, 3358–3384.
- 848 Holst J. C., Olsen M. B., Paton C., Nagashima K., Schiller M., Wielandt D., Larsen K. K.,
849 Connelly J. N., Jorgensen J. K., Krot A. N., Nordlund A. and Bizzarro M. (2013)
850 ^{182}Hf - ^{182}W age dating of a ^{26}Al -poor inclusion and implications for the origin of short-
851 lived radioisotopes in the early Solar System. *Proc. Natl. Acad. Sci.* **110**, 8819–8823.
- 852 Ireland T. R., Fahey A. J. and Zinner E. K. (1988) Trace-element abundances in hibonites
853 from the Murchison carbonaceous chondrite: Constraints on high-temperature
854 processes in the solar nebula. *Geochim. Cosmochim. Acta* **52**, 2841–2854.
- 855 Itano K. and Iizuka T. (2017) Unraveling the mechanism and impact of oxide production in
856 LA-ICP-MS by comprehensive analysis of REE-Th-U phosphates. *J. Anal. At.*
857 *Spectrom.* **32**, 2003–2010.
- 858 Jacobsen B., Yin Q.-Z., Moynier F., Amelin Y., Krot A. N., Nagashima K., Hutcheon I. D.
859 and Palme H. (2008) ^{26}Al - ^{26}Mg and ^{207}Pb - ^{206}Pb systematics of Allende CAIs:
860 Canonical solar initial ^{26}Al / ^{27}Al ratio reinstated. *Earth Planet. Sci. Lett.* **272**, 353–364.
- 861 Jacquet E. (2019) Beryllium-10 production in gaseous protoplanetary disks and
862 implications for the astrophysical setting of refractory inclusions. *Astron. Astrophys.*
863 **624**, A131.
- 864 Jaeger M., Wilmes S., Kölle V., Staudt G. and Mohr P. (1996) Precision measurement of
865 the half-life of ^7Be . *Phys. Rev. C - Nucl. Phys.* **54**, 423–424.
- 866 Jochum K. P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D. E., Stracke A.,

- 867 Birbaum K., Frick D. A., Günther D. and Enzweiler J. (2011) Determination of
868 reference values for NIST SRM 610-617 glasses following ISO guidelines. *Geostand.*
869 *Geoanalytical Res.* **35**, 397–429.
- 870 Kasemann S. A., Jeffcoate A. B. and Elliott T. (2005) Lithium isotope composition of
871 basalt glass reference material. *Anal. Chem.* **77**, 5251–5257.
- 872 Kawasaki N., Itoh S., Sakamoto N. and Yurimoto H. (2017) Chronological study of oxygen
873 isotope composition for the solar protoplanetary disk recorded in a fluffy Type A CAI
874 from Vigarano. *Geochim. Cosmochim. Acta* **201**, 83–102.
- 875 Kawasaki N., Simon S. B., Grossman L., Sakamoto N. and Yurimoto H. (2018) Crystal
876 growth and disequilibrium distribution of oxygen isotopes in an igneous Ca-Al-rich
877 inclusion from the Allende carbonaceous chondrite. *Geochim. Cosmochim. Acta* **221**,
878 318–341.
- 879 Kawasaki N., Park C., Sakamoto N., Park S. Y., Kim H. N., Kuroda M. and Yurimoto H.
880 (2019) Variations in initial $^{26}\text{Al}/^{27}\text{Al}$ ratios among fluffy Type A Ca-Al-rich
881 inclusions from reduced CV chondrites. *Earth Planet. Sci. Lett.* **511**, 25–35.
- 882 Kawasaki N., Wada S., Park C., Sakamoto N. and Yurimoto H. (2020) Variations in initial
883 $^{26}\text{Al}/^{27}\text{Al}$ ratios among fine-grained Ca-Al-rich inclusions from reduced CV
884 chondrites. *Geochim. Cosmochim. Acta* **279**, 1–15.
- 885 Kimura M., Goresy A. El, Palme H. and Zinner E. (1993) Ca-, Al-rich inclusions in the
886 unique chondrite ALH85085: Petrology, chemistry and isotopic compositions.
887 *Geochim. Cosmochim. Acta* **57**, 2329–2359.
- 888 Kimura M., Grossman J. N. and Weisberg M. K. (2008) Fe-Ni metal in primitive
889 chondrites: Indicators of classification and metamorphic conditions for ordinary and
890 CO chondrites. *Meteorit. Planet. Sci.* **43**, 1161–1177.
- 891 Kita N. T., Ushikubo T., Knight K. B., Mendybaev R. A., Davis A. M., Richter F. M. and

- 892 Fournelle J. H. (2012) Internal ^{26}Al - ^{26}Mg isotope systematics of a Type B CAI:
893 Remelting of refractory precursor solids. *Geochim. Cosmochim. Acta* **86**, 37–51.
- 894 Kööp L., Davis A. M., Nakashima D., Park C., Krot A. N., Nagashima K., Tenner T. J.,
895 Heck P. R. and Kita N. T. (2016) A link between oxygen, calcium and titanium
896 isotopes in ^{26}Al -poor hibonite-rich CAIs from Murchison and implications for the
897 heterogeneity of dust reservoirs in the solar nebula. *Geochim. Cosmochim. Acta* **189**,
898 70–95.
- 899 Kööp L., Nakashima D., Heck P. R., Kita N. T., Tenner T. J., Krot A. N., Nagashima K.,
900 Park C. and Davis A. M. (2018) A multielement isotopic study of refractory FUN and
901 F CAIs: Mass-dependent and mass-independent isotope effects. *Geochim. Cosmochim.
902 Acta* **221**, 296–317.
- 903 Korschinek G., Bergmaier A., Faestermann T., Gerstmann U. C., Knie K., Rugel G.,
904 Wallner A., Dillmann I., Dollinger G., von Gostomski C. L., Kossert K., Maiti M.,
905 Poutivtsev M. and Remmert A. (2010) A new value for the half-life of ^{10}Be by Heavy-
906 Ion Elastic Recoil Detection and liquid scintillation counting. *Nucl. Instruments
907 Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms* **268**, 187–191.
- 908 Krot A. N., Petaev M. I., Russell S. S., Itoh S., Fagan T. J., Yurimoto H., Chizmadia L.,
909 Weisberg M. K., Komatsu M., Ulyanov A. A. and Keil K. (2004) Amoeboid olivine
910 aggregates and related objects in carbonaceous chondrites: Records of nebular and
911 asteroid processes. *Chemie der Erde* **64**, 185–239.
- 912 Krot A. N., Nagashima K., Bizzarro M., Huss G. R., Davis A. M., Meyer B. S. and
913 Ulyanov A. A. (2008) Multiple generations of refractory inclusions in the metal-rich
914 carbonaceous chondrites Acfer 182/214 and Isheyev. *Astrophys. J.* **672**, 713–721.
- 915 Krot A. N., Makide K., Nagashima K., Huss G. R., Ogliore R. C., Ciesla F. J., Yang L.,
916 Hellebrand E. and Gaidos E. (2012) Heterogeneous distribution of ^{26}Al at the birth of

- 917 the solar system: Evidence from refractory grains and inclusions. *Meteorit. Planet. Sci.*
918 **47**, 1948–1979.
- 919 Krot A. N., Nagashima K., Wasserburg G. J., Huss G. R., Papanastassiou D., Davis A. M.,
920 Hutcheon I. D. and Bizzarro M. (2014) Calcium-aluminum-rich inclusions with
921 fractionation and unknown nuclear effects (FUN CAIs): I. Mineralogy, petrology, and
922 oxygen isotopic compositions. *Geochim. Cosmochim. Acta* **145**, 206–247.
- 923 Krot A. N., Nagashima K., Simon S. B., Ma C., Connolly H. C., Huss G. R., Davis A. M.,
924 and Bizzarro M. (2019) Mineralogy, petrography, and oxygen and aluminum-
925 magnesium isotope systematics of grossite-bearing refractory inclusions.
926 *Geochemistry* **79**, 125529.
- 927 Larsen K. K., Trinquier A., Paton C., Schiller M., Wielandt D., Ivanova M. A., Connally J.
928 N., Nordlund Å., Krot A. N. and Bizzarro M. (2011) Evidence for magnesium isotope
929 heterogeneity in the solar protoplanetary disk. *Astrophys. J. Lett.* **735**, 7pp.
- 930 Larsen K. K., Wielandt D., Schiller M., Krot A. N. and Bizzarro M. (2020) Episodic
931 formation of refractory inclusions in the Solar System and their presolar heritage.
932 *Earth Planet. Sci. Lett.* **535**, 116088.
- 933 LaTourrette T. and Wasserburg G. J. (1998) Mg diffusion in anorthite: implications for the
934 formation of early solar system planetesimals. *Earth Planet. Sci. Lett.* **158**, 91–108.
- 935 Leya I., Halliday A. N. and Wieler R. (2003) The predictable collateral consequences of
936 nucleosynthesis by spallation reactions in the early Solar System. *Astrophys. J.* **594**,
937 605–616.
- 938 Liu M.-C. and Chaussidon M. (2018) The cosmochemistry of boron isotopes. In *Advances*
939 *in Isotope Geochemistry* (eds. H. Macschat and G. Foster). Springer, Berlin. pp. 273–
940 289.
- 941 Liu M.-C., McKeegan K. D., Goswami J. N., Marhas K. K., Sahijpal S., Ireland T. R. and

