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ABSTRACT

We have performed in situ analyses of Li-Be-B and Al-Mg isotope systematics,
and abundances of rare earth elements (REEs) in two Ca-Al-rich inclusions (CAls) from
the Ornans-like carbonaceous chondrite Yamato-81020 (C0O3.05). The present CO CAls
are depleted in ultra-refractory heavy REEs (group II REE pattern), suggesting
condensation of these CAls or their precursors from the solar nebula. Initial 20A1/27Al
ratios, (2°Al/2’Al)o, of these CO CAls are found to be (4.8 £ 0.5) x 107 and (4.9 + 0.3) x
1075 (95% confidence), indicating their contemporaneous formation with a majority of
CAlIs from Vigarano-like carbonaceous (CV) chondrites. Melilite grains in the present CO
CAIs show clear excesses in '°B, ranging from ~370 to ~4300%o relative to the chondritic B
isotopic composition, which are correlated well with °Be/!'B ratios. The correlation
indicates in situ decay of '°Be in the present CO CAlIs and yields initial '°Be/°Be ratios,
(1°Be/*Be)o, for the individual CATs of (2.9 +0.6) x 103 and (2.2 + 1.0) x 1073 ((95%
confidence), which are significantly greater than the average ('’Be/’Be)o =~0.7 x 1073
recorded in CATs from CV chondrites. The apparent variation in ('°Be/’Be)o between the
CO and CV CAls, despite having indistinguishable (*°Al/2’Al) of ~5 x 1075, provides
evidence for heterogeneous distribution of 1°Be in the CAI forming-regions at the very
beginning of the Solar System. The elevated ('’Be/’Be)o and group II REE patterns in the
CO CAlIs may reflect that compared with the CV CAls having unfractionated REEs the
present CO CAIs have formed closer to the Sun where °Be was produced more efficiently
through solar cosmic ray irradiation caused by solar flares. Alternatively, if the present CO
CAls and CV CAIs formed in the same region, and 2°Al was distributed homogeneously at

the CAI-forming region, our results indicate that solar cosmic ray fluxes at the forming
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region have fluctuated by a factor of six within a short duration (~0.2 million years)

inferred from the Al-Mg chronology.

1. Introduction

Understanding the origin and distribution of short-lived radionuclides (SLRs) in
the early Solar System provides important constraints on the astrophysical environment of
the earliest stage of the Solar System evolution (Davis and McKeegan, 2014; Chaussidon
and Liu, 2015). The presence of a SLR beryllium-10 (T2 = 1.39 million years, Myr;
Korschinek et al., 2010) has been inferred from '°Be-!°B isotope analyses of Ca-Al-rich
inclusions (CAls) (McKeegan et al., 2000) which are thought to be the oldest solids formed
in the Solar System (Amelin et al., 2010; Bouvier and Wadhwa, 2010; Connelly et al.,
2012). Unlike other SLRs (e.g., 2°Al and ®°Fe), '°Be cannot be synthesized by
thermonuclear reactions in stars (Fowler et al., 1961). Instead, non-thermal nuclear
reactions between energetic particles and target materials (i.e., gas and/or dust) could
produce '°Be (e.g., Gounelle et al., 2001, 2006; Leya et al., 2003; Bricker and Caffee, 2010;
Jacquet, 2019). Thus, the presence of '’Be may be a key to understand cosmic ray
interactions at the earliest stage of the Solar System evolution.

To date, however, the origin of 1°Be in the early Solar System is still
controversial. lon microprobe studies on Li-Be-B isotope systematics of coarse-grained
CAlIs from Vigarano-like (CV) chondrites and refractory hibonite (CaAl12019) grains from
the Murchison (Mighei-like; CM) chondrite revealed variations in initial !°Be/°Be ratios
(~3-10 x 10*;, McKeegan et al., 2000; Sugiura et al., 2001; Marhas et al., 2002;
MacPherson et al., 2003; Chaussidon et al., 2006; Liu et al., 2009, 2010; Wielandt et al.,
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2012; Srinivasan and Chaussidon, 2013). Among them, initial !°Be/’Be ratios of CV CAls
with near canonical 2°Al /2’ Al ratios (~4-5 x 107°) range from (4.8 £ 1.7) x 10* to (8.8 =
0.6) x 10* (20), which vary by a factor of 2 (MacPherson et al., 2003; Chaussidon et al.,
2006; Srinivasan and Chaussidon, 2013). The variation in initial '°Be/’Be ratios of the near
canonical CAls suggests a heterogeneous distribution of '°Be at the CV CAl-forming
region, which is consistent with a solar cosmic ray irradiation origin of 1°Be (e.g.,
McKeegan et al., 2000; Gounelle et al., 2001, 2006; Goswami et al., 2001; Marhas et al.,
2002; Leya et al., 2003; Bricker and Caffee, 2010; Jacquet, 2019). Srinivasan and
Chaussidon (2013) provided detailed discussion on the origin of the variation in initial
19Be/’Be ratios based on the relationship between initial '’Be/’Be ratios and supra-
chondritic initial '°B/!'B ratios among CV CAls. Since the energetic particle interaction
could produce '’Be as well as stable isotopes of Li, Be, and B (Reeves, 1994 and references
therein; see also a recent review by Liu and Chaussidon, 2018 for B isotopes), Srinivasan
and Chaussidon (2013) attributed the variable '°Be/’Be ratios and supra-chondritic initial B
isotope ratios in the CV CAIs to heterogeneous production/distribution of '°Be in the solar
protoplanetary disk. Additionally, studies on CAls from metal-rich carbonaceous
chondrites (CH and CH/CB) have shown larger variations in initial !°Be/°Be ratios (~0-100
x 107*; Gounelle et al., 2013; Fukuda et al., 2019), further indicative of the solar cosmic ray
irradiation origin of °Be. In addition to '°Be, the presence of the SLR "Be has been inferred
from Li-Be-B isotope systematics of CV CAls (Chaussidon et al., 2006; Mishra and
Marhas, 2019). Because "Be has a half-life of 53 days (Jaeger et al., 1996), the result
requires very short time intervals between the production of "Be and its incorporation into a
CAI-forming reservoir. Thus, the co-presence of 'Be and '°Be in CAls could be a stringent
constraint on their production by the solar comic ray irradiation. Recently, in contrast,

Dunham et al. (2019) proposed a homogeneous distribution of '’Be (!°Be/’Be = ~7 x 107%)
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in the solar nebula, based on the statistical data reduction of previous studies (Dunham et
al., 2020) and their new Be-B dataset of CAls from Ornans-like (CO) and CH/CB
chondrites. The homogeneous distribution of '’Be favors a hypothesis that ’Be was
inherited from the parental molecular cloud of the Solar System that has been irradiated by
galactic cosmic rays (Desch et al., 2004). Alternatively, Banerjee et al. (2016) demonstrated
that '°Be can be synthesized in low-mass supernovae by neutrino spallation reactions.
These new observations and theoretical studies call for a reconsideration of the origin of
19Be in the early Solar System.

Most of the initial !°Be abundance data available so far were deduced from the
10Be-19B analyses of CAls from CV chondrites because their large sizes (commonly
centimeter-sized or even larger; MacPherson, 2014) allow multi-spot ion microprobe
analyses within individual inclusions (McKeegan et al., 2000; Sugiura et al., 2001;
MacPherson et al., 2003; Chaussidon et al., 2006; Wielandt et al., 2012; Srinivasan and
Chaussidon, 2013; Sossi et al., 2017; Mishra and Marhas, 2019). Note, however, that these
large CAls are rare in other chondrites and, therefore, would not be representative of the
entire CAI population. To better understand the origin and distribution of !°Be in the early
Solar System, Be-B systematics of CAls from various types of chondrites should be
investigated.

Here we report Li-Be-B and Al-Mg isotope systematics of two melilite-rich CAls
from the CO chondrite Yamato-81020 (hereafter Y-81020) that is one of the least
metamorphosed carbonaceous chondrites (petrologic type 3.05; Grossman and Brearley,
2005; Grossman and Rubin, 2006; Kimura et al., 2008). CAIs from Y-81020 show no
textural evidence of secondary alteration on the parent body (Mishra, 2018) so that these
CAls are expected to preserve pristine Li-Be-B and Al-Mg isotopic signatures. Melilite-rich

CAls are most common among CO chondrites, which are similar to Type A CAls from CV
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chondrites (Grossman, 1975; MacPherson and Grossman, 1984; Simon et al., 1999),
although smaller in size (typically <500 um) (e.g., Russell et al., 1998; Simon and
Grossman, 2015; Zhang et al., 2020). A recent AI-Mg isotope study of small CAIs (<100
um in size) from CO3.03 chondrite Allan Hills A77307 identified two main populations in
terms of initial 2°A1/2’ Al ratios [(5.4 £ 0.1) x 10> and (4.9 £ 0.1) x 107%; Liu et al., 2019].
The two main populations are marginally resolved from the well-constrained canonical
26A1/%7 Al ratio of (5.2 £ 0.1) x 1075 characterizing CAIs from CV chondrites (Bizzarro et
al., 2004; Jacobsen et al., 2008; Larsen et al., 2011, 2020). Therefore, CAls from CO and
CV chondrites may record different early Solar System histories. Recently, Sossi et al.
(2017) conducted a correlated study of Be-B and vanadium isotope analyses, and rare earth
element (REE) abundances of CAls from CV chondrites (Allende and NWA 8616). They
found that fine-grained CAls with a group II Cl-normalized REE pattern, which is
characterized by depletion in ultra-refractory heavy REEs (Martin and Mason, 1974;
Boynton, 1975; Davis and Grossman, 1979), tend to have higher initial !°Be/°Be ratios
(1°Be/’Be = ~70 x 10~*) than those of coarse-grained CAls with an unfractionated REE
pattern (1’Be/’Be = ~12 x 10~%). These observations imply different irradiation conditions
for each CAI population. In the present study, we also included REE analyses for the two
CO CAIs to see possible relationships between REE abundances and Li-Be-B isotope
systematics. Based on a newly obtained dataset in this study, together with the data of
previous studies, the origin and distribution of '°Be at the CAI-forming region(s) are

discussed.

2. Material and methods
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2.1. Sample and electron microscopic analyses

Two thin sections of Y-81020 were searched with a JEOL JXA-8530F field
emission electron probe microanalyzer (FE-EPMA) at the Department of Earth and
Planetary Science, University of Tokyo. Two melilite-rich CAls, Y20-1X1 (Fig. 1) and
Y20-9-1 (Fig. 2), were selected for REE and isotopic measurements. X-ray elemental maps
of the two CAls were obtained with the FE-EPMA, which were performed with a fully
focused electron beam, 15 kV accelerating voltage, 80 nA beam current, 30 pus per pixel
acquisition time, and spatial resolution of ~0.7-1.5 um per pixel. Major element
concentrations (Na;O, MgO, Al>O3, Si0,, K0, CaO, TiOz, V203, Cr203, MnO, FeO, and
NiO) of minerals in the two CAls were obtained with the FE-EPMA, which were
performed with a 1 pm focused electron beam, 15 kV accelerating voltage, and 12 nA beam
current. Calculated detection limits (99% confidence) for the measured oxides were Na>O-
0.11, MgO-0.11, Al,03-0.11, Si02-0.14, K»0-0.07, Ca0-0.10, Ti0,-0.19, V20;-0.12,
Cr203-0.14, MnO-0.18, FeO-0.17, and NiO-0.17 wt%.

2.2. REE measurements

REE abundances of the two CAls were investigated using an iCAP Qc
inductively coupled plasma mass spectrometer (ICP-MS) with a Nd:YAG laser ablation
(LA) system at the Department of Earth and Planetary Science, University of Tokyo. The
measured ion species and operating conditions of the LA system and ICP-MS are listed in
Table A1 (Electronic Annex EA1). The LA-ICP-MS measurements were performed in spot
analysis mode (~25-30 um in diameter). The instrumental parameters were set so that the
oxide production rate of Th (ThO*/Th*) was smaller than 1% (Itano and Tizuka, 2017).
Each of two unknown analyses was bracketed by three measurements of a NIST SRM 612

glass standard that was used for the correction of relative sensitivities of measured ion
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species. An aliquot of BCR-2G glass was measured as a secondary standard. Ion signals of
#3Ca* were used for internal normalization. External reproducibilities of REE*/**Ca* for
NIST SRM 612 were smaller than + 10% (2 standard deviation; 2SD) during a session.
Internal errors (2 standard error: 2SE) are assigned as uncertainties on unknown analyses,
which were larger than the external reproducibilities (= 10%, 2SD) because of their lower

count rates.

2.3. Al-Mg isotope measurements

The Al-Mg isotope analyses of melilite, spinel, and diopside were performed with
the WiscSIMS Cameca IMS 1280 secondary ion mass spectrometer (SIMS) at the
University of Wisconsin-Madison equipped with a radio-frequency (RF) plasma ion source.
The analytical conditions are similar to those described in Kita et al. (2012) and Fukuda et
al. (2020) except for the primary beam conditions and the use of lower-noise feedback
resistors for Faraday cups (FCs) (Fukuda et al., 2021). We prepared two %0, primary ion
beam settings for analyses of melilite (8 X 10 um, 2nA), and spinel and diopside (4 x 5 pm,
0.3nA). Secondary ions (**Mg", 2Mg", 2Mg*, and ?’Al") were detected simultaneously on
multi-collector FCs (L2, C, H1, and H'2) using three 10!2 ohm and one 10'! ohm resistors
for 242526Mg" and ?’Al*, respectively. The mass resolving power (MRP) at 10% peak
height was set to ~2500 (entrance slit; 90 um and exit slit 500 um) and interferences of
“Ca%" and *Mg!'H" onto 2*Mg"* and *Mg" peaks were negligibly small. The energy slit was
set to 50 eV width. Matrix matched standards of melilite glasses (Aks and Akss), diopside
(95AK-6 Di), and spinel were used as bracketing standards. These standards, as well as
additional melilite glasses (Akas and Akes) and pyroxene (IG-Cpx) standards, were
analyzed to correct instrumental mass fractionations (IMFs) of Mg isotopes, and determine

relative sensitivity factors (RSFs) of 2’Al/>*Mg ratios. §>°Mgpsm-3 values of these standards,
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except for spinel (where 8°Mgpsm-3 = [(PMg/>*Mg)sample/(Mg/**Mg)psm-3 — 1] x 1000;
per-mil deviation from Mg reference material DSM-3; Galy et al., 2003), have been
determined by solution nebulization multi-collector ICP-MS (MC-ICP-MS), which were
reported in Kita et al. (2012) and Fukuda et al. (2020). Mg isotope analysis of the spinel
standard by MC-ICP-MS is in progress but not available at present, so that the 8*Mgpsm-3
value of the spinel standard is assumed to be 0 in this study. For melilite analyses, a single
analysis took ~8 min, including 100 s of presputtering, ~80 s for automated centering of the
secondary ion deflectors (DTFA-X and -Y), and 300 s of integration (10 s % 30 cycles) of
the secondary ion signals. For spinel and diopside analyses, 500 s of integration (10 s x 50
cycles) was employed so that a single analysis took ~12 min. The typical >*Mg* and 2’ Al*
count rates during measurement of the melilite glass standard (Akss) were 2.1 x 107 and 8.8
x 107 ¢ps, respectively. Those of the spinel standard were 2.3 x 107 and 4.6 x 107 ¢ps,
respectively, and those of the diopside (95AK-6 Di) standard were 1.7 x 107 and 8.5 x 10°
cps, respectively. The baselines of four FCs were monitored during each presputtering and
averaged over eight analyses. The standard deviations of FC baselines over eight analyses
were typically 140 cps for L'2, C, and H1, and 530 cps for H'2, corresponding to 7x107
relative to 2*Mg*, 5x107 relative to 2°Mg" and *Mg*, and 6x107° relative to 2’Al" ion
intensities of the melilite glass standard (Akss). Data reduction procedures follow those
described in Ushikubo et al. (2017) and are summarized in Electronic Annex EA2. The
typical external reproducibilities (2SD) of *Mg, §*’Mg, and A?Mg for the melilite glass
standards (Ak;s and Akss) were <0.20%o, <0.25%o, and <0.35%o, respectively. Those for the

diopside and spinel standards were <0.18%o, <0.27%o0 and <0.25%., respectively.

2.4. Li-Be-B isotope measurements

10
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The Be-B isotope analyses of melilite and diopside were performed with a
Cameca NanoSIMS 50 at Atmosphere and Ocean Research Institute (AORI), University of
Tokyo. The analytical conditions are the same as those described in Fukuda et al. (2019),
except for primary ion beam conditions. We prepared three 'O~ primary ion beam settings
for analyses of melilite (8 x 8 um, 3 nA and 10 % 10 um, 5 nA) and diopside (5 x 5 pm,
InA). To remove carbon coating and surface boron contamination, we presputtered the
samples for 10 min before the measurements. For the presputtering, the 'O~ primary ion
beam of 5 nA was rastered over 15 x 15 um? areas on the samples for 5 min, and then
central parts (10 x 10 um?) within the areas were presputtered for additional 5 min.
Afterward, the primary ion beam was rastered over the presputtered 10 x 10 pm? areas for
the measurements. Secondary ions of °Be”, '°B*, 'B*, and *°Si* were detected
simultaneously with four electron multipliers (EMs). For melilite analyses with the primary
ion beam of 5 nA, the typical count rates were ~40 cps for °Be", ~0.2 ¢ps for °B, and 1.0
x 10° ¢cps for 3°Si*. The MRP at 1% peak height was set to ~1500, sufficient to separate
’Be'H" from '°B* and '°B'H" from !'B*. Secondary ion signals from the center of the
sputtered areas (24 x 24 pixels out of 32 x 32 pixels; i.e., a ~56% electronic beam blanking
was applied) were collected to avoid contributions from scattered ions from the surrounding
area (Fujiya et al., 2016). The measurement time was up to ~70 min for the samples,
dependent on the '°B count rate. After each measurement, the backgrounds of four EMs
were monitored on each analytical spot for 17 min, which were typically ~0.03 cps. The
RSFs of Be/B, Be/Si, and B/Si were determined by multiple measurements of a NIST SRM
610 glass standard, for which °Be/!'B RSF is identical to that for synthetic melilite glasses
within uncertainties (Fukuda et al., 2018; Dunham et al., 2020). The IMF on '°B/!'B was

corrected using the NIST SRM 610 (1°B/''B = 0.2474; Brand et al., 2014).