- 942 Davis A. M. (2009) Isotopic records in CM hibonites: Implications for timescales of
943 mixing of isotope reservoirs in the solar nebula. *Geochim. Cosmochim. Acta* **73**, 5051–
944 5079.
- 945 Liu M.-C., Nittler L. R., Alexander C. M. O. D. and Lee T. (2010) Lithium-beryllium-
946 boron isotopic compositions in meteoritic hibonite: Implications for origin of ^{10}Be and
947 early solar system irradiation. *Astrophys. J. Lett.* **719**, 99–103.
- 948 Liu M.-C., Han J., Brearley A. J. and Hertwig A. T. (2019) Aluminum-26 chronology of
949 dust coagulation and early solar system evolution. *Sci. Adv.* **5**, 1–8.
- 950 Lodders K. (2003) Solar system abundances and condensation temperatures of the
951 elements. *Astrophys. J.* **591**, 1220–1247.
- 952 MacPherson G. J. (2014) Calcium-aluminum-rich inclusions in chondritic meteorites. In
953 *Treatise on Geochemistry: 2nd Edition* (eds. H. Holland and K. Turekian). Elsevier,
954 Oxford. pp. 139–179.
- 955 Macpherson G. J. and Grossman L. (1984) “Fluffy” Type A Ca-, Al-rich inclusions in the
956 Allende meteorite. *Geochim. Cosmochim. Acta* **48**, 29–46.
- 957 MacPherson G. J., Huss G. R. and Davis A. M. (2003) Extinct ^{10}Be in Type A calcium-
958 aluminum-rich inclusions from CV chondrites. *Geochim. Cosmochim. Acta* **67**, 3165–
959 3179.
- 960 MacPherson G. J., Bullock E. S., Janney P. E., Kita N. T., Ushikubo T., Davis A. M.,
961 Wadhwa M. and Krot A. N. (2010) Early solar nebula condensates with canonical, not
962 supracanonical, initial $^{26}\text{Al}/^{27}\text{Al}$ ratios. *Astrophys. J. Lett.* **711**, 117–121.
- 963 MacPherson G. J., Kita N. T., Ushikubo T., Bullock E. S. and Davis A. M. (2012) Well-
964 resolved variations in the formation ages for Ca-Al-rich inclusions in the early Solar
965 System. *Earth Planet. Sci. Lett.* **331–332**, 43–54.
- 966 Makide K., Nagashima K., Krot A. N., Huss G. R., Hutcheon I. D., Hellebrand E. and

- 967 Petaev M. I. (2013) Heterogeneous distribution of ^{26}Al at the birth of the Solar
968 System: Evidence from corundum-bearing refractory inclusions in carbonaceous
969 chondrites. *Geochim. Cosmochim. Acta* **110**, 190–215.
- 970 Marhas K. K., Goswami J. N. and Davis A. M. (2002) Short-lived nuclides in hibonite
971 grains from Murchison: Evidence for solar system evolution. *Science*. **298**, 2182–
972 2185.
- 973 Martin P. M. and Mason B. (1974) Major and trace elements in the Allende meteorite.
974 *Nature* **249**, 333–334.
- 975 McDonough W. F. and Sun S. -s. (1995) The composition of the Earth. *Chem. Geol.* **120**,
976 223–253.
- 977 McKeegan K. D., Chaussidon M. and Robert F. (2000) Incorporation of short-lived ^{10}Be in
978 a calcium-aluminum-rich inclusion from the Allende meteorite. *Science*. **289**, 1334–
979 1337.
- 980 Mishra R. K. (2018) Petrography and mineralogy of calcium-, aluminum-rich inclusions in
981 an unequilibrated carbonaceous chondrite Y 81020 (CO3.05). *Curr. Sci.* **114**, 1510–
982 1519.
- 983 Mishra R. K. and Chaussidon M. (2014) Timing and extent of Mg and Al isotopic
984 homogenization in the early inner Solar System. *Earth Planet. Sci. Lett.* **390**, 318–326.
- 985 Mishra R. K. and Marhas K. K. (2019) Meteoritic evidence of a late superflare as source of
986 ^{7}Be in the early Solar System. *Nat. Astron.* **3**, 498–505.
- 987 Nagahara H. and Ozawa K. (2000) Isotopic fractionation as a probe of heating processes in
988 the solar nebula. *Chem. Geol.* **169**, 45–68.
- 989 Nagasawa H., Schreiber H. D. and Morris R. V. (1980) Experimental mineral/liquid
990 partition coefficients of the rare earth elements (REE), Sc and Sr for perovskite, spinel
991 and melilite. *Earth Planet. Sci. Lett.* **46**, 431–437.

- 992 Ogliore R. C., Huss G. R. and Nagashima K. (2011) Ratio estimation in SIMS analysis.
- 993 *Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms* **269**,
- 994 1910–1918.
- 995 Olsen M. B., Krot A. N., Larsen K., Paton C., Wielandt D., Schiller M. and Bizzarro M.
- 996 (2011) Whole-rock ^{26}Al - ^{26}Mg systematics of amoeboid olivine aggregates from the
- 997 oxidized CV3 carbonaceous chondrite Allende. *Meteorit. Planet. Sci.* **46**, 1688–1702.
- 998 Van Orman J. A., Cherniak D. J. and Kita N. T. (2014) Magnesium diffusion in
- 999 plagioclase: Dependence on composition, and implications for thermal resetting of the
- 1000 ^{26}Al - ^{26}Mg early solar system chronometer. *Earth Planet. Sci. Lett.* **385**, 79–88.
- 1001 Palme H., Lodders K. and Jones A. (2014) Solar System Abundances of the Elements. In
- 1002 *Treatise on Geochemistry: 2nd Edition* (eds. H. D. Holland and K. K. Turekian).
- 1003 Elsevier, Oxford. pp. 15–36.
- 1004 Park C., Nagashima K., Krot A. N., Huss G. R., Davis A. M. and Bizzarro M. (2017)
- 1005 Calcium-aluminum-rich inclusions with fractionation and unidentified nuclear effects
- 1006 (FUN CAIs): II. Heterogeneities of magnesium isotopes and ^{26}Al in the early Solar
- 1007 System inferred from in situ high-precision magnesium-isotope measurements.
- 1008 *Geochim. Cosmochim. Acta* **201**, 6–24.
- 1009 Podosek F. A., Zinner E. K., Macpherson G. J., Lundberg L. L., Brannon J. C. and Fahey
- 1010 A. J. (1991) Correlated study of initial ^{87}Sr / ^{86}Sr and Al-Mg isotopic systematics and
- 1011 petrologic properties in a suite of refractory inclusions from the Allende meteorite.
- 1012 *Geochim. Cosmochim. Acta* **55**, 1083–1110.
- 1013 Reeves H. (1994) On the origin of the light elements ($Z < 6$). *Rev. Mod. Phys.* **66**, 193–216.
- 1014 Richter F. M. (2004) Timescales determining the degree of kinetic isotope fractionation by
- 1015 evaporation and condensation. *Geochim. Cosmochim. Acta* **68**, 4971–4992.
- 1016 Richter F. M., Janney P. E., Mendybaev R. A., Davis A. M. and Wadhwa M. (2007)

- 1017 Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation.
- 1018 *Geochim. Cosmochim. Acta* **71**, 5544–5564.
- 1019 Russell S. S., Huss G. R., Fahey A. J., Greenwood R. C., Hutchison R. and Wasserburg G.
- 1020 J. (1998) An isotopic and petrologic study of calcium-aluminum-rich inclusions from
- 1021 CO₃ meteorites. *Geochim. Cosmochim. Acta* **62**, 689–714.
- 1022 Sahijpal S. and Goswami J. N. (1998) Refractory phases in primitive meteorites devoid of
- 1023 ²⁶Al and ⁴¹Ca: Representative samples of first Solar System solids? *Astrophys. J.* **509**,
- 1024 L137–L140.
- 1025 Seitz H. M., Brey G. P., Zipfel J., Ott U., Weyer S., Durali S. and Weinbruch S. (2007)
- 1026 Lithium isotope composition of ordinary and carbonaceous chondrites, and
- 1027 differentiated planetary bodies: Bulk solar system and solar reservoirs. *Earth Planet.*
- 1028 *Sci. Lett.* **260**, 582–596.
- 1029 Simon J. I., Young E. D., Russell S. S., Tonui E. K., Dyl K. A. and Manning C. E. (2005)
- 1030 A short timescale for changing oxygen fugacity in the solar nebula revealed by high-
- 1031 resolution ²⁶Al-²⁶Mg dating of CAI rims. *Earth Planet. Sci. Lett.* **238**, 272–283.
- 1032 Simon S. B., Davis A. M. and Grossman L. (1999) Origin of compact type A refractory
- 1033 inclusions from CV3 carbonaceous chondrites. *Geochim. Cosmochim. Acta* **63**, 1233–
- 1034 1248.
- 1035 Simon S. B. and Grossman L. (2015) Refractory inclusions in the pristine carbonaceous
- 1036 chondrites DOM 08004 and DOM 08006. *Meteorit. Planet. Sci.* **50**, 1032–1049.
- 1037 Sossi P. A., Moynier F., Chaussidon M., Villeneuve J., Kato C. and Gounelle M. (2017)
- 1038 Early Solar System irradiation quantified by linked vanadium and beryllium isotope
- 1039 variations in meteorites. *Nat. Astron.* **1**, 1–17.
- 1040 Srinivasan G. and Chaussidon M. (2013) Constraints on ¹⁰Be and ⁴¹Ca distribution in the
- 1041 early solar system from ²⁶Al and ¹⁰Be studies of Efremovka CAIs. *Earth Planet. Sci.*

- 1042 *Lett.* **374**, 11–23.
- 1043 Srinivasan G., Huss G. R. and Wasserburg G. J. (2000) A petrographic, chemical, and
1044 isotopic study of calcium-aluminum-rich inclusions and aluminum-rich chondrules
1045 from the Axtell (CV3) chondrite. *Meteorit. Planet. Sci.* **35**, 1333–1354.
- 1046 Sugiura N., Shuzou Y. and Ulyanov A. (2001) Beryllium-boron and aluminum-magnesium
1047 chronology of calcium-aluminum-rich inclusions in CV chondrites. *Meteorit. Planet.*
1048 *Sci.* **36**, 1397–1408.
- 1049 Tatischeff V., Duprat J. and De Séreille N. (2014) Light-element nucleosynthesis in a
1050 molecular cloud interacting with a supernova remnant and the origin of beryllium-10
1051 in the protosolar nebula. *Astrophys. J.* **796**, 20pp.
- 1052 Teng F. Z., Li W. Y., Ke S., Marty B., Dauphas N., Huang S., Wu F. Y. and Pourmand A.
1053 (2010) Magnesium isotopic composition of the Earth and chondrites. *Geochim.*
1054 *Cosmochim. Acta* **74**, 4150–4166.
- 1055 Thrane K., Nagashima K., Krot A. N. and Bizzarro M. (2008) Discovery of a new FUN
1056 CAI from a CV carbonaceous chondrite: Evidence for multistage thermal processing
1057 in the protoplanetary disk. *Astrophys. J.* **680**, L141–L144.
- 1058 Ushikubo T., Tenner T. J., Hiyagon H. and Kita N. T. (2017) A long duration of the ^{16}O -
1059 rich reservoir in the solar nebula, as recorded in fine-grained refractory inclusions
1060 from the least metamorphosed carbonaceous chondrites. *Geochim. Cosmochim. Acta*
1061 **201**, 103–122.
- 1062 Wasserburg G. J., Lee T. and Papanastassiou D. A. (1977) Correlated O and Mg isotopic
1063 anomalies in Allende inclusions: II. Magnesium. *Geophys. Res. Lett.* **4**, 299–302.
- 1064 Wielandt D., Nagashima K., Krot A. N., Huss G. R., Ivanova M. A. and Bizzarro M. (2012)
1065 Evidence for multiple sources of ^{10}Be in the early Solar System. *Astrophys. J.* **748**,
1066 7pp.

1067 Yiou F., Baril M., de Citres J. D., Fontes P., Gradsztajn E. and Bernas R. (1968) Mass-
1068 spectrometric measurement of lithium, beryllium, and boron isotopes produced in ^{16}O
1069 by high-energy protons, and some astrophysical implications. *Phys. Rev.* **166**, 968–
1070 974.

1071 Zhai M., Nakamuar E., Shaw, Denis M. and Nakano T. (1996) Boron isotopes in meteorites
1072 and lunar rocks. *Geochim Cosmochim Acta* **60**, 4877–4881.

1073 Zhang M., Bonato E., King A. J., Russell S. S., Tang G. and Lin Y. (2020) Petrology and
1074 oxygen isotopic compositions of calcium-aluminum-rich inclusions in primitive
1075 CO3.0-3.1 chondrites. *Meteorit. Planet. Sci.* **55**, 911–935.

1076

1077

1078 **Figure captions**

1079

1080 **Fig. 1.** BSE images and a combined X-ray map of melilite-rich CAI Y20-1X1 from
1081 Yamato-81020 (CO3.05) chondrite. For a figure (b), Mg is shown in red, Ca is shown in
1082 green, and Al is shown in blue. A white rectangle in a figure (a) indicates an area shown as
1083 an expanded view in (c). Sp = spinel; Mel = melilite; (Al-Ti-) Di = (Aluminum, Titanium-
1084 rich) diopside; Pv = perovskite.

1085

1086 **Fig. 2.** BSE images and a combined X-ray map of melilite-rich CAI Y20-9-1 from Yamato-
1087 81020 (CO3.05) chondrite. For a figure (c), Mg is shown in red, Ca is shown in green, and
1088 Al is shown in blue. Solid and dashed rectangles in a figure (a) indicate areas shown as
1089 expanded views in (b) and (c), respectively. Sp = spinel; Mel = melilite; Al-Ti-Di =
1090 Aluminum, Titanium-rich diopside; Pv = perovskite.

1091

1092 **Fig. 3.** Representative CI-normalized (McDonough and Sun, 1995) REE abundances in two
1093 CAIs (Y20-1X1 and Y20-9-1) from Yamato-81020 (CO3.05) chondrite. For clarity,
1094 selected data are shown in this figure. All data are plotted in Fig. A1 (Electronic Annex
1095 EA2). Note that only upper limits (2 standard error: 2SE) for Ho, Er, and Lu are shown for
1096 the melilite analysis of Y20-1X1 (#3) by arrows. Error bars are 2SE. Mel = melilite; Al-Ti-
1097 Di = Aluminum, Titanium-rich diopside; Pv = perovskite.

1098

1099 **Fig. 4.** ^{26}Al - ^{26}Mg isochron diagrams for (a) Y20-1X1 and (b) Y20-9-1 from Yamato-81020
1100 (CO3.05) chondrite. For Y20-1X1, data for diopside-rim were not included in the
1101 regression to determine the $(^{26}\text{Al}/^{27}\text{Al})_0$ and $(\delta^{26}\text{Mg}^*)_0$ (see section 4.1.1 for more
1102 discussion). Error bars are 2σ . Uncertainties in initial $(^{26}\text{Al}/^{27}\text{Al})_0$ ratios and $(\delta^{26}\text{Mg}^*)_0$ are
1103 95% confidence limits.

1104

1105 **Fig. 5.** Relationships between $\delta^{25}\text{Mg}_{\text{DSM-3}}$ (‰) and $^{27}\text{Al}/^{24}\text{Mg}$ ratios of individual Al-Mg
1106 isotope analyses for two CAIs (Y20-1X1 and Y20-9-1) from Yamato-81020 (CO3.05)
1107 chondrite. A solid line represents the chondritic $\delta^{25}\text{Mg}_{\text{DSM-3}}$ value ($\delta^{25}\text{Mg}_{\text{DSM-3}} = -0.15 \pm$
1108 0.04‰, 2SD; Teng et al., 2010). Errors bars are 2σ . Note that $\delta^{25}\text{Mg}_{\text{DSM-3}}$ values of spinel
1109 (closed circle symbols) are calculated by assuming the $\delta^{25}\text{Mg}_{\text{DSM-3}}$ value of spinel standard
1110 to be 0 (see section 2.3) so that these values would be systematically offset from true
1111 values.

1112

1113 **Fig. 6.** Examples of Be-B isotope analyses of melilite in CAI Y20-9-1 from Yamato-81020
1114 (CO3.05) chondrite. (a) Change in the $^{11}\text{B}^+/\text{Si}^+$ ratios during individual analyses (analysis
1115 spots #3 and #10). Most analyses show nearly-constant $^{11}\text{B}^+/\text{Si}^+$ ratio during the analyses
1116 with the duration of up to 70 min (= 200 cycles; e.g., melilite #10). Some analyses show

1117 significant change in the $^{11}\text{B}^+/\text{Si}^+$ ratios during the analysis (e.g., melilite #3). Considering
1118 that the elevated ratios result from the sputtering of B-rich phase(s) other than melilite,
1119 these cycles were excluded for summing up signals to calculate the Be and B abundances
1120 and $^{10}\text{B}/^{11}\text{B}$ and $^{9}\text{Be}/^{11}\text{B}$ ratios. (b) $^{10}\text{B}/^{11}\text{B}$ and $^{9}\text{Be}/^{11}\text{B}$ ratios of different depths calculated
1121 from single analysis (200 cycles in total; melilite #10) that were divided into four sections
1122 with each 50 cycle. Instrumental mass fractionation and relative sensitivity were corrected
1123 for each section using the NIST SRM 610. The final values that were calculated by
1124 summing up all signals are also shown as a closed circle symbol. Error bars are 2σ .

1125

1126 **Fig. 7.** ^{10}Be - ^{10}B isochron and 1/B (ppm) versus $^{10}\text{B}/^{11}\text{B}$ diagrams for (a, c) Y20-1X1 and (b,
1127 d) Y20-9-1 from Yamato-81020 (CO3.05) chondrite. Data for diopside-rim (closed
1128 symbols) were not included in the regressions for Y20-1X1 (a and c). For both CAIs,
1129 MSWD values of the isochron regressions (a and b) are smaller than those for 1/B versus
1130 $^{10}\text{B}/^{11}\text{B}$ (c and d), indicating that variations in B isotope ratios resulted from the in situ
1131 decay of ^{10}Be . Error bars are 2σ . Uncertainties in the slopes and intercepts are 95%
1132 confidence limits.

1133

1134 **Fig. 8.** Mg isotope evolution diagram for two CAIs (Y20-1X1 and Y20-9-1) from Yamato-
1135 81020 (CO3.05) chondrite. Growth curves of $\delta^{26}\text{Mg}^*$ as a function of time are also shown
1136 for hypothetical reservoirs with different $^{27}\text{Al}/^{24}\text{Mg}$ ratios. The curve for the bulk Solar
1137 System reservoir ($^{27}\text{Al}/^{24}\text{Mg} = 0.1016$; Lodders, 2003) is shown in black. For each
1138 evolution curve, the initial $^{26}\text{Al}/^{27}\text{Al}$ ratio and $(\delta^{26}\text{Mg}^*)_0$ value at time “zero” are assumed
1139 to be 5.23×10^{-5} and $-0.040\text{\textperthousand}$, respectively (Jacobsen et al., 2008). Note that the
1140 $(\delta^{26}\text{Mg}^*)_0$ and initial $^{26}\text{Al}/^{27}\text{Al}$ ratio of Y20-1X1 are obtained from the melilite-spinel
1141 isochron, not including data for diopside-rim (see section 4.1.1). Data for Y20-1X1 plots

1142 slightly higher than expected bulk $^{27}\text{Al}/^{24}\text{Mg}$ ratios ($^{27}\text{Al}/^{24}\text{Mg} = \sim 2.5\text{-}3.2$), but consistent
1143 with the Mg isotope evolution of a precursor with $^{27}\text{Al}/^{24}\text{Mg} = 3.2$ within uncertainties (see
1144 more discussion in the section 4.1.1). Uncertainties are 95% confidence limits.