11
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After the Be-B analyses, Li isotope analyses of melilite were performed under the
same secondary ion optics for the Be-B analyses, but moving EMs to certain positions.
Two '®O~ primary ion beams (8 x 8 pm, 3nA and 10 x 10 um, 5nA) were used for the
analyses. Prior to the measurements, the samples were presputtered with a primary ion
beam of 3 or 5 nA that was rastered over 10 x 10 um? areas for ~5-10 min. Secondary ions
of °Li*, "Li*, and *°Si* were detected simultaneously with three EMs. The count rates of
SLi* and *°Si* range from ~2 to 50 cps and 0.4 x 10° to 1.4 x 10° cps, respectively. As for
Be-B analyses, electronic beam blanking was applied so that secondary ions from the center
of the sputtered areas were collected. The measurement time was up to ~ 50 min for the
samples, dependent on the Li count rates. The observed "Li/’Li ratios and Li elemental
abundances of melilite were normalized to those of a NIST SRM 612 glass standard, which
has a "Li/SLi ratio = 12.553 (Kasemann et al., 2005) and Li concentration of 40.2 ppm
(Jochum et al., 2011). The present Li-Be-B data ("Li/SLi, °Be/!'B, and '°B/!'!B ratios and
elemental concentrations) were obtained by summing up secondary ion signals over the
entire analysis (Ogliore et al., 2011). Uncertainties of these data were determined based on

counting statistics for the total count numbers of the secondary ion signals.

3. Results

3.1. Mineralogy and REE abundances

Representative major element compositions are listed in Table A2 (Electronic
Annex EA1). REE concentrations are listed in Table A3 (Electronic Annex EA1).
Locations of REE, Al-Mg, and Li-Be-B analyses within CAls are shown in Electronic
Annex EA3.

12
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CAI Y20-1X1, ~300 x 300 um in size, is a melilite-rich CAI that has a rounded
shape (Fig. 1a). This CAI is composed mostly of melilite (>80 vol%, estimated by using
composite elemental maps and ImageJ software; Ferreira and Rasband, 2012) and anhedral
spinel (~16 vol%) and minor perovskite grains. Perovskite grains are often enclosed by Al-
Ti-rich diopside (Fig. 1a). Melilite shows chemical zoning with dkermanite contents
increasing from an outer spinel layer (~Akss) to the CAI interior (~Akss) (Fig. 1b). No
secondary minerals such as nepheline are found. The CAI is surrounded by a double-
layered rim of thinner spinel + Al-Ti-rich diopside layer (~5 pm) and thicker magnesian
diopside layer (~15 pm, Fig. Ic). Similar objects have been found in the same meteorite
(CALI 18; Mishra, 2018) and another CO chondrite DOM 08004 (Inclusion 26-2; Simon and
Grossman, 2015). The Y20-1X1 has a modified group II REE pattern in melilite as well as
a perovskite-rich portion (Fig. 3; normalized to REE abundances in CI), which is
characterized by depletion in ultra-refractory heavy REEs (HREEs) with positive anomalies
in Ce, (Eu), and Yb (Hiyagon et al., 2011). REE concentrations of melilite are ~1-2 orders
of magnitude lower than those of perovskite + Al-Ti-rich diopside (+ minor melilite)
portions except for Eu (Fig. 3).

CAI Y20-9-1, ~650 x 400 um in size, is an irregular-shaped melilite-rich CAI
(Fig. 2a), which appears to be a fragment of a larger CAI. Melilite grains have gehlenitic
compositions (Aka.11). Minor perovskite grains are also observed, some of which occur
around the voids (Fig. 2b). Anhedral spinel grains are concentrated close to the edge of the
CAI (Fig. 2c). Melilite close to the rim has more gehlenitic compositions (Aka.s) than that
of the CAI interior (Ak7.11). No secondary minerals such as nepheline are found. This CAI
is surrounded by a double-layered rim of discontinuous spinel + Al-Ti-rich diopside layer

and Al-Ti-rich diopside layer (Fig. 2¢). Melilite in Y20-9-1 has a modified group II REE

13
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pattern (Fig. 3). The mineralogy and texture of this CAI are similar to CAI G104 from
Acfer 094 (ungrouped C3.00) that was described by Ushikubo et al. (2017).

3.2. Al-Mg isotope systematics

Magnesium isotope ratios (3*>Mgpsm-3 and 3?°Mg") and ?’Al/>*Mg ratios are
given in Table 1. All individual data, including analyses of standards, are listed in
Electronic Annex EA4. The §?°Mg" values of melilite in the present CO CAls are linearly
correlated with 27 Al/#*Mg ratios (Fig. 4). Data for melilite and spinel in Y20-1X1 form a
well-defined linear regression line (Fig. 4a). Initial 2°A1/?’ Al ratios and initial §°Mg" values
were deduced from isochron regressions (Isoplot 4.15 model 1 fit, Ludwig, 2012).
Uncertainties in initial 2°A1/?’Al ratios and initial $**Mg" values are 95% confidence limits.
The inferred initial 2°A1/2”Al ratios, (2*Al/2’Al)o, of Y20-1X1 and Y20-9-1 are (4.8 +0.5) x
105 (MSWD = 0.3) and (4.9 £ 0.3) x 107> (MSWD = 1.3), respectively. These (?°Al/?’Al)o
values are not resolvable from the canonical value [(5.2 £ 0.1) x 107>; Jacobsen et al., 2008;
Larsen et al., 2011] and one of the main population observed in CAls from another CO
chondrite Allan Hills A77307 [(4.9 = 0.1) x 1073; Liu et al., 2019]. Intercepts of the
regression lines give initial §2°Mg” values, (§*Mg")o, of 0.21 + 0.16%o for Y20-1X1 and —
0.01 + 0.54%o for Y20-9-1. The §*°Mg" values of the diopside rim in Y20-1X1 plot slightly
lower than the regression line defined by melilite and spinel in this CAI (Fig. 4a). The
average 5°°Mg” value of the diopside rim of this CAI is —0.07 £ 0.06%o (2SE, N = 7), which
is resolvable from the intercept of the melilite-spinel regression line [(§*Mg")o = 0.21 +
0.16%o]. Including the data for melilite, spinel, and the diopside rim of Y20-1X1 gives
(2°A177Al)o = (5.3 £0.3) x 105 (MSWD = 0.9) and (5*°Mg")o = —0.01 =+ 0.08%o.

Minerals in the two CAls show variations in 8**Mgpsm-3 values (-2.1 <

8 Mgpsm-3 < 4.9; Table 1). Melilite and spinel in Y20-1X1 exhibit positive 3>’ Mgpsm-3
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values (2.5 < 8% Mgpsm-3 < 4.9; Fig. 5), while the diopside rim exhibits negative §*°Mgpsm-3
values (2.1 < 8%Mgpsm-3 <—0.1; Fig. 5). In contrast to melilite in Y20-1X1, melilite in
Y20-9-1 does not show significant mass-dependent isotopic fractionation in Mg isotopes (—
1.0 < 8*Mgpsm-3 < 0.6; Fig. 5) from the chondritic Mg isotope ratio (§>Mgpsm.3 = —0.15 £
0.04%o, 2SD; Teng et al., 2010).

3.3. Li-Be-B isotope systematics

Figure 6a shows a change of 'B*/*°Si" ratios during sample measurements,
indicating that the ''"B*/?Si* ratios were stable during individual analyses for ~70 min (e.g.,
melilite #10 in Fig. 6a). This demonstrates that surface contamination has been removed by
the presputtering under the condition described in section 2.4, otherwise we may see a
monotonic decrease of the ''B*/3°Si* ratio at the beginning of the analysis (Fujiya et al.,
2016). Some analyses showed an increase of the ''B*/3°Si* ratios in the middle of the
analysis (e.g., melilite #3 in Fig. 6a), which may result from the sputtering of B-rich
phase(s) other than melilite. Thus, these measurement cycles were excluded for summing
up signals. Figure 6b shows °Be/!'B and !°B/!'!B ratios calculated from a single analysis of
melilite in CAI Y20-9-1 (melilite #10), individuals of which were obtained by summing up
signals from different depths (i.e., every 50 cycles within the total 200 cycle analysis). We
do not find any resolvable changes in *Be/!'B and '°B/!!B ratios at each depth, supporting
that the presputtering successfully removed the surface contamination.