1145

1146 **Fig. 9.** Initial $^{10}\text{Be}/^{9}\text{Be}$ versus initial $^{26}\text{Al}/^{27}\text{Al}$ ratios of CAIs from various types of
1147 chondrites, CO CAIs (Y20-1X1 and Y20-9-1; this study), ^{26}Al -rich CV CAIs ([1] Podosek
1148 et al., 1991; [2] Goswami et al., 1994; [3] MacPherson et al., 2003; [4] Chaussidon et al.,
1149 2006; [5] Srinivasan and Chaussidon, 2013; [6] Mishra and Marhas, 2019), CV FUN CAIs
1150 and CM hibonites ([7] Srinivasan et al., 2000; [8] Marhas et al., 2002; [9] Thrane et al.,
1151 2008; [10, 11] Liu et al., 2009, 2010; [12] Wielandt et al., 2012), and CH-CB CAIs ([13]
1152 Gounelle et al., 2013; [14] Fukuda et al., 2019). For data reported in Gounelle et al. (2013),
1153 only data for CAI 411 is shown. Data for Wielandt et al. (2012) were recalculated using the
1154 relative sensitivity factor of NIST 612 (see Fukuda et al., 2018 for more details). The inset
1155 shows detail of ^{26}Al -rich CV CAIs. Note that only upper limits (2σ) for $^{26}\text{Al}/^{27}\text{Al}$ ratios are
1156 shown for CV FUN CAIs, CM hibonites, and CH-CB CAIs by arrows. Error bars are 2σ or
1157 95% confidence limits.

1158

1159 **Fig. 10.** (a) Schematic diagram for formation regions of the CAIs. If the present CO CAIs
1160 (Y20-1X1 and Y20-9-1) formed contemporaneously with the ^{26}Al -rich CV CAIs, the
1161 differences in their initial $^{10}\text{Be}/^{9}\text{Be}$ ratios can be understood as a result of their different
1162 formation locations. Since CAIs with a group II REE pattern tend to have high initial
1163 $^{10}\text{Be}/^{9}\text{Be}$ ratios (Sossi et al., 2017; this study), these CAI-forming gaseous reservoir would
1164 be located at the innermost parts of the solar protoplanetary disk. (b) Enlarged view of the
1165 region shown by the dotted rectangle in (a). CAIs or their precursors form by condensation
1166 from the irradiated gas. Because energetic particle fluxes decrease with distance from the

1167 Sun (e.g., Jacquet, 2019), ^{26}Al -rich CV CAIs with unfractionated REEs might have formed
1168 at outer regions than the present CO CAIs (Y20-1X1 and Y20-9-1). Alternatively, if all the
1169 ^{26}Al -rich CAIs formed at the same region, solar cosmic ray fluxes at the CAI-forming
1170 region would have fluctuated by a factor of six within a short duration (~ 0.2 Myr). See
1171 more discussions in section 4.3.

1172

1173

1174 **Appendices**

1175

1176 Electronic Annex EA1: LA-ICP-MS analytical conditions (Table A1), and major element
1177 (Table A2) and REE concentration data (Table A3)

1178 Electronic Annex EA2: Additional notes for REE and Al-Mg isotope analyses

1179 Electronic Annex EA3: Positions of Li-Be-B and REE analyses

1180 Electronic Annex EA4: SIMS Al-Mg isotope data

Table 1

The Al-Mg isotope data of melilite, spinel, and diopside in CAIs from Yamato-81020

Minerals/Analysis #	$\delta^{25}\text{Mg}_{\text{DSM-3}} (\text{\textperthousand})$	2 σ	$^{27}\text{Al}/^{24}\text{Mg}$	2 σ	$\delta^{26}\text{Mg}^* (\text{\textperthousand})$	2 σ	Minerals/Analysis #	$\delta^{25}\text{Mg}_{\text{DSM-3}} (\text{\textperthousand})$	2 σ	$^{27}\text{Al}/^{24}\text{Mg}$	2 σ	$\delta^{26}\text{Mg}^* (\text{\textperthousand})$	2 σ	
<i>Y20-9-1</i>														
melilite #1	-0.72	0.41	30.79	0.48	10.27	0.60	melilite #1	2.90	0.30	8.21	0.14	2.95	0.27	
melilite #3	-0.85	0.41	27.07	0.31	9.43	0.48	melilite #2	3.08	0.30	4.95	0.06	1.93	0.27	
melilite #4	-0.21	0.37	37.36	0.39	13.85	0.60	melilite #3	3.30	0.30	7.28	0.09	2.70	0.27	
melilite #5	0.61	0.30	28.18	0.36	9.42	0.51	melilite #4	2.99	0.30	4.36	0.08	1.73	0.27	
melilite #6	0.23	0.42	36.63	0.44	12.59	0.68	melilite #5	2.95	0.30	1.89	0.02	0.88	0.27	
melilite #7	0.30	0.41	26.92	0.32	9.57	0.48	melilite #6	2.83	0.30	4.77	0.06	1.87	0.27	
melilite #8	-0.06	0.33	37.41	0.47	13.60	0.57	melilite #7	2.51	0.30	5.84	0.10	2.21	0.27	
melilite #9	0.13	0.28	40.61	0.53	14.46	0.61	melilite #8	2.45	0.30	6.05	0.15	2.26	0.27	
melilite #10	0.10	0.29	27.03	0.28	9.76	0.56	spinel #1	3.22	0.23	2.56	0.03	1.15	0.21	
melilite #11	0.32	0.32	26.18	0.28	9.13	0.65	spinel #2	4.87	0.23	2.55	0.03	1.09	0.18	
melilite #12	0.02	0.42	31.23	0.36	10.51	0.56	spinel #3	4.74	0.23	2.55	0.03	0.98	0.16	
melilite #13	-0.16	0.41	21.90	0.26	7.83	0.38	diopside #1	-2.15	0.31	0.057	0.001	0.10	0.26	
melilite #14	-0.07	0.37	30.95	0.38	11.23	0.51	diopside #2	-0.26	0.31	0.151	0.009	-0.03	0.26	
melilite #15	-0.98	0.37	30.17	0.43	10.61	0.57	diopside #3	-0.27	0.31	0.046	0.001	-0.12	0.26	
melilite #16	0.45	0.37	16.04	0.18	5.73	0.40	diopside #4	-1.47	0.31	0.043	0.001	-0.10	0.26	
melilite #18	0.55	0.37	26.93	0.72	9.48	0.47	diopside #5	-0.30	0.31	0.048	0.001	-0.12	0.26	
melilite #24	0.35	0.37	31.04	0.36	11.15	0.57	diopside #6	-0.07	0.31	0.074	0.002	-0.07	0.26	
melilite #25	0.31	0.37	29.06	0.41	10.25	0.49	diopside #7	-1.66	0.31	0.050	0.002	-0.11	0.26	
melilite #27	0.63	0.48	43.71	0.88	14.87	0.83								
melilite #28	0.34	0.39	20.37	0.22	7.22	0.57								

Table 2

The Li-Be-B isotope data of melilite and diopside in CAIs from Yamato-81020

Minerals/Analysis location#	Li (ppb)	2σ	$^{7}\text{Li}/^{6}\text{Li}$	2σ	Be (ppb)	2σ	B (ppb)	2σ	$^{9}\text{Be}/^{11}\text{B}$	2σ	$^{10}\text{B}/^{11}\text{B}$	2σ
<i>Y20-1X1</i>												
melilite #1					529	29	28	2	30	3	0.338	0.052
melilite #2					648	14	15	2	78	9	0.470	0.094
melilite #3					736	48	7	1	267	40	1.058	0.209
melilite #4					578	38	5	1	251	37	0.998	0.198
melilite #5					563	37	7	1	161	19	0.695	0.118
melilite #7					763	50	9	1	162	19	0.666	0.110
melilite #8					555	37	14	2	80	12	0.666	0.150
melilite #9					550	36	7	1	178	24	0.843	0.154
diopside-rim #6					22	1	2912	115	0.011	0.001	0.251	0.004
melilite #10	630	82	12.2	0.2								
<i>Y20-9-1</i>												
melilite #1					909	80	12	2	157	30	0.820	0.217
melilite #2					800	71	68	5	19	2	0.338	0.048
melilite #3					843	75	7	1	335	74	1.309	0.365
melilite #5					733	50	6	1	332	72	1.160	0.321
melilite #6					892	61	12	1	131	15	0.458	0.074
melilite #8					662	45	18	2	59	7	0.358	0.073
melilite #9					787	52	15	1	94	11	0.494	0.086
melilite #10					714	47	7	1	215	27	0.723	0.127
melilite #11	71	9	12.1	0.4								
melilite #12	59	8	12.0	0.4								