The Li, Be, and B concentrations, °Be/!'B, '°B/!'B, and "Li/SLi ratios of measured
CAI minerals are given in Table 2. The '°B/!!B ratios as functions of °Be/!'B and 1/[B
(ppm)] of CAI minerals are shown in Fig. 7. Melilite in the two CAls shows large
variations in '°B/!'B ratios ranging from 0.34 + 0.05 (20) to 1.31 + 0.36 (20), all of which

are higher than the chondritic B isotopic composition (1°B/!'B = 0.2481; Zhai et al., 1996).

15



370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

The corresponding 6'°B values (where §!°B = [("*B/!'B)sample/(*B/!'B)nist srm 951 — 1] X
1000) range from 370 £ 60%o (20) to 4300 £ 1200%0 (205). The B isotope ratios of melilite
are positively correlated with the corresponding *Be/!!B ratios ranging from 19 + 2 (20) to
335+ 74 (20) (Figs. 7a-b). The observed correlations are better than correlations between
the B isotopic ratios and 1/[B (ppm)] (Figs. 7¢-d), in favor of in situ decay of '’Be rather
than mixing lines. The regressions in Fig. 7 were performed using Isoplot 4.15 (model 1,
Ludwig, 2012). Uncertainties in initial °Be/’Be ratios and initial 1°B/!'B ratios are 95%
confidence limits. The inferred initial '°Be/’Be ratios, (1°Be/’Be)o, of Y20-1X1 and Y20-9-
1 are (2.9+0.6) x 103 (MSWD = 1.2) and (2.2 £ 1.0) x 103 (MSWD = 2.5), respectively.
The initial '°B/!'B ratios, (!°B/!'B)j, are determined to be 0.256 + 0.059 for Y20-1X1 and
0.269 £ 0.093 for Y20-9-1, which are indistinguishable from the chondritic B isotopic
composition (1’B/!'B = 0.2481). Note that these (!°Be/’Be)o and ('°B/!'B)o values are
calculated using the data for melilite only. For CAI Y20-1X1, we also analyzed the
diopside rim. The '°B/''B and *Be/!'B ratios of the diopside rim are 0.251 £ 0.004 (26) and
0.011 +£0.001 (20), respectively. Including the diopside data, we obtain (’Be/’Be)o = (3.0 +
0.4) x 107 (MSWD = 1.05) and ('°B/!'B)o = 0.251 £ 0.004, both of which are consistent
with the regression for melilite only.

Three Li isotope measurements of melilites (one for Y20-1X1 and the other two
for Y20-9-1) yield "Li/’Li = 12.2 £ 0.2 (20), 12.1 £ 0.4 (206), and 12.0 + 0.4 (20), which are
identical with the chondritic Li isotopic composition (Li/’Li = 12.06; Seitz et al., 2007)
within uncertainties. The Li concentration of melilite from Y20-1X1 is 630 = 82 (ppb; 20),

which is one order of magnitude higher than those of melilites from Y20-9-1 (59-71 ppb).

4. Discussion
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4.1. Formation scenarios of the present CO CAls inferred from REE and Al-Mg isotope
systematics

Here we discuss possible formation scenarios of the two CO CAls Y20-1X1 and
Y20-9-1. In the following discussion, formation ages of these CAls are determined by
assuming a homogeneous distribution of 26Al with the canonical 2°Al /*’Al ratio of 5.2 x
1075 at the CAlI-forming region. The bulk Al-Mg isochrons of CAls from CV and CR
chondrites yield well-defined 2°Al/2’Al slopes of ~5.1-5.2 x 107> (Jacobsen et al., 2008;
Larsen et al., 2011; 2020), indicating that at least CV and CR CAl-forming regions might
have been significantly homogenized for 2°Al abundance. There are no bulk Al-Mg data of
CAIs from CO chondrites, while multi-CAlI isochrons for CO CAls indicate that they have
formed from reservoir(s) with initial 26A1/>’Al ratios of ~4.9-5.4 x 107 (Liu et al., 2019).
These data suggest that 26Al heterogeneity of 2°Al-bearing CAI-forming regions would
have been within 10% of the canonical value. If the initial 2°A1/>’Al ratios of CO CAI-
forming regions were 10% more/less than those of CV and CR CAl-forming regions, then
the relative formation ages of Y20-1X1 and Y20-9-1 would have been under/overestimated
by 0.1 Myr. Note, however, that distribution of 2°Al was not completely homogeneous at
least during an epoch of formation of refractory inclusions because of the presence of 26Al-
poor refractory solids that were likely formed prior to injection and/or homogenization of
26Al in the solar protoplanetary disk (Sahijpal and Goswami, 1998; Krot et al., 2012; 2019
and references therein; Makide et al., 2013; Holst et al., 2013; Kodp et al., 2016; 2018; Park
et al., 2017 and references therein). Thus, we cannot rule out the possibility of
heterogeneous distribution of 2°Al at the CO CAI-forming region. If this is the case, our Al-

Mg data suggest that the present CO CAls formed in a similar reservoir to that for CV and
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CR CAls since (2Al/*’Al), values of the present CO CAlIs are not resolvable from the

canonical value.

4.1.1. Y20-1X1

A perovskite-rich region and melilite in Y20-1X1 show similar REE abundance
patterns with depletions in ultra-refractory HREEs (Gd to Er and Lu) relative to light REEs
(LREEs; La to Sm) (Fig. 3), which are a Group II-like REE pattern (Martin and Mason,
1974; Boynton, 1975; Davis and Grossman, 1979). The former shows ~10-100 times higher
REE abundances than the latter, while Eu in the latter exhibits a large enrichment relative to
other REEs. Repeated analyses confirmed that these characteristics are reproducible (Fig.
Ala in Electronic Annex EA2). The higher REE abundances in perovskite-rich regions than
melilite, as well as Eu-enrichment in melilite, are best explained by equilibrium partitioning
among minerals crystallized from a melt (e.g., Nagasawa et al., 1980). These observations
are consistent with the rounded shape of this CAI, suggesting that it was once molten.
However, the Group II-like REE pattern cannot be produced by fractionation during
melting, but only by condensation from a fractionated gas previously depleted in ultra-
refractory HREEs (Martin and Mason, 1974; Boynton, 1975; Davis and Grossman, 1979).
Thus, the observed Group II-like REE pattern suggests that its precursor has formed
directly by condensation from the solar nebula. Small positive anomalies in Ce and Yb
(possibly not in Eu) indicate further condensation of these less-refractory REEs onto the
precursor with the Group II REE pattern (Hiyagon et al., 2011). Finally, the precursor with
the Group II-like REE pattern would have experienced melting and recrystallization from
the melt, resulting in the higher REE abundances in perovskite-rich regions than melilite, as

well as Eu-enrichment in melilite.
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443 The Mg stable isotope ratios of melilite and spinel in Y20-1X1 are positively
444  fractionated (~2.5-4.9%o in 8**Mgpsm-3), which could result from melting of their precursor
445  solids in the solar nebula and evaporation of Mg from the melt. The 2’ Al/**Mg ratios and
446  §*°Mg" values of melilite and spinel in Y20-1X1 form the well-defined single isochron
447  (Fig. 4a) with (*°Al/>’Al)o = (4.8 £ 0.5) x 1073, indicative of the contemporaneous

448  formation of the melilite and spinel, that is, co-crystallization from an isotopically

449  fractionated melt. In contrast, the Al-Mg isotope data of diopside rim in Y20-1X1 do not
450  plot on the melilite-spinel isochron (Fig. 4a). Furthermore, 8*Mgpsm-3 values of diopside
451  are consistently negative (—2.1 to —0.1%eo; Fig. 5), suggesting its formation by condensation
452  from the solar nebula (Richter, 2004). The distinct magnitudes of Mg isotope fractionation
453  between CAI interior and its rim have been observed in CAls from CV chondrites (Simon
454  etal., 2005; Kawasaki et al., 2019; Han et al., 2020). The Al-Mg isotope systematics of the
455  CO CAlI also indicate different origins of the core and rim.

456 The intercept of the melilite-spinel isochron of Y20-1X1 is (§*Mg")o = 0.21 +
457  0.16%0, which is slightly higher than the inferred Solar System initial values (—0.040%e;
458  Jacobsen et al., 2008, or —0.016%o; Larsen et al., 2011). The observed (6**Mg")y value can
459  be understood as a result of Mg isotopic evolution due to the decay of 2°Al to 2°Mg within
460  its precursor material. On the basis of the relationship between (*°Al/>’Al)o and (§°°Mg")o
461  values obtained from Al-Mg mineral isochron data, the timing of the final bulk Al/Mg

462  fractionation event can be calculated (e.g., MacPherson et al., 2012). As shown in Fig. 8§,
463  the observed (8*°Mg")o value of Y20-1X1 can be understood as a result of Mg isotopic

464  evolution of a precursor material with 2’Al/>*Mg ratio > 3, which is consistent with the

465  estimated present bulk 2’ Al/>*Mg ratio (~3.2) based on the modal abundances and average
466  chemical compositions of melilite and spinel (Electronic Annex EA2). Thus, the Al-Mg

467  isotope systematics of melilite and spinel are readily explained by thermal processing of
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precursor solids that have formed with 2’Al/#*Mg = ~3.2 and canonical (*°Al1/2’Al)o. Of
note, we do not take into account the diopside rim for the estimation of the bulk 2’ Al/#*Mg
ratio considering that the rim condensed directly from the solar nebula. The (**A1/*’Al)o of
Y20-1X1 is (4.8 £ 0.5) x 1073, corresponding to an age difference of 0.1 1%/ ;1 Myr
relative to the canonical (**A1/2’Al)o. Therefore, this thermal processing could have
occurred within ~0.2 Myr after the formation of the precursor solids. Note, however, that
melilite and spinel show positive 8**Mgpsm-3 values. This suggests that some amounts of
Mg were evaporated from a CAI melt, assuming the chondritic Mg isotopic composition of
its precursors. Since the precise §>>Mgpswm-3 value for spinel standard was not available at
present (see section 2.3), however, the obtained §*°Mgpswm-3 values for spinel in Y20-1X1
may be systematically offset from the true values. Therefore, we only discuss the
8*Mgpsm-3 values for melilite (2.9%o on average). Richter et al. (2007) conducted
evaporation experiments with a type B CAl-like material and investigated a relationship
between elemental and Mg isotope fractionation, showing that ~20% loss of Mg would
induce isotope fractionation in 2.9%o/amu from the CAI melt. Therefore, if the Mg isotope
fractionation occurred at the final melting of Y20-1X1, the precursors of this CAI would
have more Mg-rich bulk composition (>’ Al/>*Mg ~2.5). If we adopt a 2’ Al/>**Mg ratio of 2.5,
then the (8*°Mg")o value of Y20-1X1 plots at marginally higher than the evolution curve
(Fig. 8), suggesting that its precursors have not formed from gas with the chondritic Mg
isotopic composition, but isotopically fractionated gas (8>’ Mgpsm-3~2.9%o). Alternatively,
this discrepancy may reflect either that our 2’ A1/%*Mg estimate based on the two-
dimensional elemental mapping is inaccurate and/or that the experimental results for type B
CAl-like materials cannot be directly applied to the present CAI Y20-1X1. Note that the
pre-evaporation bulk 2’ Al/#*Mg ratio = 2.5 was estimated assuming that evaporated Mg was

not back-condensed onto the CAL If this assumption is invalid, the estimated evaporative
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loss of Mg (~20%) would be underestimated (Nagahara and Ozawa, 2000), meaning that
the true value is even lower than the estimated value. In this case, the discrepancy between
the (3°°Mg")o value of Y20-1X1 and the expected evolution curve would be more
significant.

Overall, the REE and Al-Mg isotope systematics of Y20-1X1 suggest that this
CAI formed by melting of CAl-like precursor solids that have been condensed from the
solar nebula and its diopside rim has subsequently formed by condensation from the solar
nebula. Hence, we deduced the (1°Be/’Be)o and (°B/!'B)o values for this CAI from the
melilite data only, and the diopside rim data will not be included in the following

discussion.

4.1.2.Y20-9-1

Melilite in Y20-9-1 also shows a group II-like REE pattern (Fig. 3 and Fig. A1b
in Electronic Annex EA2), suggesting the condensation of this CAI or its precursor from a
fractionated gas. Some melilite grains show negative 3**Mgpswm-3 values down to —1.0 +
0.4%o (20; Fig. 5). The negative 8**Mgpsm-3 values are often observed in amoeboid olivine
aggregates (Larsen et al., 2011; Olsen et al., 2011; MacPherson et al., 2012; Fukuda et al.,
2021) that are thought to be aggregates of solids condensed from the solar nebula (e.g.,
Krot et al., 2004). The negative §**Mgpsm-3 values of some melilite grains also indicate that
this CAI has condensed from the solar nebula, and not experienced significant melting after
their condensation. The (*°Al/2’Al)o value of Y20-9-1 is (4.9 + 0.3) x 107, corresponding to
an age difference of 0.06 **%/_y os Myr relative to the canonical value. The intercept of the
melilite isochron is (8*Mg™)o = —0.01 % 0.54%o, which is not resolvable from the inferred
Solar System initial values. Although the uncertainty of (§°°Mg™)o is not small enough to

discuss the Mg isotopic evolution precisely (Fig. 8), the unresolvable (§°°Mg")o value does
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not conflict with its condensation from the Solar composition gas. However, Y20-9-1
shows positive anomalies in Ce, Eu, and Yb, suggesting that this CAI is not a single stage
condensation product but contains later additional condensation component(s) of these most

volatile REEs.

4.2. Initial abundances of 2°Al and!°Be in CAIs and their implications for the origin of '’Be
in the early Solar System

Since the discovery of the former presence of °Be in CAls (McKeegan et al.,
2000), a possible correlation between 2°Al and '°Be abundances in CAls has been
investigated to discuss the origins of these SLRs (Sugiura et al., 2001; Marhas et al., 2002;
MacPherson et al., 2003; Chaussidon et al., 2006; Liu et al., 2009, 2010; Srinivasan and
Chaussidon, 2013; Gounelle et al., 2013; Fukuda et al., 2019). Figure 9 summarizes the
inferred (2°Al/2’Al)o and ('°Be/’Be)o values of the present CO CAls and other CAls from
CV, CM, CH, and CH/CB chondrites (MacPherson et al., 2003; Chaussidon et al., 2006;
Liu et al., 2009, 2010; Srinivasan and Chaussidon, 2013; Gounelle et al., 2013; Mishra and
Marhas, 2019; Fukuda et al., 2019). Data from Sugiura et al. (2001) are not shown in Fig.
9, because most of their AI-Mg data were obtained from plagioclase analyses, which could
have been disturbed by thermal metamorphism on the parent bodies (e.g., LaTourrette and
Wasserburg, 1998; MacPherson et al., 2012; Van Orman et al., 2014). No obvious
correlation between the (2°A1/2’Al) and (1°Be/’Be)y among CAls can be observed (Fig. 9).
The (*®A1/%7Al), values of the present CO CAIs are indistinguishable from the canonical
value of 5.2 x 10~ and are also within the range of those of CV CAIs (e.g., MacPherson et
al., 2010; 2012; Kita et al., 2012; Srinivasan and Chaussidon, 2013; Mishra and
Chaussidon, 2014; Kawasaki et al., 2017; 2018; 2019; 2020). In contrast, ('°Be/’Be)o values
of the present CO CAls (2.9 £ 0.6 x 107 and 2.2 + 1.0 x 10-?) are significantly higher than
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the average ('’Be/’Be)o value of CV CAls (~0.7 x 1073) (Fig. 9). To date, the lowest
("Be/’Be) value for CAls with near-canonical (2°Al/2’Al)o = ~4-5 x 10~° (hereafter 26Al-
rich CAIs) is (4.8 = 1.7) x 10~* (MacPherson et al., 2003). Hence, the variation in
(1°Be/’Be)o among the 26Al-rich CAI forming-region(s) must be greater than a factor of six.
The apparent variation in (1’Be/’Be)o values among 2°Al-rich CAls provides evidence for
heterogeneous distribution of 1°Be at the time of 2°Al-rich CAI formation and argues
against a homogeneous distribution of '’Be expected for its molecular cloud origin (Desch
et al., 2004; Dunham et al., 2019).

Recently, Fukuda et al. (2019) revisited the origin of '°Be in the early Solar
System based on their new Be-B isotopic analyses on CAls in CH and CH/CB chondrites
(hereafter CH-CB CAISs). They observed high and variable (1°Be/’Be)o values (0.17-6.1 x
10-) in CH-CB CAISs, and concluded that '°Be was produced locally in the solar
protoplanetary disk near the proto-Sun. This is because such high (°Be/’Be)o values (> 1 x
1073) are difficult to reconcile with models invoking inheritance of °Be from the presolar
molecular cloud (Desch et al., 2004; Tatischeff et al., 2014) or neutrino spallation process
in low-mass core-collapse supernovae (Banerjee et al., 2016). For the same reason, the
observed high (’Be/’Be)o values of the present CO CAls also support the solar cosmic ray
irradiation origin of '°Be in the early Solar System (McKeegan et al., 2000; Gounelle et al.,
2001, 2006, 2013; Goswami et al., 2001; MacPherson et al., 2003; Leya et al., 2003;
Chaussidon et al., 2006; Liu et al., 2009, 2010; Bricker and Caffee, 2010; Wielandt et al.,
2012; Srinivasan and Chaussidon, 2013; Sossi et al., 2017; Mishra and Marhas, 2019;
Fukuda et al., 2019; Jacquet, 2019). Hence, the observed variation in (1°Be/’Be)o values
among the 26Al-rich CAls (Fig. 7) can be well understood as a result of heterogeneous,

local production of '’Be by cosmic ray irradiation caused by solar flares.
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The solar cosmic ray irradiation origin of °Be is also consistent with the presence
of "Be in CAls from CV chondrites ("Be/’Be = ~1-6 x 107; Chaussidon et al., 2006;
Mishra and Marhas, 2019). Because of its very short half-life (T12 = 53 days; Jaeger et al.,
1996), "Be must be synthetized immediately before or after CAI formation, which argues
against the inheritance of '°Be from the molecular cloud (Desch et al., 2004) or low-mass
core-collapse supernovae (Banerjee et al., 2016). In this study, we obtained Be-B and Li
isotope data from different analytical spots so that our dataset cannot be used to discuss the
possible presence of "Be in the present CO CAls.