Fig.1

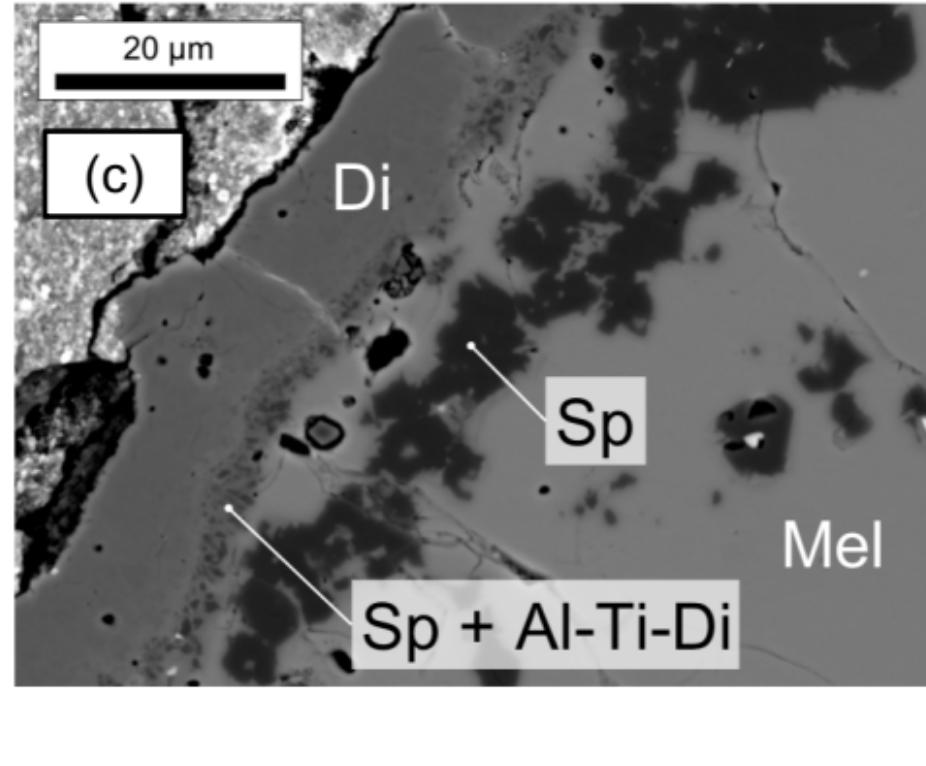
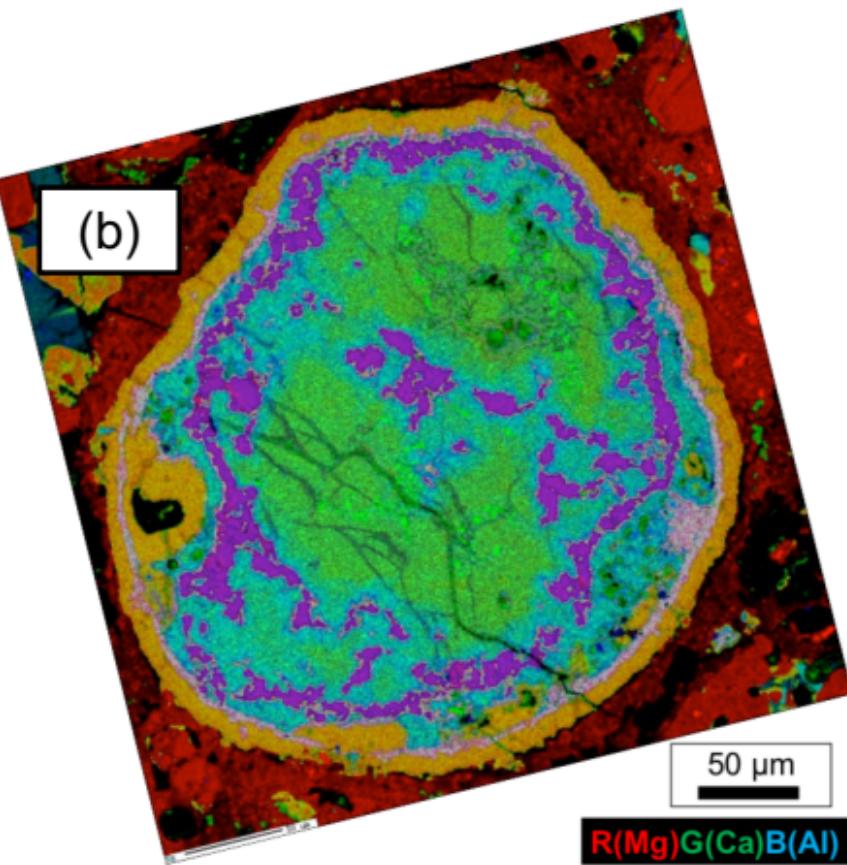
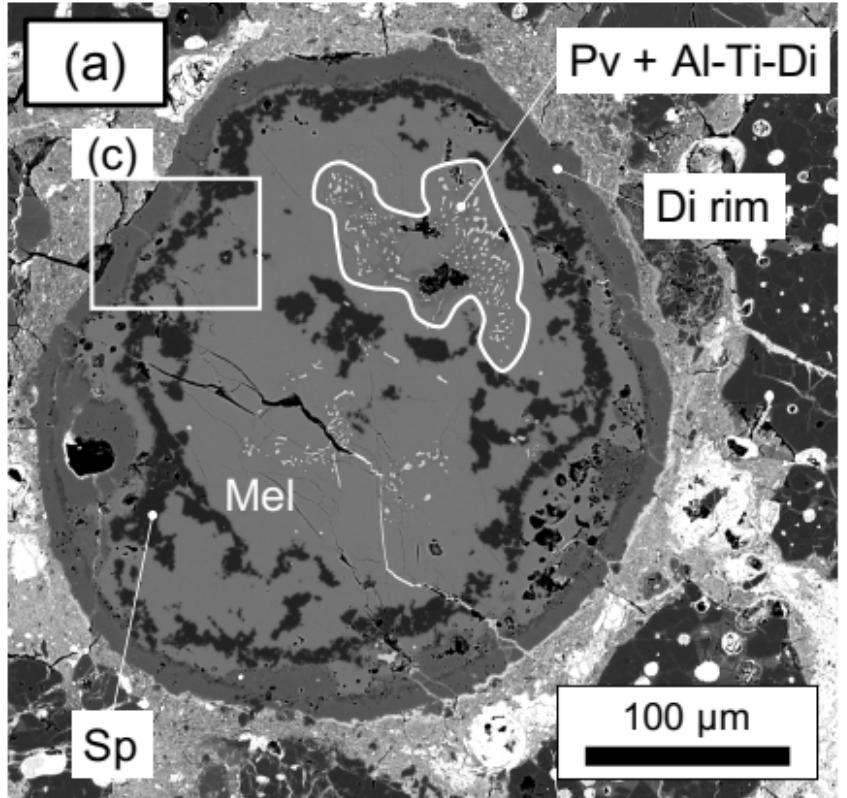
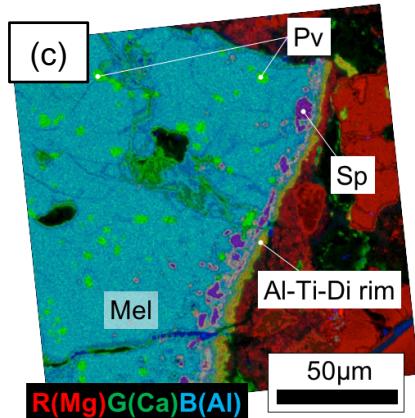
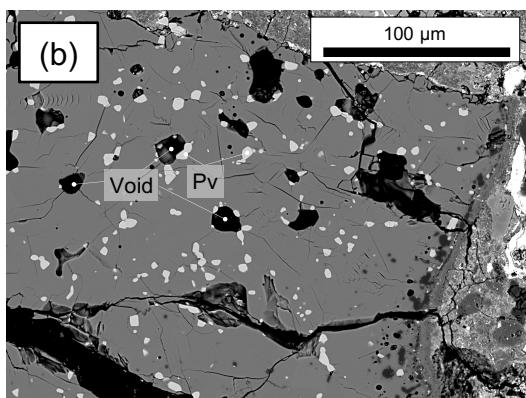
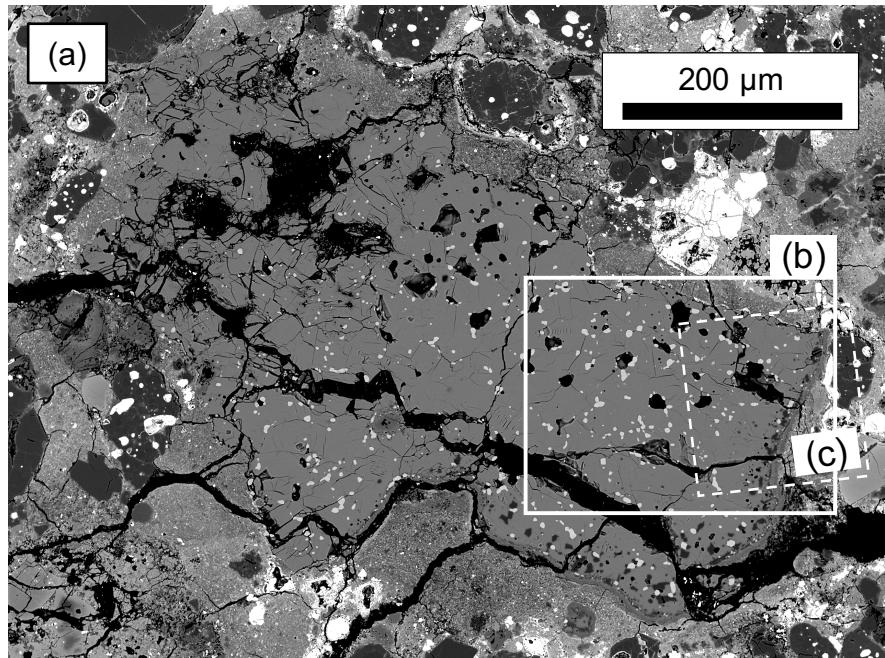