In solar cosmic ray irradiation models, one would expect that Li and B isotope
ratios of an irradiation target are modified by spallation reactions alongside '°Be production
(e.g., Liu et al., 2010). In fact, some CAls from CV chondrites show sub-chondritic "Li/°Li
ratios (MacPherson et al., 2003; Wielandt et al., 2012) and supra-chondritic initial °B/!'B
ratios (Liu and Chaussidon, 2018 and references therein). Since the collateral effects on Li
and B isotopes are highly dependent on the chemical compositions of irradiation targets
(e.g., Chaussidon and Gounelle, 2006), the observed (1°Be/*Be)o, 'Li/SLi, and initial '°B/''B
ratios would constrain the nature of the irradiation targets, e.g., refractory solids or solar
composition gas. The sub-chondritic ’Li/°Li and supra-chondritic initial '°B/!'B ratios
among some CV CAls imply that a part of irradiation have taken place on the targets with
elevated Be/Li and Be/B ratios relative to chondritic ones (Liu et al., 2010; Srinivasan and
Chaussidon, 2013), which is consistent with the irradiation of CAI themselves. Given the
level of their (1°Be/*Be)o values (~4-10 x 107*) and chemical compositions, however, the
observed "Li/’Li and initial '°B/!'B ratios among CV CAls should be close to spallogenic
"Li/SLi (~0.8) and '°B/!'B (~0.4-0.5) ratios that are theoretically expected based on the
spallation production ratios of Li and B (Yiou et al., 1968). In contrast, 'Li/’Li (~9-14.5)

and initial '°B/!'B ratios (~0.235-0.258) among CV CAIs are clearly different from the
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spallogenic '’B/!'B and "Li/SLi ratios (McKeegan et al., 2000; Sugiura et al., 2001;
MacPherson et al., 2003; Chaussidon et al., 2006; Wielandt et al., 2012; Srinivasan and
Chaussidon, 2013; Sossi et al., 2017; Mishra and Marhas, 2019). Therefore, if irradiation
took place on the CAI themselves, additional mechanisms are required to explain the
observed sub-chondritic Li/’Li and supra-chondritic initial '°B/!'B ratios among CV CAls,
such as diffusive loss of spallogenic Li and B (Liu et al., 2010) or mixing between
spallogenic Li and B in refractory solids and the chondritic reservoir (e.g., solar
composition gas) (Srinivasan and Chaussidon, 2013). In contrast, Fukuda et al. (2019)
demonstrated that Li isotope ratios of CAls from CH/CB chondrites are nearly chondritic,
irrespective of their (1°Be/’Be)o values. These data can be readily explained by solar cosmic
ray irradiation on a target with the chondritic Be/Li ratio of ~0.012, but are inconsistent
with a refractory target with elevated Be/Li ratio of ~10. Although secondary modifications
of Li isotope ratios by thermal processing in the solar nebula cannot be ruled out due to its
high volatility and diffusivity (e.g., Srinivasan and Chaussidon, 2013), Fukuda et al. (2019)
concluded that the irradiation targets were not solid CAI themselves but their precursors,
possibly solar composition gas. In addition, there are also some CAls from CV chondrites
with sub-chondritic initial '°B/!'B ratios (e.g., MacPherson et al., 2003). Considering both
the supra- and sub-chondritic initial '°B/!'B ratios among CV CAls, it is possible that such
a level of B isotopic heterogeneity existed at the CAI-forming regions.

Lithium isotope ratios and initial 1°B/!'B ratios of the present CO CAIs with high
(1°Be/’Be)o values are identical to chondritic Li and B isotopic compositions within
uncertainties, further supporting the conclusion by Fukuda et al. (2019). However, it should
be noted that at least CAI Y20-1X1 would have experienced thermal processing of a CAI-
like precursor (see section 4.1.1 and Fig. 8), and therefore, its initial Li and B isotope ratios

may have been lost during the thermal processing. Another CAI Y20-9-1 does not show
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evidence of significant melting after their condensation, which may retain its original Li-
Be-B isotopic signatures. As noted earlier, however, because of the high volatility and
diffusivity of Li, this is not conclusive. Since fine-grained CAls tend to show a group II
REE pattern, they are thought to be direct condensation products from the solar nebular and
were unlikely melted (MacPherson, 2014 and references therein). In this case, these CAls
in the least metamorphosed chondrites may have preserved their initial Li and B isotopic
signatures inherited from the solar nebula. Correlated studies on REE and Li-Be-B analyses
of fine-grained CAls will reveal more details of the nature of the irradiation targets.

As shown in Fig. 9, 26Al-poor CAls exhibit a large variation in (°Be/’Be)o values
(Marhas et al., 2002; MacPherson et al., 2003; Liu et al., 2009; 2010; Wielandt et al., 2012;
Gounelle et al., 2013; Fukuda et al., 2019). Among them, (°Be/’Be), values of very
refractory, 26Al-poor CH-CB CAls are highly variable (Gounelle et al., 2013; Fukuda et al.,
2019). It has been proposed that very refractory, 26Al-poor CH-CB CAIs formed at the very
beginning of the Solar System, prior to injection and/or homogenization of 2Al from a
nearby star in the solar protoplanetary disk (e.g., Krot et al., 2008). If true, the high and
variable ('’Be/’Be)o values of 2°Al-poor CH-CB CAIs would reflect fluctuations of
energetic particle fluxes caused by episodic mass accretion events, such as FU-Ori
outbursts (Fukuda et al., 2019). Note, however, that the other 26Al-poor CAls with large
nucleosynthetic isotope anomalies, such as CAls with fractionation and unidentified
nuclear effects (FUN CAls; e.g., Wasserburg et al., 1977; Krot et al., 2014 and references
therein; Park et al., 2017) in CV chondrites and platy hibonite crystals (PLACs; Ireland,
1988; Liu et al., 2009; Koop et al., 2016) from the Murchison CM chondrite, tend to show
consistently lower ('’Be/’Be)o values (~5 x 107*; Marhas et al., 2002; MacPherson et al.,
2003; Liu et al., 2009; 2010; Wielandt et al., 2012). Because the large nucleosynthetic

anomalies are not consistent with their late formation after the decay of 2°Al, these
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refractory solids are thought to have formed prior to injection and/or homogenization of
26Al in the solar protoplanetary disk (e.g., Sahijpal and Goswami, 1998; Liu et al., 2009;
Ko6op et al., 2016; 2018). The ('’Be/’Be)o values of FUN CAIs and PLACs are within the
range of those for 26Al-poor CH-CB CAls (Fig. 9), but the consistently lower (1°Be/’Be)o
values would be inconsistent with the variable energetic particle fluxes caused by episodic
accretion events. Tatischeff et al. (2014), therefore, concluded that the consistently lower
(°Be/’Be)o values for FUN CAls and PLACs might not be derived from solar cosmic ray
irradiation, but from irradiation of the presolar molecular cloud by freshly accelerated
cosmic ray escaped from an isolated supernova remnant. Since 2°Al-poor CH-CB CAlIs do
not show large nucleosynthetic isotope anomalies (Kimura et al.,1993), the formation
timings and/or locations of FUN CAIs and PLACs might be different from those of 2°Al-
poor CH-CB CAls. Combined Be-B and stable isotope studies (e.g., Ca and Ti) will

provide an opportunity to better understand the origin of '°’Be among 2°Al-poor CAls.

4.3. Trradiation conditions and implications for the astronomical settings of 26Al-rich CAI
formation
The newly obtained dataset in this study, together with the data of previous

studies, reveal the apparent variations in (!’Be/’Be)o among the 26Al-rich CAls (Fig. 9). If
1'Be was produced by solar cosmic ray irradiation, the variation in ('°Be/’Be)o among CAls
are expected to reflect different irradiation conditions in the early solar nebula (e.g., proton
fluence, chemical compositions of targets; Chaussidon and Gounelle, 2006 and references
therein). On the basis of a model introduced by Fowler et al. (1962), the production ratio of

10Be (relative to °Be) by solar cosmic ray irradiation can be written as

%Be/ °Be = '*0/ °Be z.yi f 0;,(E)(dF /dE) dE
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where y; is the abundance of cosmic ray species (i = *He, “He) relative to proton (y, = 1),
oi(E) is the cross section of a given nuclear reaction (cosmic ray + 0 — °Be), and dF/dE
is the proton differential fluence, F is the fluence, and FE is the energy. If we assume
(dF/dE) = KE7 where the 7 is the energy distribution spectral slope, y; = 0.1 (i = “He), and
use the cross sections of Gounelle et al. (2006), the estimated °Be/’Be ratio is proportional
to the chemical composition of the target (i.e., '°0/°Be) and the proton fluence. Thus, by
determining the chemical composition of target, the observed variation in (1°Be/’Be)o
among the 26Al-rich CATs can be used to estimate a difference in the proton fluence.
Considering the irradiation of CAI solid itself (°0/°Be = 1.2 x 107), Gounelle et al. (2013)
estimated the proton fluence that needed to account for the (1°Be/’Be)o = 10.4 x 1073
observed in CAI 411 from CH/CB chondrite Isheyevo, which ranges from 1.7 x 10" to 3.4
x 10%° protons cm for y varying between 2.5 and 4. Here we refer the estimation by
Gounelle et al. (2013), but we consider the irradiation of solar composition gas (i.e.,
160/°Be = 3.4 x 107; Palme et al., 2014) instead of CAI solid itself. Using (!°Be/*Be)o = (2.9
+0.6) x 1073 for Y20-1X1 that was better constrained than that of Y20-9-1 [(2.2 + 1.0) x
1073], we derive the proton fluences ranging from 1.7 x 10'8 to 3.3 x 10'? protons cm for y
varying between 2.5 and 4, while those for CV CAls [(1°Be/’Be)y = ~0.7 x 10~ in average]
can also be calculated as 4.0 x 10'7 to 8.1 x 10'® protons cm? for y varying between 2.5
and 4.

The variation in the estimated proton fluences among 2°Al-rich CAls can be
understood as a difference in solar cosmic ray fluxes at their formation region. If all the
26 Al-rich CAIs formed at the same region and were irradiated by cosmic rays caused by
solar flare having the similar spectral slope, one can expect that solar cosmic ray fluxes at

the CAI-forming region would have fluctuated by at least a factor of six within a short
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duration (~0.2 Myr) that is inferred from the AI-Mg chronology. Alternatively, the
variation in the estimated proton fluences among 2°Al-rich CAls might reflect a difference
in the formation locations of the CAls (i.e., distance from the proto-Sun). Since energetic
particle fluxes at inner parts of the protoplanetary disk were likely higher than at outer parts
(e.g., Jacquet, 2019), the present CO CAls could have formed closer to the Sun compared
with 26Al-rich CV CAls (Fig. 10). Recently, Dunham et al. (2019) reported a weighted
average (’Be/’Be)o = (8.4 £ 1.6) x 10~ for six CO CAls, which is clearly lower than
(°Be/’Be) values of the present CO CAlIs, but rather consistent with those for 26Al-rich
CV CAIs. By considering the data from Dunham et al. (2019), the difference in ('°Be/’Be)o
values among CO and CV CAls is not related to the difference in their host chondrite
groups (i.e., CV versus CO). Alternatively, it is possible that higher ('’Be/’Be)o values are
related to their REE abundance patterns (Sossi et al., 2017). The higher (!°Be/’Be), values
recorded in the present CO CAls with the group II REE pattern is consistent with the
observation by Sossi et al. (2017), who demonstrated that the inferred ('°Be/’Be)o value for
fine-grained CAls with the group II REE pattern is higher than that for coarse-grained CAls
with an unfractionated REE pattern. These observations indicate that CAlIs with the group
II REE pattern (or at least their precursors) might have formed at inner parts of the solar

protoplanetary disk (Fig. 10).

5. Conclusions

We have investigated Li-Be-B and Al-Mg isotope systematics and REE
abundances in two CAls, Y20-1X1 and Y20-9-1, from Y-81020 that is one of the least
metamorphosed carbonaceous chondrites (CO3.05). The (2°A1/2’Al)o values of Y20-1X1

29



717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

and Y20-9-1 are (4.8 £ 0.5) x 107 and (4.9 + 0.3) x 1073, respectively, both of which are
identical to the canonical 2°Al/*’Al ratio. Assuming the homogenous distribution of 26Al
with the canonical °Al/2’Al ratio at the CAI-forming region, the present CO CAIs formed
within ~0.2 Myr after the birth of the Solar System. The (!°Be/’Be)o values of Y20-1X1 and
Y20-9-1 are (2.9 £ 0.6) x 10~ and (2.2 £ 1.0) x 1073, respectively, which are significantly
higher than the average (1’Be/*Be)o = ~0.7 x 1072 of 26Al-rich CAIs from CV chondrites.
The apparent variation provides evidence for heterogeneous distribution of '°Be at the birth
of the Solar System and supports the solar cosmic ray irradiation origin of '°Be. The present
CO CALIs exhibit the group II-like REE pattern, suggesting the condensation of these CAls
or their precursors from a fractionated gas. Since high (’Be/’Be) values tend to be found
in CAls with the group II REE pattern, these types of CAls or their precursors might have
formed at the innermost part of the solar protoplanetary disk. Alternatively, if the present
CO CALIs formed in the same region as 2°Al-rich CV CAls, solar energetic particle fluxes
from the proto-Sun would have changed by a factor of six within a short duration (~0.2

Myr) at the CAI forming-region.
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Figure captions

Fig. 1. BSE images and a combined X-ray map of melilite-rich CAI Y20-1X1 from
Yamato-81020 (CO3.05) chondrite. For a figure (b), Mg is shown in red, Ca is shown in
green, and Al is shown in blue. A white rectangle in a figure (a) indicates an area shown as
an expanded view in (c¢). Sp = spinel; Mel = melilite; (Al-Ti-) Di = (Aluminum, Titanium-

rich) diopside; Pv = perovskite.

Fig. 2. BSE images and a combined X-ray map of melilite-rich CAI Y20-9-1 from Yamato-
81020 (C0O3.05) chondrite. For a figure (c), Mg is shown in red, Ca is shown in green, and
Al is shown in blue. Solid and dashed rectangles in a figure (a) indicate areas shown as
expanded views in (b) and (c), respectively. Sp = spinel; Mel = melilite; Al-Ti-Di =

Aluminum, Titanium-rich diopside; Pv = perovskite.
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Fig. 3. Representative CI-normalized (McDonough and Sun, 1995) REE abundances in two
CAIs (Y20-1X1 and Y20-9-1) from Yamato-81020 (CO3.05) chondrite. For clarity,
selected data are shown in this figure. All data are plotted in Fig. Al (Electronic Annex
EA2). Note that only upper limits (2 standard error: 2SE) for Ho, Er, and Lu are shown for
the melilite analysis of Y20-1X1 (#3) by arrows. Error bars are 2SE. Mel = melilite; Al-Ti-

Di = Aluminum, Titanium-rich diopside; Pv = perovskite.

Fig. 4. 26A1-**Mg isochron diagrams for (a) Y20-1X1 and (b) Y20-9-1 from Yamato-81020
(C0O3.05) chondrite. For Y20-1X1, data for diopside-rim were not included in the
regression to determine the (*°A1/27Al)o and (8*Mg*)o (see section 4.1.1 for more
discussion). Error bars are 26. Uncertainties in initial (*°A1/?’Al), ratios and (8**Mg")o are

95% confidence limits.

Fig. 5. Relationships between §*Mgpsm-3 (%0) and 2’ Al/2*Mg ratios of individual Al-Mg
isotope analyses for two CAls (Y20-1X1 and Y20-9-1) from Yamato-81020 (CO3.05)
chondrite. A solid line represents the chondritic 6*Mgpsm.3 value (3*Mgpsm.3 = —0.15 +
0.04%o, 2SD; Teng et al., 2010). Errors bars are 26. Note that *>Mgpswm-3 values of spinel
(closed circle symbols) are calculated by assuming the §>°Mgpsm-3 value of spinel standard
to be 0 (see section 2.3) so that these values would be systematically offset from true

values.

Fig. 6. Examples of Be-B isotope analyses of melilite in CAI Y20-9-1 from Yamato-81020
(C0O3.05) chondrite. (a) Change in the ''B*/*%Si* ratios during individual analyses (analysis
spots #3 and #10). Most analyses show nearly-constant ''B*/3°Si* ratio during the analyses

with the duration of up to 70 min (= 200 cycles; e.g., melilite #10). Some analyses show
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significant change in the "B*/*°Si* ratios during the analysis (e.g., melilite #3). Considering
that the elevated ratios result from the sputtering of B-rich phase(s) other than melilite,
these cycles were excluded for summing up signals to calculate the Be and B abundances
and ''B/!'B and °Be/!'B ratios. (b) '°B/!'B and °Be/!'!B ratios of different depths calculated
from single analysis (200 cycles in total; melilite #10) that were divided into four sections
with each 50 cycle. Instrumental mass fractionation and relative sensitivity were corrected
for each section using the NIST SRM 610. The final values that were calculated by

summing up all signals are also shown as a closed circle symbol. Error bars are 2c.