Fig.2

Fig.3

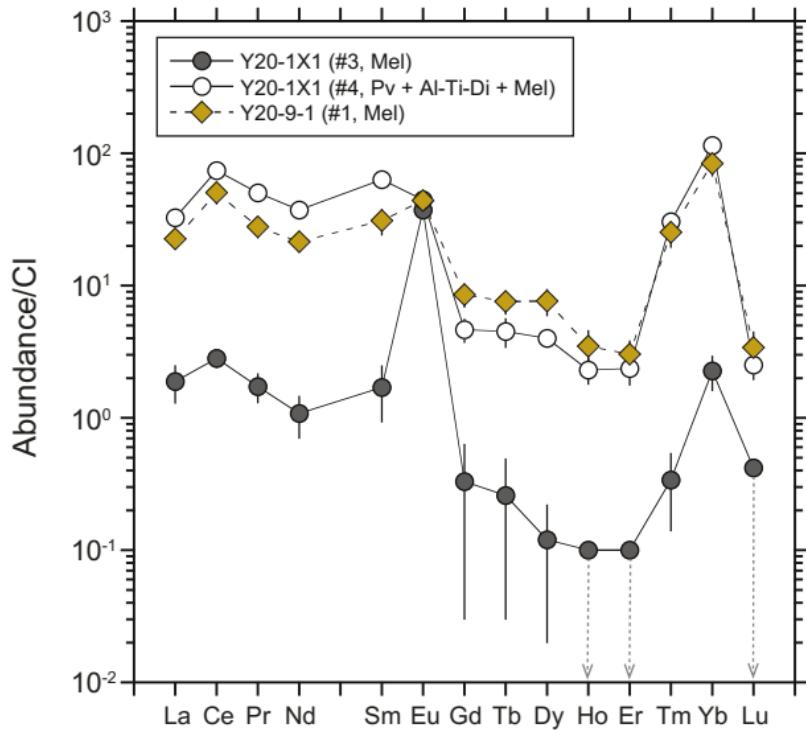
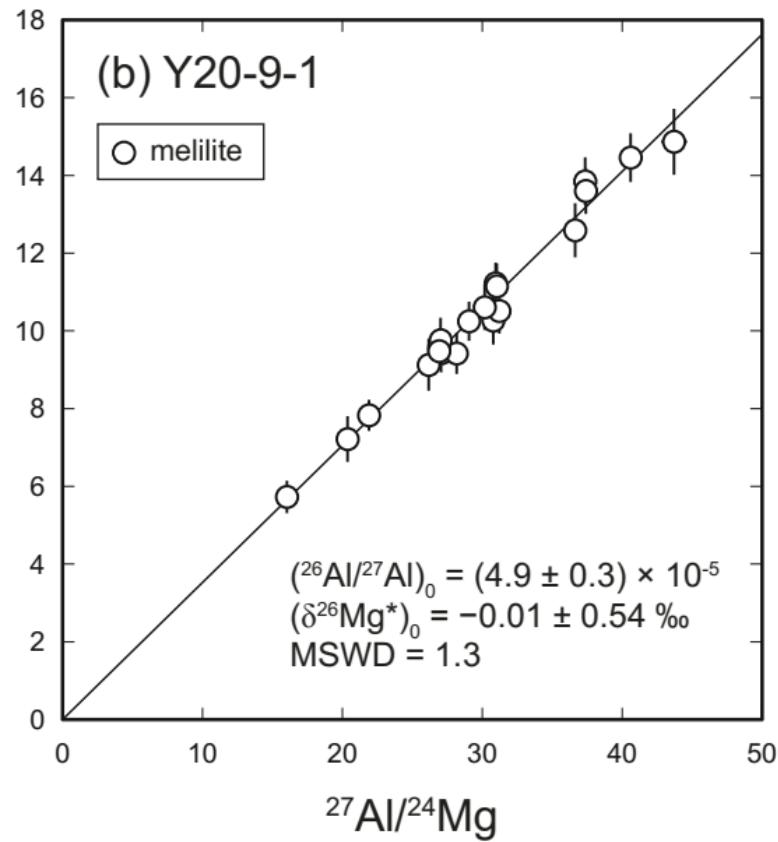
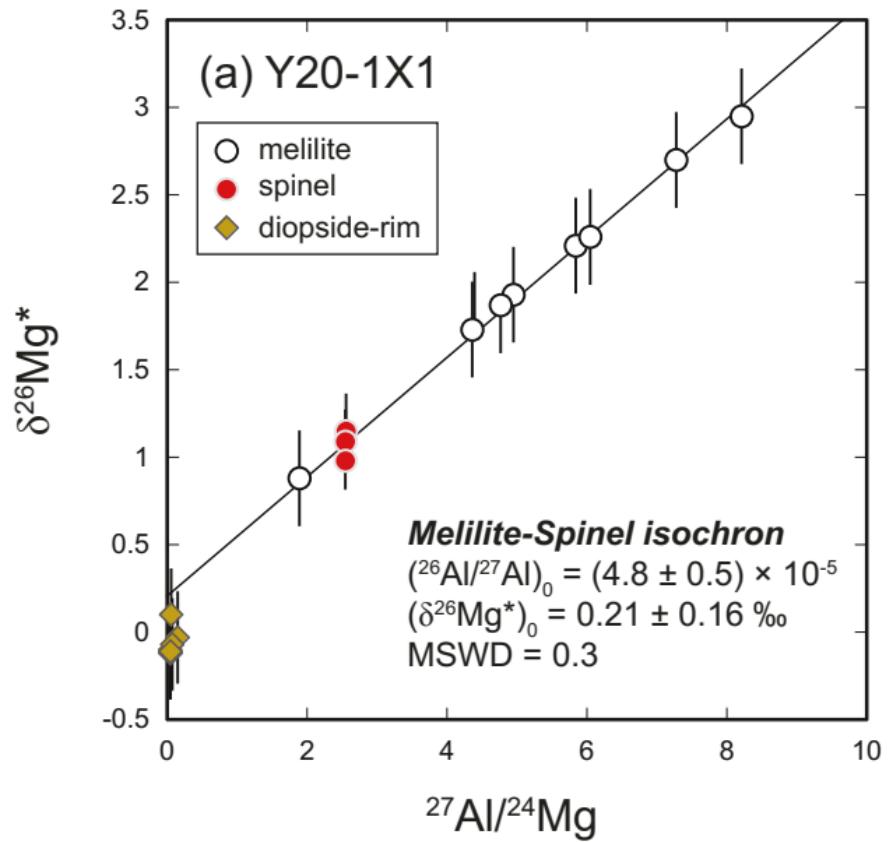