Fig. 7. ''Be-'B isochron and 1/B (ppm) versus '’B/!'B diagrams for (a, ¢) Y20-1X1 and (b,
d) Y20-9-1 from Yamato-81020 (CO3.05) chondrite. Data for diopside-rim (closed
symbols) were not included in the regressions for Y20-1X1 (a and c). For both CAls,
MSWD values of the isochron regressions (a and b) are smaller than those for 1/B versus
10B/!B (¢ and d), indicating that variations in B isotope ratios resulted from the in situ
decay of '“Be. Error bars are 2. Uncertainties in the slopes and intercepts are 95%

confidence limits.

Fig. 8. Mg isotope evolution diagram for two CAls (Y20-1X1 and Y20-9-1) from Yamato-
81020 (CO3.05) chondrite. Growth curves of 3*Mg* as a function of time are also shown
for hypothetical reservoirs with different 2’Al/>*Mg ratios. The curve for the bulk Solar
System reservoir (2’ Al/#*Mg = 0.1016; Lodders, 2003) is shown in black. For each
evolution curve, the initial 2°A1/2”Al ratio and (8**Mg*), value at time “zero” are assumed
to be 5.23 x 107° and —0.040%o, respectively (Jacobsen et al., 2008). Note that the
(8*Mg*)o and initial 26A1/>’ Al ratio of Y20-1X1 are obtained from the melilite-spinel

isochron, not including data for diopside-rim (see section 4.1.1). Data for Y20-1X1 plots
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slightly higher than expected bulk 2’ Al/#*Mg ratios (*?’Al/**Mg = ~2.5-3.2), but consistent
with the Mg isotope evolution of a precursor with 2’Al/2*Mg = 3.2 within uncertainties (see

more discussion in the section 4.1.1). Uncertainties are 95% confidence limits.

Fig. 9. Initial '’Be/’Be versus initial 2°Al/2’Al ratios of CAls from various types of
chondrites, CO CAls (Y20-1X1 and Y20-9-1; this study), 26Al-rich CV CAIs ([1] Podosek
etal., 1991; [2] Goswami et al., 1994; [3] MacPherson et al., 2003; [4] Chaussidon et al.,
2006; [5] Srinivasan and Chaussidon, 2013; [6] Mishra and Marhas, 2019), CV FUN CAls
and CM hibonites ([7] Srinivasan et al., 2000; [8] Marhas et al., 2002; [9] Thrane et al.,
2008; [10, 11] Liu et al., 2009, 2010; [12] Wielandt et al., 2012), and CH-CB CAlIs ([13]
Gounelle et al., 2013; [14] Fukuda et al., 2019). For data reported in Gounelle et al. (2013),
only data for CAI 411 is shown. Data for Wielandt et al. (2012) were recalculated using the
relative sensitivity factor of NIST 612 (see Fukuda et al., 2018 for more details). The inset
shows detail of 2°Al-rich CV CAls. Note that only upper limits (26) for 26Al/>’Al ratios are
shown for CV FUN CAlIs, CM hibonites, and CH-CB CAlIs by arrows. Error bars are 2c or

95% confidence limits.

Fig. 10. (a) Schematic diagram for formation regions of the CAls. If the present CO CAls
(Y20-1X1 and Y20-9-1) formed contemporaneously with the 2°Al-rich CV CAlIs, the
differences in their initial '°’Be/’Be ratios can be understood as a result of their different
formation locations. Since CAls with a group II REE pattern tend to have high initial
10Be/’Be ratios (Sossi et al., 2017; this study), these CAI-forming gaseous reservoir would
be located at the innermost parts of the solar protoplanetary disk. (b) Enlarged view of the
region shown by the dotted rectangle in (a). CAls or their precursors form by condensation

from the irradiated gas. Because energetic particle fluxes decrease with distance from the
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Sun (e.g., Jacquet, 2019), 26Al-rich CV CAIs with unfractionated REEs might have formed
at outer regions than the present CO CAls (Y20-1X1 and Y20-9-1). Alternatively, if all the
26Al-rich CATs formed at the same region, solar cosmic ray fluxes at the CAI-forming
region would have fluctuated by a factor of six within a short duration (~0.2 Myr). See

more discussions in section 4.3.

Appendices

Electronic Annex EA1: LA-ICP-MS analytical conditions (Table A1), and major element
(Table A2) and REE concentration data (Table A3)

Electronic Annex EA2: Additional notes for REE and Al-Mg isotope analyses

Electronic Annex EA3: Positions of Li-Be-B and REE analyses

Electronic Annex EA4: SIMS Al-Mg isotope data
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Table 1

The Al-Mg isotope data of melilite, spinel, and diopside in CAls from Yamato-81020

Minerals/Analysis #  §*Mgpsm-3 (%0) 20 YAI*Mg 20 5°Mg" (%) 20 Minerals/Analysis #  §*Mgpsm-3 (%0) 20 YAI*Mg 20 5°Mg" (%) 20
Y20-9-1 Y20-1X1

melilite #1 -0.72 0.41  30.79 0.48 10.27 0.60  melilite #1 2.90 0.30 8.21 0.14 2.95 0.27
melilite #3 -0.85 041 27.07 031 943 0.48  melilite #2 3.08 0.30 4.95 0.06 1.93 0.27
melilite #4 -0.21 0.37 37.36 0.39 13.85 0.60  melilite #3 3.30 0.30 7.28 0.09 2.70 0.27
melilite #5 0.61 0.30 28.18 036 9.42 0.51  melilite #4 2.99 0.30 4.36 0.08 1.73 0.27
melilite #6 0.23 042  36.63 0.44 1259 0.68  melilite #5 2.95 0.30 1.89 0.02 0.88 0.27
melilite #7 0.30 041  26.92 032 9.57 0.48  melilite #6 2.83 0.30 4.77 0.06 1.87 0.27
melilite #8 -0.06 0.33 3741 0.47 13.60 0.57  melilite #7 2.51 0.30 5.84 0.10 2.21 0.27
melilite #9 0.13 0.28 40.61 0.53 1446 0.61  melilite #8 2.45 0.30 6.05 0.15 2.26 0.27
melilite #10 0.10 0.29  27.03 0.28 9.76 0.56  spinel #1 3.22 0.23 256 0.03 1.15 0.21
melilite #11 0.32 0.32 26.18 0.28 9.13 0.65  spinel #2 4.87 0.23 255 0.03 1.09 0.18
melilite #12 0.02 042 31.23 0.36  10.51 0.56  spinel #3 4.74 0.23 255 0.03 0.98 0.16
melilite #13 -0.16 041  21.90 026 7.83 0.38  diopside #1 -2.15 0.31 0.057 0.001 0.10 0.26
melilite #14 -0.07 0.37  30.95 0.38 11.23 0.51  diopside #2 -0.26 0.31 0.151 0.009 -0.03 0.26
melilite #15 -0.98 0.37  30.17 0.43 10.61 0.57  diopside #3 -0.27 0.31 0.046 0.001 -0.12 0.26
melilite #16 0.45 0.37 16.04 0.18 5.73 0.40  diopside #4 -1.47 0.31 0.043 0.001 -0.10 0.26
melilite #18 0.55 0.37 2693 0.72  9.48 0.47  diopside #5 -0.30 0.31 0.048 0.001 -0.12 0.26
melilite #24 0.35 0.37 31.04 036  11.15 0.57  diopside #6 -0.07 0.31 0.074 0.002 -0.07 0.26
melilite #25 0.31 0.37  29.06 0.41 10.25 0.49  diopside #7 -1.66 0.31 0.050 0.002 -0.11 0.26
melilite #27 0.63 0.48 43.71 0.88 14.87 0.83

melilite #28 0.34 0.39  20.37 022 722 0.57




Table 2
The Li-Be-B isotope data of melilite and diopside in CAls from Yamato-81020

Minerals/Analysis location# Li (ppb) 26 "Li/Li 26 Be(ppb) 26 B(ppb) 26 ‘Be/''B 20 YB/''B  2¢
Y20-1X1

melilite #1 529 29 28 2 30 3 0.338 0.052
melilite #2 648 14 15 2 78 9 0.470 0.094
melilite #3 736 48 7 1 267 40 1.058 0.209
melilite #4 578 38 5 1 251 37 0.998 0.198
melilite #5 563 37 7 1 161 19 0.695 0.118
melilite #7 763 50 9 1 162 19 0.666 0.110
melilite #8 555 37 14 2 80 12 0.666 0.150
melilite #9 550 36 7 1 178 24 0.843 0.154
diopside-rim #6 22 1 2912 115 0.011 0.001 0.251 0.004
melilite #10 630 82 12.2 0.2

Y20-9-1

melilite #1 909 80 12 2 157 30 0.820 0.217
melilite #2 800 71 68 5 19 2 0.338 0.048
melilite #3 843 75 7 1 335 74 1.309 0.365
melilite #5 733 50 6 1 332 72 1.160 0.321
melilite #6 892 61 12 1 131 15 0.458 0.074
melilite #8 662 45 18 2 59 7 0.358 0.073
melilite #9 787 52 15 1 94 11 0.494 0.086
melilite #10 714 47 17 1 215 27 0.723 0.127
melilite #11 71 9 12.1 0.4

melilite #12 59 8 12.0 0.4
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