Fig.4

Fig.5

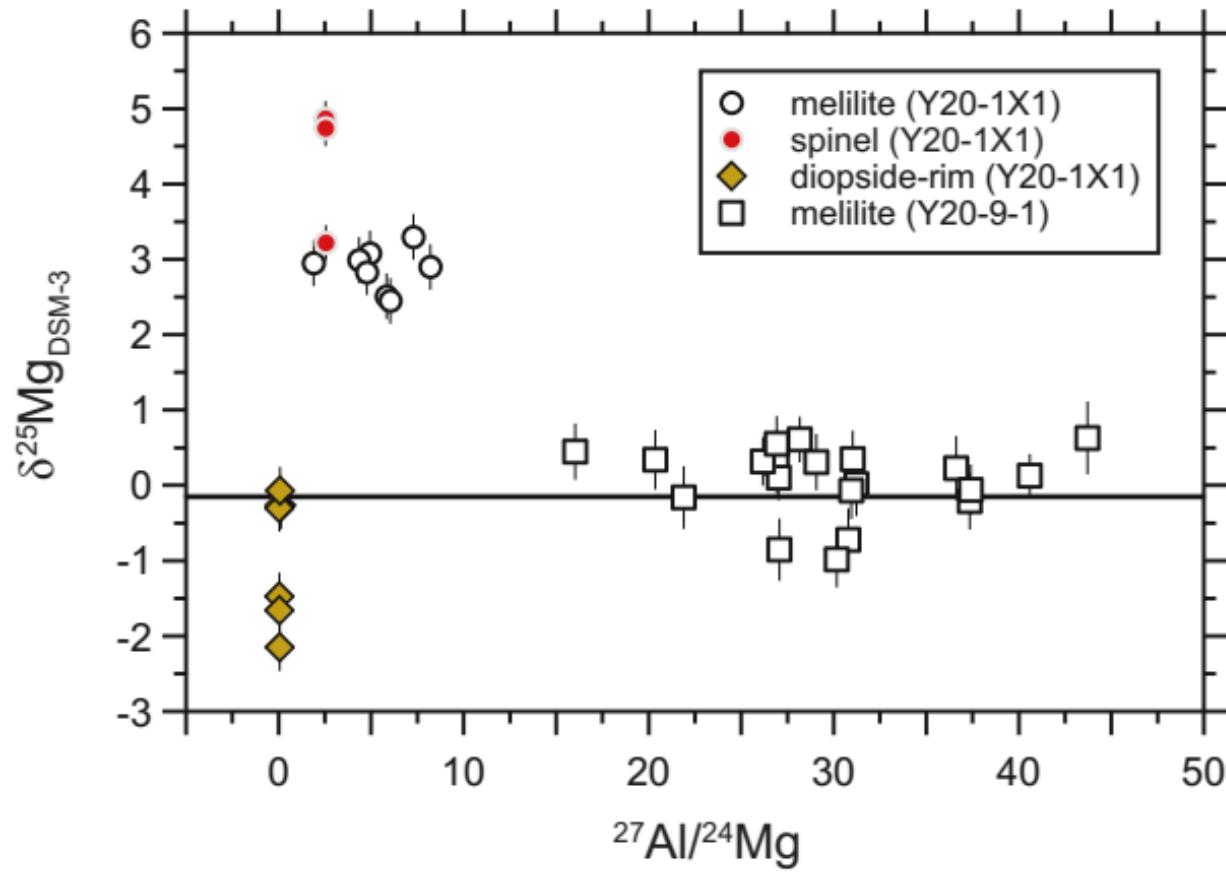


Fig.6

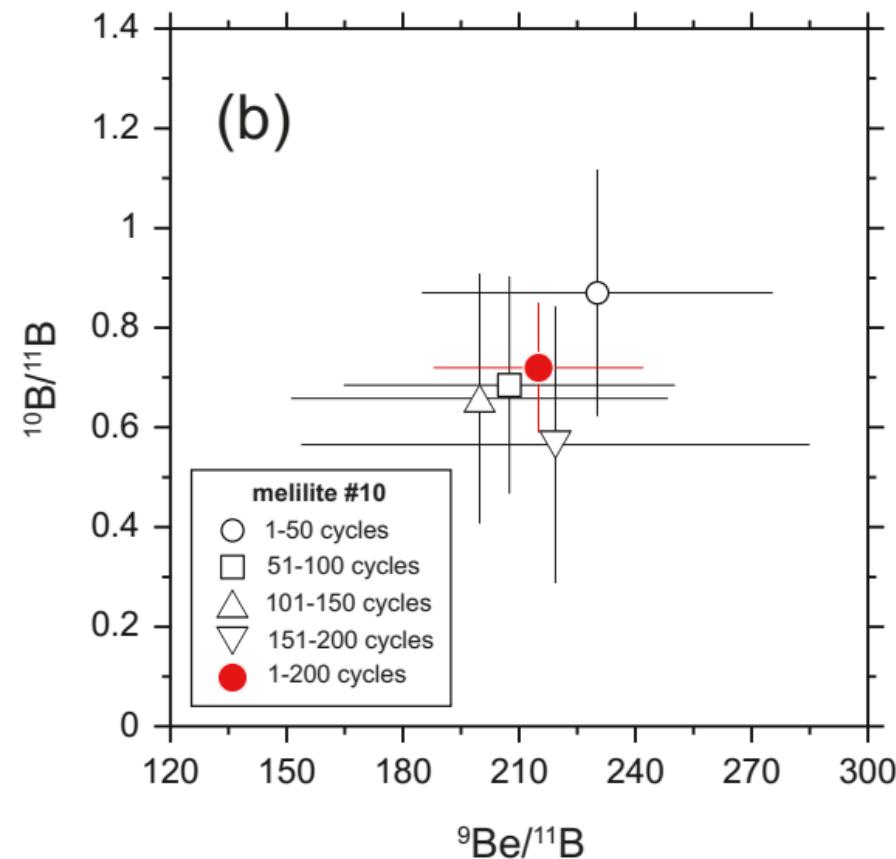
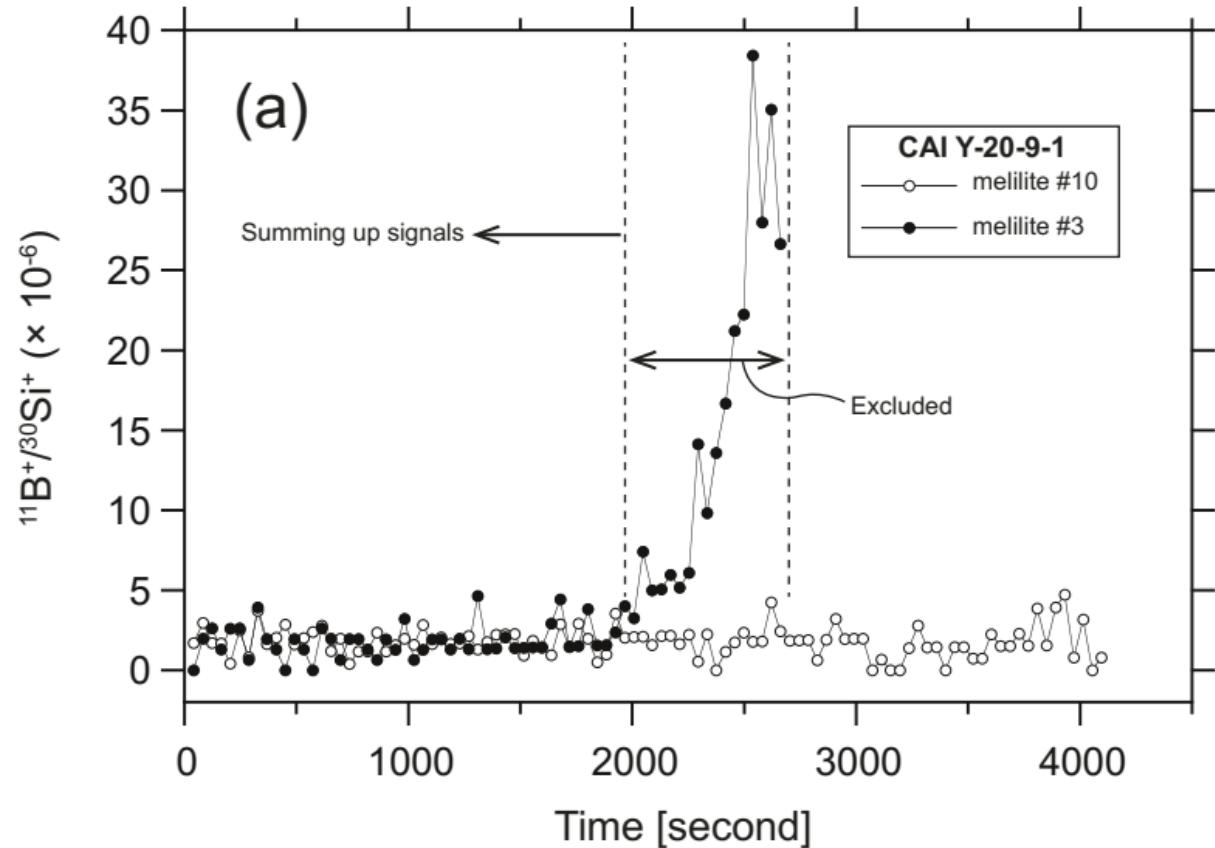



Fig.7

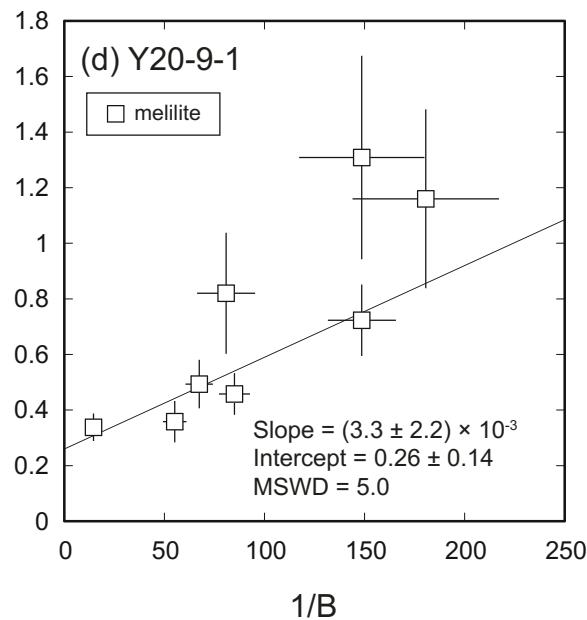
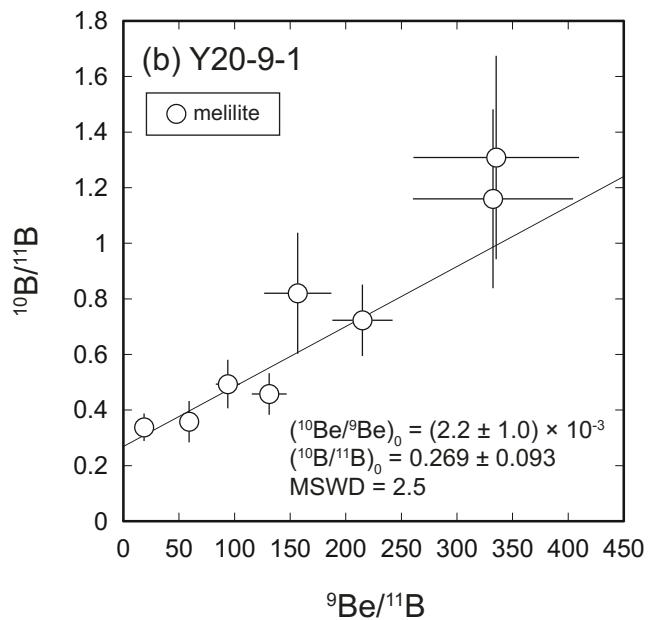
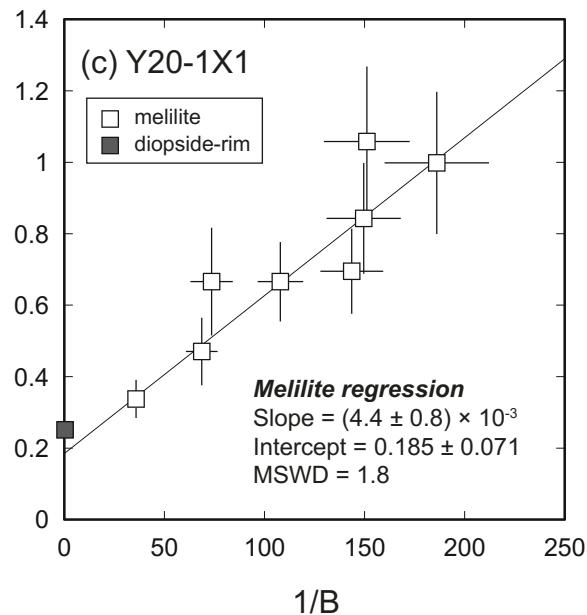
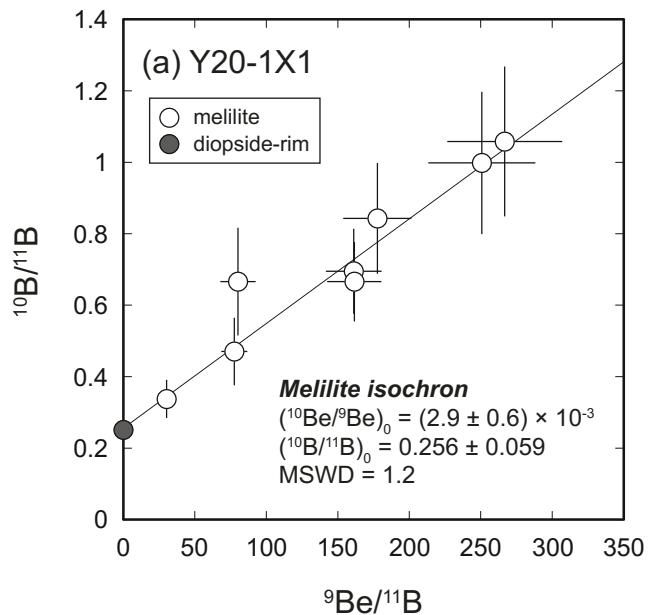
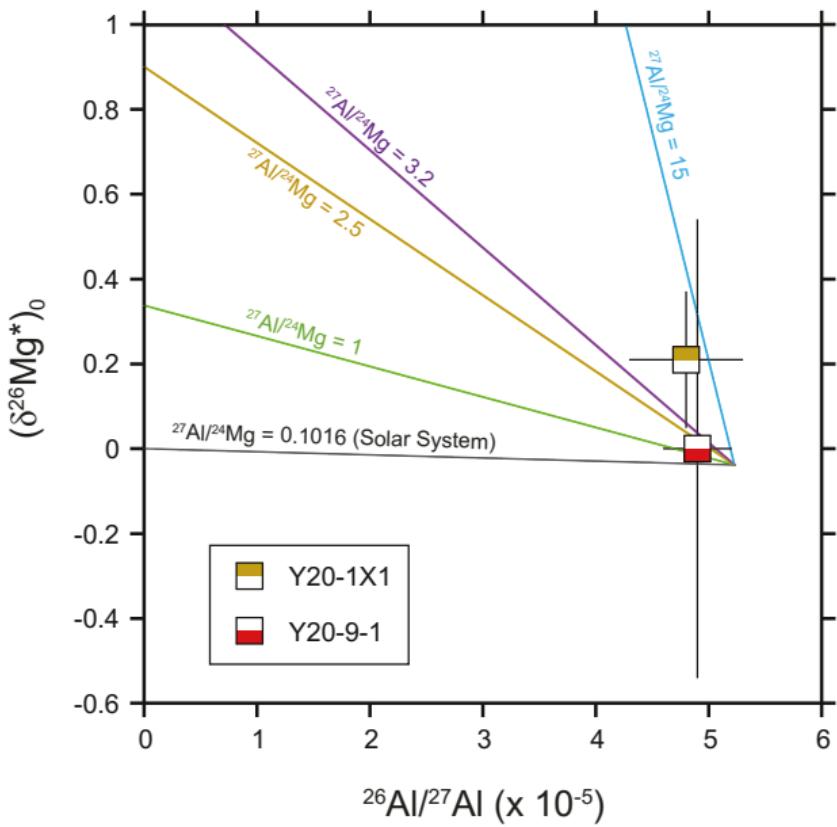






Fig.8

Fig.9

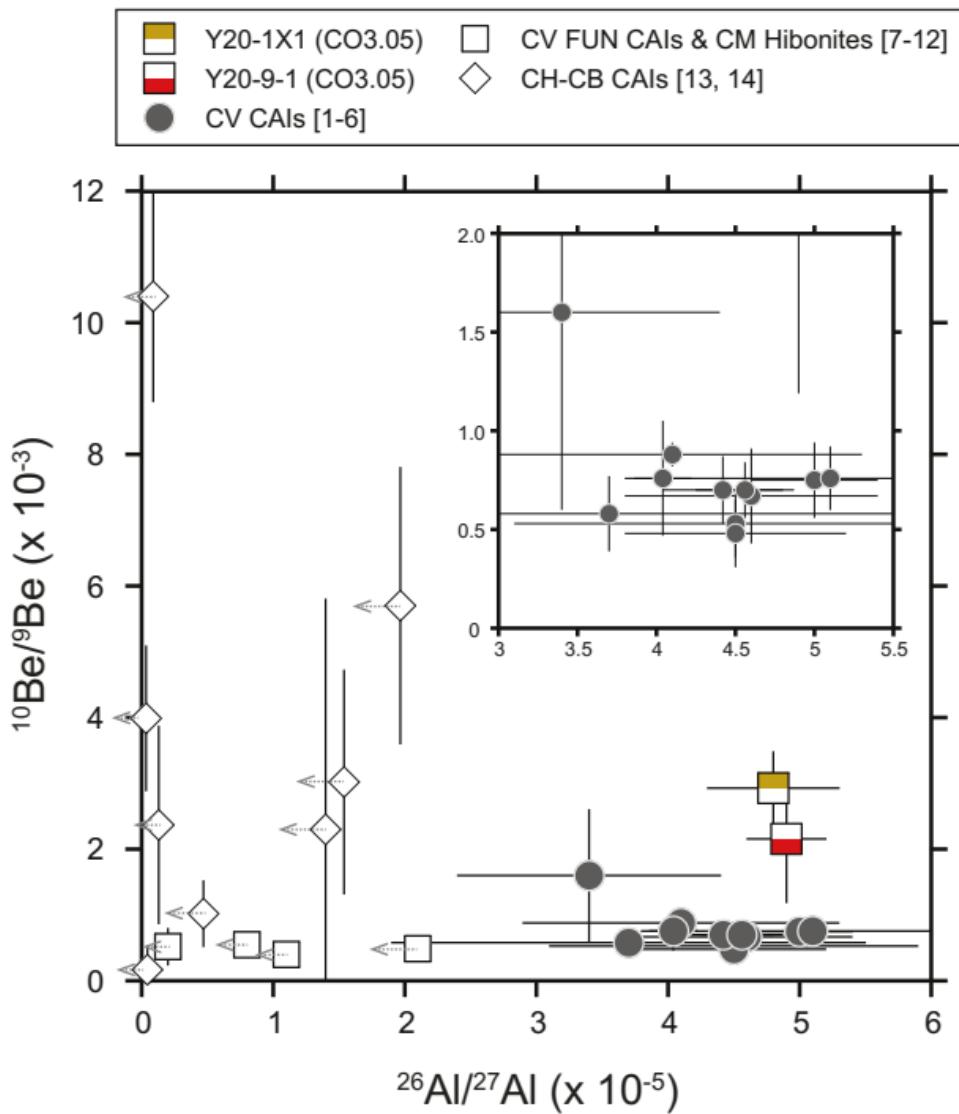
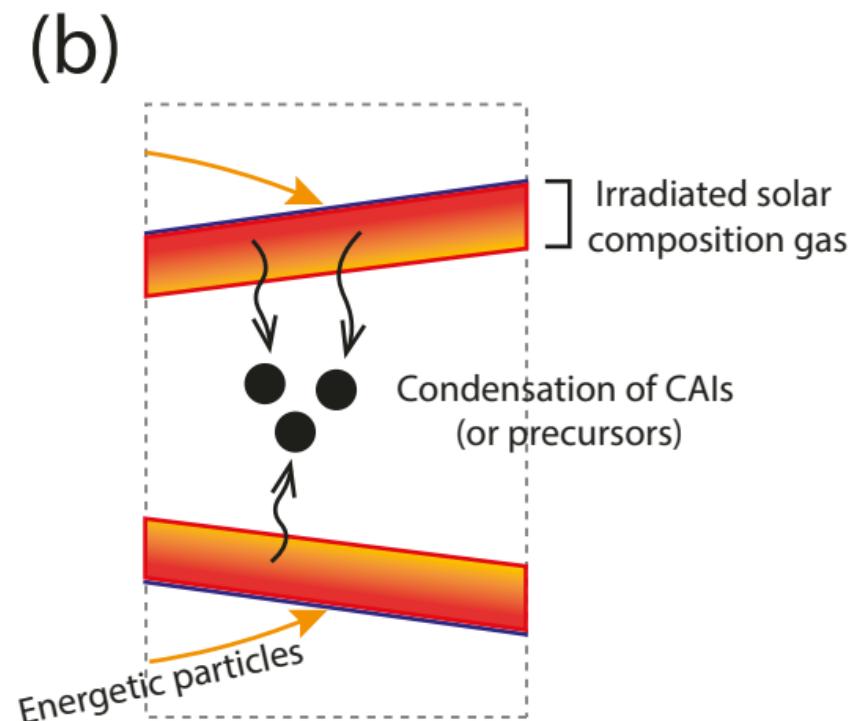
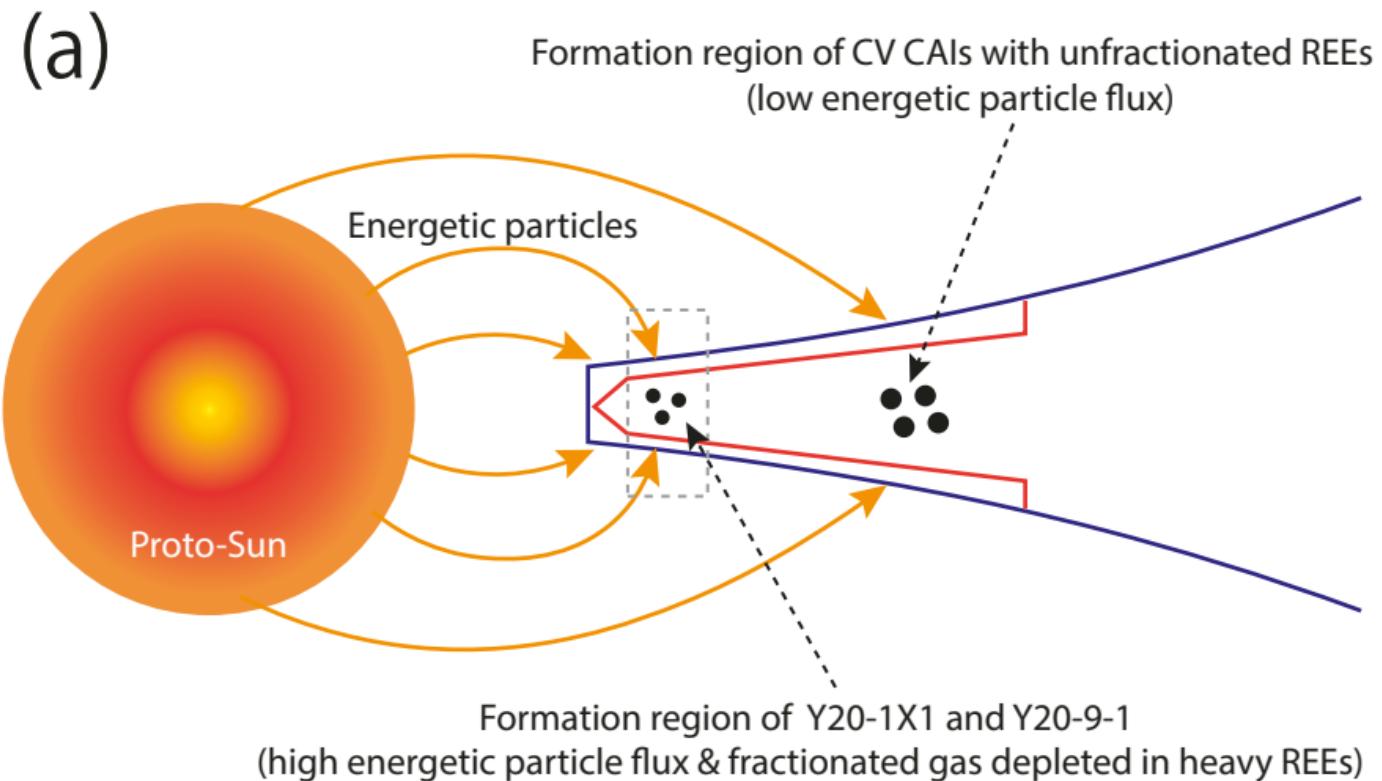




Fig.10

